1
|
Maegawa H, Kohashi M, Harada Y, Tanaka A, Kajiwara S, Fujimoto T, Atagi H, Kaneda K. Antitumor immunostimulatory effect via cell-killing action of a novel extracorporeal blood circulating photodynamic therapy system using 5-aminolevulinic acid. Sci Rep 2025; 15:1064. [PMID: 39775122 PMCID: PMC11707032 DOI: 10.1038/s41598-024-84861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated whether intravenous administration of tumor cells killed by photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) had antitumor effects on distal tumors. Furthermore, a novel extracorporeal blood circulating 5-ALA/PDT system was developed. 5-ALA/PDT- (low or high irradiation) or anticancer drug-treated cells were intravenously administered to rats in a glioma cancer model. CD8+ T cell infiltration into the tumor and expression of calreticulin were examined. The cell-killing effect in the circulating PDT system and protoporphyrin IX (PpIX) accumulation were evaluated. An antitumor effect was observed only with preadministration of low-irradiated 5-ALA/PDT-treated cells and was characterized by the infiltration of CD8+ T cells into the tumor. In low-irradiated cells, several types of cell death were observed, and cell surface calreticulin expression increased over time. A method for the intravenous administration of 5-ALA/PDT-treated cells along with extracorporeal blood circulation was then developed to target hematologic malignancies. Gradually cell death in the circulating PDT system and tumor-specific PpIX accumulation was confirmed using hematopoietic tumor cells. Thus, the extracorporeal blood circulating 5-ALA/PDT system has a direct cell-killing effect and an antitumor effect via induced immune activity and illustrates a new therapeutic strategy for hematologic malignancies.
Collapse
Affiliation(s)
| | - Masayuki Kohashi
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan.
- Department of Medical Innovations for Drug Discovery, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan.
| | - Yasuo Harada
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan
| | - Akira Tanaka
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan
| | - Shimpei Kajiwara
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan
| | - Takashi Fujimoto
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan
| | - Hidehiro Atagi
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan
| | - Kenta Kaneda
- Research Division, JIMRO Co., Ltd., Takasaki, Japan
| |
Collapse
|
2
|
Wang Y, Ma K, Kang M, Yan D, Niu N, Yan S, Sun P, Zhang L, Sun L, Wang D, Tan H, Tang BZ. A new era of cancer phototherapy: mechanisms and applications. Chem Soc Rev 2024; 53:12014-12042. [PMID: 39494674 DOI: 10.1039/d4cs00708e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The past decades have witnessed great strides in phototherapy as an experimental option or regulation-approved treatment in numerous cancer indications. Of particular interest is nanoscale photosensitizer-based phototherapy, which has been established as a prominent candidate for advanced tumor treatment by virtue of its high efficacy and safety. Despite considerable research progress on materials, methods and devices in nanoscale photosensitizing agent-based phototherapy, their mechanisms of action are not always clear, which impedes their practical application in cancer treatment. Hence, from a new perspective, this review elaborates the working mechanisms, involving impairment and moderation effects, of diverse phototherapies on cells, organelles, organs, and tissues. Furthermore, the most current available phototherapy modalities are categorized as photodynamic, photothermal, photo-immune, photo-gas, and radio therapies in this review. A comprehensive understanding of the inferiority and superiority of various phototherapies will facilitate the advent of a new era of cancer phototherapy.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ke Ma
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Dingyuan Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Niu Niu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Saisai Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Panpan Sun
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Lijie Sun
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
3
|
Liu L, Pan Y, Ye L, Liang C, Mou X, Dong X, Cai Y. Optical functional nanomaterials for cancer photoimmunotherapy. Coord Chem Rev 2024; 517:216006. [DOI: 10.1016/j.ccr.2024.216006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Thiruppathi J, Vijayan V, Park IK, Lee SE, Rhee JH. Enhancing cancer immunotherapy with photodynamic therapy and nanoparticle: making tumor microenvironment hotter to make immunotherapeutic work better. Front Immunol 2024; 15:1375767. [PMID: 38646546 PMCID: PMC11026591 DOI: 10.3389/fimmu.2024.1375767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Cancer immunotherapy has made tremendous advancements in treating various malignancies. The biggest hurdle to successful immunotherapy would be the immunosuppressive tumor microenvironment (TME) and low immunogenicity of cancer cells. To make immunotherapy successful, the 'cold' TME must be converted to 'hot' immunostimulatory status to activate residual host immune responses. To this end, the immunosuppressive equilibrium in TME should be broken, and immunogenic cancer cell death ought to be induced to stimulate tumor-killing immune cells appropriately. Photodynamic therapy (PDT) is an efficient way of inducing immunogenic cell death (ICD) of cancer cells and disrupting immune-restrictive tumor tissues. PDT would trigger a chain reaction that would make the TME 'hot' and have ICD-induced tumor antigens presented to immune cells. In principle, the strategic combination of PDT and immunotherapy would synergize to enhance therapeutic outcomes in many intractable tumors. Novel technologies employing nanocarriers were developed to deliver photosensitizers and immunotherapeutic to TME efficiently. New-generation nanomedicines have been developed for PDT immunotherapy in recent years, which will accelerate clinical applications.
Collapse
Affiliation(s)
- Jayalakshmi Thiruppathi
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy Medical Research Center (MRC), Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - In-Kyu Park
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Radiology, Biomolecular Theranostics (BiT) Laboratory, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy Medical Research Center (MRC), Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| |
Collapse
|
5
|
Navarrete-Miguel M, Giussani A, Rubio M, Boggio-Pasqua M, Borin AC, Roca-Sanjuán D. Quantum-Chemistry Study of the Photophysical Properties of 4-Thiouracil and Comparisons with 2-Thiouracil. J Phys Chem A 2024; 128:2273-2285. [PMID: 38504122 PMCID: PMC10982997 DOI: 10.1021/acs.jpca.3c06310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
DNA in living beings is constantly damaged by exogenous and endogenous agents. However, in some cases, DNA photodamage can have interesting applications, as it happens in photodynamic therapy. In this work, the current knowledge on the photophysics of 4-thiouracil has been extended by further quantum-chemistry studies to improve the agreement between theory and experiments, to better understand the differences with 2-thiouracil, and, last but not least, to verify its usefulness as a photosensitizer for photodynamic therapy. This study has been carried out by determining the most favorable deactivation paths of UV-vis photoexcited 4-thiouracil by means of the photochemical reaction path approach and an efficient combination of the complete-active-space second-order perturbation theory//complete-active-space self-consistent field (CASPT2//CASSCF), (CASPT2//CASPT2), time-dependent density functional theory (TDDFT), and spin-flip TDDFT (SF-TDDFT) methodologies. By comparing the data computed herein for both 4-thiouracil and 2-thiouracil, a rationale is provided on the relatively higher yields of intersystem crossing, triplet lifetime and singlet oxygen production of 4-thiouracil, and the relatively higher yield of phosphorescence of 2-thiouracil.
Collapse
Affiliation(s)
- Miriam Navarrete-Miguel
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, ES-46071 Valencia, Spain
| | - Angelo Giussani
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, ES-46071 Valencia, Spain
| | - Mercedes Rubio
- Departament
de Química Física, Universitat
de València, 46100 Burjassot, Spain
| | - Martial Boggio-Pasqua
- Laboratoire
de Chimie et Physique Quantiques, IRSAMC,
CNRS et Université Toulouse 3, 118 route de Narbonne, 31062 Toulouse, France
| | - Antonio Carlos Borin
- Department
of Fundamental Chemistry, Institute of Chemistry,
University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo CEP 05508-000, Brazil
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, ES-46071 Valencia, Spain
| |
Collapse
|
6
|
Penetra M, Arnaut LG, Gomes-da-Silva LC. Trial watch: an update of clinical advances in photodynamic therapy and its immunoadjuvant properties for cancer treatment. Oncoimmunology 2023; 12:2226535. [PMID: 37346450 PMCID: PMC10281486 DOI: 10.1080/2162402x.2023.2226535] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Photodynamic therapy (PDT) is a medical treatment used to target solid tumors, where the administration of a photosensitizing agent and light generate reactive oxygen species (ROS), thus resulting in strong oxidative stress that selectively damages the illuminated tissues. Several preclinical studies have demonstrated that PDT can prime the immune system to recognize and attack cancer cells throughout the body. However, there is still limited evidence of PDT-mediated anti-tumor immunity in clinical settings. In the last decade, several clinical trials on PDT for cancer treatment have been initiated, indicating that significant efforts are being made to improve current PDT protocols. However, most of these studies disregarded the immunological dimension of PDT. The immunomodulatory properties of PDT can be combined with standard therapy and/or emerging immunotherapies, such as immune checkpoint blockers (ICBs), to achieve better disease control. Combining PDT with immunotherapy has shown synergistic effects in some preclinical models. However, the value of this combination in patients is still unknown, as the first clinical trials evaluating the combination of PDT with ICBs are just being initiated. Overall, this Trial Watch provides a summary of recent clinical information on the immunomodulatory properties of PDT and ongoing clinical trials using PDT to treat cancer patients. It also discusses the future perspectives of PDT for oncological indications.
Collapse
Affiliation(s)
- Mafalda Penetra
- CQC - Coimbra Chemistry Center, Universidade de Coimbra, Coimbra, Portugal
| | - Luís G. Arnaut
- CQC - Coimbra Chemistry Center, Universidade de Coimbra, Coimbra, Portugal
| | | |
Collapse
|
7
|
Mosaddad SA, Namanloo RA, Aghili SS, Maskani P, Alam M, Abbasi K, Nouri F, Tahmasebi E, Yazdanian M, Tebyaniyan H. Photodynamic therapy in oral cancer: a review of clinical studies. Med Oncol 2023; 40:91. [PMID: 36749489 DOI: 10.1007/s12032-023-01949-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/08/2023] [Indexed: 02/08/2023]
Abstract
A significant mortality rate is associated with oral cancer, particularly in cases of late-stage diagnosis. Since the last decades, oral cancer survival rates have only gradually improved despite advances in treatment. This poor success rate is mainly due to the development of secondary tumors, local recurrence, and regional failure. Invasive treatments frequently have a negative impact on the aesthetic and functional outcomes of survivors. Novel approaches are thus needed to manage this deadly disease in light of these statistics. In photodynamic therapy (PDT), a light-sensitive medication called a photosensitizer is given first, followed by exposure to light of the proper wavelength that matches the absorbance band of the photosensitizer. The tissue oxygen-induced cytotoxic free radicals kill tumor cells directly, harm the microvascular structure, and cause inflammatory reactions at the targeted sites. In the case of early lesions, PDT can be used as a stand-alone therapy, and in the case of advanced lesions, it can be used as adjuvant therapy. The current review article discussed the uses of PDT in oral cancer therapy based on recent advances in this field.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Poorya Maskani
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Nouri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran.
| |
Collapse
|
8
|
Radiovaccination Strategy for Cancer Treatment Integrating Photodynamic Therapy-Generated Vaccines with Radiotherapy. Int J Mol Sci 2022; 23:ijms232012263. [PMID: 36293116 PMCID: PMC9602685 DOI: 10.3390/ijms232012263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 03/21/2023] Open
Abstract
Therapeutic cancer vaccines have become firmly established as a reliable and proficient form of tumor immunotherapy. They represent a promising approach for substantial advancements in the successful treatment of malignant diseases. One attractive vaccine strategy is using, as the vaccine material, the whole tumor cells treated ex vivo by rapid tumor ablation therapies that instigate stress signaling responses culminating in immunogenic cell death (ICD). One such treatment is photodynamic therapy (PDT). The underlying mechanisms and critical elements responsible for the potency of these vaccines are discussed in this review. Radiotherapy has emerged as a suitable component for the combined therapy protocols with the vaccines. Arguments and prospects for optimizing tumor control using a radiovaccination strategy involving X-ray irradiation plus PDT vaccines are presented, together with the findings supporting its validity.
Collapse
|
9
|
Effects of Cancer Cell-Derived Nanovesicle Vaccines Produced by the Oxidative Stress-Induced Expression of DAMP and Spontaneous Release/Filter Extrusion in the Interplay of Cancer Cells and Macrophages. Biomedicines 2022; 10:biomedicines10081977. [PMID: 36009524 PMCID: PMC9405549 DOI: 10.3390/biomedicines10081977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Photodynamic therapy (PDT)-based cancer vaccines are shown to be more effective modalities for treating cancer in animal models compared to other methods used to generate cancer cell-derived vaccines. The higher efficacy seems to stem from the generation of cell membrane nanovesicles or fragments that carry both cancer cell-specific antigens and high surface content of damage-associated molecular pattern (DAMP) molecules induced by oxidative stress. To develop more effective cancer vaccines in this direction, we explored the generation of cancer vaccines by applying different sources of oxidative stress on cancer cell cultures followed by spontaneous release or filter extrusions to produce cancer cell-derived DAMP-expressing nanovesicles. Through an in-vitro test based on the co-culture of cancer cells and macrophages, it was found that the nanovesicle vaccines generated by H2O2 are as effective as those generated by PDT in diminishing cancer cell culture masses, providing a simpler way to manufacture vaccines. In addition, the nanovesicle vaccines produced by filter extrusion are as potent as those produced by spontaneous release, rendering a more stable way for vaccine production.
Collapse
|
10
|
Tan L, Shen X, He Z, Lu Y. The Role of Photodynamic Therapy in Triggering Cell Death and Facilitating Antitumor Immunology. Front Oncol 2022; 12:863107. [PMID: 35692783 PMCID: PMC9184441 DOI: 10.3389/fonc.2022.863107] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is a major threat to human health because of its high mortality, easy recurrence, strong invasion, and metastasis. Photodynamic therapy (PDT) is a promising minimally invasive treatment for tumor. Compared with traditional treatment methods, PDT is less invasive and does not easily damage normal tissues. Most of the effects of this treatment are due to the direct effects of singlet oxygen together with reactive oxygen species. PDT can provide the source of active oxygen for the Fenton reaction, which enhances ferroptosis and also improves the efficacy of PDT in antitumor therapy. Additionally, in contrast to chemotherapy and radiotherapy, PDT has the effect of stimulating the immune response, which can effectively induce immunogenic cell death (ICD) and stimulate immunity. PDT is an ideal minimally invasive treatment method for tumors. In this paper, according to the characteristics of anti-tumor immunity of PDT, some tumor treatment strategies of PDT combined with anti-tumor immunotherapy are reviewed.
Collapse
|
11
|
Muneekaew S, Wang MJ, Chen SY. Control of stem cell differentiation by using extrinsic photobiomodulation in conjunction with cell adhesion pattern. Sci Rep 2022; 12:1812. [PMID: 35110659 PMCID: PMC8811059 DOI: 10.1038/s41598-022-05888-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The induction and direction of stem cell differentiation into needed cell phenotypes is the central pillar of tissue engineering for repairing damaged tissues or organs. Conventionally, a special recipe of chemical factors is formulated to achieve this purpose for each specific target cell type. In this work, it is demonstrated that the combination of extrinsic photobiomodulation and collagen-covered microislands could be used to induce differentiation of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) with the differentiation direction dictated by the specific island topography without use of chemical factors. Both neurogenic differentiation and adipogenic differentiation could be attained with a rate surpassing that using chemical factors. Application of this method to other cell types is possible by utilizing microislands with a pattern tailored particularly for each specific cell type, rendering it a versatile modality for initiating and guiding stem cell differentiation.
Collapse
Affiliation(s)
- Saitong Muneekaew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106, Taiwan
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106, Taiwan.
| | - Szu-Yuan Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei City, 106, Taiwan. .,Department of Physics, National Central University, Taoyuan City, 320, Taiwan.
| |
Collapse
|
12
|
Kleinovink JW, Ossendorp F. Combination of Photodynamic Therapy and Therapeutic Vaccination. Methods Mol Biol 2022; 2451:597-604. [PMID: 35505036 DOI: 10.1007/978-1-0716-2099-1_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor ablation by photodynamic therapy (PDT) results in a strong reduction in tumor mass and can lead to improved recognition of tumor cells by the immune system. This supports combinations of PDT and immunotherapy for the treatment of advanced tumors. Therapeutic vaccination is a tumor-specific type of cancer immunotherapy that aims to directly strengthen the immune response against tumor antigens. In this chapter, we describe the combination of PDT and therapeutic vaccination using a peptide tumor antigen vaccine.
Collapse
Affiliation(s)
- Jan Willem Kleinovink
- Department of Immunology, Tumor Immunology Group, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Tumor Immunology Group, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
13
|
Czarnecka-Czapczyńska M, Aebisher D, Oleś P, Sosna B, Krupka-Olek M, Dynarowicz K, Latos W, Cieślar G, Kawczyk-Krupka A. The role of photodynamic therapy in breast cancer - A review of in vitro research. Biomed Pharmacother 2021; 144:112342. [PMID: 34678730 DOI: 10.1016/j.biopha.2021.112342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023] Open
Abstract
Breast cancer is the most common cancer affecting women and the incidence of occurrence is increasing. Currently, there are many methods of detecting and treating breast cancer. Some treatments have a number of side effects. Photodynamic therapy (PDT) is a minimally invasive method of treatment which uses monochromatic light of low to medium energy to excite previously applied photosensitizers (PS) for ROS production. The purpose of this article is to present a general overview of the use of PDT in in vitro studies of various cancer cell lines. A literature search for articles corresponding to the topic of this review was performed using the PubMed and Scopus databases using the following keywords: 'photodynamic therapy', 'breast cancer', and 'photosensitizer(s).' Much of the reviewed literature is based on evaluations of the cytotoxic potential of various PSs, particularly against the MCF-7 cell line, and enhancement of PDT potential with nanotechnology. Research on photodynamic effects in vitro may be helpful in the pre-clinical search for optimal methods for in vivo clinical treatment.
Collapse
Affiliation(s)
- Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Piotr Oleś
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Barbara Sosna
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Magdalena Krupka-Olek
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | | | - Wojciech Latos
- Specialist Hospital No. 2, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Batorego Street 15, 41-902 Bytom, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland.
| |
Collapse
|
14
|
Korbelik M. Optimization of Whole Tumor Cell Vaccines by Interaction with Phagocytic Receptors. Vaccines (Basel) 2021; 9:vaccines9080904. [PMID: 34452029 PMCID: PMC8402491 DOI: 10.3390/vaccines9080904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
The principal event in the function of whole-cell cancer vaccines is the ingestion of vaccine-delivered tumor antigen-containing material, which is performed by the patient's antigen-presenting cells (APCs) through the employment of their phagocytic receptors. The goal of the present study was to identify the phagocytic receptors critical for the therapeutic efficacy of whole-cell cancer vaccines. The model of photodynamic therapy (PDT)-generated vaccines based on mouse SCCVII tumors was utilized, with in vitro expanded SCCVII cells treated by PDT serving as the vaccine material used for treating mice bearing established SCCVII tumors. The therapeutic impact, monitored as delayed progression of vaccinated tumors, was almost completely eliminated when antibodies specifically blocking the activity of LOX-1 scavenger receptor were administered to mice 30 min before vaccination. Similar, but much less pronounced, impacts were found with antibodies neutralizing the activity of CR3/CR4 receptors recognizing complement-opsonized vaccine cells, and with those blocking activating Fcγ receptors that recognized IgG antibody-based opsonins. A strikingly contrary action, a greatly enhanced tumor control by the vaccine, was found by blocking immune inhibitory receptor, FcγRIIB. The reported findings establish, therefore, an attractive strategy that can be effectively exploited for potent therapeutic enhancement of PDT-generated (and probably other) whole-cell tumor vaccines.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
15
|
Xie J, Wang Y, Choi W, Jangili P, Ge Y, Xu Y, Kang J, Liu L, Zhang B, Xie Z, He J, Xie N, Nie G, Zhang H, Kim JS. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem Soc Rev 2021; 50:9152-9201. [PMID: 34223847 DOI: 10.1039/d0cs01370f] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) has been extensively investigated for decades for tumor treatment because of its non-invasiveness, spatiotemporal selectivity, lower side-effects, and immune activation ability. It can be a promising treatment modality in several medical fields, including oncology, immunology, urology, dermatology, ophthalmology, cardiology, pneumology, and dentistry. Nevertheless, the clinical application of PDT is largely restricted by the drawbacks of traditional photosensitizers, limited tissue penetrability of light, inefficient induction of tumor cell death, tumor resistance to the therapy, and the severe pain induced by the therapy. Recently, various photosensitizer formulations and therapy strategies have been developed to overcome these barriers. Significantly, the introduction of nanomaterials in PDT, as carriers or photosensitizers, may overcome the drawbacks of traditional photosensitizers. Based on this, nanocomposites excited by various light sources are applied in the PDT of deep-seated tumors. Modulation of cell death pathways with co-delivered reagents promotes PDT induced tumor cell death. Relief of tumor resistance to PDT with combined therapy strategies further promotes tumor inhibition. Also, the optimization of photosensitizer formulations and therapy procedures reduces pain in PDT. Here, a systematic summary of recent advances in the fabrication of photosensitizers and the design of therapy strategies to overcome barriers in PDT is presented. Several aspects important for the clinical application of PDT in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Jianlei Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chauhan DS, Dhasmana A, Laskar P, Prasad R, Jain NK, Srivastava R, Jaggi M, Chauhan SC, Yallapu MM. Nanotechnology synergized immunoengineering for cancer. Eur J Pharm Biopharm 2021; 163:72-101. [PMID: 33774162 PMCID: PMC8170847 DOI: 10.1016/j.ejpb.2021.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Novel strategies modulating the immune system yielded enhanced anticancer responses and improved cancer survival. Nevertheless, the success rate of immunotherapy in cancer treatment has been below expectation(s) due to unpredictable efficacy and off-target effects from systemic dosing of immunotherapeutic(s). As a result, there is an unmet clinical need for improving conventional immunotherapy. Nanotechnology offers several new strategies, multimodality, and multiplex biological targeting advantage to overcome many of these challenges. These efforts enable programming the pharmacodynamics, pharmacokinetics, and delivery of immunomodulatory agents/co-delivery of compounds to prime at the tumor sites for improved therapeutic benefits. This review provides an overview of the design and clinical principles of biomaterials driven nanotechnology and their potential use in personalized nanomedicines, vaccines, localized tumor modulation, and delivery strategies for cancer immunotherapy. In this review, we also summarize the latest highlights and recent advances in combinatorial therapies availed in the treatment of cold and complicated tumors. It also presents key steps and parameters implemented for clinical success. Finally, we analyse, discuss, and provide clinical perspectives on the integrated opportunities of nanotechnology and immunology to achieve synergistic and durable responses in cancer treatment.
Collapse
Affiliation(s)
- Deepak S Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Rajendra Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nishant K Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
17
|
Current Prospects for Treatment of Solid Tumors via Photodynamic, Photothermal, or Ionizing Radiation Therapies Combined with Immune Checkpoint Inhibition (A Review). Pharmaceuticals (Basel) 2021; 14:ph14050447. [PMID: 34068491 PMCID: PMC8151935 DOI: 10.3390/ph14050447] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) causes selective damage to tumor cells and vasculature and also triggers an anti-tumor immune response. The latter fact has prompted the exploration of PDT as an immune-stimulatory adjuvant. PDT is not the only cancer treatment that relies on electromagnetic energy to destroy cancer tissue. Ionizing radiation therapy (RT) and photothermal therapy (PTT) are two other treatment modalities that employ photons (with wavelengths either shorter or longer than PDT, respectively) and also cause tissue damage and immunomodulation. Research on the three modalities has occurred in different “silos”, with minimal interaction between the three topics. This is happening at a time when immune checkpoint inhibition (ICI), another focus of intense research and clinical development, has opened exciting possibilities for combining PDT, PTT, or RT with ICI to achieve improved therapeutic benefits. In this review, we surveyed the literature for studies that describe changes in anti-tumor immunity following the administration of PDT, PTT, and RT, including efforts to combine each modality with ICI. This information, collected all in one place, may make it easier to recognize similarities and differences and help to identify new mechanistic hypotheses toward the goal of achieving optimized combinations and tumor cures.
Collapse
|
18
|
Yang D, Lei S, Pan K, Chen T, Lin J, Ni G, Liu J, Zeng X, Chen Q, Dan H. Application of photodynamic therapy in immune-related diseases. Photodiagnosis Photodyn Ther 2021; 34:102318. [PMID: 33940209 DOI: 10.1016/j.pdpdt.2021.102318] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT) is a therapeutic modality that utilizes photodamage caused by photosensitizers and oxygen after exposure to a specific wavelength of light. Owing to its low toxicity, high selectivity, and minimally invasive properties, PDT has been widely applied to treat various malignant tumors, premalignant lesions, and infectious diseases. Moreover, there is growing evidence of its immunomodulatory effects and potential for the treatment of immune-related diseases. This review mainly focuses on the effect of PDT on immunity and its application in immune-related diseases.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Shangxue Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Keran Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Ting Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Jiao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Guangcheng Ni
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
19
|
Schineis P, Kotkowska ZK, Vogel-Kindgen S, Friess MC, Theisen M, Schwyter D, Hausammann L, Subedi S, Varypataki EM, Waeckerle-Men Y, Kolm I, Kündig TM, Høgset A, Gander B, Halin C, Johansen P. Photochemical internalization (PCI)-mediated activation of CD8 T cells involves antigen uptake and CCR7-mediated transport by migratory dendritic cells to draining lymph nodes. J Control Release 2021; 332:96-108. [PMID: 33609623 DOI: 10.1016/j.jconrel.2021.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Antigen cross-presentation to cytotoxic CD8+ T cells is crucial for the induction of anti-tumor and anti-viral immune responses. Recently, co-encapsulation of photosensitizers and antigens into microspheres and subsequent photochemical internalization (PCI) of antigens in antigen presenting cells has emerged as a promising new strategy for inducing antigen-specific CD8+ T cell responses in vitro and in vivo. However, the exact cellular mechanisms have hardly been investigated in vivo, i.e., which cell types take up antigen-loaded microspheres at the site of injection, or in which secondary lymphoid organ does T cell priming occur? We used spray-dried poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with ovalbumin and the photosensitizer tetraphenyl chlorine disulfonate (TPCS2a) to investigate these processes in vivo. Intravital microscopy and flow cytometric analysis of the murine ear skin revealed that dendritic cells (DCs) take up PLGA microspheres in peripheral tissues. Illumination then caused photoactivation of TPCS2a and induced local tissue inflammation that enhanced CCR7-dependent migration of microsphere-containing DCs to tissue-draining lymph nodes (LNs), i.e., the site of CD8+ T cell priming. The results contribute to a better understanding of the functional mechanism of PCI-mediated vaccination and highlight the importance of an active transport of vaccine microspheres by antigen presenting cells to draining LNs.
Collapse
Affiliation(s)
- Philipp Schineis
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Zuzanna K Kotkowska
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland; Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Mona C Friess
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Martine Theisen
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - David Schwyter
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Lucy Hausammann
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Saurav Subedi
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Eleni M Varypataki
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Ying Waeckerle-Men
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Isabel Kolm
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Anders Høgset
- PCI Biotech AS, Ullernchauséen 64, 0379 Oslo, Norway
| | - Bruno Gander
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland.
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland.
| |
Collapse
|
20
|
Laszló IP, Laszló MR, Toma V, Baldea I, Olteanu D, David L, Moldovan B, Ion RM, Moldovan R, Filip GA, Kacso G, Cainap C, Clichici S, Muresan A. The in vivo modulatory effects of Cornus mas extract on photodynamic therapy in experimental tumors. Photodiagnosis Photodyn Ther 2020; 30:101656. [PMID: 31926344 DOI: 10.1016/j.pdpdt.2020.101656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022]
|
21
|
Subramaniyan B, Rajaputra P, Nguyen L, Li M, Peer CJ, Kindrick J, Figg WD, Woo S, You Y. Local and Systemic Antitumor Effects of Photo-activatable Paclitaxel Prodrug on Rat Breast Tumor Models. Photochem Photobiol 2020; 96:668-679. [PMID: 31883393 PMCID: PMC8043141 DOI: 10.1111/php.13202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
We demonstrated that a large primary and a small untreated distant breast cancer could be controlled by local treatment with our light-activatable paclitaxel (PTX) prodrug. We hypothesized that the treated tumor would be damaged by the combinational effects of photodynamic therapy (PDT) and locally released PTX and that the distant tumor would be suppressed by systemic antitumor effects. Syngeneic rat breast cancer models (single- and two-tumor models) were established on Fischer 344 rats by subcutaneous injection of MAT B III cells. The rats were injected with PTX prodrug (dose: 1 umole kg-1 , i.v.), and tumors were treated with illumination using a 690-nm laser (75 or 140 mW cm-1 for 30 min, cylindrical light diffuser, drug-light interval [DLI] 9 h). Larger tumors (~16 mm) were effectively ablated (100%) without recurrence for >90 days. All cured rats rejected rechallenged tumor for up to 12 months. In the two-tumor model, the treatment of the local large tumor (~16 mm) also cured the untreated tumor (4-6 mm) through adaptive immune activation. This is our first demonstration that local treatment with our PTX prodrug produces systemic antitumor effects. Further investigations are warranted to understand mechanisms and optimal conditions to achieve clinically translatable systemic antitumor effects.
Collapse
Affiliation(s)
- Bharathiraja Subramaniyan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Pallavi Rajaputra
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Luong Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Mengjie Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Cody J. Peer
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda, MD
| | - Jessica Kindrick
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda, MD
| | - William D. Figg
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda, MD
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| |
Collapse
|
22
|
Preclinical and Clinical Evidence of Immune Responses Triggered in Oncologic Photodynamic Therapy: Clinical Recommendations. J Clin Med 2020; 9:jcm9020333. [PMID: 31991650 PMCID: PMC7074240 DOI: 10.3390/jcm9020333] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is an anticancer strategy utilizing light-mediated activation of a photosensitizer (PS) which has accumulated in tumor and/or surrounding vasculature. Upon activation, the PS mediates tumor destruction through the generation of reactive oxygen species and tumor-associated vasculature damage, generally resulting in high tumor cure rates. In addition, a PDT-induced immune response against the tumor has been documented in several studies. However, some contradictory results have been reported as well. With the aim of improving the understanding and awareness of the immunological events triggered by PDT, this review focuses on the immunological effects post-PDT, described in preclinical and clinical studies. The reviewed preclinical evidence indicates that PDT is able to elicit a local inflammatory response in the treated site, which can develop into systemic antitumor immunity, providing long-term tumor growth control. Nevertheless, this aspect of PDT has barely been explored in clinical studies. It is clear that further understanding of these events can impact the design of more potent PDT treatments. Based on the available preclinical knowledge, recommendations are given to guide future clinical research to gain valuable information on the immune response induced by PDT. Such insights directly obtained from cancer patients can only improve the success of PDT treatment, either alone or in combination with immunomodulatory approaches.
Collapse
|
23
|
Korbelik M, Banáth J, Zhang W, Hode T, Lam SSK, Gallagher P, Zhao J, Zeng H, Chen WR. N-dihydrogalactochitosan-supported tumor control by photothermal therapy and photothermal therapy-generated vaccine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111780. [PMID: 31981988 DOI: 10.1016/j.jphotobiol.2020.111780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/13/2019] [Accepted: 01/04/2020] [Indexed: 11/16/2022]
Abstract
Photothermal therapy (PTT) is recently clinically established cancer therapy that uses near-infrared light for thermal ablation of solid tumors. The biopolymer N-dihydrogalactochitosan (GC) was shown in multiple reports to act as a very effective adjunct to tumor PTT. In the present study, mouse tumor model SCCVII (squamous cell carcinoma) was used with two protocols, in situ tumor PTT and therapeutic PTT vaccine for tumors, for investigating the effects of GC. The results reveal that GC can potentiate tumoricidal action of PTT through both direct and indirect mechanisms. In addition to previously known capacity of GC for activating immune effector cells, the indirect means is shown to include reducing the populations of immunoregulatory T cells (Tregs) in PTT-treated tumors. Testing the effects of GC on PTT-treated SCCVII tumor cells in vitro uncovered the existence of a direct mechanism evident by reduced colony survival of these cells. Fluorescence microscopy demonstrated increased binding of fluorescein-labeled GC to PTT-treated compared to untreated SCCVII cells that can be blocked by pre-exposure to annexin V. The results of additional in vitro testing with specific inhibitors demonstrate that these direct mechanisms do not involve the engagement of death surface receptors that trigger extrinsic apoptosis pathway signaling but may be linked to pro-survival activity of caspase-1. Based on the latter, it can be suggested that GC-promoted killing of PTT-treated cells stems from interference of GC bound to damaged membrane components with the repair of these structures that consequently hinders cell survival.
Collapse
Affiliation(s)
- Mladen Korbelik
- Integrative Oncology Department, BC Cancer, Vancouver, BC, Canada.
| | - Judit Banáth
- Integrative Oncology Department, BC Cancer, Vancouver, BC, Canada
| | - Wei Zhang
- Integrative Oncology Department, BC Cancer, Vancouver, BC, Canada
| | - Tomas Hode
- Immunophotonics Inc., St. Louis, MO, United States of America
| | - Samuel S K Lam
- Immunophotonics Inc., St. Louis, MO, United States of America
| | - Paul Gallagher
- Integrative Oncology Department, BC Cancer, Vancouver, BC, Canada
| | - Jianhua Zhao
- Integrative Oncology Department, BC Cancer, Vancouver, BC, Canada
| | - Haishan Zeng
- Integrative Oncology Department, BC Cancer, Vancouver, BC, Canada
| | - Wei R Chen
- Biophotonics Research Laboratory, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, United States of America
| |
Collapse
|
24
|
Donohoe C, Senge MO, Arnaut LG, Gomes-da-Silva LC. Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity. Biochim Biophys Acta Rev Cancer 2019; 1872:188308. [PMID: 31401103 DOI: 10.1016/j.bbcan.2019.07.003] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/11/2023]
Abstract
Photodynamic therapy is a promising approach for cancer treatment that relies on the administration of a photosensitizer followed by tumor illumination. The generated oxidative stress may activate multiple mechanisms of cell death which are counteracted by cells through adaptive stress responses that target homeostasis rescue. The present renaissance of PDT was leveraged by the acknowledgment that this therapy has an immediate impact locally, in the illumination volume, but that subsequently it may also elicit immune responses with systemic impact. The investigation of the mechanisms of cell death under the oxidative stress of PDT is of paramount importance to understand how the immune system is activated and, ultimately, to make PDT a more appealing/relevant therapeutic option.
Collapse
Affiliation(s)
- Claire Donohoe
- CQC, Coimbra Chemistry Center, University of Coimbra, Portugal; Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Luís G Arnaut
- CQC, Coimbra Chemistry Center, University of Coimbra, Portugal
| | | |
Collapse
|
25
|
Manda G, Hinescu ME, Neagoe IV, Ferreira LF, Boscencu R, Vasos P, Basaga SH, Cuadrado A. Emerging Therapeutic Targets in Oncologic Photodynamic Therapy. Curr Pharm Des 2019; 24:5268-5295. [DOI: 10.2174/1381612825666190122163832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
Background:Reactive oxygen species sustain tumorigenesis and cancer progression through deregulated redox signalling which also sensitizes cancer cells to therapy. Photodynamic therapy (PDT) is a promising anti-cancer therapy based on a provoked singlet oxygen burst, exhibiting a better toxicological profile than chemo- and radiotherapy. Important gaps in the knowledge on underlining molecular mechanisms impede on its translation towards clinical applications.Aims and Methods:The main objective of this review is to critically analyse the knowledge lately gained on therapeutic targets related to redox and inflammatory networks underlining PDT and its outcome in terms of cell death and resistance to therapy. Emerging therapeutic targets and pharmaceutical tools will be documented based on the identified molecular background of PDT.Results:Cellular responses and molecular networks in cancer cells exposed to the PDT-triggered singlet oxygen burst and the associated stresses are analysed using a systems medicine approach, addressing both cell death and repair mechanisms. In the context of immunogenic cell death, therapeutic tools for boosting anti-tumor immunity will be outlined. Finally, the transcription factor NRF2, which is a major coordinator of cytoprotective responses, is presented as a promising pharmacologic target for developing co-therapies designed to increase PDT efficacy.Conclusion:There is an urgent need to perform in-depth molecular investigations in the field of PDT and to correlate them with clinical data through a systems medicine approach for highlighting the complex biological signature of PDT. This will definitely guide translation of PDT to clinic and the development of new therapeutic strategies aimed at improving PDT.
Collapse
Affiliation(s)
| | | | | | - Luis F.V. Ferreira
- CQFM-Centro de Fisica Molecular and IN-Institute for Nanosciences and Nanotechnologies and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Paul Vasos
- Research Centre of the University of Bucharest, Bucharest, Romania
| | - Selma H. Basaga
- Molecular Biology Genetics & Program, Faculty of Engineering & Natural Sciences, Sabanci University, Istanbul, Turkey
| | | |
Collapse
|
26
|
Baldea I, Giurgiu L, Teacoe ID, Olteanu DE, Olteanu FC, Clichici S, Filip GA. Photodynamic Therapy in Melanoma - Where do we Stand? Curr Med Chem 2019; 25:5540-5563. [PMID: 29278205 DOI: 10.2174/0929867325666171226115626] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Malignant melanoma is one of the most aggressive malignant tumors, with unpredictable evolution. Despite numerous therapeutic options, like chemotherapy, BRAF inhibitors and immunotherapy, advanced melanoma prognosis remains severe. Photodynamic therapy (PDT) has been successfully used as the first line or palliative therapy for the treatment of lung, esophageal, bladder, non melanoma skin and head and neck cancers. However, classical PDT has shown some drawbacks that limit its clinical application in melanoma. OBJECTIVE The most important challenge is to overcome melanoma resistance, due to melanosomal trapping, presence of melanin, enhanced oxidative stress defense, defects in the apoptotic pathways, immune evasion, neoangiogenesis stimulation. METHOD In this review we considered: (1) main signaling molecular pathways deregulated in melanoma as potential targets for personalized therapy, including PDT, (2) results of the clinical studies regarding PDT of melanoma, especially advanced metastatic stage, (3) progresses made in the design of anti-melanoma photosensitizers (4) inhibition of tumor neoangiogenesis, as well as (5) advantages of the derived therapies like photothermal therapy, sonodynamic therapy. RESULTS PDT represents a promising alternative palliative treatment for advanced melanoma patients, mainly due to its minimal invasive character and low side effects. Efficient melanoma PDT requires: (1) improved, tumor targeted, NIR absorbing photosensitizers, capable of inducing high amounts of different ROS inside tumor and vasculature cells, possibly allowing a theranostic approach; (2) an efficient adjuvant immune therapy. CONCLUSION Combination of PDT with immune stimulation might be the key to overcome the melanoma resistance and to obtain better, sustainable clinical results.
Collapse
Affiliation(s)
- Ioana Baldea
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Lorin Giurgiu
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Ioana Diana Teacoe
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Diana Elena Olteanu
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Florin Catalin Olteanu
- Industrial Engineering and Management Department, Transylvania University, Brasov, Romania
| | - Simona Clichici
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| |
Collapse
|
27
|
Cline B, Delahunty I, Xie J. Nanoparticles to mediate X-ray-induced photodynamic therapy and Cherenkov radiation photodynamic therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1541. [PMID: 30063116 PMCID: PMC6355363 DOI: 10.1002/wnan.1541] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) has emerged as an attractive option for cancer treatment. However, conventional PDT is activated by light that has poor tissue penetration depths, limiting its applicability in the clinic. Recently the idea of using X-ray sources to activate PDT and overcome the shallow penetration issue has garnered significant interest. This can be achieved by external beam irradiation and using a nanoparticle scintillator as transducer. Alternatively, research on exploiting Cherenkov radiation from radioisotopes to activate PDT has also begun to flourish. In either approach, the most auspicious success is achieved using nanoparticles as either a scintillator or a photosensitizer to mediate energy transfer and radical production. Both X-ray induced PDT (X-PDT) and Cherenkov radiation PDT (CR-PDT) contain a significant radiation therapy (RT) component and are essentially PDT and RT combination. Unlike the conventional combination, however, in X-PDT and CR-PDT, one energy source simultaneously activates both processes, making the combination always in synchronism and the synergy potential maximized. While still in early stage of development, X-PDT and CR-PDT address important issues in the clinic and hold great potential in translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Benjamin Cline
- Department of Chemistry, University of Georgia, Athens, Georgia
| | - Ian Delahunty
- Department of Chemistry, University of Georgia, Athens, Georgia
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| |
Collapse
|
28
|
Yu W, Wang Y, Zhu J, Jin L, Liu B, Xia K, Wang J, Gao J, Liang C, Tao H. Autophagy inhibitor enhance ZnPc/BSA nanoparticle induced photodynamic therapy by suppressing PD-L1 expression in osteosarcoma immunotherapy. Biomaterials 2018; 192:128-139. [PMID: 30448697 DOI: 10.1016/j.biomaterials.2018.11.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/30/2022]
Abstract
Elevated expression of programmed death ligand-1 (PD-L1) on the surface of tumor cells can exhaust cytotoxic T lymphocyte cells and lead to the failure of anti-tumor immunity during the course of tumor treatment. Here, we implemented a combined regimen of tumor resection and bovine serum albumin-Zinc phthalocyanine-induced photodynamic therapy (PDT). To overcome the long-distance metastasis of osteosarcoma, we also explored the effects of PD-L1 down-regulation with PDT and the autophagy inhibitor 3-MA on osteosarcoma treatment. A dramatic anti-tumor effect induced by PDT was observed in a partial resection model, which revealed the potential clinical application of PDT during tumor resection. Meanwhile, we also confirmed the down-regulation of PD-L1 in osteosarcoma in response to PDT and 3-MA treatment, which significantly inhibited tumor growth in a model of tumor metastasis. The immunological response induced by the combination of the autophagy inhibitor and PDT suppressed osteosarcoma in vitro and in vivo, which indicated the potential application of this regimen for preventing tumor metastasis. The combination of PDT with multiple therapies has a potentially bright future as an osteosarcoma treatment strategy.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China
| | - Libin Jin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China.
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China.
| |
Collapse
|
29
|
Dadar M, Chakraborty S, Dhama K, Prasad M, Khandia R, Hassan S, Munjal A, Tiwari R, Karthik K, Kumar D, Iqbal HMN, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs and Therapeutic Approaches to Counter Human Papilloma Virus. Front Immunol 2018; 9:2478. [PMID: 30483247 PMCID: PMC6240620 DOI: 10.3389/fimmu.2018.02478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital and oropharyngeal cancer among others. HPV vaccination has become a public-health concern, worldwide, to prevent the cases of HPV infections including precancerous lesions, cervical cancers, and genital warts especially in adolescent female and male population by launching national programs with international alliances. Currently, available prophylactic and therapeutic vaccines are expensive to be used in developing countries for vaccination programs. The recent progress in immunotherapy, biotechnology, recombinant DNA technology and molecular biology along with alternative and complementary medicinal systems have paved novel ways and valuable opportunities to design and develop effective prophylactic and therapeutic vaccines, drugs and treatment approach to counter HPV effectively. Exploration and more researches on such advances could result in the gradual reduction in the incidences of HPV cases across the world. The present review presents a current global scenario and futuristic prospects of the advanced prophylactic and therapeutic approaches against HPV along with recent patents coverage of the progress and advances in drugs, vaccines and therapeutic regimens to effectively combat HPV infections and its cancerous conditions.
Collapse
Affiliation(s)
- Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Sameer Hassan
- Department of Biomedical Informatics, National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, U P Pt. Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
30
|
Yu W, Zhu J, Wang Y, Wang J, Fang W, Xia K, Shao J, Wu M, Liu B, Liang C, Ye C, Tao H. A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: from basic to deep. Oncotarget 2018; 8:39833-39848. [PMID: 28418855 PMCID: PMC5503657 DOI: 10.18632/oncotarget.16243] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy, one of the most promising minimally invasive treatments, has received increasing focus in tumor therapy research, which has been widely applied in treating superficial tumors. Three basic factors - photosensitizer, the light source, and oxidative stress - are responsible for tumor cell cytotoxicity. However, due to insufficient luminous flux and peripheral tissue damage, the utilization of photodynamic therapy is facing a huge limitation in deep tumor therapy. Osteosarcoma is the typical deep tumor, which is the most commonly occurring malignancy in children and adolescents. Despite developments in surgery, high risks of the amputation still threatens the health of osteosarcoma patients. In this review, we summarize recent developments in the field of photodynamic therapy and specifically PDT research in OS treatment modalities. In addition, we also provide some novel suggestions, which could potentially be a breakthrough in PDT-induced OS therapies. PDT has the potential to become an effective therapy while the its limitations still present when applied on the treatment of OS or other types of deep tumors. Thus, more researches and studies in the field are required.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Weijing Fang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jianlin Shao
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Minzu Wu
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengyi Ye
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| |
Collapse
|
31
|
Huang H, Wang W, Zou J, Nakajima O, Zhang L, He Q, Diao Y, Liang H, Zhou L, Peng Y. Over expression of 5-aminolevulinic acid synthase 2 increased protoporphyrin IX in nonerythroid cells. Photodiagnosis Photodyn Ther 2017; 17:22-28. [DOI: 10.1016/j.pdpdt.2016.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022]
|
32
|
van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers (Basel) 2017; 9:cancers9020019. [PMID: 28218708 PMCID: PMC5332942 DOI: 10.3390/cancers9020019] [Citation(s) in RCA: 603] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer therapy, based on a photochemical reaction between a light activatable molecule or photosensitizer, light, and molecular oxygen. When these three harmless components are present together, reactive oxygen species are formed. These can directly damage cells and/or vasculature, and induce inflammatory and immune responses. PDT is a two-stage procedure, which starts with photosensitizer administration followed by a locally directed light exposure, with the aim of confined tumor destruction. Since its regulatory approval, over 30 years ago, PDT has been the subject of numerous studies and has proven to be an effective form of cancer therapy. This review provides an overview of the clinical trials conducted over the last 10 years, illustrating how PDT is applied in the clinic today. Furthermore, examples from ongoing clinical trials and the most recent preclinical studies are presented, to show the directions, in which PDT is headed, in the near and distant future. Despite the clinical success reported, PDT is still currently underutilized in the clinic. We also discuss the factors that hamper the exploration of this effective therapy and what should be changed to render it a more effective and more widely available option for patients.
Collapse
Affiliation(s)
- Demian van Straten
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Vida Mashayekhi
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Henriette S de Bruijn
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| | - Sabrina Oliveira
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
- Pharmaceutics, Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht 3584 CG, The Netherlands.
| | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| |
Collapse
|
33
|
Korbelik M, Banáth J, Zhang W. Mreg Activity in Tumor Response to Photodynamic Therapy and Photodynamic Therapy-Generated Cancer Vaccines. Cancers (Basel) 2016; 8:cancers8100094. [PMID: 27754452 PMCID: PMC5082384 DOI: 10.3390/cancers8100094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 01/20/2023] Open
Abstract
Myeloid regulatory cells (Mregs) are, together with regulatory T cells (Tregs), a dominant effector population responsible for restriction of the duration and strength of antitumor immune response. Photodynamic therapy (PDT) and cancer vaccines generated by PDT are modalities whose effectiveness in tumor destruction is closely dependent on the associated antitumor immune response. The present study investigated whether the immunodepletion of granulocytic Mregs in host mice by anti-GR1 antibody would improve the response of tumors to PDT or PDT vaccines in these animals. Anti-GR1 administration immediately after Temoporfin-PDT of mouse SCCVII tumors abrogated curative effect of PDT. The opposite effect, increasing PDT-mediated tumor cure-rates was attained by delaying anti-GR1 treatment to 1 h post PDT. With PDT vaccines, multiple anti-GR1 administrations (days 0, 4, and 8 post vaccination) improved the therapy response with SCCVII tumors. The results with PDT suggest that neutrophils (boosting antitumor effect of this therapy) that are engaged immediately after photodynamic light treatment are within one hour replaced with a different myeloid population, presumably Mregs that hampers the therapy-mediated antitumor effect. Anti-GR1 antibody, when used with optimal timing, can improve the efficacy of both PDT of tumors in situ and PDT-generated cancer vaccines.
Collapse
Affiliation(s)
- Mladen Korbelik
- British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada.
| | - Judith Banáth
- British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada.
| | - Wei Zhang
- British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada.
| |
Collapse
|
34
|
Boosting Tumor-Specific Immunity Using PDT. Cancers (Basel) 2016; 8:cancers8100091. [PMID: 27782066 PMCID: PMC5082381 DOI: 10.3390/cancers8100091] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment with a long-standing history. It employs the application of nontoxic components, namely a light-sensitive photosensitizer and visible light, to generate reactive oxygen species (ROS). These ROS lead to tumor cell destruction, which is accompanied by the induction of an acute inflammatory response. This inflammatory process sends a danger signal to the innate immune system, which results in activation of specific cell types and release of additional inflammatory mediators. Activation of the innate immune response is necessary for subsequent induction of the adaptive arm of the immune system. This includes the priming of tumor-specific cytotoxic T lymphocytes (CTL) that have the capability to directly recognize and kill cells which display an altered self. The past decades have brought increasing appreciation for the importance of the generation of an adaptive immune response for long-term tumor control and induction of immune memory to combat recurrent disease. This has led to considerable effort to elucidate the immune effects PDT treatment elicits. In this review we deal with the progress which has been made during the past 20 years in uncovering the role of PDT in the induction of the tumor-specific immune response, with special emphasis on adaptive immunity.
Collapse
|
35
|
Saini R, Lee NV, Liu KYP, Poh CF. Prospects in the Application of Photodynamic Therapy in Oral Cancer and Premalignant Lesions. Cancers (Basel) 2016; 8:cancers8090083. [PMID: 27598202 PMCID: PMC5040985 DOI: 10.3390/cancers8090083] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022] Open
Abstract
Oral cancer is a global health burden with significantly poor survival, especially when the diagnosis is at its late stage. Despite advances in current treatment modalities, there has been minimal improvement in survival rates over the last five decades. The development of local recurrence, regional failure, and the formation of second primary tumors accounts for this poor outcome. For survivors, cosmetic and functional compromises resulting from treatment are often devastating. These statistics underscore the need for novel approaches in the management of this deadly disease. Photodynamic therapy (PDT) is a treatment modality that involves administration of a light-sensitive drug, known as a photosensitizer, followed by light irradiation of an appropriate wavelength that corresponds to an absorbance band of the sensitizer. In the presence of tissue oxygen, cytotoxic free radicals that are produced cause direct tumor cell death, damage to the microvasculature, and induction of inflammatory reactions at the target sites. PDT offers a prospective new approach in controlling this disease at its various stages either as a stand-alone therapy for early lesions or as an adjuvant therapy for advanced cases. In this review, we aim to explore the applications of PDT in oral cancer therapy and to present an overview of the recent advances in PDT that can potentially reposition its utility for oral cancer treatment.
Collapse
Affiliation(s)
- Rajan Saini
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Nathan V Lee
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Kelly Y P Liu
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Catherine F Poh
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
36
|
Pye H, Butt MA, Reinert HW, Maruani A, Nunes JPM, Marklew JS, Qurashi M, Funnell L, May A, Stamati I, Hamoudi R, Baker JR, Smith MEB, Caddick S, Deonarain MP, Yahioglu G, Chudasama V, Lovat LB. A HER2 selective theranostic agent for surgical resection guidance and photodynamic therapy. Photochem Photobiol Sci 2016; 15:1227-1238. [PMID: 27501936 DOI: 10.1039/c6pp00139d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In many cancers early intervention involves surgical resection of small localised tumour masses. Inadequate resection leads to recurrence whereas overzealous treatment can lead to organ damage. This work describes production of a HER2 targeting antibody Fab fragment dual conjugated to achieve both real time near-infrared fluorescent imaging and photodynamic therapy. The use of fluorescence emission from a NIR-dye could be used to guide resection of tumour bulk, for example during endoscopic diagnosis for oesophago-gastric adenocarcinoma, this would then be followed by activation of the photodynamic therapeutic agent to destroy untreated localised areas of cancer infiltration and tumour infiltrated lymph nodes. This theranostic agent was prepared from the Fab fragment of trastuzumab initially by functional disulfide re-bridging and site-specific click reaction of a NIR-dye. This was followed by further reaction with a novel pre-activated form of the photosensitiser chlorin e6 with the exposed fragments' lysine residues. Specific binding of the theranostic agent was observed in vitro with a HER2 positive cell line and cellular near-infrared fluorescence was observed with flow cytometry. Specific photo-activity of the conjugates when exposed to laser light was observed with HER2 positive but not HER2 negative cell lines in vitro, this selectivity was not seen with the unconjugated drug. This theranostic agent demonstrates that two different photo-active functions can be coupled to the same antibody fragment with little interference to their independent activities.
Collapse
Affiliation(s)
- H Pye
- Department for Tissue & Energy, Division of Surgery & Interventional Science, University College London, Cruciform Building, Gower Street, London, WC1E 6AE, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Korbelik M, Banáth J, Zhang W, Saw KM, Szulc ZM, Bielawska A, Separovic D. Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapy-generated vaccine. Int J Cancer 2016; 139:1372-8. [PMID: 27136745 DOI: 10.1002/ijc.30171] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 01/03/2023]
Abstract
Acid ceramidase has been identified as a promising target for cancer therapy. One of its most effective inhibitors, LCL521, was examined as adjuvant to photodynamic therapy (PDT) using mouse squamous cell carcinoma SCCVII model of head and neck cancer. Lethal effects of PDT, assessed by colony forming ability of in vitro treated SCCVII cells, were greatly enhanced when combined with 10 µM LCL521 treatment particularly when preceding PDT. When PDT-treated SCCVII cells are used to vaccinate SCCVII tumor-bearing mice (PDT vaccine protocol), adjuvant LCL521 treatment (75 mg/kg) resulted in a marked retardation of tumor growth. This effect can be attributed to the capacity of LCL521 to effectively restrict the activity of two main immunoregulatory cell populations (Tregs and myeloid-derived suppressor cells, MDSCs) that are known to hinder the efficacy of PDT vaccines. The therapeutic benefit with adjuvant LCL521 was also achieved with SCCVII tumors treated with standard PDT when using immunocompetent mice but not with immunodeficient hosts. The interaction of LCL521 with PDT-based antitumor mechanisms is dominated by immune system contribution that includes overriding the effects of immunoregulatory cells, but could also include a tacit contribution from boosting direct tumor cell kill.
Collapse
Affiliation(s)
- Mladen Korbelik
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Judit Banáth
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Wei Zhang
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Kyi Min Saw
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
| | - Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
| |
Collapse
|
38
|
Abstract
Photodynamic therapy (PDT) offers a new approach to selective tumor eradication. Modifications designed to increase and optimize efficacy continue to emerge. Selective photodamage to malignant cells and their environment can bring about tumor cell destruction, shutdown of the tumor vasculature, stimulation of immunologic anti-tumor effects and potentiation of other therapeutic effects. Current development of combination protocols may provide a better rationale for integration of PDT into clinical practice. An example described here is the ability of a sequential (two-sensitizer) PDT protocol to enhance the efficacy of photokilling. The first step involves low-level lysosomal photodamage that has been shown to promote the apoptotic response to subsequent photodynamic effects directed at mitochondria. In this report, we demonstrate the ability of Photofrin, an FDA-approved photosensitizing agent, to serve as either the first or second element of the sequential protocol.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit MI, USA
| |
Collapse
|
39
|
Korbelik M. Impact of cell death manipulation on the efficacy of photodynamic therapy-generated cancer vaccines. World J Immunol 2015; 5:95-98. [DOI: 10.5411/wji.v5.i3.95] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/09/2015] [Accepted: 08/03/2015] [Indexed: 02/05/2023] Open
Abstract
The main task of cancer vaccines is to deliver tumor-specific antigens to antigen-presenting cells for immune recognition that can lead to potent and durable immune response against treated tumor. Using photodynamic therapy (PDT)-generated vaccines as an example of autologous whole-cell cancer vaccines, the importance is discussed of the expression of death-associated molecules on cancer vaccine cells. This aspect appears critical for the optimal capture of vaccine cells by host’s sentinel phagocytes in order that the tumor antigenic material is processed and presented for immune recognition and elimination of targeted malignancy. It is shown that changing death pattern of vaccine cells by agents modulating apoptosis, autophagy or necrosis can significantly alter the therapeutic impact of PDT-generated vaccines. Improved therapeutic effect was observed with inhibitors of necrosis/necroptosis using IM-54, necrostatin-1 or necrostatin-7, as well as with lethal autophagy inducer STF62247. In contrast, reduced vaccine potency was found in case of treating vaccine cells with apoptosis inhibitors or lethal autophagy inhibitor spautin-1. Therefore, PDT-generated cancer vaccine cells undergoing apoptosis or lethal autophagy are much more likely to produce therapeutic benefit than vaccine cells that are necrotic. These findings warrant further detailed examination of the strategy using cell death modulating agents for the enhancement of the efficacy of cancer vaccines.
Collapse
|
40
|
Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chaurio R, Cirone M, Coosemans A, Coulie PG, De Ruysscher D, Dini L, de Witte P, Dudek-Peric AM, Faggioni A, Fucikova J, Gaipl US, Golab J, Gougeon ML, Hamblin MR, Hemminki A, Herrmann M, Hodge JW, Kepp O, Kroemer G, Krysko DV, Land WG, Madeo F, Manfredi AA, Mattarollo SR, Maueroder C, Merendino N, Multhoff G, Pabst T, Ricci JE, Riganti C, Romano E, Rufo N, Smyth MJ, Sonnemann J, Spisek R, Stagg J, Vacchelli E, Vandenabeele P, Vandenberk L, Van den Eynde BJ, Van Gool S, Velotti F, Zitvogel L, Agostinis P. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Front Immunol 2015; 6:588. [PMID: 26635802 PMCID: PMC4653610 DOI: 10.3389/fimmu.2015.00588] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022] Open
Abstract
The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called “damage-associated molecular patterns” (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| | - Lorenzo Galluzzi
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Lionel Apetoh
- U866, INSERM , Dijon , France ; Faculté de Médecine, Université de Bourgogne , Dijon , France ; Centre Georges François Leclerc , Dijon , France
| | - Thais Baert
- Department of Gynaecology and Obstetrics, UZ Leuven , Leuven , Belgium ; Laboratory of Gynaecologic Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven , Leuven , Belgium
| | - Raymond B Birge
- Department of Microbiology, Biochemistry, and Molecular Genetics, University Hospital Cancer Center, Rutgers Cancer Institute of New Jersey, New Jersey Medical School , Newark, NJ , USA
| | - José Manuel Bravo-San Pedro
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel , Jette , Belgium
| | - David Brough
- Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Ricardo Chaurio
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nurnberg , Erlangen , Germany
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome , Rome , Italy
| | - An Coosemans
- Department of Gynaecology and Obstetrics, UZ Leuven , Leuven , Belgium ; Laboratory of Gynaecologic Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven , Leuven , Belgium
| | - Pierre G Coulie
- de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Dirk De Ruysscher
- Department of Radiation Oncology, University Hospitals Leuven, KU Leuven - University of Leuven , Leuven , Belgium
| | - Luciana Dini
- Department of Biological and Environmental Science and Technology, University of Salento , Salento , Italy
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven , Leuven , Belgium
| | - Aleksandra M Dudek-Peric
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| | | | - Jitka Fucikova
- SOTIO , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen , Erlangen , Germany
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw , Warsaw , Poland
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital , Boston, MA , USA
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Transplantation Laboratory, Haartman Institute, University of Helsinki , Helsinki , Finland ; Helsinki University Hospital Comprehensive Cancer Center , Helsinki , Finland ; TILT Biotherapeutics Ltd. , Helsinki , Finland
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nurnberg , Erlangen , Germany
| | - James W Hodge
- Recombinant Vaccine Group, Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Oliver Kepp
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute , Villejuif , France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP , Paris , France ; Department of Women's and Children's Health, Karolinska University Hospital , Stockholm , Sweden
| | - Dmitri V Krysko
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB , Ghent , Belgium ; Department of Biomedical Molecular Biology, Ghent University , Ghent , Belgium
| | - Walter G Land
- Molecular ImmunoRheumatology, INSERM UMRS1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz , Graz , Austria ; BioTechMed Graz , Graz , Austria
| | - Angelo A Manfredi
- IRRCS Istituto Scientifico San Raffaele, Università Vita-Salute San Raffaele , Milan , Italy
| | - Stephen R Mattarollo
- Translational Research Institute, University of Queensland Diamantina Institute, University of Queensland , Wooloongabba, QLD , Australia
| | - Christian Maueroder
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nurnberg , Erlangen , Germany
| | - Nicolò Merendino
- Laboratory of Cellular and Molecular Nutrition, Department of Ecological and Biological Sciences, Tuscia University , Viterbo , Italy
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital , Bern , Switzerland
| | - Jean-Ehrland Ricci
- INSERM, U1065, Université de Nice-Sophia-Antipolis, Centre Méditerranéen de Médecine Moléculaire (C3M), Équipe "Contrôle Métabolique des Morts Cellulaires" , Nice , France
| | - Chiara Riganti
- Department of Oncology, University of Turin , Turin , Italy
| | - Erminia Romano
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| | - Nicole Rufo
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Insitute , Herston, QLD , Australia ; School of Medicine, University of Queensland , Herston, QLD , Australia
| | - Jürgen Sonnemann
- Department of Paediatric Haematology and Oncology, Children's Clinic, Jena University Hospital , Jena , Germany
| | - Radek Spisek
- SOTIO , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Institut du Cancer de Montréal, Faculté de Pharmacie, Université de Montréal , Montreal, QC , Canada
| | - Erika Vacchelli
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB , Ghent , Belgium ; Department of Biomedical Molecular Biology, Ghent University , Ghent , Belgium
| | - Lien Vandenberk
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven - University of Leuven , Leuven , Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Stefaan Van Gool
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven - University of Leuven , Leuven , Belgium
| | - Francesca Velotti
- Department of Ecological and Biological Sciences, Tuscia University , Viterbo , Italy
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute , Villejuif , France ; University of Paris Sud , Le Kremlin-Bicêtre , France ; U1015, INSERM , Villejuif , France ; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507 , Villejuif , France
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| |
Collapse
|
41
|
Immunoregulatory Cell Depletion Improves the Efficacy of Photodynamic Therapy-Generated Cancer Vaccines. Int J Mol Sci 2015; 16:27005-14. [PMID: 26569233 PMCID: PMC4661866 DOI: 10.3390/ijms161126008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/16/2015] [Accepted: 11/03/2015] [Indexed: 12/25/2022] Open
Abstract
Photodynamic therapy (PDT)-generated cancer vaccine represents an attractive potential application of PDT, therapeutic modality destroying targeted lesions by localized photooxidative stress. Since immunoregulatory cell activity has become recognized as a major obstacle to effective cancer immunotherapy, the present study examined their participation in the therapeutic effect of PDT cancer vaccine. Following protocols from previous studies, mouse with squamous cell carcinoma SCCVII tumors were vaccinated by SCCVII cells treated by PDT and response monitored by tumor size measurement. The effects of low-dose cyclophosphamide (50 mg/kg) and all-trans retinoic acid (ATRA) on the numbers of Tregs and myeloid-derived suppressor cells (MDSCs) were determined by antibody staining followed by flow cytometry, while their impact on PDT vaccine therapy was evaluated by monitoring changes in tumor responses. Cyclophosphamide effectively reduced the numbers of Tregs, which became elevated following PDT vaccine treatment, and this resulted in an increase in the vaccine’s effectiveness. A similar benefit for the therapy outcome with PDT vaccine was attained by ATRA treatment. The activities of Tregs and MDSCs thus have a critical impact on therapy outcome with PDT vaccine and reducing their numbers substantially improves the vaccine’s effectiveness.
Collapse
|
42
|
Romanyuk AV, Melik-Nubarov NS. Micelles of amphiphilic copolymers as a medium for peroxyoxalate chemiluminescent reaction in water environment. POLYMER SCIENCE SERIES B 2015. [DOI: 10.1134/s1560090415040089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Garg AD, Agostinis P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photochem Photobiol Sci 2014; 13:474-87. [PMID: 24493131 DOI: 10.1039/c3pp50333j] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumours are a form of pseudo-organs with their own microenvironment where the cancer cells nurture a dysfunctional immune environment incapable of inciting anti-tumour immunity. It had been proposed that the only way to counteract such an immune system dysfunction in tumours is by eliciting, therapeutically, a cancer cell death pathway that is accompanied by high immunogenicity and possibly inhibits or reduces the influence of the pro-tumourigenic cytokine signalling. Subsequently, a small and a large-scale screening study as well as several targeted studies found that few, selected anticancer therapeutic regimens are able to induce a promising kind of cancer cell demise called immunogenic cell death (ICD), which can activate the immune system owing to the spatiotemporally defined emission of danger signals. Recently, photodynamic therapy (PDT) utilizing the photosensitiser, hypericin (Hyp), became the first PDT paradigm characterized to be capable of inducing bona fide ICD. In the present perspective, we discuss the various technical, conceptual, and molecular advancements and unprecedented results revealed by Hyp-PDT that have influenced the fields of ICD, ER stress biology, cancer cell death, anti-cancer immune responses, photoimmunology and PDT.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, University of Leuven (KULeuven), Leuven, Belgium.
| | | |
Collapse
|
44
|
Håkerud M, Waeckerle-Men Y, Selbo PK, Kündig TM, Høgset A, Johansen P. Intradermal photosensitisation facilitates stimulation of MHC class-I restricted CD8 T-cell responses of co-administered antigen. J Control Release 2014; 174:143-50. [DOI: 10.1016/j.jconrel.2013.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/15/2013] [Accepted: 11/17/2013] [Indexed: 12/13/2022]
|
45
|
Marrache S, Choi JH, Tundup S, Zaver D, Harn DA, Dhar S. Immune stimulating photoactive hybrid nanoparticles for metastatic breast cancer. Integr Biol (Camb) 2013; 5:215-23. [PMID: 22832596 DOI: 10.1039/c2ib20125a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A therapeutic technology that combines the phototoxic and immune-stimulating ability of photodynamic therapy (PDT) with the widespread effectiveness of the immune system can be very promising to treat metastatic breast cancer. We speculated that the knowledge of molecular mechanisms of existing multi-component therapies could provide clues to aid the discovery of new combinations of an immunostimulant with a photosensitizer (PS) using a nanoparticle (NP) delivery platform. Therapeutic challenges when administering therapeutic combinations include the choice of dosages to reduce side effects, the definitive delivery of the correct drug ratio, and exposure to the targets of interest. These factors are very difficult to achieve when drugs are individually administered. By combining controlled release polymer-based NP drug delivery approaches, we were able to differentially deliver zinc phthalocyanine (ZnPc) based PS to metastatic breast cancer cells along with CpG-ODN, a single-stranded DNA that is a known immunostimulant to manage the distant tumors in a temporally regulated manner. We encapsulated ZnPc which is a long-wavelength absorbing PS within a polymeric NP core made up of poly(d,l-lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG). After coating the outside of the polymeric core with gold NPs (AuNPs), we further modified the AuNP surface with CpG-ODN. In vitro cytotoxicity using 4T1 metastatic mouse breast carcinoma cells shows significant photocytotoxicity of the hybrid NPs containing both ZnPc and CpG-ODN after irradiation with a 660 nm LASER light and this activity was remarkably better than either treatment alone. Treatment of mouse bone marrow derived dendritic cells with the PDT-killed 4T1 cell lysate shows that the combination of PDT with a synergistic immunostimulant in a single NP system results in significant immune response, which can be used for the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Sean Marrache
- Nano Therapeutics Research Lab, Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Goswami TK, Gadadhar S, Karande AA, Chakravarty AR. Photocytotoxic ferrocene-appended (l-tyrosine)copper(II) complexes of phenanthroline bases. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Kushibiki T, Hirasawa T, Okawa S, Ishihara M. Responses of Cancer Cells Induced by Photodynamic Therapy. JOURNAL OF HEALTHCARE ENGINEERING 2013; 4:87-108. [DOI: 10.1260/2040-2295.4.1.87] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Photodynamic therapy for cholangiocarcinoma using low dose mTHPC (Foscan(®)). Photodiagnosis Photodyn Ther 2013; 10:220-8. [PMID: 23993847 DOI: 10.1016/j.pdpdt.2012.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) combined with stenting is an effective treatment modality for palliation of nonresectable cholangiocarcinoma (CC). A drawback of standard PDT using Photofrin(®) as photosensitizer is the long lasting skin photosensitivity of up to 3 months. The aim of this study was to show the outcome of PDT of CC, potential side effects and to determine the best drug light interval (DLI) using mTHPC (Foscan(®)) at a low dose. METHODS 13 patients with nonresectable CC were treated with stenting and PDT (3mg Foscan(®) per treatment, 0.032-0.063 mg/kg body weight, 652 nm, 50 J/cm). Fluorescence measurements were performed with a single bare fiber for 5/13 patients prior to PDT at the tumor site to determine the fluorescence contrast. For another 7/13 patients, long-term fluorescence-kinetics were measured on the oral mucosa to determine the time of maximal relative fluorescence intensity. RESULTS The results so far indicate a median survival time of 13 months. Side effects such as perforations or skin phototoxicity could not be observed. Foscan(®) fluorescence within the tumor site was clearly detectable but a significant fluorescence contrast of tumor to adjacent healthy tissue could not be found. The fluorescence kinetics measured in the oral mucosa showed a maximum at 3.85 days (median) after drug administration. CONCLUSION Combined stenting and PDT performed with a low Foscan(®) dose results in equal and potentially longer survival times compared to standard Photofrin(®) PDT, while lowering the risk of side effects strongly. Thus it may improve the quality of life.
Collapse
|
50
|
Huang YY, Tanaka M, Vecchio D, Garcia-Diaz M, Chang J, Morimoto Y, Hamblin MR. Photodynamic therapy induces an immune response against a bacterial pathogen. Expert Rev Clin Immunol 2012; 8:479-94. [PMID: 22882222 DOI: 10.1586/eci.12.37] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) employs the triple combination of photosensitizers, visible light and ambient oxygen. When PDT is used for cancer, it has been observed that both arms of the host immune system (innate and adaptive) are activated. When PDT is used for infectious disease, however, it has been assumed that the direct antimicrobial PDT effect dominates. Murine arthritis caused by methicillin-resistant Staphylococcus aureus in the knee failed to respond to PDT with intravenously injected Photofrin(®). PDT with intra-articular Photofrin produced a biphasic dose response that killed bacteria without destroying host neutrophils. Methylene blue was the optimum photosensitizer to kill bacteria while preserving neutrophils. We used bioluminescence imaging to noninvasively monitor murine bacterial arthritis and found that PDT with intra-articular methylene blue was not only effective, but when used before infection, could protect the mice against a subsequent bacterial challenge. The data emphasize the importance of considering the host immune response in PDT for infectious disease.
Collapse
Affiliation(s)
- Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|