1
|
Boubaddi M, Rossi J, Marichez A, Marty M, Amintas S, Laurent C, Dabernat S. Preoperative Prognostic Factors in Resectable Pancreatic Cancer: State of the Art and Prospects. Ann Surg Oncol 2025; 32:4117-4127. [PMID: 40095311 DOI: 10.1245/s10434-025-17062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/09/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Only 15% to 20% of patients with pancreatic ductal adenocarcinoma (PDAC) have access to surgical resection, which represents the only chance of curative treatment. Current resection classifications are almost exclusively anatomic and do not correlate sufficiently with patient survival. It is essential to develop preoperative prognostic factors to distinguish patients at high risk of early postoperative recurrence from those who will have prolonged survival after surgery. In some cases, PDACs may present biomolecular differences reflecting their aggressiveness that are not yet assessable by the current clinical-biologic assessment. This study aimed to assess the preoperative prognostic factors that are already available and the future perspectives being developed. METHOD This study reviewed the literature using the PubMed public database for preoperative prognostic factors for resectable PDAC. CONCLUSION Validated preoperative prognostic factors, whether clinical, biologic, radiologic, or histologic, are very important in anticipating the course of each patient's disease. The identification of potential new prognostic biomarkers such as genomic, transcriptomic, and proteomic analyses and the dosage of circulating tumor DNA are very serious avenues to be developed, but the extraction and analysis techniques as well as the interpretation of their results need to be standardized in prospective studies.
Collapse
Affiliation(s)
- Mehdi Boubaddi
- Colorectal Unit, Department of Digestive Surgery, Bordeaux University Hospital, Bordeaux, France.
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, Bordeaux, France.
- Hepatobiliary and Pancreatic Surgery Department, Bordeaux University Hospital, Bordeaux, France.
| | - Julia Rossi
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Arthur Marichez
- Colorectal Unit, Department of Digestive Surgery, Bordeaux University Hospital, Bordeaux, France
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Marion Marty
- Tumor Biology and Tumor Bank Laboratory, CHU Bordeaux, Bordeaux, France
| | - Samuel Amintas
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Christophe Laurent
- Colorectal Unit, Department of Digestive Surgery, Bordeaux University Hospital, Bordeaux, France
| | - Sandrine Dabernat
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Lloyd EG, Jihad M, Manansala JS, Li W, Cheng PS, Mucciolo G, Zaccaria M, Teles SP, Henríquez JA, Harish S, Brais R, Ashworth S, Luo W, Johnson PM, Veghini L, Vallespinos M, Corbo V, Biffi G. SMAD4 and KRAS Status Shapes Cancer Cell-Stromal Cross-Talk and Therapeutic Response in Pancreatic Cancer. Cancer Res 2025; 85:1368-1389. [PMID: 39841099 PMCID: PMC7617379 DOI: 10.1158/0008-5472.can-24-2330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) contains an extensive stroma that modulates response to therapy, contributing to the dismal prognosis associated with this cancer. Evidence suggests that PDAC stromal composition is shaped by mutations within malignant cells, but most previous work has focused on preclinical models driven by KrasG12D and mutant Trp53. Elucidation of the contribution of additional known oncogenic drivers, including KrasG12V mutation and Smad4 loss, is needed to increase the understanding of malignant cell-stromal cell cross-talk in PDAC. In this study, we used single-cell RNA sequencing to analyze the cellular landscape of Trp53-mutant mouse models driven by KrasG12D or KrasG12V, in which Smad4 was wild type or deleted. KrasG12DSmad4-deleted PDAC developed a fibro-inflammatory rich stroma with increased malignant JAK/STAT cell signaling and enhanced therapeutic response to JAK/STAT inhibition. SMAD4 loss in KrasG12V PDAC differently altered the tumor microenvironment compared with KrasG12D PDAC, and the malignant compartment lacked JAK/STAT signaling dependency. Thus, malignant cell genotype affects cancer cell and stromal cell phenotypes in PDAC, directly affecting therapeutic efficacy. Significance: SMAD4 loss differentially impacts malignant cell-stromal cell signaling and treatment sensitivity of pancreatic tumors driven by KRASG12D or KRASG12V, highlighting the importance of understanding genotype-phenotype relationships for precision therapy.
Collapse
Affiliation(s)
- Eloise G. Lloyd
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Muntadher Jihad
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Judhell S. Manansala
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Wenlong Li
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Priscilla S.W. Cheng
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Gianluca Mucciolo
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Marta Zaccaria
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Sara Pinto Teles
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Joaquín Araos Henríquez
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Sneha Harish
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Rebecca Brais
- Histopathology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, UK
| | - Sally Ashworth
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Weike Luo
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Paul M. Johnson
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Lisa Veghini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Mireia Vallespinos
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Giulia Biffi
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| |
Collapse
|
3
|
Reyngold M, Schoenfeld JD, O’Reilly EM, Varghese AM, White C, Zinovoy M, Romesser PB, Wu AJ, Hajj C, Cuaron JJ, Khalil DN, Park W, Lu W, Zhang Z, Yu KH, Diaz LA, Crane CH. Nonoperative Management of Technically Resectable Pancreatic Cancer With Ablative Radiation Therapy. JAMA Oncol 2025:2832566. [PMID: 40208620 PMCID: PMC11986826 DOI: 10.1001/jamaoncol.2025.0460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/02/2025] [Indexed: 04/11/2025]
Abstract
Importance Surgical resection of pancreatic ductal adenocarcinoma (PDAC) modestly improves long-term survival due to the competing risk of metastatic disease. However, postoperative morbidity often interferes with administration of systemic therapy and may be unacceptable to some patients. Ablative radiation therapy (A-RT) has emerged as an effective noninvasive local treatment in many tumor types and may provide an alternative to surgery in select patients with resectable PDAC. Objective To estimate the efficacy of A-RT in technically resectable PDAC. Design, Setting, and Participants This cohort study of consecutive patients with histologically confirmed, radiographically resectable T1-2N0-1M0 PDAC treated with A-RT at Memorial Sloan Kettering Cancer Center between June 2016 and December 2022 were included from a prospectively maintained database. Patients were not eligible for surgery because of noncancer-related comorbidities. Data were frozen for analysis in December 2023, which took place between March and November 2024. Exposures All patients received A-RT exceeding 97.5-Gy biologically effective dose with daily computed tomography or magnetic resonance imaging guidance, motion management, and daily or selective adaptation of the dose distribution. Main Outcomes and Measures The primary outcome was overall survival (OS). Secondary outcomes included biochemical and radiographic objective response rate, cumulative incidence of local progression, progression-free survival, and distant metastasis-free survival. Results Of 25 patients with radiographically resectable PDAC who received A-RT, 13 (52%) were male, and the median (IQR) age at time of A-RT was 80 (74-87) years. A total of 20 patients (80%) had a Karnofsky Performance Status score of 80 or lower. A total of 15 tumors (60%) were T2, and 4 (16%) were node positive. A total of 17 patients (68%) received induction chemotherapy for a median (range) of 2.9 (1.0-6.1) months. Radiation therapy regimens delivered with conventional linear accelerators included 75 Gy in 25 fractions among 13 patients, 67.5 Gy in 15 fractions among 9 patients, 50 Gy in 5 fractions among 2 patients (magnetic resonance imaging-guided linear accelerator), and 60 Gy in 10 for 1 patient. OS, local progression, and distant metastasis-free survival at 2 years were 43.7% (95% CI, 27.4%-69.5%), 20.8% (95% CI, 7.3%-39.0%), and 20.0% (95% CI, 9.1%-43.8%), respectively. Grade 3 acute and late gastrointestinal tract toxic effects were noted in 3 and 1 patients, respectively, with no grade 4 or higher events. Conclusions and Relevance In this cohort study, A-RT in patients with technically resectable PDAC led to effective local tumor control and favorable OS despite advanced age, poor Karnofsky Performance Status score, and conservative use of chemotherapy in the cohort studied. These data support a prospective study of A-RT for the management of resectable PDAC.
Collapse
Affiliation(s)
- Marsha Reyngold
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York
| | - Joshua D. Schoenfeld
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eileen M. O’Reilly
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anna M. Varghese
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charlie White
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa Zinovoy
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul B. Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abraham J. Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carla Hajj
- Oncology Institute at Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - John J. Cuaron
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Danny N. Khalil
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wungki Park
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wei Lu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhigang Zhang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth H. Yu
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Luis A. Diaz
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher H. Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York
| |
Collapse
|
4
|
Chisam M, Palta M. An Organized Approach to Ablative Radiation Therapy. Int J Radiat Oncol Biol Phys 2025; 121:1100-1101. [PMID: 40089335 DOI: 10.1016/j.ijrobp.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 03/17/2025]
Affiliation(s)
- Michael Chisam
- Department of Radiation Oncology, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Manisha Palta
- Department of Radiation Oncology, Duke Cancer Institute, Duke University, Durham, North Carolina.
| |
Collapse
|
5
|
Sanford NN, Narang AK, Aguilera TA, Bassetti MF, Chuong MD, Erickson BA, Goodman KA, Herman JM, Intven M, Kilcoyne A, Kim H, Paulson E, Reyngold M, Tsai S, Tchelebi LT, Tuli R, Versteijne E, Wei AC, Wo JY, Zhang Y, Hong TS, Hall WA. NRG Oncology International Consensus Contouring Atlas on Target Volumes and Dosing Strategies for Dose-Escalated Pancreatic Cancer Radiation Therapy. Int J Radiat Oncol Biol Phys 2025; 121:918-929. [PMID: 39510320 DOI: 10.1016/j.ijrobp.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE Dose-escalated radiation therapy is increasingly used in the treatment of pancreatic cancer; however, approaches to target delineation vary widely. We present the first North American cooperative group consensus contouring atlas for dose-escalated pancreatic cancer radiation therapy. METHODS AND MATERIALS An expert international panel comprising 15 radiation oncologists, 2 surgeons, and 1 radiologist was recruited. Participants used MimCloud software to contour high- and low-risk clinical target volumes (CTVs) on 3 pancreatic cancer cases: a borderline resectable head tumor, a locally advanced head tumor, and a medically inoperable tail tumor. Simultaneous Truth and Performance Level Estimation volumes were created, and contours were analyzed using Dice similarity coefficients. RESULTS The contoured gross tumor volume for the borderline head, locally advanced head, and unresectable tail tumor cases were 156.7, 58.2, and 9.0 cc, respectively, and the Dice similarity coefficients (SD) for the high- and low-risk CTV ranged from 0.45 to 0.82. Consensus volumes were agreed upon by authors. High-risk CTVs comprised the tumor plus abutting vessels. Low-risk CTVs started superiorly at (tail and distal body tumors) or 1 cm above (head, neck and proximal body tumors) the celiac takeoff and extended inferiorly to the superior mesenteric artery at the level of the first jejunal takeoff. For head, neck, and proximal body tumors, the lateral volume encompassed the entire pancreas head and 5 to 10 mm around the celiac, superior mesenteric artery, superior mesenteric vein, including the common hepatic artery and medial portal vein, consistent with a "Triangle" volume-based approach. For distal body and tail tumors, the entire tail was included, along with the splenic vessels and the takeoffs of celiac artery. CONCLUSIONS Through multidisciplinary collaboration, we created consensus contouring guidelines for dose-escalated pancreatic cancer radiation therapy. These volumes include not only gross disease, but also routine elective coverage, and can be used to standardize practice for future trials seeking to define the role of dose-escalated radiation therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Nina N Sanford
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Amol K Narang
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Todd A Aguilera
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael F Bassetti
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Beth A Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Karyn A Goodman
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joseph M Herman
- Northwell Health Cancer Institute, Department of Radiation Medicine, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY; Histosonics, Plymouth, Minnesota
| | - Martijn Intven
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aoife Kilcoyne
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hyun Kim
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marsha Reyngold
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Susan Tsai
- Department of Surgical Oncology, Ohio State University, Columbus, Ohio
| | - Leila T Tchelebi
- Northwell Health Cancer Institute, Department of Radiation Medicine, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY
| | - Richard Tuli
- Department of Radiation Oncology, University of South Florida, Morsani College of Medicine, Florida
| | - Eva Versteijne
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Alice C Wei
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jennifer Y Wo
- Department of Surgical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ying Zhang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Theodore S Hong
- Department of Surgical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
6
|
Hill CS, Parkinson R, Jaffee EM, Sugar E, Zheng L, Onners B, Weiss MJ, Wolfgang CL, Cameron JL, Pawlik TM, Rosati L, Le DT, Hacker-Prietz A, Lutz ER, Schulick R, Narang AK, Laheru DA, Herman JM. Phase 1 Study of Adjuvant Allogeneic Granulocyte-Macrophage Colony-Stimulating Factor-Transduced Pancreatic Tumor Cell Vaccine, Low-Dose Cyclophosphamide, and Stereotactic Body Radiation Therapy Followed by FOLFIRINOX in High-Risk Resected Pancreatic Ductal Adenocarcinoma. Int J Radiat Oncol Biol Phys 2025; 121:930-941. [PMID: 39547453 DOI: 10.1016/j.ijrobp.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/06/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE Local and distant progression remains common following resection of resectable pancreatic ductal adenocarcinoma (PDAC) despite adjuvant multiagent chemotherapy. We report a prospective institutional phase 1 trial incorporating adjuvant GVAX vaccine, low-dose cyclophosphamide (Cy), and stereotactic body radiation therapy (SBRT) followed by FOLFIRINOX (FFX) among patients who underwent resection of high-risk PDAC. PATIENTS AND METHODS The study design was a modified 3+3. Cohort 1 received 5-fraction SBRT to 33 Gy to the tumor bed and 25 Gy to elective nodes followed by 6 cycles of full-dose FFX. After toxicity review, cohort 2 had SBRT and was switched to modified FFX (mFFX). Cohort 3 had 1 cycle of Cy/GVAX followed by SBRT, mFFX, and 4 cycles of maintenance Cy/GVAX with 6-month Cy/GVAX boosts until progression. RESULTS Nineteen patients were enrolled with a median follow-up of 36.2 months. To be eligible, patients were required to have close/positive margins (within ≤1 mm) (71%) and/or lymph node metastasis (79%). Overall, 63% of patients had both. In cohort 1, 67% of patients received 6 cycles of FFX; in cohort 2, 75% received 6 cycles of modified FFX. In cohort 3, 12 patients received the first dose of Cy/GVAX and SBRT with 10 individuals (83%) receiving 6 cycles of mFFX. Cohort 3 had acceptable levels of grade ≥3 thrombocytopenia, neutropenia, and diarrhea after 2 cycles of mFFX. Median overall survival (OS)/disease-free survival (DFS) for the overall cohort and cohort 3 was 36.2/18.2 months and 61.3/24.1 months, respectively. One- and 2-year OS for cohort 3 was 83%/75%, respectively. At the last follow-up (median = x), 5 patients were alive (42%) in cohort 3. CONCLUSIONS This is the first prospective trial to evaluate adjuvant GVAX, Cy, SBRT, and mFFX in resected PDAC patients with high-risk features. This combination regimen was well tolerated with limited toxicity and promising survival outcomes, warranting future studies to validate this regimen in the adjuvant setting.
Collapse
Affiliation(s)
- Colin S Hill
- Laura and Issac Perlmutter Cancer Center at New York University, Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York
| | - Rose Parkinson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth Sugar
- Division of Biostatistics and Bioinformatics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Beth Onners
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew J Weiss
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York, New York
| | - Christopher L Wolfgang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, New York, University Grossman School of Medicine, New York, New York
| | - John L Cameron
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Timothy M Pawlik
- Department of Surgery, The Urban Meyer III and Shelley Meyer Chair for Cancer Research, The Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Lauren Rosati
- Department of Pediatrics, Heersink School of Medicine, University of Alabama, Birmingham, Alabama
| | - Dung T Le
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amy Hacker-Prietz
- Department of Radiation Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Richard Schulick
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado; University of Colorado Cancer Center, Aurora, Colorado
| | - Amol K Narang
- Department of Radiation Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel A Laheru
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Joseph M Herman
- Radiation Medicine, Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York, New York..
| |
Collapse
|
7
|
Lockie EB, Sylivris A, Pandanaboyana S, Zalcberg J, Skandarajah A, Loveday BP. Relationship between pancreatic cancer resection rate and survival at population level: systematic review. BJS Open 2025; 9:zraf007. [PMID: 40131791 PMCID: PMC11934921 DOI: 10.1093/bjsopen/zraf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 01/10/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Surgery combined with chemotherapy provides the best chance of survival in pancreatic cancer. This study investigated whether increasing the resection rate at a population level improves overall survival and modelled the interaction between resection rate, perioperative mortality rate, and population survival. METHODS A systematic review was conducted on studies reporting resection rate and survival outcomes in patients with pancreatic cancer at a population level. MEDLINE, Embase and Evidence-Based Medicine Reviews were searched up to February 2024. The primary outcome was overall population-level survival. A model for 1-year survival incorporating varying resection and perioperative mortality rates was developed. RESULTS The search identified 3967 studies; 19 were eligible (516 789 patients). A significant association was observed between resection rate and pancreatic cancer population survival at 1 year (r2 = 0.46, P = 0.001). A weak but significant association was noted between resection rate and (neo)adjuvant chemotherapy (r2 = 0.26, P = 0.03). One-year pancreatic cancer population survival was significantly associated with chemotherapy (r2 = 0.63; P = 0.004), but the effect was weaker than for resection rate (regression slope 0.26 versus 0.94 respectively). According to the developed model, for example, increasing the resection rate from 10 to 15% and perioperative mortality rate from 2 to 3% would lead to a 1-year survival increase from 17.6% to 22.1%. CONCLUSION A higher resection rate at a population level was associated with improved survival of the pancreatic cancer population. While some of this benefit was linked to increasing (neo)adjuvant chemotherapy use, the effect of resection rate was stronger. Strategies to enhance the resection rate at national and regional levels should be explored. Establishing a benchmark for resection rate could support patient-centred healthcare and promote equitable access to high-quality pancreatic cancer care.
Collapse
Affiliation(s)
- Elizabeth B Lockie
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of General Surgical Specialties, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Amy Sylivris
- Department of General Surgical Specialties, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sanjay Pandanaboyana
- Hepato-Pancreatico-Biliary Centre, Freeman Hospital, Newcastle upon Tyne, UK
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John Zalcberg
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- School of Public Health, Faculty of Medicine, Monash University, Clayton, Victoria, Australia
- Department of Medical Oncology, Alfred Health, South Yarra, Victoria, Australia
| | - Anita Skandarajah
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of General Surgical Specialties, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Surgery, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Benjamin P Loveday
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of General Surgical Specialties, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Surgery, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Shakerian N, Tafazoli A, Razavinia A, Sadrzadeh Aghajani Z, Bana N, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Current Understanding of Therapeutic and Diagnostic Applications of Exosomes in Pancreatic Cancer. Pancreas 2025; 54:e255-e267. [PMID: 39661050 DOI: 10.1097/mpa.0000000000002414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
ABSTRACT Unusual symptoms, rapid progression, lack of reliable early diagnostic biomarkers, and lack of efficient treatment choices are the ongoing challenges of pancreatic cancer. Numerous research studies have demonstrated the correlation between exosomes and various aspects of pancreatic cancer. In light of these facts, exosomes possess the potential to play functional roles in the treatment, prognosis, and diagnosis of the pancreatic cancer. In the present study, we reviewed the most recent developments in approaches for exosome separation, modification, monitoring, and communication. Moreover, we discussed the clinical uses of exosomes as less invasive liquid biopsies and drug carriers and their contribution to the control of angiogenic activity of pancreatic cancer. Better investigation of exosome biology would help to effectively engineer therapeutic exosomes with certain nucleic acids, proteins, and even exogenous drugs as their cargo. Circulating exosomes have shown promise as reliable candidates for pancreatic cancer early diagnosis and monitoring in high-risk people without clinical cancer manifestation. Although we have tried to reflect the status of exosome applications in the treatment and detection of pancreatic cancer, it is evident that further studies and clinical trials are required before exosomes may be employed as a routine therapeutic and diagnostic tools for pancreatic cancer.
Collapse
Affiliation(s)
- Neda Shakerian
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Aida Tafazoli
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz
| | - Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, IR
| | | | - Nikoo Bana
- Kish International Campus, University of Teheran
| | - Maysam Mard-Soltani
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
9
|
Luchini C. Diagnostic Pearls and Pitfalls in the Evaluation of Biopsies of the Pancreas. Arch Pathol Lab Med 2025; 149:e54-e62. [PMID: 38387616 DOI: 10.5858/arpa.2023-0426-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/24/2024]
Abstract
CONTEXT.— The examination of small pancreatic biopsies is a difficult task for pathologists. This is due to the scant and fragmented material often obtained from diagnostic procedures as well as the significant overlap between different neoplastic and nonneoplastic entities. In the upcoming neoadjuvant era, biopsies could become even more important, representing the only possibility to look at the real histomorphology of tumors before chemotherapy-induced modifications. OBJECTIVES.— To summarize and discuss the state-of-the-art diagnostic workflow for small pancreatic biopsies, including the most important morphologic and immunohistochemical features and molecular alterations. The main diagnostic pearls and pitfalls of this challenging scenario are also discussed. The most important topics of this review are represented by: (1) pancreatic ductal adenocarcinoma, along with its main differential diagnoses, including autoimmune pancreatitis; (2) solid hypercellular neoplasms, including neuroendocrine neoplasms, acinar cell carcinoma, pancreatoblastoma, and solid pseudopapillary neoplasms; and (3) cystic lesions. Real-world considerations will also be presented and discussed. DATA SOURCES.— Sources included a literature review of published studies and the author's own work. CONCLUSIONS.— The correct diagnosis of pancreatic lesions is a crucial step in the therapeutic journey of patients. It should be based on robust, standardized, and reliable hallmarks. As presented and discussed here, the integration of morphology with immunohistochemistry, and, in selected cases, with molecular analysis, represents a decisive step in this complex scenario.
Collapse
Affiliation(s)
- Claudio Luchini
- From the Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy; and the ARC-Net Research Center, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Jhetam Z, Martins-Furness C, Slabber C, Munro OQ, Nel M, Harmse L. Copper complexes induce haem oxygenase-1 (HMOX1) and cause apoptotic cell death in pancreatic cancer cells. J Inorg Biochem 2025; 264:112815. [PMID: 39740375 DOI: 10.1016/j.jinorgbio.2024.112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, has a dismal 5-year survival rate, making palliative chemotherapy the only treatment option. Targeted therapy has limited efficacy in PDAC, underscoring the need for novel therapeutic approaches. The inducible stress-response protein, haem oxygenase-1 (HMOX1), has been implicated in treatment failure in PDAC. Copper coordination complexes have shown promise as anticancer agents against various cancers, and are associated with apoptotic cell death. The different ligands to which copper is complexed, determine the specificity and efficacy of each complex. Three different classes of copper complexes were evaluated for anti-cancer activity against AsPC-1 and MIA PaCa-2 pancreatic cancer cell lines. A copper-phenanthroline-theophylline complex (CuPhTh2), a copper-8-aminoquinoline-naphthyl complex (Cu8AqN), and two copper-aromatic-isoindoline complexes (CuAIsI) were effective inhibitors of cell proliferation with clinically relevant IC50 values below 5 μM. The copper complexes caused reactive oxygen species (ROS) formation, promoted annexin-V binding, disrupted the mitochondrial membrane potential (MMP) and activated caspase-9 and caspase-3/7, confirming apoptotic cell death. Expression of nuclear HMOX1 was increased in both cell lines, with the CuPhTh2 complex being the most active. Inhibition of HMOX1 activity significantly decreased the IC50 values of these copper complexes suggesting that HMOX1 inhibition may alter treatment outcomes in PDAC.
Collapse
Affiliation(s)
- Zakeeya Jhetam
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Carla Martins-Furness
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Cathy Slabber
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg 2017, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg 2017, South Africa; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Marietha Nel
- Dept of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Leonie Harmse
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
11
|
Chang E, Sherry AD, Liermann J, Abdollahi A, Tzeng CWD, Tang C, Aguilera TA, Koay EJ, Das P, Koong AC, Pant S, Ludmir EB. Evolving Paradigms in the Treatment of Oligometastatic Pancreatic Ductal Adenocarcinoma. J Gastrointest Cancer 2025; 56:47. [PMID: 39827280 DOI: 10.1007/s12029-024-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2024] [Indexed: 01/22/2025]
Abstract
Multiple randomized trials have suggested that the addition of comprehensive metastasis-directed therapy to best systemic therapy improves disease control and survival among patients with oligometastatic disease, even for histologies with a high propensity for rapid spread. Here, we review the growing literature supporting the oligometastatic paradigm in pancreatic ductal adenocarcinoma. We summarize key details from nascent institutional series and reflect on the recently reported phase II randomized EXTEND trial. We discuss various strategies for enhancing the clinical and technical implementation of metastasis-directed therapy in this patient population. Lastly, we highlight multiple ongoing landmark trials seeking to optimize and validate the role of metastasis-directed therapy in oligometastatic pancreatic cancer. Ultimately, these and other continued clinical and translational research efforts will be critical to improve care and outcomes for patients with oligometastatic pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Enoch Chang
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander D Sherry
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ching-Wei D Tzeng
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad Tang
- Department of Genitourinary Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Todd A Aguilera
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eugene J Koay
- Department of Gastrointestinal Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prajnan Das
- Department of Gastrointestinal Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Albert C Koong
- Department of Gastrointestinal Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ethan B Ludmir
- Department of Gastrointestinal Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Chen X, Li S, Gao C, Wang W, Li H, Liu Y, Liu R, Hao J. Safety and efficacy of intraoperative radiation therapy using a low-energy X-ray source for resectable pancreatic cancer: an interim evaluation of an ongoing prospective phase II study. Cancer Biol Med 2025; 22:j.issn.2095-3941.2024.0287. [PMID: 39749735 PMCID: PMC11795264 DOI: 10.20892/j.issn.2095-3941.2024.0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVE The role of intraoperative radiation therapy (IORT) in the management of resectable pancreatic cancer (RPC) remains unclear. To date, the application of IORT using a low-energy X-ray source has not been extensively investigated. Therefore, this study was conducted to evaluate the safety and efficacy of IORT using a 50 kV X-ray source in treating RPC. METHODS Patients with RPC who underwent radical pancreatectomy and IORT were enrolled. The primary endpoint was time to treatment failure (TTF) survival, whereas the secondary endpoints were safety and overall survival (OS). RESULTS By November 2023, 35 patients with RPC were treated according to the study protocol. The median TTF was 11.67 months, whereas the median OS for the cohort was 22.2 months. The local recurrence rate was 20%. The most common postoperative complication was pancreatic fistula. The incidence of delayed gastric emptying was 20%. Within 30 days after surgery, one patient experienced abdominal pain, another experienced vomiting, and one died because of abdominal infection and a grade C pancreatic fistula. Carcinoembryonic antigen (CEA) and D-dimer levels significantly correlated with TTF and OS in multivariate analyses. The carbohydrate antigen 19-9 (CA19-9) level was another prognostic factor significantly associated with OS. Patients with low D-dimer and normal CA19-9 levels showed prolonged OS with an IORT dose ≤ 15 Gy. CONCLUSIONS This study supports use of IORT with a 50 kV X-ray source in treating RPC. IORT using a low-energy X-ray source was well-tolerated and feasible. Additionally, D-dimer, CEA, and CA19-9 levels may help identify patient profiles potentially benefitting from IORT.
Collapse
Affiliation(s)
- Xingyun Chen
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shuo Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chuntao Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wei Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Haorui Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuxiao Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Rui Liu
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
13
|
Jain A, Keesari PR, Pulakurthi YS, Katamreddy R, Dhar M, Desai R. Pancreatic Cancer Risk in Prediabetes: A Systematic Meta-analysis Approach. Pancreas 2025; 54:e51-e56. [PMID: 39324961 DOI: 10.1097/mpa.0000000000002391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
OBJECTIVES Pancreatic cancer and prediabetes pose significant public health challenges. Given the lack of strong evidence we performed a meta-analysis to assess the risk of pancreatic cancer in prediabetes. MATERIALS AND METHODS We performed a thorough search of the major databases over the last 10 years to identify relevant articles. The pooled odds ratio (OR) and hazard ratio (HR) were combined to calculate the effect size (ES). RESULTS We analyzed 5 studies including 5,425,111 prediabetic individuals and 16,096,467 normoglycemic population across 5 countries with a median follow-up of 8.5 years. We identified a noteworthy association between prediabetes and pancreatic cancer, reporting an unadjusted ES of 1.36 (95% confidence interval [CI] 1.05-1.77, P = 0.02) and an adjusted ES of 1.40 (1.23-1.59, P < 0.01). Subgroup analyses by age revealed variations in risk, with studies involving participants aged 60 and above exhibiting a higher ES (ES 1.83, 95% CI 1.28-2.62, P < 0.01). Geographical differences were also observed, with Japanese studies reporting a higher risk (ES 1.89, 95% CI 1.15-3.10, P < 0.01) compared with those from the United States (ES 1.32, 95% CI 1.13-1.53, P < 0.01). CONCLUSIONS We identified 40% higher risk of pancreatic cancer in patients with prediabetes than those with normal blood glucose necessitating urgent attention for further research and policy change.
Collapse
Affiliation(s)
- Akhil Jain
- From the University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | - Meekoo Dhar
- Staten Island University Hospital, Staten Island, NY
| | | |
Collapse
|
14
|
Michael NL, Krell RW. Pancreatic cancer: a haystack of needles. J Gastrointest Oncol 2024; 15:2743-2744. [PMID: 39816012 PMCID: PMC11732364 DOI: 10.21037/jgo-24-697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/30/2024] [Indexed: 01/18/2025] Open
Affiliation(s)
- Nicholas L Michael
- Surgical Oncology Division, Department of General Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Robert W Krell
- Surgical Oncology Division, Department of General Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
15
|
Bowland K, Lai J, Skaist A, Zhang Y, Teh SSK, Roberts NJ, Thompson E, Wheelan SJ, Hruban RH, Karchin R, Bailey MH, Iacobuzio-Donahue CA, Eshleman JR. Islands of genomic stability in the face of genetically unstable metastatic cancer. PLoS One 2024; 19:e0298490. [PMID: 39700179 PMCID: PMC11658618 DOI: 10.1371/journal.pone.0298490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/13/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Metastatic cancer affects millions of people worldwide annually and is the leading cause of cancer-related deaths. Most patients with metastatic disease are not eligible for surgical resection, and current therapeutic regimens have varying success rates, some with 5-year survival rates below 5%. Here, we test the hypothesis that metastatic cancer can be genetically targeted by exploiting single base substitution mutations unique to individual cells that occur as part of normal aging prior to transformation. These mutations are targetable because ~10% of them form novel tumor-specific "NGG" protospacer adjacent motif (PAM) sites targetable by CRISPR-Cas9. METHODS Whole genome sequencing was performed on five rapid autopsy cases of patient-matched primary tumor, normal and metastatic tissue from pancreatic ductal adenocarcinoma decedents. CRISPR-Cas9 PAM targets were determined by bioinformatic tumor-normal subtraction for each patient and verified in metastatic samples by high-depth capture-based sequencing. RESULTS We found that 90% of PAM targets were maintained between primary carcinomas and metastases overall. We identified rules that predict PAM loss or retention, where PAMs located in heterozygous regions in the primary tumor can be lost in metastases (private LOH), but PAMs occurring in regions of loss of heterozygosity (LOH) in the primary tumor were universally conserved in metastases. CONCLUSIONS Regions of truncal LOH are strongly retained in the presence of genetic instability and, therefore, represent genetic vulnerabilities in pancreatic adenocarcinomas. A CRISPR-based gene therapy approach targeting these regions may be a novel way to genetically target metastatic cancer.
Collapse
Affiliation(s)
- Kirsten Bowland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jiaying Lai
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alyza Skaist
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States of America
| | - Yan Zhang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States of America
| | - Selina Shiqing K. Teh
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Nicholas J. Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States of America
| | - Elizabeth Thompson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States of America
| | - Sarah J. Wheelan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ralph H. Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States of America
| | - Rachel Karchin
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Matthew H. Bailey
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| | - Christine A. Iacobuzio-Donahue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - James R. Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States of America
| |
Collapse
|
16
|
Yamaguchi N, Wu YG, Ravetch E, Takahashi M, Khan AG, Hayashi A, Mei W, Hsu D, Umeda S, de Stanchina E, Lorenz IC, Iacobuzio-Donahue CA, Tavazoie SF. A Targetable Secreted Neural Protein Drives Pancreatic Cancer Metastatic Colonization and HIF1α Nuclear Retention. Cancer Discov 2024; 14:2489-2508. [PMID: 39028915 PMCID: PMC11611693 DOI: 10.1158/2159-8290.cd-23-1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer-secreted protein that becomes overexpressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig-like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical, and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis. NPTX1-AMIGO2 signaling enhanced hypoxic growth and was critically required for hypoxia-inducible factor-1α (HIF1α) nuclear retention and function. NPTX1 is overexpressed in human PDAC tumors and upregulated in liver metastases. Therapeutic targeting of NPTX1 with a high-affinity monoclonal antibody substantially reduced PDAC liver metastatic colonization. We thus identify NPTX1-AMIGO2 as druggable critical upstream regulators of the HIF1α hypoxic response in PDAC. Significance: We identified the NPTX1-AMIGO2 axis as a regulatory mechanism upstream of HIF1α-driven hypoxia response that promotes PDAC liver metastasis. Therapeutic NPTX1 targeting outperformed a common chemotherapy regimen in inhibiting liver metastasis and suppressed primary tumor growth in preclinical models, revealing a novel therapeutic strategy targeting hypoxic response in PDAC.
Collapse
Affiliation(s)
- Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Y Gloria Wu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Ethan Ravetch
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Mai Takahashi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Abdul G. Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Akimasa Hayashi
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Mei
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Dennis Hsu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Shigeaki Umeda
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ivo C. Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | | | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
17
|
Liu J, Sidiqi B, McComas K, Gogineni E, Andraos T, Crane CH, Chang DT, Goodman KA, Hall WA, Hoffe S, Mahadevan A, Narang AK, Lee P, Williams TM, Chuong MD. SBRT for Pancreatic Cancer: A Radiosurgery Society Case-Based Practical Guidelines to Challenging Cases. Pract Radiat Oncol 2024; 14:555-573. [PMID: 38986901 DOI: 10.1016/j.prro.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
The use of radiation therapy (RT) for pancreatic cancer continues to be controversial, despite recent technical advances. Improvements in systemic control have created an evolving role for RT and the need for improved local tumor control, but currently, no standardized approach exists. Advances in stereotactic body RT, motion management, real-time image guidance, and adaptive therapy have renewed hopes of improved outcomes in this devastating disease with one of the lowest survival rates. This case-based guide provides a practical framework for delivering stereotactic body RT for locally advanced pancreatic cancer. In conjunction with multidisciplinary care, an intradisciplinary approach should guide treatment of the high-risk cases outlined within these guidelines for prospective peer review and treatment safety discussions.
Collapse
Affiliation(s)
- Jason Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California.
| | - Baho Sidiqi
- Department of Radiation Oncology, Northwell Health Cancer Institute, New Hyde Park, New York
| | - Kyra McComas
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennesse
| | - Emile Gogineni
- Department of Radiation Oncology, Ohio State James Cancer Center, Columbus, Ohio
| | - Therese Andraos
- Department of Radiation Oncology, Ohio State James Cancer Center, Columbus, Ohio
| | - Christopher H Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Daniel T Chang
- Department of Radiation Oncology, University of Michigan Health, Ann Arbor, Michigan
| | - Karyn A Goodman
- Department of Radiation Oncology, Mount Sinai Health, New York City, New York
| | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sarah Hoffe
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Anand Mahadevan
- Department of Radiation Oncology, NYU Langone Health, New York City, New York
| | - Amol K Narang
- Department of Radiation Oncology, Johns Hopkins University Kimmel Cancer Center, Baltimore, Maryland
| | - Percy Lee
- Department of Radiation Oncology, City of Hope Lennar Cancer Center, Irvine, California
| | - Terence M Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California
| | - Michael D Chuong
- Department of Radiation Oncology, Baptist Health South Florida, Miami, Florida
| |
Collapse
|
18
|
Uemura S, Kabe Y, Kitago M, Matsuda S, Abe Y, Hasegawa Y, Hori S, Tanaka M, Nakano Y, Sato Y, Itonaga M, Ono M, Kawakami T, Suematsu M, Kitagawa Y. Prognosis prediction of PDAC via detection of O-glycan altered extracellular vesicles in perioperative sera. Cancer Sci 2024; 115:3718-3728. [PMID: 39285510 PMCID: PMC11531947 DOI: 10.1111/cas.16341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 11/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignancy due to the difficulty in diagnosis and poor prognosis because of the high recurrence rate, necessitating reliable biomarkers to improve the diagnosis and prognosis. However, the existing markers have limitations. We previously identified extracellular vesicles (EVs) recognized by O-glycan-binding lectins (Amaranthus caudatus agglutinin [ACA]) as a novel diagnostic biomarker for PDAC using an EV-counting system (ExoCounter). This retrospective study analyzed changes in ACA-positive EVs in perioperative PDAC serum and its association with prognosis using ExoCounter. Absolute EV levels in the pre- and postoperative sera of 44 patients who underwent curative pancreatectomy for PDAC were quantified using ExoCounter. The carbohydrate antigen 19-9 levels declined in most samples postoperatively, and presented no correlation with poor prognosis. In contrast, ACA-positive EVs increased in serum at 7 days postoperatively in 27 of 44 patients (61.4%). We therefore divided participants with ACA-positive EVs before and after surgery into elevation and decline groups. The overall survival (OS) and recurrence-free survival (RFS) of patients with higher ACA-positive EVs were significantly shorter than those with lower ACA-positive EVs (26.1 months vs. not reached, P = 0.018; 11.9 vs. 38.6 months, P = 0.013). Multivariable analysis revealed that ACA-positive EV elevation in postoperative serum was an independent prognostic factor for poor OS (hazard ratio [HR] = 3.891, P = 0.023) and RFS (HR = 2.650, P = 0.024). The detection of ACA-positive EVs in perioperative serum may be used to predict the prognosis of PDAC in the early postoperative period.
Collapse
Affiliation(s)
- Sho Uemura
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yasuaki Kabe
- Department of BiochemistryKeio University School of MedicineTokyoJapan
- Department of BiochemistryKochi University Medical SchoolNankokuKochiJapan
| | - Minoru Kitago
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Sachiko Matsuda
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yuta Abe
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yasushi Hasegawa
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Shutaro Hori
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Masayuki Tanaka
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yutaka Nakano
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yasunori Sato
- Department of BiostatisticsKeio University School of MedicineTokyoJapan
| | | | - Masayuki Ono
- Future Creation Research LaboratoryJvckenwood CorporationYokohamaJapan
| | - Tatsuya Kawakami
- Future Creation Research LaboratoryJvckenwood CorporationYokohamaJapan
| | - Makoto Suematsu
- Department of BiochemistryKeio University School of MedicineTokyoJapan
| | - Yuko Kitagawa
- Department of SurgeryKeio University School of MedicineTokyoJapan
| |
Collapse
|
19
|
Suto H, Nagao M, Matsukawa H, Fuke T, Ando Y, Oshima M, Takahashi S, Shibata T, Kamada H, Kobara H, Okuyama H, Hirao T, Kumamoto K, Okano K. Relationships between postoperative recurrences and standardized uptake value on 18F-fluorodeoxyglucose-positron emission tomography in patients with resectable and borderline resectable pancreatic ductal adenocarcinoma who underwent curative pancreatic resection after neoadjuvant chemoradiotherapy. Pancreatology 2024; 24:1133-1140. [PMID: 39160121 DOI: 10.1016/j.pan.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND This study aimed to examine postoperative recurrence after curative pancreatic resection following neoadjuvant chemoradiotherapy (NACRT) in patients with resectable (R-) and borderline resectable (BR-) pancreatic ductal adenocarcinoma (PDAC), focusing on its relationship with the standardized uptake value (SUV) on 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET). METHOD The postoperative initial recurrence patterns were examined in patients with R- and BR-PDAC who underwent NACRT followed by curative pancreatic resection. Data collected from three prospective clinical trials were retrospectively analysed. RESULTS After a median follow-up of 29 months, 91 (60 %) of 151 patients experienced postoperative recurrence. The median recurrence-free survival (RFS) for all patients was 18 months. The sites of first recurrence were lung-only in 24 (26 %) patients, liver-only in 23 (25 %), local-only in 11 (12 %), peritoneum-only in 10 (11 %), other single site in 5 (5 %), and multiple sites in 19 (21 %) patients. Multivariate analysis identified the maximum standardized uptake value (SUVmax) on FDG-PET at diagnoses ≥5.40 (hazard ratio [HR], 1.62; 95 % confidence interval [CI], 1.01-2.61; p = 0.045) and node-positive pathology (HR, 2.01; 95 % CI, 1.32-3.08; p = 0.001) as significant predictors of RFS. Furthermore, the SUVmax at initial diagnosis and after NACRT correlated with liver metastasis. CONCLUSION R- and BR-PDACs with high SUV on FDG-PET at diagnosis are risk factors for postoperative recurrence. Among patients who undergo surgery after NACRT, those with a high SUVmax at diagnosis or post-NACRT require careful attention for postoperative liver recurrence.
Collapse
Affiliation(s)
- Hironobu Suto
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Mina Nagao
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroyuki Matsukawa
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takuro Fuke
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasuhisa Ando
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Minoru Oshima
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shigeo Takahashi
- Department of Radiation Oncology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Toru Shibata
- Department of Radiation Oncology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hideki Kamada
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroyuki Okuyama
- Department of Clinical Oncology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tomohiro Hirao
- Department of Public Health, Kagawa University, Kagawa, Japan
| | - Kensuke Kumamoto
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Keiichi Okano
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
20
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
21
|
Leonhardt CS, Gustorff C, Klaiber U, Le Blanc S, Stamm TA, Verbeke CS, Prager GW, Strobel O. Prognostic Factors for Early Recurrence After Resection of Pancreatic Cancer: A Systematic Review and Meta-Analysis. Gastroenterology 2024; 167:977-992. [PMID: 38825047 DOI: 10.1053/j.gastro.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND & AIMS More than half of pancreatic ductal adenocarcinomas (PDACs) recur within 12 months after curative-intent resection. This systematic review and meta-analysis was conducted to identify all reported prognostic factors for early recurrence in resected PDACs. METHODS After a systematic literature search, a meta-analysis was conducted using a random effects model. Separate analyses were performed for adjusted vs unadjusted effect estimates as well as reported odds ratios (ORs) and hazard ratios (HRs). Risk of bias was assessed using the Quality in Prognostic Studies tool, and evidence was rated according to Grading of Recommendations Assessment, Development and Evaluation recommendations. RESULTS After 2903 abstracts were screened, 65 studies were included. Of these, 28 studies (43.1%) defined early recurrence as evidence of recurrence within 6 months, whereas 34 (52.3%) defined it as evidence of recurrence within 12 months after surgery. Other definitions were uncommon. Analysis of unadjusted ORs and HRs revealed 41 and 5 prognostic factors for early recurrence within 6 months, respectively. When exclusively considering adjusted data, we identified 25 and 10 prognostic factors based on OR and HR, respectively. Using a 12-month definition, we identified 38 (OR) and 15 (HR) prognostic factors from unadjusted data and 38 (OR) and 30 (HR) prognostic factors from adjusted data, respectively. On the basis of frequency counts of adjusted data, preoperative carbohydrate antigen 19-9, N status, nondelivery of adjuvant therapy, grading, and tumor size based on imaging were identified as key prognostic factors for early recurrence. CONCLUSIONS Reported prognostic factors of early recurrence vary considerably. Identified key prognostic factors could aid in the development of a risk stratification framework for early recurrence. However, prospective validation is necessary.
Collapse
Affiliation(s)
- Carl-Stephan Leonhardt
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria; Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom.
| | - Charlotte Gustorff
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Ulla Klaiber
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Solange Le Blanc
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Tanja A Stamm
- Institute of Outcomes Research, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Caroline S Verbeke
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gerald W Prager
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Oliver Strobel
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Gangula A, Suresh D, Babu AS, Li Z, Upendran A, Kannan R. Gelatin and lipidoid integrate to create gelasomes to enhance siRNA delivery with low toxicity. Bioact Mater 2024; 40:557-570. [PMID: 39539730 PMCID: PMC11558258 DOI: 10.1016/j.bioactmat.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 11/16/2024] Open
Abstract
RNAi therapeutics possess the potential to cure many uncurable human diseases. For instance, RNAi therapeutics using liposomes showed remarkable survival benefits in patients with liver diseases. However, the extension of liposomes to deliver RNA to cure other ailments has largely been unsuccessful. Therefore, researchers are focusing on designing and testing different combinations of materials for versatile RNA delivery applications. Yet, an efficient and safe RNA delivery platform has not been identified. In this work, we have developed a new class of RNA-delivery vehicle called "Gelasomes," using an incongruous combination of gelatin and lipidoid to exploit each material's unique properties while overcoming their inherent limitations. The low in vivo toxicity of Gelasomes is attributed to the exterior gelatin layers that shield the exposure of cationic lipidoid-siRNA clusters and yet present a biocompatible surface. Indeed, toxicity studies in mice indicate that repeated administration of Gelasomes (up to 48 mg/kg BW) is well-tolerated with no notable changes in body weight, hematology, or serum chemistry. Interestingly, the gelatin outer layer efficiently protects siRNA from serum degradation (48 h), preserving its functionality beyond two months of storage. Notably, Gelasomes possess dual siRNA conjugation modes, i.e., electrostatic binding with lipidoid core and covalent attachment to gelatin surface. The bivalency coupled with lipidoids' high transfection efficiency rendered Gelasomes with remarkably high gene silencing efficiency (>90 %) at very low treatment doses in vitro (40 μg/mL). In vivo studies further confirmed the high gene silencing ability of Gelasomes in non-small cell lung tumor mouse models. This new platform is tunable on all fronts: size, degree of surface coating, and biomolecule functionalization. Truncating the lipidoid C14-tail to a C8-tail yielded Gelasomes of reduced size. As lipidoids with different carbon lengths are synthesizable, we can develop a library of Gelasomes with different sizes. The surface coating with less gelatin resulted in high transfection efficiency at low doses of Gelasomes. The structure of Gelasomes offers chemical handles to couple target-specific molecules like antibodies to tune their properties for efficient biological application.
Collapse
Affiliation(s)
- Abilash Gangula
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | - Dhananjay Suresh
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | | | - Zhaohui Li
- Department of Bioengineering, University of Missouri, Columbia, MO, 65212, USA
| | - Anandhi Upendran
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- Department of Bioengineering, University of Missouri, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA
| |
Collapse
|
23
|
Ma Y, Yang Y, Zhang H, Mugaanyi J, Hu Y, Wu S, Lu C, Mao S, Wang K. Sarcomatoid carcinoma of the pancreas (Review). Oncol Lett 2024; 28:477. [PMID: 39161336 PMCID: PMC11332573 DOI: 10.3892/ol.2024.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/20/2024] [Indexed: 08/21/2024] Open
Abstract
Sarcomatoid carcinoma of the pancreas (SCP) is a rare and aggressive subtype of undifferentiated pancreatic ductal adenocarcinoma, with a generally poor prognosis and only sporadic cases reported worldwide. Histologically, the most notable feature of SCP is the presence of abundant of mesenchymatoid spindle tumor cells in the tumor, which lack glandular differentiation. Immunohistochemically, SCP is characterized by the expression of both mesenchymal and epithelial markers. With only a few reported cases, there is limited knowledge about its molecular and clinicopathological characteristics. Therefore, the present study performed a literature search to identify all relevant published studies. The present review provides an overview of the histogenesis, diagnosis, genetic features, prognosis and treatment of SCP, specifically focusing on the molecular alterations. Furthermore, a single-center experience is reported, which adds to the limited evidence available in the literature.
Collapse
Affiliation(s)
- Yijie Ma
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Yiwen Yang
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Huizhi Zhang
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Joseph Mugaanyi
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Yangke Hu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Shengdong Wu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Caide Lu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Shuqi Mao
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Ke Wang
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| |
Collapse
|
24
|
Mukherjee S, Qi C, Shaw R, Jones CM, Bridgewater JA, Radhakrishna G, Patel N, Holmes J, Virdee PS, Tranter B, Parsons P, Falk S, Wasan HS, Ajithkumar TV, Holyoake D, Roy R, Scott-Brown M, Hurt CN, O'Neill E, Sebag-Montefiore D, Maughan TS, Hawkins MA, Corrie P. Standard or high dose chemoradiotherapy, with or without the protease inhibitor nelfinavir, in patients with locally advanced pancreatic cancer: The phase 1/randomised phase 2 SCALOP-2 trial. Eur J Cancer 2024; 209:114236. [PMID: 39059185 DOI: 10.1016/j.ejca.2024.114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The multi-centre two-stage SCALOP-2 trial (ISRCTN50083238) assessed whether dose escalation of consolidative chemoradiotherapy (CRT) or concurrent sensitization using the protease inhibitor nelfinavir improve outcomes in locally advanced pancreatic cancer (LAPC) following four cycles of gemcitabine/nab-paclitaxel. METHODS In stage 1, the maximum tolerated dose (MTD) of nelfinavir concurrent with standard-dose CRT (50.4 Gy in 28 fractions) was identified from a cohort of 27 patients. In stage 2, 159 patients were enrolled in an open-label randomized controlled comparison of standard versus high dose (60 Gy in 30 fractions) CRT, with or without nelfinavir at MTD. Primary outcomes following dose escalation and nelfinavir use were respectively overall survival (OS) and progression free survival (PFS). Secondary endpoints included health-related quality of life (HRQoL). RESULTS High dose CRT did not improve OS (16.9 (60 % confidence interval, CI 16.2-17.7) vs. 15.6 (60 %CI 14.3-18.2) months; adjusted hazard ratio, HR 1.13 (60 %CI 0.91-1.40; p = 0.68)). Similarly, median PFS was not improved by nelfinavir (10.0 (60 %CI 9.9-10.2) vs. 11.1 (60 %CI 10.3-12.8) months; adjusted HR 1.71 (60 %CI 1.38-2.12; p = 0.98)). Local progression at 12 months was numerically lower with high-dose CRT than with standard dose CRT (n = 11/46 (23.9 %) vs. n = 15/45 (33.3 %)). Neither nelfinavir nor radiotherapy dose escalation impacted on treatment compliance or grade 3/4 adverse event rate. There were no sustained differences in HRQoL scores between treatment groups over 28 weeks post-treatment. CONCLUSIONS Dose-escalated CRT may improve local tumour control and is well tolerated when used as consolidative treatment in LAPC but does not impact OS. Nelfinavir use does not improve PFS.
Collapse
Affiliation(s)
- Somnath Mukherjee
- Oxford Cancer Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Cathy Qi
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Rachel Shaw
- Oncology Clinical Trials Office (OCTO), Department of Oncology, University of Oxford, Oxford, UK
| | - Christopher M Jones
- Department of Oncology, University of Cambridge, Cambridge, UK; Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John A Bridgewater
- UCL Cancer Institute, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ganesh Radhakrishna
- The Christie Hospital, The Christie Hospitals NHS Foundation Trust, Manchester, UK
| | - Neel Patel
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jane Holmes
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Pradeep S Virdee
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Bethan Tranter
- Velindre Cancer Centre, Velindre University NHS Trust, Cardiff, UK
| | - Philip Parsons
- Velindre Cancer Centre, Velindre University NHS Trust, Cardiff, UK
| | - Stephen Falk
- Bristol Cancer Centre, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Harpreet S Wasan
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Thankamma V Ajithkumar
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Daniel Holyoake
- Norfolk & Norwich University Hospital, Norfolk & Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Rajarshi Roy
- Queen's Centre for Oncology, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Martin Scott-Brown
- Coventry Cancer Centre, University Hospital Coventry & Warwickshire, Coventry, UK
| | | | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Tim S Maughan
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Maria A Hawkins
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - Pippa Corrie
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
25
|
Neibart SS, Moningi S, Jethwa KR. Stereotactic Body Radiation Therapy for Locally Advanced Pancreatic Cancer. Clin Exp Gastroenterol 2024; 17:213-225. [PMID: 39050120 PMCID: PMC11268661 DOI: 10.2147/ceg.s341189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction For patients with locally advanced pancreatic cancer (LAPC), who are candidates for radiation therapy, dose-escalated radiation therapy (RT) offers unique benefits over traditional radiation techniques. In this review, we present a historical perspective of dose-escalated RT for LAPC. We also outline advances in SBRT delivery, one form of dose escalation and a framework for selecting patients for treatment with SBRT. Results Techniques for delivering SBRT to patients with LAPC have evolved considerably, now allowing for dose-escalation and superior respiratory motion management. At the same time, advancements in systemic therapy, particularly the use of induction multiagent chemotherapy, have called into question which patients would benefit most from radiation therapy. Multidisciplinary assessment of patients with LAPC is critical to guide management and select patients for local therapy. Results from ongoing trials will establish if there is a role of dose-escalated SBRT after induction chemotherapy for carefully selected patients. Conclusion Patients with LAPC have more therapeutic options than ever before. Careful selection for SBRT may enhance patient outcomes, pending the maturation of pivotal clinical trials.
Collapse
Affiliation(s)
- Shane S Neibart
- Department of Radiation Oncology, Brigham and Women’s Hospital/Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shalini Moningi
- Department of Radiation Oncology, Brigham and Women’s Hospital/Dana-Farber Cancer Institute, Boston, MA, USA
| | - Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
26
|
Narang AK, Hong TS, Ding K, Herman J, Meyer J, Thompson E, Bhutani MS, Krishnan K, Casey B, Shin EJ, Koay EJ. A Multi-Institutional Safety and Feasibility Study Exploring the Use of Hydrogel to Create Spatial Separation between the Pancreas and Duodenum in Patients with Pancreatic Cancer. Pract Radiat Oncol 2024; 14:e276-e282. [PMID: 38043645 DOI: 10.1016/j.prro.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE The administration of dose-escalated radiation for pancreatic adenocarcinoma remains challenging because of the proximity of dose-limiting stomach and bowel, particularly the duodenum for pancreatic head tumors. We explore whether endoscopic injection of a temporary, absorbable hydrogel into the pancreatico-duodenal (PD) groove is safe and feasible for the purpose of increasing spatial separation between pancreatic head tumors and the duodenum. METHODS AND MATERIALS Six patients with localized pancreatic adenocarcinoma underwent endoscopic injection of hydrogel into the PD groove. Safety was assessed based on the incidence of procedure-related adverse events resulting in a delay of radiation therapy initiation. Feasibility was defined as the ability to create spatial separation between the pancreas and duodenum, as assessed on simulation CT. RESULTS All 6 patients were able to undergo endoscopic injection of hydrogel into the PD groove. No device-related events were experienced at any point in follow-up. Presence of hydrogel in the PD groove was apparent on simulation CT in all 6 patients. Mean space created by the hydrogel was 7.7 mm +/- 2.4 mm. In 3 patients who underwent Whipple resection, presence of hydrogel in the PD groove was pathologically confirmed with no evidence of damage to the duodenum. CONCLUSIONS Endoscopic injection of hydrogel into the PD groove is safe and feasible. Characterization of the dosimetric benefit that this technique may offer in the setting of dose-escalated radiation should also be pursued, as should the ability of such dosimetric benefit to translate into clinically improved tumor control.
Collapse
Affiliation(s)
- Amol Kumar Narang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland.
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital Harvard Medical School, Boston, Massachusetts
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Joseph Herman
- Department of Radiation Medicine, Northwell Health Cancer Institute, Lake Success, New York
| | - Jeffrey Meyer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth Thompson
- Department of Pathology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Manoop S Bhutani
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kumar Krishnan
- Division of Gastroenterology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Brenna Casey
- Division of Gastroenterology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Eun Ji Shin
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
27
|
Geukens T, Maetens M, Hooper JE, Oesterreich S, Lee AV, Miller L, Atkinson JM, Rosenzweig M, Puhalla S, Thorne H, Devereux L, Bowtell D, Loi S, Bacon ER, Ihle K, Song M, Rodriguez‐Rodriguez L, Welm AL, Gauchay L, Murali R, Chanda P, Karacay A, Naceur‐Lombardelli C, Bridger H, Swanton C, Jamal‐Hanjani M, Kollath L, True L, Morrissey C, Chambers M, Chinnaiyan AM, Wilson A, Mehra R, Reichert Z, Carey LA, Perou CM, Kelly E, Maeda D, Goto A, Kulka J, Székely B, Szasz AM, Tőkés A, Van Den Bogaert W, Floris G, Desmedt C. Research autopsy programmes in oncology: shared experience from 14 centres across the world. J Pathol 2024; 263:150-165. [PMID: 38551513 PMCID: PMC11497336 DOI: 10.1002/path.6271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/22/2023] [Accepted: 02/09/2024] [Indexed: 05/12/2024]
Abstract
While there is a great clinical need to understand the biology of metastatic cancer in order to treat it more effectively, research is hampered by limited sample availability. Research autopsy programmes can crucially advance the field through synchronous, extensive, and high-volume sample collection. However, it remains an underused strategy in translational research. Via an extensive questionnaire, we collected information on the study design, enrolment strategy, study conduct, sample and data management, and challenges and opportunities of research autopsy programmes in oncology worldwide. Fourteen programmes participated in this study. Eight programmes operated 24 h/7 days, resulting in a lower median postmortem interval (time between death and start of the autopsy, 4 h) compared with those operating during working hours (9 h). Most programmes (n = 10) succeeded in collecting all samples within a median of 12 h after death. A large number of tumour sites were sampled during each autopsy (median 15.5 per patient). The median number of samples collected per patient was 58, including different processing methods for tumour samples but also non-tumour tissues and liquid biopsies. Unique biological insights derived from these samples included metastatic progression, treatment resistance, disease heterogeneity, tumour dormancy, interactions with the tumour micro-environment, and tumour representation in liquid biopsies. Tumour patient-derived xenograft (PDX) or organoid (PDO) models were additionally established, allowing for drug discovery and treatment sensitivity assays. Apart from the opportunities and achievements, we also present the challenges related with postmortem sample collections and strategies to overcome them, based on the shared experience of these 14 programmes. Through this work, we hope to increase the transparency of postmortem tissue donation, to encourage and aid the creation of new programmes, and to foster collaborations on these unique sample collections. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tatjana Geukens
- Laboratory for Translational Breast Cancer Research, Department of OncologyKU LeuvenLeuvenBelgium
| | - Marion Maetens
- Laboratory for Translational Breast Cancer Research, Department of OncologyKU LeuvenLeuvenBelgium
| | - Jody E Hooper
- Stanford University School of MedicinePalo AltoCAUSA
| | - Steffi Oesterreich
- University of Pittsburgh UPMC Hillman Cancer Center, and Magee Womens Research InstitutePittsburghPAUSA
| | - Adrian V Lee
- University of Pittsburgh UPMC Hillman Cancer Center, and Magee Womens Research InstitutePittsburghPAUSA
| | - Lori Miller
- University of Pittsburgh UPMC Hillman Cancer Center, and Magee Womens Research InstitutePittsburghPAUSA
| | - Jenny M Atkinson
- University of Pittsburgh UPMC Hillman Cancer Center, and Magee Womens Research InstitutePittsburghPAUSA
| | - Margaret Rosenzweig
- University of Pittsburgh UPMC Hillman Cancer Center, and Magee Womens Research InstitutePittsburghPAUSA
| | - Shannon Puhalla
- University of Pittsburgh UPMC Hillman Cancer Center, and Magee Womens Research InstitutePittsburghPAUSA
| | - Heather Thorne
- Peter MacCallum Cancer CentreMelbourneAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleAustralia
| | - Lisa Devereux
- Peter MacCallum Cancer CentreMelbourneAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleAustralia
| | | | - Sherene Loi
- Peter MacCallum Cancer CentreMelbourneAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleAustralia
| | - Eliza R Bacon
- Center for Precision MedicineCity of Hope National Medical CenterDuarteCAUSA
| | - Kena Ihle
- Center for Precision MedicineCity of Hope National Medical CenterDuarteCAUSA
| | - Mihae Song
- Center for Precision MedicineCity of Hope National Medical CenterDuarteCAUSA
| | | | - Alana L Welm
- University of Utah Huntsman Cancer InstituteSalt Lake CityUTUSA
| | - Lisa Gauchay
- University of Utah Huntsman Cancer InstituteSalt Lake CityUTUSA
| | | | | | - Ali Karacay
- Memorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | | | - Hayley Bridger
- Cancer Research UK, and UCL Cancer Trials CentreUniversity College LondonLondonUK
| | - Charles Swanton
- Cancer Evolution and Genome Instability LaboratoryThe Francis Crick InstituteLondonUK
- Cancer Research UK Lung Cancer Centre of ExcellenceUCL Cancer InstituteLondonUK
- Department of Medical OncologyUniversity College London HospitalsLondonUK
| | - Mariam Jamal‐Hanjani
- Cancer Research UK Lung Cancer Centre of ExcellenceUCL Cancer InstituteLondonUK
- Department of Medical OncologyUniversity College London HospitalsLondonUK
- Cancer Metastasis LaboratoryUniversity College London Cancer InstituteLondonUK
| | | | | | | | | | | | | | | | | | - Lisa A Carey
- University of North Carolina, Lineberger Comprehensive Cancer CenterChapel HillNCUSA
| | - Charles M Perou
- University of North Carolina, Lineberger Comprehensive Cancer CenterChapel HillNCUSA
| | - Erin Kelly
- University of North Carolina, Lineberger Comprehensive Cancer CenterChapel HillNCUSA
| | - Daichi Maeda
- Department of Molecular and Cellular Pathology, Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of MedicineAkita UniversityAkitaJapan
| | - Janina Kulka
- Department of Pathology, Forensic and Insurance MedicineSemmelweis UniversityBudapestHungary
| | - Borbála Székely
- Department of Pathology, Forensic and Insurance MedicineSemmelweis UniversityBudapestHungary
- National Institute of OncologyBudapestHungary
| | - A Marcell Szasz
- Division of Oncology, Department of Internal Medicine and OncologySemmelweis UniversityBudapestHungary
| | - Anna‐Mária Tőkés
- Department of Pathology, Forensic and Insurance MedicineSemmelweis UniversityBudapestHungary
| | | | - Giuseppe Floris
- Department of PathologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of OncologyKU LeuvenLeuvenBelgium
| |
Collapse
|
28
|
Poiset SJ, Shah S, Cappelli L, Anné P, Mooney KE, Werner-Wasik M, Laufer TS, Posey JA, Lin D, Basu Mallick A, Lavu H, Bashir B, Yeo CJ, Mueller AC. Early outcomes of MR-guided SBRT for patients with recurrent pancreatic adenocarcinoma. Radiat Oncol 2024; 19:65. [PMID: 38812040 PMCID: PMC11138072 DOI: 10.1186/s13014-024-02457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Local treatment options for locally recurrent pancreatic adenocarcinoma (LR-PAC) are limited, with median survival time (MST) of 9-13 months (mos) following recurrence. MRI-guided stereotactic body radiation therapy (MRgSBRT) provides the ability to dose escalate while sparing normal tissue. Here we report on the early outcomes of MRgSBRT for LR-PAC. METHODS Patients with prior resection of pancreatic adenocarcinoma with local recurrence treated with MRgSBRT at a single tertiary referral center from 5-2021 to 2-2023 were identified from our prospective database. MRgSBRT was delivered to 40-50 Gy in 4-5 fractions with target and OAR delineation per institutional standards. Endpoints included local control per RECIST v1.1, distant failure, overall survival (OS), and acute and chronic toxicities per Common Terminology Criteria for Adverse Events, v5. RESULTS Fifteen patients with LR-PAC were identified with median follow-up of 10.6 mos (2.8-26.5 mos) from MRgSBRT. There were 8 females and 7 males, with a median age of 69 years (50-83). One patient underwent neoadjuvant radiation for 50.4 Gy in 28 fractions followed by resection, and one underwent adjuvant radiation for 45 Gy in 25 fractions prior to recurrence. MRgSBRT was delivered a median of 18.8 mos (3.5-52.8 mos) following resection. OS following recurrence at 6 and 12 mos were 87% and 51%, respectively, with a median survival time of 14.1 mos (3.2-27.4 mos). Three patients experienced local failure at 5.9, 7.8, and 16.6 months from MgSBRT with local control of 92.3% and 83.9% at 6 and 12 months. 10 patients experienced distant failure at a median of 2.9 mos (0.3-6.7 mos). Grade 1-2 acute GI toxicity was noted in 47% of patients, and chronic GI toxicity in 31% of patients. No grade > 3 toxicities were noted. CONCLUSIONS This is the first report on toxicity and outcomes of MRgSBRT for LR-PAC in the literature. MRgSBRT is a safe, feasible treatment modality with the potential for improved local control in this vulnerable population. Future research is necessary to better identify which patients yield the most benefit from MRgSBRT, which should continue to be used with systemic therapy as tolerated. TRIAL REGISTRATION Jefferson IRB#20976, approved 2/17/21.
Collapse
Affiliation(s)
- Spencer J Poiset
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA
| | - Sophia Shah
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA
| | - Louis Cappelli
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA
| | - Pramila Anné
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA
| | - Karen E Mooney
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA
| | - Maria Werner-Wasik
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA
| | - Talya S Laufer
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA
| | - James A Posey
- Department of Medical Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, USA
| | - Daniel Lin
- Department of Medical Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, USA
| | - Atrayee Basu Mallick
- Department of Medical Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, USA
| | - Harish Lavu
- Department of Surgery, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, USA
| | - Babar Bashir
- Department of Medical Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, USA
| | - Charles J Yeo
- Department of Surgery, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam C Mueller
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA.
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Tomić G, Sheridan C, Refermat AY, Baggelaar MP, Sipthorp J, Sudarshan B, Ocasio CA, Suárez-Bonnet A, Priestnall SL, Herbert E, Tate EW, Downward J. Palmitoyl transferase ZDHHC20 promotes pancreatic cancer metastasis. Cell Rep 2024; 43:114224. [PMID: 38733589 DOI: 10.1016/j.celrep.2024.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Metastasis is one of the defining features of pancreatic ductal adenocarcinoma (PDAC) that contributes to poor prognosis. In this study, the palmitoyl transferase ZDHHC20 was identified in an in vivo short hairpin RNA (shRNA) screen as critical for metastatic outgrowth, with no effect on proliferation and migration in vitro or primary PDAC growth in mice. This phenotype is abrogated in immunocompromised animals and animals with depleted natural killer (NK) cells, indicating that ZDHHC20 affects the interaction of tumor cells and the innate immune system. Using a chemical genetics platform for ZDHHC20-specific substrate profiling, a number of substrates of this enzyme were identified. These results describe a role for palmitoylation in enabling distant metastasis that could not have been detected using in vitro screening approaches and identify potential effectors through which ZDHHC20 promotes metastasis of PDAC.
Collapse
Affiliation(s)
- Goran Tomić
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Clare Sheridan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Marc P Baggelaar
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK
| | - James Sipthorp
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK
| | | | - Cory A Ocasio
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alejandro Suárez-Bonnet
- The Royal Veterinary College, Department of Pathobiology & Population Sciences, Hawkshead Lane, Hatfield AL9 7TA, UK; Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Simon L Priestnall
- The Royal Veterinary College, Department of Pathobiology & Population Sciences, Hawkshead Lane, Hatfield AL9 7TA, UK; Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eleanor Herbert
- The Royal Veterinary College, Department of Pathobiology & Population Sciences, Hawkshead Lane, Hatfield AL9 7TA, UK; Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Edward W Tate
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Julian Downward
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
30
|
Saleh O, Shihadeh H, Yousef A, Erekat H, Abdallh F, Al-Leimon A, Elsalhy R, Altiti A, Dajani M, AlBarakat MM. The Effect of Intratumor Heterogeneity in Pancreatic Ductal Adenocarcinoma Progression and Treatment. Pancreas 2024; 53:e450-e465. [PMID: 38728212 DOI: 10.1097/mpa.0000000000002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND OBJECTIVES Pancreatic cancer is one of the most lethal malignancies. Even though many substantial improvements in the survival rates for other major cancer forms were made, pancreatic cancer survival rates have remained relatively unchanged since the 1960s. Even more, no standard classification system for pancreatic cancer is based on cellular biomarkers. This review will discuss and provide updates about the role of stem cells in the progression of PC, the genetic changes associated with it, and the promising biomarkers for diagnosis. MATERIALS AND METHODS The search process used PubMed, Cochrane Library, and Scopus databases to identify the relevant and related articles. Articles had to be published in English to be considered. RESULTS The increasing number of studies in recent years has revealed that the diversity of cancer-associated fibroblasts is far greater than previously acknowledged, which highlights the need for further research to better understand the various cancer-associated fibroblast subpopulations. Despite the huge diversity in pancreatic cancer, some common features can be noted to be shared among patients. Mutations involving CDKN2, P53, and K-RAS can be seen in a big number of patients, for example. Similarly, some patterns of genes and biomarkers expression and the level of their expression can help in predicting cancer behavior such as metastasis and drug resistance. The current trend in cancer research, especially with the advancement in technology, is to sequence everything in hopes of finding disease-related mutations. CONCLUSION Optimizing pancreatic cancer treatment requires clear classification, understanding CAF roles, and exploring stroma reshaping approaches.
Collapse
Affiliation(s)
- Othman Saleh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | - Hana Erekat
- School of medicine, University of Jordan, Amman
| | - Fatima Abdallh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | | | - Majd Dajani
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
31
|
Huang YP, Yeh CA, Ma YS, Chen PY, Lai KC, Lien JC, Hsieh WT. PW06 suppresses cancer cell metastasis in human pancreatic carcinoma MIA PaCa-2 cells via the inhibitions of p-Akt/mTOR/NF-κB and MMP2/MMP9 signaling pathways in vitro. ENVIRONMENTAL TOXICOLOGY 2024; 39:2768-2781. [PMID: 38264921 DOI: 10.1002/tox.24143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024]
Abstract
PW06 [(E)-3-(9-ethyl-9H-carbazol-3-yl)-1-(2,5-dimethoxyphenyl) prop-2-en-1-one], a kind of the carbazole derivative containing chalcone moiety, induced cell apoptosis in human pancreatic carcinoma in vitro. There is no investigation to show that PW06 inhibits cancer cell metastasis in human pancreatic carcinoma in vitro. Herein, PW06 (0.1-0.8 μM) significantly exists in the antimetastatic activities of human pancreatic carcinoma MIA PaCa-2 cells in vitro. Wound healing assay shows PW06 at 0.2 μM suppressed cell mobility by 7.45 and 16.55% at 6 and 24 hours of treatments. PW06 at 0.1 and 0.2 μM reduced cell mobility by 14.72 and 21.8% for 48 hours of treatment. Transwell chamber assay indicated PW06 (0.1-0.2 μM) suppressed the cell migration (decreased 26.67-35.42%) and invasion (decreased 48.51-68.66%). Atomic force microscopy assay shows PW06 (0.2 μM) significantly changed the shape of cell morphology. The gelatin zymography assay indicates PW06 decreased MMP2's and MMP9's activities at 48 hours of treatment. Western blotting assay further confirms PW06 reduced levels of MMP2 and MMP9 and increased protein expressions of EGFR, SOS1, and Ras. PW06 also increased the p-JNK, p-ERK, and p-p38. PW06 increased the expression of PI3K, PTEN, Akt, GSK3α/β, and E-cadherin. Nevertheless, results also show PW06 decreased p-Akt, mTOR, NF-κB, p-GSK3β, β-catenin, Snail, N-cadherin, and vimentin in MIA PaCa-2 cells. The confocal laser microscopy examination shows PW06 increased E-cadherin but decreased vimentin in MIA PaCa-2 cells. Together, our findings strongly suggest that PW06 inhibited the p-Akt/mTOR/NF-κB/MMPs pathways, increased E-cadherin, and decreased N-cadherin/vimentin, suppressing the migration and invasion in MIA PaCa-2 cells in vitro.
Collapse
Affiliation(s)
- Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-An Yeh
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Po-Yuan Chen
- Department of Biological Science and Technology, College of Life Science, China Medical University, Taichung, Taiwan
| | - Kuang-Chi Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Surgery, School of Medicine, China Medical University, Taichung, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Wen-Tsong Hsieh
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| |
Collapse
|
32
|
Ciulla C, Luchini C. Genomic determinants of biological aggressiveness and poor prognosis of pancreatic cancers: KRAS and beyond. Expert Rev Mol Diagn 2024; 24:355-362. [PMID: 38708441 DOI: 10.1080/14737159.2024.2348676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION A marked histomolecular heterogeneity characterizes pancreatic cancer. Thus, different tumor histologies with divergent genomic profiles exist within the same category. AREAS COVERED Using data from PubMed, SCOPUS, and Embase (last search date: 04/04/2024), this expert-based, narrative review presents and discusses the essential molecular determinants of biological aggressiveness and poor prognosis in pancreatic cancer. First, KRAS mutation still represents one of the most critical difficulties in treating pancreatic cancers. In this district, it is mutated in > 90% of malignant tumors. Notably, actionable alterations for molecular-based therapies are typically lacking in KRAS-mutated pancreatic cancer. Furthermore, transcriptome-based studies clarified that the squamous phenotype is characterized by poorer prognosis and response to standard chemotherapy. We also discuss molecular biomarkers related to dismal prognosis in specific subsets of pancreatic cancer, such as SMAD4 in signet-ring cell carcinoma and TP53 in invasive cancers derived from intraductal tubulopapillary neoplasms. EXPERT OPINION The identification of the subgroups of pancreatic cancer with particularly unfavorable prognoses is a critical step for addressing specific research efforts. In addition to implementing and strengthening current precision oncology strategies, the decisive step for improving the survival of patients affected by pancreatic cancer must pass through targeting the KRAS gene.
Collapse
Affiliation(s)
- Calogero Ciulla
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Research Center, University of Verona, Verona, Italy
| |
Collapse
|
33
|
Dee EC, Ng VC, O’Reilly EM, Wei AC, Lobaugh SM, Varghese AM, Zinovoy M, Romesser PB, Wu AJ, Hajj C, Cuaron JJ, Khalil DN, Park W, Yu KH, Zhang Z, Drebin JA, Jarnagin WR, Crane CH, Reyngold M. Salvage Ablative Radiotherapy for Isolated Local Recurrence of Pancreatic Adenocarcinoma following Definitive Surgery. J Clin Med 2024; 13:2631. [PMID: 38731159 PMCID: PMC11084663 DOI: 10.3390/jcm13092631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Introduction: The rate of isolated locoregional recurrence after surgery for pancreatic adenocarcinoma (PDAC) approaches 25%. Ablative radiation therapy (A-RT) has improved outcomes for locally advanced disease in the primary setting. We sought to evaluate the outcomes of salvage A-RT for isolated locoregional recurrence and examine the relationship between subsequent patterns of failure, radiation dose, and treatment volume. Methods: We conducted a retrospective analysis of all consecutive participants who underwent A-RT for an isolated locoregional recurrence of PDAC after prior surgery at our institution between 2016 and 2021. Treatment consisted of ablative dose (BED10 98-100 Gy) to the gross disease with an additional prophylactic low dose (BED10 < 50 Gy), with the elective volume covering a 1.5 cm isotropic expansion around the gross disease and the circumference of the involved vessels. Local and locoregional failure (LF and LRF, respectively) estimated by the cumulative incidence function with competing risks, distant metastasis-free and overall survival (DMFS and OS, respectively) estimated by the Kaplan-Meier method, and toxicities scored by CTCAE v5.0 are reported. Location of recurrence was mapped to the dose region on the initial radiation plan. Results: Among 65 participants (of whom two had two A-RT courses), the median age was 67 (range 37-87) years, 36 (55%) were male, and 53 (82%) had undergone pancreaticoduodenectomy with a median disease-free interval to locoregional recurrence of 16 (range, 6-71) months. Twenty-seven participants (42%) received chemotherapy prior to A-RT. With a median follow-up of 35 months (95%CI, 26-56 months) from diagnosis of recurrence, 24-month OS and DMFS were 57% (95%CI, 46-72%) and 22% (95%CI, 14-37%), respectively, while 24-month cumulative incidence of in-field LF and total LRF were 28% (95%CI, 17-40%) and 36% (95%CI 24-48%), respectively. First failure after A-RT was distant in 35 patients (53.8%), locoregional in 12 patients (18.5%), and synchronous distant and locoregional in 10 patients (15.4%). Most locoregional failures occurred in elective low-dose volumes. Acute and chronic grade 3-4 toxicities were noted in 1 (1.5%) and 5 patients (7.5%), respectively. Conclusions: Salvage A-RT achieves favorable OS and local control outcomes in participants with an isolated locoregional recurrence of PDAC after surgical resection. Consideration should be given to extending high-dose fields to include adjacent segments of at-risk vessels beyond direct contact with the gross disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marsha Reyngold
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (E.C.D.); (V.C.N.); (C.H.C.)
| |
Collapse
|
34
|
Reshkin SJ, Cardone RA, Koltai T. Genetic Signature of Human Pancreatic Cancer and Personalized Targeting. Cells 2024; 13:602. [PMID: 38607041 PMCID: PMC11011857 DOI: 10.3390/cells13070602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with a 5-year survival rate of around 11-12%. Surgery, being the treatment of choice, is only possible in 20% of symptomatic patients. The main reason is that when it becomes symptomatic, IT IS the tumor is usually locally advanced and/or has metastasized to distant organs; thus, early diagnosis is infrequent. The lack of specific early symptoms is an important cause of late diagnosis. Unfortunately, diagnostic tumor markers become positive at a late stage, and there is a lack of early-stage markers. Surgical and non-surgical cases are treated with neoadjuvant and/or adjuvant chemotherapy, and the results are usually poor. However, personalized targeted therapy directed against tumor drivers may improve this situation. Until recently, many pancreatic tumor driver genes/proteins were considered untargetable. Chemical and physical characteristics of mutated KRAS are a formidable challenge to overcome. This situation is slowly changing. For the first time, there are candidate drugs that can target the main driver gene of pancreatic cancer: KRAS. Indeed, KRAS inhibition has been clinically achieved in lung cancer and, at the pre-clinical level, in pancreatic cancer as well. This will probably change the very poor outlook for this disease. This paper reviews the genetic characteristics of sporadic and hereditary predisposition to pancreatic cancer and the possibilities of a personalized treatment according to the genetic signature.
Collapse
Affiliation(s)
- Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Tomas Koltai
- Oncomed, Via Pier Capponi 6, 50132 Florence, Italy
| |
Collapse
|
35
|
Tsanov KM, Barriga FM, Ho YJ, Alonso-Curbelo D, Livshits G, Koche RP, Baslan T, Simon J, Tian S, Wuest AN, Luan W, Wilkinson JE, Masilionis I, Dimitrova N, Iacobuzio-Donahue CA, Chaligné R, Pe’er D, Massagué J, Lowe SW. Metastatic site influences driver gene function in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585402. [PMID: 38562717 PMCID: PMC10983983 DOI: 10.1101/2024.03.17.585402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Driver gene mutations can increase the metastatic potential of the primary tumor1-3, but their role in sustaining tumor growth at metastatic sites is poorly understood. A paradigm of such mutations is inactivation of SMAD4 - a transcriptional effector of TGFβ signaling - which is a hallmark of multiple gastrointestinal malignancies4,5. SMAD4 inactivation mediates TGFβ's remarkable anti- to pro-tumorigenic switch during cancer progression and can thus influence both tumor initiation and metastasis6-14. To determine whether metastatic tumors remain dependent on SMAD4 inactivation, we developed a mouse model of pancreatic ductal adenocarcinoma (PDAC) that enables Smad4 depletion in the pre-malignant pancreas and subsequent Smad4 reactivation in established metastases. As expected, Smad4 inactivation facilitated the formation of primary tumors that eventually colonized the liver and lungs. By contrast, Smad4 reactivation in metastatic disease had strikingly opposite effects depending on the tumor's organ of residence: suppression of liver metastases and promotion of lung metastases. Integrative multiomic analysis revealed organ-specific differences in the tumor cells' epigenomic state, whereby the liver and lungs harbored chromatin programs respectively dominated by the KLF and RUNX developmental transcription factors, with Klf4 depletion being sufficient to reverse Smad4's tumor-suppressive activity in liver metastases. Our results show how epigenetic states favored by the organ of residence can influence the function of driver genes in metastatic tumors. This organ-specific gene-chromatin interplay invites consideration of anatomical site in the interpretation of tumor genetics, with implications for the therapeutic targeting of metastatic disease.
Collapse
Affiliation(s)
- Kaloyan M. Tsanov
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francisco M. Barriga
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Yu-Jui Ho
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Direna Alonso-Curbelo
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Geulah Livshits
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timour Baslan
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Janelle Simon
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sha Tian
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra N. Wuest
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Luan
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John E. Wilkinson
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ignas Masilionis
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nevenka Dimitrova
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine A. Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligné
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Pe’er
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Joan Massagué
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W. Lowe
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
36
|
Zhukova LG, Bordin DS, Dubtsova EA, Ilin MA, Kiriukova MA, Feoktistova PS, Egorov VI. How a significant increase in survival in pancreatic cancer is achieved. The role of nutritional status and supportive care: A review. JOURNAL OF MODERN ONCOLOGY 2024; 25. [DOI: 10.26442/18151434.2023.4.202541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Pancreatic cancer (PC) is a serious public health problem. The mortality rate of patients with PC remains one of the highest among cancers. Early diagnosis of PC is challenging, so it is often diagnosed in the later stages. Current treatment approaches, including surgery, neoadjuvant and adjuvant chemotherapy, chemoradiotherapy, and supportive care, have demonstrated improved outcomes. A significant problem remains exocrine pancreatic insufficiency (EPI) in patients with PC, which requires enzyme replacement therapy. However, this is not given due attention in the Russian literature. This review addresses the survival trends of patients with PC, current therapies, and enzyme replacement therapy as an integral part of supportive care and improvement of nutritional status; also, the issues of routing patients with PC are addressed. It is emphasized that the diagnosis and treatment of EPI are mandatory to improve and maintain the nutritional status and quality of life; failure to treat EPI renders antitumor treatment ineffective.
Collapse
|
37
|
Zhang Q, Jiang L, Wang W, Huber AK, Valvo VM, Jungles KM, Holcomb EA, Pearson AN, The S, Wang Z, Parsels LA, Parsels JD, Wahl DR, Rao A, Sahai V, Lawrence TS, Green MD, Morgan MA. Potentiating the radiation-induced type I interferon antitumoral immune response by ATM inhibition in pancreatic cancer. JCI Insight 2024; 9:e168824. [PMID: 38376927 PMCID: PMC11063931 DOI: 10.1172/jci.insight.168824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
Radiotherapy induces a type I interferon-mediated (T1IFN-mediated) antitumoral immune response that we hypothesized could be potentiated by a first-in-class ataxia telangiectasia mutated (ATM) inhibitor, leading to enhanced innate immune signaling, T1IFN expression, and sensitization to immunotherapy in pancreatic cancer. We evaluated the effects of AZD1390 or a structurally related compound, AZD0156, on innate immune signaling and found that both inhibitors enhanced radiation-induced T1IFN expression via the POLIII/RIG-I/MAVS pathway. In immunocompetent syngeneic mouse models of pancreatic cancer, ATM inhibitor enhanced radiation-induced antitumoral immune responses and sensitized tumors to anti-PD-L1, producing immunogenic memory and durable tumor control. Therapeutic responses were associated with increased intratumoral CD8+ T cell frequency and effector function. Tumor control was dependent on CD8+ T cells, as therapeutic efficacy was blunted in CD8+ T cell-depleted mice. Adaptive immune responses to combination therapy provided systemic control of contralateral tumors outside of the radiation field. Taken together, we show that a clinical candidate ATM inhibitor enhances radiation-induced T1IFN, leading to both innate and subsequent adaptive antitumoral immune responses and sensitization of otherwise resistant pancreatic cancer to immunotherapy.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Radiation Oncology and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | - Kassidy M. Jungles
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Stephanie The
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | | | | | - Daniel R. Wahl
- Department of Radiation Oncology and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Arvind Rao
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Vaibhav Sahai
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Division of Hematology and Oncology, Department of Internal Medicine, and
| | - Theodore S. Lawrence
- Department of Radiation Oncology and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael D. Green
- Department of Radiation Oncology and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Meredith A. Morgan
- Department of Radiation Oncology and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
38
|
Luckett T, Abudula M, Ireland L, Glenn M, Bellomo G, Stafferton R, Halloran C, Ghaneh P, Jones R, Schmid MC, Mielgo A. Mesothelin Secretion by Pancreatic Cancer Cells Co-opts Macrophages and Promotes Metastasis. Cancer Res 2024; 84:527-544. [PMID: 38356443 DOI: 10.1158/0008-5472.can-23-1542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease, yet effective treatments to inhibit PDAC metastasis are lacking. The rich PDAC tumor microenvironment plays a major role in disease progression. Macrophages are the most abundant immune cell population in PDAC tumors and can acquire a range of functions that either hinder or promote tumor growth and metastasis. Here, we identified that mesothelin secretion by pancreatic cancer cells co-opts macrophages to support tumor growth and metastasis of cancer cells to the lungs, liver, and lymph nodes. Mechanistically, secretion of high levels of mesothelin by metastatic cancer cells induced the expression of VEGF alpha (VEGFA) and S100A9 in macrophages. Macrophage-derived VEGFA fed back to cancer cells to support tumor growth, and S100A9 increased neutrophil lung infiltration and formation of neutrophil extracellular traps. These results reveal a role for mesothelin in regulating macrophage functions and interaction with neutrophils to support PDAC metastasis. SIGNIFICANCE Mesothelin secretion by cancer cells supports pancreatic cancer metastasis by inducing macrophage secretion of VEGFA and S100A9 to support cancer cell proliferation and survival, recruit neutrophils, and stimulate neutrophil extracellular trap formation. See related commentary by Alewine, p. 513.
Collapse
Affiliation(s)
- Teifion Luckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Maidinaimu Abudula
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Mark Glenn
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gaia Bellomo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ruth Stafferton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Chris Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Rob Jones
- Department of Hepatobiliary Surgery, Liverpool University Teaching Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
39
|
Stoop TF, Theijse RT, Seelen LWF, Groot Koerkamp B, van Eijck CHJ, Wolfgang CL, van Tienhoven G, van Santvoort HC, Molenaar IQ, Wilmink JW, Del Chiaro M, Katz MHG, Hackert T, Besselink MG. Preoperative chemotherapy, radiotherapy and surgical decision-making in patients with borderline resectable and locally advanced pancreatic cancer. Nat Rev Gastroenterol Hepatol 2024; 21:101-124. [PMID: 38036745 DOI: 10.1038/s41575-023-00856-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Surgical resection combined with systemic chemotherapy is the cornerstone of treatment for patients with localized pancreatic cancer. Upfront surgery is considered suboptimal in cases with extensive vascular involvement, which can be classified as either borderline resectable pancreatic cancer or locally advanced pancreatic cancer. In these patients, FOLFIRINOX or gemcitabine plus nab-paclitaxel chemotherapy is currently used as preoperative chemotherapy and is eventually combined with radiotherapy. Thus, more patients might reach 5-year overall survival. Patient selection for chemotherapy, radiotherapy and subsequent surgery is based on anatomical, biological and conditional parameters. Current guidelines and clinical practices vary considerably regarding preoperative chemotherapy and radiotherapy, response evaluation, and indications for surgery. In this Review, we provide an overview of the clinical evidence regarding disease staging, preoperative therapy, response evaluation and surgery in patients with borderline resectable pancreatic cancer or locally advanced pancreatic cancer. In addition, a clinical work-up is proposed based on the available evidence and guidelines. We identify knowledge gaps and outline a proposed research agenda.
Collapse
Affiliation(s)
- Thomas F Stoop
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Rutger T Theijse
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Leonard W F Seelen
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht and St. Antonius Hospital Nieuwegein, Utrecht, Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Christopher L Wolfgang
- Division of Surgical Oncology, Department of Surgery, New York University Medical Center, New York City, NY, USA
| | - Geertjan van Tienhoven
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Radiation Oncology, Amsterdam, Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht and St. Antonius Hospital Nieuwegein, Utrecht, Netherlands
| | - I Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht and St. Antonius Hospital Nieuwegein, Utrecht, Netherlands
| | - Johanna W Wilmink
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, Netherlands
| | - Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marc G Besselink
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands.
- Cancer Center Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
40
|
Hasselluhn MC, Schlösser D, Versemann L, Schmidt GE, Ulisse M, Oschwald J, Zhang Z, Hamdan F, Xiao H, Kopp W, Spitalieri J, Kellner C, Schneider C, Reutlinger K, Nagarajan S, Steuber B, Sastra SA, Palermo CF, Appelhans J, Bohnenberger H, Todorovic J, Kostyuchek I, Ströbel P, Bockelmann A, König A, Ammer-Herrmenau C, Schmidleitner L, Kaulfuß S, Wollnik B, Hahn SA, Neesse A, Singh SK, Bastians H, Reichert M, Sax U, Olive KP, Johnsen SA, Schneider G, Ellenrieder V, Hessmann E. An NFATc1/SMAD3/cJUN Complex Restricted to SMAD4-Deficient Pancreatic Cancer Guides Rational Therapies. Gastroenterology 2024; 166:298-312.e14. [PMID: 37913894 DOI: 10.1053/j.gastro.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/19/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND & AIMS The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.
Collapse
Affiliation(s)
- Marie C Hasselluhn
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Denise Schlösser
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Lennart Versemann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Geske E Schmidt
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Maria Ulisse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Joana Oschwald
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Zhe Zhang
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Feda Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Harry Xiao
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Waltraut Kopp
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Jessica Spitalieri
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Christin Kellner
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Carolin Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Kristina Reutlinger
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Sankari Nagarajan
- Manchester Breast Centre and Manchester Cancer Research Centre, Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Benjamin Steuber
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Stephen A Sastra
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Carmine F Palermo
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Jennifer Appelhans
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Jovan Todorovic
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Irina Kostyuchek
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Philipp Ströbel
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Aiko Bockelmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Alexander König
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Christoph Ammer-Herrmenau
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Laura Schmidleitner
- Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany; Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Silke Kaulfuß
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Bernd Wollnik
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Human Genetics, University Medical Center Goettingen, Goettingen, Germany; Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Goettingen, Germany
| | - Stephan A Hahn
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular Gastrointestinal Oncology, Bochum, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Holger Bastians
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany; Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany; German Cancer Consortium (a partnership between Deutsches Krebsforschungszentrum and University Hospital Klinikum Rechts der Isar), Munich, Germany; Center for Protein Assemblies, Technical University of Munich, Garching, Germany; Center for Organoid Systems and Tissue Engineering, Technical University Munich, Garching, Germany
| | - Ulrich Sax
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Department of Medical Informatics, University Medical Center Goettingen, Goettingen, Germany
| | - Kenneth P Olive
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany; Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Günter Schneider
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany; Comprehensive Cancer Center, Lower Saxony, Goettingen and Hannover, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Comprehensive Cancer Center, Lower Saxony, Goettingen and Hannover, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Comprehensive Cancer Center, Lower Saxony, Goettingen and Hannover, Germany.
| |
Collapse
|
41
|
Chuong MD, Lee P, Low DA, Kim J, Mittauer KE, Bassetti MF, Glide-Hurst CK, Raldow AC, Yang Y, Portelance L, Padgett KR, Zaki B, Zhang R, Kim H, Henke LE, Price AT, Mancias JD, Williams CL, Ng J, Pennell R, Raphael Pfeffer M, Levin D, Mueller AC, Mooney KE, Kelly P, Shah AP, Boldrini L, Placidi L, Fuss M, Jitendra Parikh P. Stereotactic MR-guided on-table adaptive radiation therapy (SMART) for borderline resectable and locally advanced pancreatic cancer: A multi-center, open-label phase 2 study. Radiother Oncol 2024; 191:110064. [PMID: 38135187 DOI: 10.1016/j.radonc.2023.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND AND PURPOSE Radiation dose escalation may improve local control (LC) and overall survival (OS) in select pancreatic ductal adenocarcinoma (PDAC) patients. We prospectively evaluated the safety and efficacy of ablative stereotactic magnetic resonance (MR)-guided adaptive radiation therapy (SMART) for borderline resectable (BRPC) and locally advanced pancreas cancer (LAPC). The primary endpoint of acute grade ≥ 3 gastrointestinal (GI) toxicity definitely related to SMART was previously published with median follow-up (FU) 8.8 months from SMART. We now present more mature outcomes including OS and late toxicity. MATERIALS AND METHODS This prospective, multi-center, single-arm open-label phase 2 trial (NCT03621644) enrolled 136 patients (LAPC 56.6 %; BRPC 43.4 %) after ≥ 3 months of any chemotherapy without distant progression and CA19-9 ≤ 500 U/mL. SMART was delivered on a 0.35 T MR-guided system prescribed to 50 Gy in 5 fractions (biologically effective dose10 [BED10] = 100 Gy). Elective coverage was optional. Surgery and chemotherapy were permitted after SMART. RESULTS Mean age was 65.7 years (range, 36-85), induction FOLFIRINOX was common (81.7 %), most received elective coverage (57.4 %), and 34.6 % had surgery after SMART. Median FU was 22.9 months from diagnosis and 14.2 months from SMART, respectively. 2-year OS from diagnosis and SMART were 53.6 % and 40.5 %, respectively. Late grade ≥ 3 toxicity definitely, probably, or possibly attributed to SMART were observed in 0 %, 4.6 %, and 11.5 % patients, respectively. CONCLUSIONS Long-term outcomes from the phase 2 SMART trial demonstrate encouraging OS and limited severe toxicity. Additional prospective evaluation of this novel strategy is warranted.
Collapse
Affiliation(s)
- Michael D Chuong
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States.
| | - Percy Lee
- City of Hope National Medical Center, Los Angeles, CA, United States
| | - Daniel A Low
- UCLA Department of Radiation Oncology, Los Angeles, CA, United States
| | - Joshua Kim
- Henry Ford Health - Cancer, Detroit, MI, United States
| | - Kathryn E Mittauer
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Michael F Bassetti
- University of Wisconsin-Madison, Department of Human Oncology, Madison, WI, United States
| | - Carri K Glide-Hurst
- University of Wisconsin-Madison, Department of Human Oncology, Madison, WI, United States
| | - Ann C Raldow
- Department of Radiation Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Yingli Yang
- Department of Radiation Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Lorraine Portelance
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States
| | - Kyle R Padgett
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States
| | - Bassem Zaki
- Section of Radiation Oncology Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Rongxiao Zhang
- Section of Radiation Oncology Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Hyun Kim
- Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Lauren E Henke
- Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Alex T Price
- Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Joseph D Mancias
- Brigham and Women's Hospital, Department of Radiation Oncology, Dana-Farber Cancer Institute, Department of Radiation Oncology, Harvard Medical School, Boston, MA, United States
| | - Christopher L Williams
- Brigham and Women's Hospital, Department of Radiation Oncology, Dana-Farber Cancer Institute, Department of Radiation Oncology, Harvard Medical School, Boston, MA, United States
| | - John Ng
- Weill Cornell Medicine Sandra and Edward Meyer Cancer Center, New York, NY, United States
| | - Ryan Pennell
- Weill Cornell Medicine Sandra and Edward Meyer Cancer Center, New York, NY, United States
| | | | - Daphne Levin
- Assuta Medical Center, Tel Aviv, IL, United States
| | - Adam C Mueller
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Karen E Mooney
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patrick Kelly
- Orlando Health Cancer Institute, Orlando, FL, United States
| | - Amish P Shah
- Orlando Health Cancer Institute, Orlando, FL, United States
| | - Luca Boldrini
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Lorenzo Placidi
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | | | | |
Collapse
|
42
|
Anstadt EJ, Carmona R, Berlin E, Yegya-Raman N, Venigalla S, Reddy V, Williams GR, Leibensperger MR, Wojcieszynski A, Baumann BC, Lee MK, Plastaras JP, Furth EE, Mell LK, Metz JM, Ben-Josef E. SMAD4 loss predicts worse overall and distant metastasis-free survival in patients with resected pancreatic adenocarcinoma. Cancer 2024; 130:476-484. [PMID: 37823514 DOI: 10.1002/cncr.35058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND In select patients, pancreatic adenocarcinoma remains a local disease, yet there are no validated biomarkers to predict this behavior and who may benefit from aggressive local treatments. This study sought to determine if SMAD4 (mothers against decapentaplegic homolog 4) messenger RNA-sequencing (RNA-seq) expression is a robust method for predicting overall survival (OS) and distant metastasis-free survival (DMFS) in patients with resected pancreatic adenocarcinoma. METHODS Utilizing The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), 322 patients with resected stage I-III pancreatic adenocarcinoma were identified. In TCGA, multivariable proportional hazards models were used to determine the association of SMAD4 genomic aberrations and RNA-seq expression with OS and DMFS. In the ICGC, analysis sought to confirm the predictive performance of RNA-seq via multivariable models and receiver operator characteristic curves. RESULTS In TCGA, the presence of SMAD4 genomic aberrations was associated with worse OS (hazard ratio [HR], 1.55; 95% CI, 1.00-2.40; p = .048) but not DMFS (HR, 1.33; 95% CI, .87-2.03; p = .19). Low SMAD4 RNA-seq expression was associated with worse OS (HR, 1.83; 95% CI, 1.17-2.86; p = .008) and DMFS (HR, 1.70; 95% CI, 1.14-2.54; p = .009). In the ICGC, increased SMAD4 RNA-seq expression correlated with improved OS (area under the curve [AUC], .92; 95% CI, .86-.94) and DMFS (AUC, .84; 95% CI, .82-.87). CONCLUSIONS In patients with resected pancreatic adenocarcinoma, SMAD4 genomic aberrations are associated with worse OS but do not predict for DMFS. Increased SMAD4 RNA-seq expression is associated with improved OS and DMFS in patients with resected pancreatic adenocarcinoma. This reproducible finding suggests SMAD4 RNA-seq expression may be a useful marker to predict metastatic spread.
Collapse
Affiliation(s)
- Emily J Anstadt
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ruben Carmona
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eva Berlin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nikhil Yegya-Raman
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sriram Venigalla
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vishruth Reddy
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Graeme R Williams
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark R Leibensperger
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrzej Wojcieszynski
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian C Baumann
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Major K Lee
- Division of Gastrointestinal Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John P Plastaras
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Loren K Mell
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California, USA
| | - James M Metz
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edgar Ben-Josef
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Dahia SS, Konduru L, Pandol SJ, Barreto SG. The burden of young-onset pancreatic cancer and its risk factors from 1990 to 2019: A systematic analysis of the global burden of disease study 2019. Pancreatology 2024; 24:119-129. [PMID: 38151359 DOI: 10.1016/j.pan.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/13/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE To investigate worldwide incidence, deaths, disability-adjusted life years (DALYs) and risk factors for young-onset pancreatic cancer (YOPC) using the Global Burden of Disease Study 2019-20 data. METHODS We queried the Global Health Data Exchange tool for "pancreatic cancer" and "incidence", "deaths" as the "measure", and "DALYs" as the "cause" for the age group of 15-49 years to determine global, regional, and national trends in the incidence, deaths, and DALYs of YOPC. Sociodemographic index (SDI) was used to evaluate the associations between socioeconomic development and YOPC. Risk factors including smoking, tobacco use, hi2gh body mass index (BMI), and high fasting plasma glucose (FPG) were evaluated, and their attributable burden was estimated. RESULTS Global incidence, death, and DALY rates of YOPC significantly increased from 1990 to 2019 ((0.30 (p = 0.001), 0.25 (p = 0.001), and 11.18 (p = 0.002), respectively). Regions with the highest and lowest incidence, death, and DALY rates of YOPC were Eastern Europe and Central Sub-Saharan Africa, respectively. Incidence, death, and DALY rates increased with increasing age and SDI. Leading risk factors for YOPC in 2019 were smoking and tobacco use. DALYs attributable to smoking and tobacco use decreased from 1990 to 2019, especially in females, while those attributable to high BMI and FPG increased during the same period. CONCLUSIONS The global incidence, death and DALY rates of YOPC have significantly increased over 3 decades. Certain regions and nations are witnessing a higher increase in this trend. There is an urgent need for global efforts targeting preventable causes of YOPC.
Collapse
Affiliation(s)
| | - Laalithya Konduru
- College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Stephen J Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Savio George Barreto
- College of Medicine and Public Health, Flinders University, South Australia, Australia; Division of Surgery and Perioperative Medicine, Flinders Medical Center, Bedford Park, Adelaide, South Australia, Australia.
| |
Collapse
|
44
|
Bowland K, Lai J, Skaist A, Zhang Y, Teh SSK, Roberts NJ, Thompson E, Wheelan SJ, Hruban RH, Karchin R, Iacobuzio-Donahue CA, Eshleman JR. Islands of genomic stability in the face of genetically unstable metastatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577508. [PMID: 38352348 PMCID: PMC10862738 DOI: 10.1101/2024.01.26.577508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Introduction Metastatic cancer affects millions of people worldwide annually and is the leading cause of cancer-related deaths. Most patients with metastatic disease are not eligible for surgical resection, and current therapeutic regimens have varying success rates, some with 5-year survival rates below 5%. Here we test the hypothesis that metastatic cancer can be genetically targeted by exploiting single base substitution mutations unique to individual cells that occur as part of normal aging prior to transformation. These mutations are targetable because ~10% of them form novel tumor-specific "NGG" protospacer adjacent motif (PAM) sites targetable by CRISPR-Cas9. Methods Whole genome sequencing was performed on five rapid autopsy cases of patient-matched primary tumor, normal and metastatic tissue from pancreatic ductal adenocarcinoma decedents. CRISPR-Cas9 PAM targets were determined by bioinformatic tumor-normal subtraction for each patient and verified in metastatic samples by high-depth capture-based sequencing. Results We found that 90% of PAM targets were maintained between primary carcinomas and metastases overall. We identified rules that predict PAM loss or retention, where PAMs located in heterozygous regions in the primary tumor can be lost in metastases (private LOH), but PAMs occurring in regions of loss of heterozygosity (LOH) in the primary tumor were universally conserved in metastases. Conclusions Regions of truncal LOH are strongly retained in the presence of genetic instability, and therefore represent genetic vulnerabilities in pancreatic adenocarcinomas. A CRISPR-based gene therapy approach targeting these regions may be a novel way to genetically target metastatic cancer.
Collapse
Affiliation(s)
- Kirsten Bowland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiaying Lai
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alyza Skaist
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Yan Zhang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Selina Shiqing K Teh
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J. Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Elizabeth Thompson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Sarah J. Wheelan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ralph H. Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Rachel Karchin
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christine A. Iacobuzio-Donahue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James R. Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
45
|
Song YJ, Choi JH. Long-term Survivor of Unresectable Pancreatic Cancer Treated with Concurrent Chemoradiotherapy. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 83:28-32. [PMID: 38268166 DOI: 10.4166/kjg.2023.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
Undifferentiated carcinoma of the pancreas (UPC) is a rare, aggressive pancreatic cancer subtype. In addition, there is limited data on optimal management and patients tend to present with unresectable disease. This highlights the need to explore non-surgical treatments, such as chemotherapy and radiotherapy. In 2017, a 40-year-old male was diagnosed with UPC, presenting with a 6 cm mass in the pancreas, encasing the major arteries, indicative of a locally advanced stage. Histopathology confirmed UPC with osteoclast-like giant cells. After nine cycles of modified FOLFIRINOX chemotherapy and concurrent chemoradiotherapy, treatment was stopped in 2018 because of his declining health. Remarkably, despite the cessation of treatment, by 2023, the tumor had shrunk to 3.5 cm with no metabolic activity indicated by FDG-PET/CT. This six-year survival and response to non-surgical treatment highlight potential new avenues for managing unresectable pancreatic cancer, underscoring the need for further comprehensive studies to evaluate these therapeutic strategies.
Collapse
Affiliation(s)
- Yun Je Song
- Department of Gastroenterology, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Korea
| | - Jun-Ho Choi
- Department of Gastroenterology, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
46
|
Daamen LA, Parikh PJ, Hall WA. The Use of MR-Guided Radiation Therapy for Pancreatic Cancer. Semin Radiat Oncol 2024; 34:23-35. [PMID: 38105090 DOI: 10.1016/j.semradonc.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The introduction of online adaptive magnetic resonance (MR)-guided radiation therapy (RT) has enabled safe treatment of pancreatic cancer with ablative doses. The aim of this review is to provide a comprehensive overview of the current literature on the use and clinical outcomes of MR-guided RT for treatment of pancreatic cancer. Relevant outcomes included toxicity, tumor response, survival and quality of life. The results of these studies support further investigation of the effectiveness of ablative MR-guided SBRT as a low-toxic, minimally-invasive therapy for localized pancreatic cancer in prospective clinical trials.
Collapse
Affiliation(s)
- Lois A Daamen
- Imaging & Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Parag J Parikh
- Department of Radiation Oncology, Henry Ford Medical Center, Henry Ford Health System, Detroit, MI
| | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
47
|
Tchelebi LT, Winter KA, Abrams RA, Safran HP, Regine WF, McNulty S, Wu A, Du KL, Seaward SA, Bian SX, Aljumaily R, Shivnani A, Knoble JL, Crocenzi TS, DiPetrillo TA, Roof KS, Crane CH, Goodman KA. Analysis of Radiation Therapy Quality Assurance in NRG Oncology RTOG 0848. Int J Radiat Oncol Biol Phys 2024; 118:107-114. [PMID: 37598723 PMCID: PMC10843017 DOI: 10.1016/j.ijrobp.2023.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
PURPOSE NRG/Radiation Therapy Oncology Group 0848 is a 2-step randomized trial to evaluate the benefit of the addition of concurrent fluoropyrimidine and radiation therapy (RT) after adjuvant chemotherapy (second step) for patients with resected pancreatic head adenocarcinoma. Real-time quality assurance (QA) was performed on each patient who underwent RT. This analysis aims to evaluate adherence to protocol-specified contouring and treatment planning and to report the types and frequencies of deviations requiring revisions. METHODS AND MATERIALS In addition to a web-based contouring atlas, the protocol outlined step-by-step instructions for generating the clinical treatment volume through the creation of specific regions of interest. The planning target volume was a uniform 0.5 cm clinical treatment volume expansion. One of 2 radiation oncology study chairs independently reviewed each plan. Plans with unacceptable deviations were returned for revision and resubmitted until approved. Treatment started after final approval of the RT plan. RESULTS From 2014 to 2018, 354 patients were enrolled in the second randomization. Of these, 160 patients received RT and were included in the QA analysis. Resubmissions were more common for patients planned with 3-dimensional conformal RT (43%) than with intensity modulated RT (31%). In total, at least 1 resubmission of the treatment plan was required for 33% of patients. Among patients requiring resubmission, most only needed 1 resubmission (87%). The most common reasons for resubmission were unacceptable deviations with respect to the preoperative gross target volume (60.7%) and the pancreaticojejunostomy (47.5%). CONCLUSION One-third of patients required resubmission to meet protocol compliance criteria, demonstrating the continued need for expending resources on real-time, pretreatment QA in trials evaluating the use of RT, particularly for pancreas cancer. Rigorous QA is critically important for clinical trials involving RT to ensure that the true effect of RT is assessed. Moreover, RT QA serves as an educational process through providing feedback from specialists to practicing radiation oncologists on best practices.
Collapse
Affiliation(s)
- Leila T Tchelebi
- Northwell, New Hyde Park, New York; Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York.
| | - Kathryn A Winter
- Statistics and Data Management Center, NRG Oncology, Philadelphia, Pennsylvania
| | - Ross A Abrams
- Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois
| | - Howard P Safran
- Department of Hematology & Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - William F Regine
- Department of Radiation Oncology, University of Maryland/Greenebaum Cancer Center, Baltimore, Maryland
| | - Susan McNulty
- Department of Clinical Research, NRG Oncology/IROC, Philadelphia, Pennsylvania
| | - Abraham Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin L Du
- Department of Radiation Oncology, Yale School of Medicine, Smilow Cancer Hospital, New Haven, Connecticut
| | - Samantha A Seaward
- Department of Radiation Oncology, Kaiser Permanente NCI Community Oncology Research Program, Vallejo, California
| | - Shelly X Bian
- Department of Radiation Oncology, USC / Norris Comprehensive Cancer Center, Los Angeles, California
| | - Raid Aljumaily
- Department of Hematology & Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anand Shivnani
- Department of Radiation Oncology, The US Oncology Network, McKinney, Texas
| | - Jeanna L Knoble
- Department of Hematology & Oncology, Columbus NCI Community Oncology Research Program, Columbus, Ohio
| | - Todd S Crocenzi
- Department of Hematology & Oncology, Providence Portland Medical Center, Portland, Oregon
| | | | - Kevin S Roof
- Department of Radiation Oncology, Novant Health Presbyterian Center, Charlotte, North Carolina
| | - Christopher H Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karyn A Goodman
- Department of Radiation Oncology, Mount Sinai Hospital, New York, New York.
| |
Collapse
|
48
|
Zhong B, Ma DD, Zhang T, Gong Q, Dong Y, Zhang JX, Li ZH, Jin WD. Clinicopathological Characteristics, Prognosis, and Correlated Tumor Cell Function of Tropomodulin-3 in Pancreatic Adenocarcinoma. Comb Chem High Throughput Screen 2024; 27:1011-1021. [PMID: 37563820 PMCID: PMC11165712 DOI: 10.2174/1386207326666230810142646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is a frequent malignant tumor with a high mortality rate. Searching for novel biomarkers that can influence its prognosis may help patients. It has been shown that tropomodulin-3 (TMOD3) may influence tumor progression, but its role in pancreatic cancer is not clear. We aimed to explore the expression and prognostic value of TMOD3 in PAAD. METHODS We used bioinformatics analysis to analyze the relationship between TMOD3 expression and clinicopathological features and prognosis and verified it with clinical data from tissue microarray. We also conducted in vitro cell experiments to explore the effects of TMOD3 on the function of PAAD cells. RESULTS TMOD3 expression was found to be significantly higher in PAAD tissues than in matched paracancerous tissues (P < 0.05). Meanwhile, high TMOD3 expression was associated with significantly poorer overall survival (P < 0.05). Analysis of relevant clinicopathological characteristics data obtained from TCGA showed that high TMOD3 expression correlated with age, TNM stage, N stage, and M stage (P < 0.05). Analysis of correlation data obtained from tissue microarrays showed that high TMOD3 expression was associated with lymph node invasion, nerve invasion, macrovascular invasion, and TNM stage (P < 0.05). In addition, siRNA knockdown of TMOD3 significantly reduced the migration and invasion of PAAD cells. CONCLUSION Our study shows that TMOD3 may be associated with the progression of PAAD cells, and that it is an independent risk factor for poor pathological features and prognosis of PAAD. It may be helpful as a prognostic indicator of clinical outcomes in PAAD patients.
Collapse
Affiliation(s)
- Bin Zhong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Dan-Dan Ma
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Tao Zhang
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Qi Gong
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Yi Dong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Xin Zhang
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Zhong-Hu Li
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Wei-Dong Jin
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| |
Collapse
|
49
|
Adekolujo OS, Wahab A, Akanbi MO, Oyasiji T, Hrinczenko B, Alese OB. Isolated pulmonary metastases in pancreatic ductal adenocarcinoma: a review of current evidence. Cancer Biol Ther 2023; 24:2198479. [PMID: 37526431 PMCID: PMC10395259 DOI: 10.1080/15384047.2023.2198479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/24/2023] [Indexed: 08/02/2023] Open
Abstract
Despite recent advances in cancer therapeutics, pancreatic ductal adenocarcinoma (PDAC) remains a lethal disease with a 5-year overall survival of only 10%. Since either at or within a few months of diagnosis, most patients with PDAC will present with metastatic disease, a more individualized approach to select patients who may benefit from more aggressive therapy has been suggested. Although studies have reported improved survival in PDAC and isolated pulmonary metastasis (ISP) compared to extrapulmonary metastases, such findings remain controversial. Furthermore, the added benefit of pulmonary metastasectomy and other lung-directed therapies remains unclear. In this review, we discuss the metastatic pattern of PDAC, evaluate the available evidence in the literature for improved survival in PDAC and ISP, evaluate the evidence for the added benefit of pulmonary metastasectomy and other lung-directed therapies, identify prognostic factors for survival, discuss the biological basis for the reported improved survival and identify areas for further research.
Collapse
Affiliation(s)
- Orimisan Samuel Adekolujo
- Department of Medicine, Michigan State University, East Lansing, MI, USA
- Medical Oncology, Karmanos Cancer Institute at McLaren Greater Lansing, Lansing, MI, USA
| | - Ahsan Wahab
- Department of Medicine, Prattville Baptist Hospital, Prattville, AL, USA
| | - Maxwell Oluwole Akanbi
- Department of Medicine, Michigan State University, East Lansing, MI, USA
- Department of Medicine, McLaren Flint, Flint, MI, USA
| | - Tolutope Oyasiji
- Department of Oncology, Barbara Ann Karmanos Cancer Institute at McLaren Flint, Wayne State University, Flint, MI, USA
| | - Borys Hrinczenko
- Department of Medicine, Michigan State University, East Lansing, MI, USA
- Medical Oncology, Karmanos Cancer Institute at McLaren Greater Lansing, Lansing, MI, USA
| | - Olatunji Boladale Alese
- Department of Hematology & Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| |
Collapse
|
50
|
Li B, Yin X, Ding X, Zhang G, Jiang H, Chen C, Guo S, Jin G. Combined utility of Ki-67 index and tumor grade to stratify patients with pancreatic ductal adenocarcinoma who underwent upfront surgery. BMC Surg 2023; 23:370. [PMID: 38066512 PMCID: PMC10704770 DOI: 10.1186/s12893-023-02256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE To investigate the prognostic prediction of a new indicator, combined by tumor grade and Ki-67, in patients with resected pancreatic ductal adenocarcinoma (PDAC). METHODS Data were retrospectively collected from consecutive patients who underwent primary resection of pancreas from December 2012 to December 2017. Tumor grade and Ki-67 were reviewed from routine pathological reports. G-Ki67 was classified as three categories as I (G1/2 and Ki-67 < 40%), II (G1/2 and Ki-67 ≥ 40%), and III(G3/4 and all Ki-67). RESULTS Cox regression analyses revealed that tumor stage (II vs. I: hazard ratio (HR), 3.781; 95% confidence index (CI), 2.844-5.025; P < 0.001; III vs. I: HR, 7.476; 95% CI, 5.481-10.20; P < 0.001) and G-Ki67 (II vs. I: HR, 1.299; 95% CI, 1.038-1.624; P = 0.022; III vs. I: HR, 1.942; 95% CI, 1.477-2.554; P < 0.001) were independent prognostic factors in the developing cohort. The result was rectified in the validation cohort. In subgroups analysis, G-Ki67 (II vs. I: HR, 1.866 ; 95% CI, 1.045-3.334; P = 0.035; III vs. I: HR, 2.333 ; 95% CI, 1.156-4.705; P = 0.018) also had a high differentiation for survival prediction. CONCLUSION Our findings indicate that three-categories of G-Ki67 in resectable PDAC according to the routine pathological descriptions provided additional prognostic information complementary to the TNM staging system.
Collapse
Affiliation(s)
- Bo Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China
- Department of Hepatobiliary Pancreatic Surgery, Naval Medical Center of People's Liberation Army, Naval Medical University (Second Military Medical University), 338 West Huaihai Road, Shanghai, 200052, China
| | - Xiaoyi Yin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China
| | - Xiuwen Ding
- Clinical Research Center, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China
| | - Guoxiao Zhang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China
| | - Cuimin Chen
- Clinical Research Center, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China.
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|