1
|
Xu Q, Zhang X, Hao M, Dang X, Xu Q, Cyganek L, Akin I, Tang D, Liao B, Zhou X, Lan H. Esophageal Cancer-Related Gene-4 Contributes to Lipopolysaccharide-Induced Ion Channel Dysfunction in hiPSC-Derived Cardiomyocytes. J Inflamm Res 2024; 17:10183-10197. [PMID: 39649417 PMCID: PMC11624686 DOI: 10.2147/jir.s470828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024] Open
Abstract
Background and Purpose Esophageal cancer-related gene-4 (ECRG4) participate in inflammation process and can interact with the innate immunity complex TLR4-MD2-CD14 on human granulocytes. In addition, ECRG4 participate in modulation of ion channel function and electrical activity of cardiomyocytes. However, the exact mechanism is unknown. This study aimed to test our hypothesis that ECRG4 contributes to inflammation-induced ion channel dysfunctions in cardiomyocytes. Methods Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) generated from three donors were treated with lipopolysaccharide (LPS) to establish an endotoxin-induced inflammatory model. Immunostaining, real-time PCR, and patch-clamp techniques were used for the study. Results ECRG4 was detected in hiPSC-CMs at different differentiation time. LPS treatment increased ECRG4 expression in hiPSC-CMs. Knockdown of ECRG4 decreased the expression level of Toll-Like-Receptor 4 (TLR4, a LPS receptor) and its associated genes and inflammatory cytokines. Furthermore, ECRG4 knockdown shortened the action potential duration (APD) and intercepted LPS-induced APD prolongation by enhancing ISK (small conductance calcium-activated K channel current) and attenuating INCX (Na/Ca exchanger current). Overexpression of ECRG4 mimicked LPS effects on ISK and INCX, which could be prevented by NFκB signaling blockers. Conclusion This study demonstrated that LPS effects on cardiac ion channel function were mediated by the upregulation of ECRG4, which affects NFκB signaling. Our findings support the roles of ECRG4 in inflammatory responses and the ion channel dysfunctions induced by LPS challenge.
Collapse
Affiliation(s)
- Qiang Xu
- School of Basic Medical Science, Southwest Medical University, Luzhou, People’s Republic of China
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Xiangjie Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Maolin Hao
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xitong Dang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - QianQian Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Mannheim, Germany
| | - Dan Tang
- The First People’s Hospital of Longquanyi District, Chengdu/West China Longquan Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Bin Liao
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xiaobo Zhou
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Mannheim, Germany
| | - Huan Lan
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
2
|
Skvortsova L, Abdikerim S, Yergali K, Mit N, Perfilyeva A, Omarbayeva N, Zhunussova A, Kachiyeva Z, Sadykova T, Bekmanov B, Kaidarova D, Djansugurova L, Zhunussova G. Association of Genetic Markers with the Risk of Early-Onset Breast Cancer in Kazakh Women. Genes (Basel) 2024; 15:108. [PMID: 38254997 PMCID: PMC10815330 DOI: 10.3390/genes15010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer is a global health problem. It is an age-dependent disease, but cases of early-onset breast cancer (eBC) are gradually increasing. There are many unresolved questions regarding eBC risk factors, mechanisms of development and screening. Only 10% of eBC cases are due to mutations in the BRCA1/BRCA2 genes, and 90% have a more complex genetic background. This poses a significant challenge to timely cancer detection in young women and highlights the need for research and awareness. Therefore, identifying genetic risk factors for eBC is essential to solving these problems. This study represents an association analysis of 144 eBC cases and 163 control participants to identify genetic markers associated with eBC risks in Kazakh women. We performed a two-stage approach in association analysis to assess genetic predisposition to eBC. First-stage genome-wide association analysis revealed two risk intronic loci in the CHI3L2 gene (p = 5.2 × 10-6) and MGAT5 gene (p = 8.4 × 10-6). Second-stage exonic polymorphisms haplotype analysis showed significant risks for seven haplotypes (p < 9.4 × 10-4). These results point to the importance of studying medium- and low-penetrant genetic markers in their haplotype combinations for a detailed understanding of the role of detected genetic markers in eBC development and prediction.
Collapse
Affiliation(s)
- Liliya Skvortsova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
| | - Saltanat Abdikerim
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Kanagat Yergali
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
| | - Natalya Mit
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
| | - Anastassiya Perfilyeva
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
| | - Nazgul Omarbayeva
- Breast Cancer Department, Kazakh Institute of Oncology and Radiology, Almaty 050060, Kazakhstan; (N.O.); (T.S.); (D.K.)
- Oncology Department, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan
| | - Aigul Zhunussova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
| | - Zulfiya Kachiyeva
- Research Institute of Applied and Fundamental Medicine, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan;
| | - Tolkyn Sadykova
- Breast Cancer Department, Kazakh Institute of Oncology and Radiology, Almaty 050060, Kazakhstan; (N.O.); (T.S.); (D.K.)
- Oncology Department, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan
| | - Bakhytzhan Bekmanov
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Dilyara Kaidarova
- Breast Cancer Department, Kazakh Institute of Oncology and Radiology, Almaty 050060, Kazakhstan; (N.O.); (T.S.); (D.K.)
- Oncology Department, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan
| | - Leyla Djansugurova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Gulnur Zhunussova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
| |
Collapse
|
3
|
Rai MF, Cai L, Zhang Q, Townsend RR, Brophy RH. Synovial Fluid Proteomics From Serial Aspirations of ACL-Injured Knees Identifies Candidate Biomarkers. Am J Sports Med 2023:3635465231169526. [PMID: 37191559 DOI: 10.1177/03635465231169526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) tears often result in knee effusion and an increased risk for developing knee osteoarthritis (OA) in the long run. The molecular profile of these effusions could be informative regarding initial steps in the development of posttraumatic OA after an ACL tear. HYPOTHESIS The proteomics of knee synovial fluid changes over time after ACL injury. STUDY DESIGN Descriptive laboratory study. METHODS Synovial fluid was collected from patients with an acute traumatic ACL tear presenting to the office for evaluation (18.31 ± 19.07 days from injury) (aspiration 1) and again at the time of surgery (35.41 ± 58.15 days after aspiration 1 (aspiration 2). High-resolution liquid chromatography mass spectrometry was used to assess the quantitative protein profile of synovial fluid, and differences in protein profile between the 2 aspirations were determined computationally. RESULTS A total of 58 synovial fluid samples collected from 29 patients (12 male, 17 female; 12 isolated ACL tear, 17 combined ACL and meniscal tear) with a mean age and body mass index of 27.01 ± 12.78 years and 26.30 ± 4.93, respectively, underwent unbiased proteomics analysis. The levels of 130 proteins in the synovial fluid changed over time (87 high, 43 low). Proteins of interest that were significantly higher in aspiration 2 included CRIP1, S100A11, PLS3, POSTN, and VIM, which represent catabolic/inflammatory activities in the joint. Proteins with a known role in chondroprotection and joint homeostasis such as CHI3L2 (YKL-39), TNFAIP6/TSG6, DEFA1, SPP1, and CILP were lower in aspiration 2. CONCLUSION Synovial fluid from knees with ACL tears exhibits an increased burden of inflammatory (catabolic) proteins relevant to OA with reduced levels of chondroprotective (anabolic) proteins. CLINICAL RELEVANCE This study identified a set of novel proteins that provide new biological insights into the aftermath of ACL tears. Elevated inflammation and decreased chondroprotection could represent initial disruption of homeostasis, potentially initiating the development of OA. Longitudinal follow-up and mechanistic studies are necessary to assess the functional role of these proteins in the joint. Ultimately, these investigations could lead to better approaches to predict and possibly improve patient outcomes.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lei Cai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qiang Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - R Reid Townsend
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Okawa K, Tabata E, Kida Y, Uno K, Suzuki H, Kamaya M, Bauer PO, Oyama F. Irreversible evolutionary loss of chitin-degrading ability in the chitinase-like protein Ym1 under positive selection in rodents. Protein Sci 2023; 32:e4620. [PMID: 36883357 PMCID: PMC10031810 DOI: 10.1002/pro.4620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ym1 (chitinase-like 3, Chil3) expressed in mice is a nonenzymatic chitinase-like protein, which shows 67% identity with mouse acidic chitinase (Chia). Similar to Chia, Ym1 is overexpressed in asthma and parasitic infections in mouse lungs. Due to the lack of chitin-degrading activity, the biomedical role of Ym1 under these pathophysiological conditions remains to be determined. In this study, we investigated what region and amino acid changes in Ym1 resulted in the loss of enzymatic activity. Replacing two amino acids at the catalytic motif to obtain a Chia-like sequence (N136D and Q140E; MT-Ym1) did not activate the protein. We conducted a comparative study of Ym1 and Chia. We found that three protein segments-(i) the catalytic motif residues, (ii) exons 6 and 7, and (iii) exon 10-are responsible for chitinase activity loss in Ym1. We show that replacing each of these three segments in Chia that are also involved in substrate recognition and binding by the Ym1 sequence can fully abolish the enzymatic activity. In addition, we show that there have been extensive gene duplication events at the Ym1 locus specific to the rodent lineages. Consistent with this result, Ym1 orthologs from the rodent genome were under positive selection when analyzed through the CODEML program. These data suggest that numerous amino acid substitutions in the regions involved in the chitin recognition, binding, and degradation ability of the ancestor Ym1 molecule lead to the irreversible inactivation of the protein.
Collapse
Affiliation(s)
- Kazuaki Okawa
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| | - Eri Tabata
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
- Japan Society for the Promotion of Science (PD)TokyoJapan
| | - Yuta Kida
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| | - Kyohei Uno
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| | - Hidetoshi Suzuki
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| | - Minori Kamaya
- Department of Applied ChemistryKogakuin UniversityTokyoJapan
| | | | - Fumitaka Oyama
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| |
Collapse
|
5
|
Knecht S, Eberl HC, Bantscheff M. Interval-Based Secretomics Unravels Acute-Phase Response in Hepatocyte Model Systems. Mol Cell Proteomics 2022; 21:100241. [PMID: 35525403 PMCID: PMC9184749 DOI: 10.1016/j.mcpro.2022.100241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/21/2022] Open
Abstract
Mass spectrometry-based secretomics approaches frequently utilize serum-free culture conditions to circumvent serum-induced interference and to increase analytical depth. However, this can negatively affect a wide range of cellular functions and cell viability. These effects become particularly apparent when investigating transcriptionally regulated secretion events and feedback-loops in response to perturbations that require 48 h or more to fully manifest. We present an “interval-based” secretomics workflow, which determines protein secretion rates in short serum-free time windows. Relative quantification using tandem mass tags enables precise monitoring of time-dependent changes. We applied this approach to determine temporal profiles of protein secretion in the hepatocyte model cell lines HepG2 and HepaRG after stimulation of the acute-phase response (APR) by the cytokines IL1b and IL6. While the popular hepatocarcinoma cell line HepG2 showed an incomplete APR, secretion patterns derived from differentiated HepaRG cells recapitulated the expected APR more comprehensively. For several APR response proteins, substantial secretion was only observed after 72 h, a time window at which cell fitness is substantially impaired under serum-free cell culture conditions. The interval-based secretomics approach enabled the first comprehensive analysis of time-dependent secretion of liver cell models in response to these proinflammatory cytokines. The extended time range facilitated the observation of distinct chronological phases and cytokine-dependent secretion phenotypes of the APR. IL1b directed the APR toward pathogen defense over three distinct phases—chemotaxis, effector, clearance—while IL6 directed the APR toward regeneration. Protein shedding on the cell surface was pronounced upon IL1b stimulation, and small molecule inhibition of ADAM and matrix metalloproteases identified induced as well as constitutive shedding events. Inhibition of ADAM proteases with TAPI-0 resulted in reduced shedding of the sorting receptor SORT1, and an attenuated cytokine response suggesting a direct link between cell surface shedding and cytokine secretion rates.
Interval-based secretomics enables extended time course analysis. Time-resolved acute phase response in liver model systems HepG2 and HepaRG. IL1b response clusters in three phases. Cell surface shedding is amplified during acute-phase response. ADAM inhibition dampens secretion of inflammatory cytokines.
Collapse
Affiliation(s)
- Sascha Knecht
- Cellzome GmbH, GlaxoSmithKline (GSK), Heidelberg, Germany
| | | | | |
Collapse
|
6
|
Liu L, Yang Y, Duan H, He J, Sun L, Hu W, Zeng J. CHI3L2 Is a Novel Prognostic Biomarker and Correlated With Immune Infiltrates in Gliomas. Front Oncol 2021; 11:611038. [PMID: 33937022 PMCID: PMC8084183 DOI: 10.3389/fonc.2021.611038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
CHI3L2 (Chitinase-3-Like Protein 2) is a member of chitinase-like proteins (CLPs), which belong to the glycoside hydrolase 18 family. Its homologous gene, CHI3L1, has been extensively studied in various tumors and has been shown to be related to immune infiltration in breast cancer and glioblastoma. High CHI3L2 expression was reported to be associated with poor prognosis in breast cancer and renal cell carcinoma. However, the prognostic significance of CHI3L2 in glioma and its correlation between immune infiltration remains unclear. In this study, we examined 288 glioma samples by immunohistochemistry to find that CHI3L2 is expressed in tumor cells and macrophages in glioma tissues and highly expressed in glioblastoma and IDH wild-type gliomas. Relationships between CHI3L2 expression and clinical features (grade, age, Ki67 index, P53, PHH3 (mitotic figures), ATRX, TERTp, MGMTp, IDH, and 1p/19q co-deleted status) were evaluated. Kaplan-Meier survival was conducted to show high CHI3L2 expression in tumor cells (TC) and macrophage cells (MC) indicated poor prognosis in diffusely infiltrating glioma (DIG), lower-grade glioma (LGG), and IDH wild-type gliomas (IDH-wt). The overall survival time was higher in patients with dual-low CHI3L2 expression in TC and MC compared to those in patients with non-dual CHI3L2 expression and dual high expression in DIG and IDH wild-type gliomas. By univariate and multivariate analysis, we found that high CHI3L2 expression in tumor cells was an independent unfavorable prognostic factor in glioma patients. Moreover, we used two datasets (TCGA and CGGA) to verify the results of our study and explore the potential functional role of CHI3L2 by GO and KEGG analyses in gliomas. TIMER platform analysis indicated CHI3L2 expression was closely related to diverse marker genes of tumor immune infiltrating cells, including monocytes, TAMs, M1 macrophages, M2 macrophages, TGFβ1+ Treg and T cell exhaustion in GBM and LGG. Western Blot validated CHI3L2 is expressed in glioma cells and microglia cells. The results of flow cytometry showed that CHI3L2 induces the apoptosis of CD8+ T cells. In conclusion, these results demonstrate CHI3L2 is related to poor prognosis and immune infiltrates in gliomas, suggesting it may serve as a promising prognostic biomarker and represent a new target for glioma patients.
Collapse
Affiliation(s)
- Liling Liu
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuanzhong Yang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hao Duan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Neurosurgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiahua He
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lu Sun
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wanming Hu
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jing Zeng
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Pinteac R, Montalban X, Comabella M. Chitinases and chitinase-like proteins as biomarkers in neurologic disorders. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e921. [PMID: 33293459 PMCID: PMC7803328 DOI: 10.1212/nxi.0000000000000921] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Chitinases are hydrolytic enzymes widely distributed in nature. Despite their physiologic and pathophysiologic roles are not well understood, chitinases are emerging as biomarkers in a broad range of neurologic disorders, where in many cases, protein levels measured in the CSF have been shown to correlate with disease activity and progression. In this review, we will summarize the structural features of human chitinases and chitinase-like proteins and their potential physiologic and pathologic functions in the CNS. We will also review existing evidence for the role of chitinases and chitinase-like proteins as diagnostic and prognostic biomarkers in inflammatory, neurodegenerative diseases, and psychiatric disorders. Finally, we will comment on future perspectives of chitinase studies in neurologic conditions.
Collapse
Affiliation(s)
- Rucsanda Pinteac
- From the Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Xavier Montalban
- From the Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Manuel Comabella
- From the Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
8
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
9
|
Li C, Zheng Z. Identification of Novel Targets of Knee Osteoarthritis Shared by Cartilage and Synovial Tissue. Int J Mol Sci 2020; 21:ijms21176033. [PMID: 32842604 PMCID: PMC7504179 DOI: 10.3390/ijms21176033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Arthritis is the leading cause of disability among adults, while osteoarthritis (OA) is the most common form of arthritis that results in cartilage loss. However, accumulating evidence suggests that the protective hyaline cartilage should not be the sole focus of OA treatment. Particularly, synovium also plays essential roles in OA’s initiation and progression and warrants serious consideration when battling against OA. Thus, biomarkers with similar OA-responsive expressions in cartilage and synovium should be the potential targets for OA treatment. On the other hand, molecules with a distinguished response during OA in cartilage and synovium should be ruled out as OA therapeutic(s) to avoid controversial effects in different tissues. Here, to pave the path for developing a new generation of OA therapeutics, two published transcriptome datasets of knee articular cartilage and synovium were analyzed in-depth. Genes with statistically significantly different expression in OA and healthy cartilage were compared with those in the synovium. Thirty-five genes with similar OA-responsive expression in both tissues were identified while recognizing three genes with opposite OA-responsive alteration trends in cartilage and synovium. These genes were clustered based on the currently available knowledge, and the potential impacts of these clusters in OA were explored.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Zhong Zheng
- Section of Orthodontics, Dental and Craniofacial Research Institute and Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-(310)-206-5646
| |
Collapse
|
10
|
Kzhyshkowska J, Larionova I, Liu T. YKL-39 as a Potential New Target for Anti-Angiogenic Therapy in Cancer. Front Immunol 2020; 10:2930. [PMID: 32038607 PMCID: PMC6988383 DOI: 10.3389/fimmu.2019.02930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
YKL-39 belongs to the evolutionarily conserved family of Glyco_18-containing proteins composed of chitinases and chitinase-like proteins. Chitinase-like proteins (CLPs) are secreted lectins that lack hydrolytic activity due to the amino acid substitutions in their catalytic domain and combine the functions of cytokines and growth factors. One of the major cellular sources that produce CLPs in various pathologies, including cancer, are macrophages. Monocytes recruited to the tumor site and programmed by tumor cells differentiate into tumor-associated macrophages (TAMs), which are the primary source of pro-angiogenic factors. Tumor angiogenesis is a crucial process for supplying rapidly growing tumors with essential nutrients and oxygen. We recently determined that YKL-39 is produced by tumor-associated macrophages in breast cancer. YKL-39 acts as a strong chemotactic factor for monocytes and stimulates angiogenesis. Chemotherapy is a common strategy to reduce tumor size and aggressiveness before surgical intervention, but chemoresistance, resulting in the relapse of tumors, is a common clinical problem that is critical for survival in cancer patients. Accumulating evidence indicates that TAMs are essential regulators of chemoresistance. We have recently found that elevated levels of YKL-39 expression are indicative of the efficiency of the metastatic process in patients who undergo neoadjuvant chemotherapy. We suggest YKL-39 as a new target for anti-angiogenic therapy that can be combined with neoadjuvant chemotherapy to reduce chemoresistance and inhibit metastasis in breast cancer patients.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Tengfei Liu
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
11
|
Rai MF, Tycksen ED, Cai L, Yu J, Wright RW, Brophy RH. Distinct degenerative phenotype of articular cartilage from knees with meniscus tear compared to knees with osteoarthritis. Osteoarthritis Cartilage 2019; 27:945-955. [PMID: 30797944 PMCID: PMC6536326 DOI: 10.1016/j.joca.2019.02.792] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare the transcriptome of articular cartilage from knees with meniscus tears to knees with end-stage osteoarthritis (OA). DESIGN Articular cartilage was collected from the non-weight bearing medial intercondylar notch of knees undergoing arthroscopic partial meniscectomy (APM; N = 10, 49.7 ± 10.8 years, 50% females) for isolated medial meniscus tears and knees undergoing total knee arthroplasty (TKA; N = 10, 66.0 ± 7.6 years, 70% females) due to end-stage OA. Ribonucleic acid (RNA) preparation was subjected to SurePrint G3 human 8 × 60K RNA microarrays to probe differentially expressed transcripts followed by computational exploration of underlying biological processes. Real-time polymerase chain reaction amplification was performed on selected transcripts to validate microarray data. RESULTS We observed that 81 transcripts were significantly differentially expressed (45 elevated, 36 repressed) between APM and TKA samples (≥ 2 fold) at a false discovery rate of ≤ 0.05. Among these, CFD, CSN1S1, TSPAN11, CSF1R and CD14 were elevated in the TKA group, while CHI3L2, HILPDA, COL3A1, COL27A1 and FGF2 were highly expressed in APM group. A few long intergenic non-coding RNAs (lincRNAs), small nuclear RNAs (snoRNAs) and antisense RNAs were also differentially expressed between the two groups. Transcripts up-regulated in TKA cartilage were enriched for protein localization and activation, chemical stimulus, immune response, and toll-like receptor signaling pathway. Transcripts up-regulated in APM cartilage were enriched for mesenchymal cell apoptosis, epithelial morphogenesis, canonical glycolysis, extracellular matrix organization, cartilage development, and glucose catabolic process. CONCLUSIONS This study suggests that APM and TKA cartilage express distinct sets of OA transcripts. The gene profile in cartilage from TKA knees represents an end-stage OA whereas in APM knees it is clearly earlier in the degenerative process.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Eric D. Tycksen
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Lei Cai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Jinsheng Yu
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Rick W. Wright
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Robert H. Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| |
Collapse
|
12
|
Samoilova DV, Kovaleva OV, Shelekhova KV, Petrenko AA, Kurochkin SN, Fedotov RV, Gratchev A. Development and Characterization of a Novel Monoclonal Antibody Against Chitinase-like Protein CHID1 Applicable for Immunohistochemistry on Formalin Fixed Paraffin-Embedded Sections. Monoclon Antib Immunodiagn Immunother 2019; 38:12-17. [PMID: 30657411 DOI: 10.1089/mab.2018.0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CHID1 has been recently described as a predictive marker of different malignant tumors. Thus, monoclonal antibodies (mAbs) for CHID1 detection in different human liquids and in tissues are an important tool for the diagnosis of CHID1-positive cancers. However, only few mAbs have been established to date. In this study we describe the generation of a new hybridoma clone 3D4 producing anti-CHID1 antibodies. 3D4 mAb specifically binds human CHID1 and was successfully used in enzyme-linked immunosorbent assay, immunoblotting, immunofluorescence on paraformaldehyde-fixed cells, and in immunohistochemistry of paraffin-embedded tissue specimens. These results indicate that this new anti-CHID1 mAb 3D4 will be useful in the diagnosis of CHID1-related cancers and is a strong tool for both basic and clinical research on chitinase-like proteins.
Collapse
Affiliation(s)
- Daria V Samoilova
- 1 Laboratory for Tumor Stromal Cells Biology, Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Olga V Kovaleva
- 1 Laboratory for Tumor Stromal Cells Biology, Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Ksenya V Shelekhova
- 2 Clinical Research and Practical Center for Specialized Oncological Care, Saint Petersburg, Russia
| | - Anatolii A Petrenko
- 1 Laboratory for Tumor Stromal Cells Biology, Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | | | - Roman V Fedotov
- 4 Department of Orthopedic Stomatology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Gratchev
- 1 Laboratory for Tumor Stromal Cells Biology, Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| |
Collapse
|
13
|
Liu T, Larionova I, Litviakov N, Riabov V, Zavyalova M, Tsyganov M, Buldakov M, Song B, Moganti K, Kazantseva P, Slonimskaya E, Kremmer E, Flatley A, Klüter H, Cherdyntseva N, Kzhyshkowska J. Tumor-associated macrophages in human breast cancer produce new monocyte attracting and pro-angiogenic factor YKL-39 indicative for increased metastasis after neoadjuvant chemotherapy. Oncoimmunology 2018; 7:e1436922. [PMID: 29872578 PMCID: PMC5980380 DOI: 10.1080/2162402x.2018.1436922] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
In breast cancer, the tumor microenvironment plays a critical role in the tumor progression and responses to therapy. Tumor-associated macrophages (TAMs) are major innate immune cells in tumor microenvironment that regulate intratumoral immunity and angiogenesis by secretion of cytokines, growth factors as well as chitinase-like proteins (CLPs), that combine properties of cytokines and growth factors. YKL-39 is a chitinase-like protein found in human and absent in rodents, and its expression in TAMs and role in breast cancer progression was not studied to date. Here for the first time we demonstrate that YKL-39 is expressed on TAMs, predominantly positive for stabilin-1, but not by malignant cells or other stromal cells in human breast cancer. TGF-beta in combination with IL-4, but not IL-4 alone was responsible of the stimulation of the production of YKL-39 in human primary macrophages. Mechanistically, stabilin-1 directly interacted with YKL-39 and acted as sorting receptor for targeting YKL-39 into the secretory pathway. Functionally, purified YKL-39 acted as a strong chemotactic factor for primary human monocytes, and induced angiogenesis in vitro. Elevated levels of YKL-39 expression in tumors after neoadjuvant chemotherapy (NAC) were predictive for increased risk of distant metastasis and for poor response to NAC in patients with nonspecific invasive breast carcinoma. Our findings suggest YKL-39 as a novel therapeutic target, and blocking of its activity can be combined with NAC in order to reduce the risk of metastasis in breast cancer patients.
Collapse
Affiliation(s)
- Tengfei Liu
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Irina Larionova
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia.,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nikolay Litviakov
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia.,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Vladimir Riabov
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | - Marina Zavyalova
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia.,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Matvey Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Mikhail Buldakov
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia.,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Bin Song
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Kondaiah Moganti
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Polina Kazantseva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Elena Slonimskaya
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Andrew Flatley
- Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Harald Klüter
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Nadezhda Cherdyntseva
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia.,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
14
|
Chitinase-like proteins as regulators of innate immunity and tissue repair: helpful lessons for asthma? Biochem Soc Trans 2018; 46:141-151. [PMID: 29351964 DOI: 10.1042/bst20170108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 12/19/2022]
Abstract
Chitinases and chitinase-like proteins (CLPs) belong to the glycoside hydrolase family 18 of proteins. Chitinases are expressed in mammals and lower organisms, facilitate chitin degradation, and hence act as host-defence enzymes. Gene duplication and loss-of-function mutations of enzymatically active chitinases have resulted in the expression of a diverse range of CLPs across different species. CLPs are genes that are increasingly associated with inflammation and tissue remodelling not only in mammals but also across distant species. While the focus has remained on understanding the functions and expression patterns of CLPs during disease in humans, studies in mouse and lower organisms have revealed important and overlapping roles of the CLP family during physiology, host defence and pathology. This review will summarise recent insights into the regulatory functions of CLPs on innate immune pathways and discuss how these effects are not only important for host defence and tissue injury/repair after pathogen invasion, but also how they have extensive implications for pathological processes involved in diseases such as asthma.
Collapse
|
15
|
Kzhyshkowska J, Gratchev A, Goerdt S. Human Chitinases and Chitinase-Like Proteins as Indicators for Inflammation and Cancer. Biomark Insights 2017. [DOI: 10.1177/117727190700200023] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human Glyco_18 domain-containing proteins constitute a family of chitinases and chitinase-like proteins. Chitotriosidase and AMCase are true enzymes which hydrolyse chitin and have a C-terminal chitin-binding domain. YKL-40, YKL-39, SI-CLP and murine YM1/2 proteins possess solely Glyco_18 domain and do not have the hydrolytic activity. The major sources of Glyco_18 containing proteins are macrophages, neutrophils, epithelial cells, chondrocytes, synovial cells, and cancer cells. Both macrophages and neutrophils use the regulated secretory mechanism for the release of Glyco_18 containing proteins. Glyco_18 containing proteins are established biomarkers for human diseases. Chitotriosidase is overproduced by lipid-laden macrophages and is a major marker for the inherited lysosomal storage Gaucher disease. AMCase and murine lectin YM1 are upregulated in Th2-environment, and enzymatic activity of AMCase contributes to asthma pathogenesis. YKL proteins act as soluble mediators for the cell proliferation and migration, and are also involved in rheumatoid arthritis, inflammatory bowel disease, hepatic fibrosis and cirrhosis. Chitotriosidase and YKL-40 reflect the macrophage activation in atherosclerotic plaques. Serum level of YKL-40 is a diagnostic and prognostic marker for numerous types of solid tumors. YKL-39 is a marker for the activation of chondrocytes and the progression of the osteoarthritis in human. Recently identified SI-CLP is upregulated by Th2 cytokine IL-4 as well as by glucocorticoids. This unique feature of SI-CLP makes it an attractive candidate for the examination of individual sensitivity of patients to glucocorticoid treatment and prediction of side effects of glucocorticoid therapy. Human chitinases and chitinase-like proteins are found in tissues and circulation, and can be detected by non-invasive technologies.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Dermatology and Allergology, University Medical Centre Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim D-68167, Germany
| | - Alexei Gratchev
- Department of Dermatology and Allergology, University Medical Centre Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim D-68167, Germany
| | - Sergij Goerdt
- Department of Dermatology and Allergology, University Medical Centre Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim D-68167, Germany
| |
Collapse
|
16
|
Li L, Li X, Wang W, Gao T, Zhou Y, Lu S. Soluble purified recombinant C2ORF40 protein inhibits tumor cell growth in vivo by decreasing telomerase activity in esophageal squamous cell carcinoma. Oncol Lett 2016; 12:2820-2824. [PMID: 27698864 DOI: 10.3892/ol.2016.4935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/05/2016] [Indexed: 02/02/2023] Open
Abstract
The chromosome 2 open reading frame 40 (C2ORF40) gene is a candidate tumor suppressor gene for a variety of tumors. Previous results by the present authors revealed that the C2ORF40 protein is a secreted protein. However, the exact biological function of secreted C2ORF40 protein in carcinogenesis has not been thoroughly investigated. In the present study, the signal peptide sequence of the C2ORF40 cDNA was initially removed to produce secreted recombinant human C2ORF40 protein (rhC2ORF40). Soluble rhC2ORF40 was successfully expressed and purified, which was evaluated for the first time, to the best of our knowledge, for tumor-suppressing function in vivo in esophageal cancer. The present results revealed that soluble purified rhC2ORF40 was concentrated with a purity of >95%. Furthermore, rhC2ORF40 inhibited esophageal cancer cell growth in vivo in a dose-dependent manner compared with a control group (P<0.05). In addition, the present study demonstrated for the first time that rhC2ORF40 decreased telomerase activity using telomeric repeat amplification protocol-enzyme-linked immunosorbent assay (P<0.05), without affecting the expression levels of telomerase-component RNA (P>0.05), as shown with polymerase chain reaction. Overall, the present results demonstrated that soluble rhC2ORF40 inhibited tumor cell growth in vivo by decreasing telomerase activity in esophageal squamous cell carcinoma. Therefore, soluble rhC2ORF40 with a high purity and biological activity may be a potential biological therapy drug for esophageal cancer.
Collapse
Affiliation(s)
- Linwei Li
- Oncology Department, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan 450003, P.R. China
| | - Xiaoyan Li
- Oncology Department, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan 450003, P.R. China
| | - Wenyu Wang
- Oncology Department, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan 450003, P.R. China
| | - Tianhui Gao
- Oncology Department, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan 450003, P.R. China
| | - Yun Zhou
- Oncology Department, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan 450003, P.R. China
| | - Shixin Lu
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
17
|
Di Rosa M, Brundo VM, Malaguarnera L. New insights on chitinases immunologic activities. World J Immunol 2016; 6:96-104. [DOI: 10.5411/wji.v6.i2.96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/29/2015] [Accepted: 04/11/2016] [Indexed: 02/05/2023] Open
Abstract
Mammalian chitinases and the related chilectins (ChiLs) belong to the GH18 family, which hydrolyse the glycosidic bond of chitin by a substrate-assisted mechanism. Chitin the fundamental component in the coating of numerous living species is the most abundant natural biopolymer. Mounting evidence suggest that the function of the majority of the mammalian chitinases is not exclusive to catalyze the hydrolysis of chitin producing pathogens, but include crucial role specific in the immunologic activities. The chitinases and chitinase-like proteins are expressed in response to different proinflammatory cues in various tissues by activated macrophages, neutrophils and in different monocyte-derived cell lines. The mechanism and molecular interaction of chitinases in relation to immune regulation embrace bacterial infection, inflammation, dismetabolic and degenerative disease. The aim of this review is to update the reader with regard to the role of chitinases proposed in the recent innate and adaptive immunity literature. The deep scrutiny of this family of enzymes could be a useful base for further studies addressed to the development of potential procedure directing these molecules as diagnostic and prognostic markers for numerous immune and inflammatory diseases.
Collapse
|
18
|
Kzhyshkowska J, Gudima A, Moganti K, Gratchev A, Orekhov A. Perspectives for Monocyte/Macrophage-Based Diagnostics of Chronic Inflammation. Transfus Med Hemother 2016; 43:66-77. [PMID: 27226789 DOI: 10.1159/000444943] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022] Open
Abstract
Low-grade chronic inflammation underlies the development of the most dangerous cardiometabolic disorders including type 2 diabetes and its vascular complications. In contrast to acute inflammation induced by bacteria and viruses, chronic inflammation can be driven by abnormal reaction to endogenous factors, including Th2 cytokines, metabolic factors like advanced glycation end products (AGEs), modified lipoproteins, or hyperglycemia. The key innate immune cells that recognize these factors in blood circulation are monocytes. Inflammatory programming of monocytes which migrate into tissues can, in turn, result into generation of tissue macrophages with pathological functions. Therefore, determination of the molecular and functional phenotype of circulating monocytes is a very promising diagnostic tool for the identification of hidden inflammation, which can precede the development of the pathology. Here we propose a new test system for the identification of inflammatory programming of monocytes: surface biomarkers and ex vivo functional system. We summarize the current knowledge about surface biomarkers for monocyte subsets, including CD16, CCR2, CX3CR1, CD64, stabilin-1 and CD36, and their association with inflammatory human disorders. Furthermore, we present the design of an ex vivo monocyte-based test system with minimal set of parameters as a potential diagnostic tool for the identification of personalized inflammatory responses.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany; Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | - Alexandru Gudima
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kondaiah Moganti
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexei Gratchev
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | | |
Collapse
|
19
|
Di Rosa M, Distefano G, Zorena K, Malaguarnera L. Chitinases and immunity: Ancestral molecules with new functions. Immunobiology 2015; 221:399-411. [PMID: 26686909 DOI: 10.1016/j.imbio.2015.11.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023]
Abstract
Chitinases belonging to 18 glycosyl hydrolase family is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In humans, despite the absence of endogenous chitin, a number of Chitinases and Chitinase-like Proteins (C/CLPs) have been identified. Chitinases with enzymatic activity have a chitin binding domain containing six cysteine residues responsible for their binding to chitin. In contrast, CLPs do not contain such typical chitin-binding domains, but still can bind to chitin with high affinity. Molecular phylogenetic analyses suggest that active Chitinases result from an early gene duplication event. Further duplication events, followed by mutations leading to loss of chitinase activity, allowed evolution of the chi-lectins. For the majority of the mammalian chitinases the last decades have witnessed the appearance of a substantial number of studies describing their expression differentially regulated during more specific immunologic activities. It is becoming increasingly clear that their function is not exclusive to catalyse the hydrolysis of chitin producing pathogens, but include crucial role in bacterial infections and inflammatory diseases. Here we provide an overview of all family members to shed light on the mechanisms and molecular interactions of Chitinases and CLPs in relation to immune response regulation, in order to delineate their future utilization as diagnostic and prognostic markers for numerous diseases.
Collapse
Affiliation(s)
- Michelino Di Rosa
- Department of Biomedical and Biotechnology Sciences, University of Catania, Italy
| | - Gisella Distefano
- Department of Biomedical and Biotechnology Sciences, University of Catania, Italy
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology Medical University of Gdańsk, Poland
| | - Lucia Malaguarnera
- Department of Biomedical and Biotechnology Sciences, University of Catania, Italy.
| |
Collapse
|
20
|
You Y, Li H, Qin X, Ran Y, Wang F. Down-regulated ECRG4 expression in breast cancer and its correlation with tumor progression and poor prognosis--A short Report. Cell Oncol (Dordr) 2015; 39:89-95. [PMID: 26631111 DOI: 10.1007/s13402-015-0260-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Recently, we identified the esophageal carcinoma related gene 4 (ECRG4) as a novel candidate tumor suppressor gene and a promising therapeutic target in nasopharyngeal carcinoma (NPC). In addition, we found that reduced ECRG4 expression in NPC was associated with promoter hypermethylation. The aim of the current study was to assess the expression status of the ECRG4 protein in breast cancer and to clarify its clinicopathological significance and potential prognostic implications. METHODS Western blotting was used to examine ECRG4 protein levels in 20 paired breast cancer tissues and adjacent noncancerous tissues. In addition, we performed ECRG4 immunohistochemistry on 113 clinicopathologically well-characterized breast cancer samples and assessed putative associations between its expression and overall patient survival rates. RESULTS We found that ECRG4 protein expression was significantly reduced in the breast cancer tissues compared to the noncancerous tissues. Clinicopathological analyses revealed that loss of ECRG4 protein expression, observed in 41.6 % (47/113) of the primary breast cancer tissues tested, was significantly correlated with lymph node metastasis (P = 0.026), advanced tumor stage (P = 0.042) and unfavorable overall survival (P = 0.004). Additional multivariate analyses revealed that ECRG4 protein expression may serve as an independent prognostic factor for the prediction of patient survival (P = 0.033). CONCLUSION Our data suggest that loss of ECRG4 protein expression may be involved in tumor progression and may serve as a prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Yanjie You
- Pathological Examination and Research Center, Luohe Medical College, Luohe, 462002, China
- Department of Pharmacy, Luohe Medical College, Luohe, 462002, China
- Luohe Key Laboratory of Medical Bioengineering, Luohe Medical College, 148 Daxue-Road, Luohe, 462002, China
| | - Haijun Li
- Department of Radiation Oncology, The Second People's Hospital of Neijiang City, Neijiang, 641000, China
| | - Xin Qin
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Yonggang Ran
- Department of Teaching and Training, Bethune Military Medical NCO Academy of PLA, Shijiazhuang, 050081, China
| | - Fei Wang
- Luohe Key Laboratory of Medical Bioengineering, Luohe Medical College, 148 Daxue-Road, Luohe, 462002, China.
- Bioengineering Laboratory, Luohe Medical College, Luohe, 462002, China.
| |
Collapse
|
21
|
Li X, Li L, Wang W, Yang Y, Zhou Y, Lu S. Soluble purified recombinant C2ORF40 protein inhibits esophageal cancer cell proliferation by inducing cell cycle G 1 phase block. Oncol Lett 2015; 10:1593-1596. [PMID: 26622716 DOI: 10.3892/ol.2015.3429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 06/11/2015] [Indexed: 02/04/2023] Open
Abstract
Chromosome 2 open reading frame 40 (C2ORF40) plays a significant role in numerous processes, including cell differentiation, senescence, apoptosis, inflammation and neuroendocrine hormone regulation. Moreover, C2ORF40 is a candidate tumor suppressor gene in a variety of tumors, and is closely associated with prognosis. Bioinformatics analysis has indicated that pro-C2ORF40 is a secreted protein with a signal peptide. Secreted C2ORF40 protein (sC2ORF40) exists in cancer cell medium. However, thus far, the exact biological function of sC2ORF40 in carcinogenesis has not been thoroughly researched. In the present study, the signal peptide sequence of the C2ORF40 complementary DNA was initially cut off to produce secreted recombinant human C2ORF40 protein (rhC2ORF40). The soluble rhC2ORF40 was expressed, purified and examined for tumor-suppressing function for the first time. The results revealed that the soluble purified rhC2ORF40 protein was concentrated with a purity of >95%. Furthermore, the rhC2ORF40 inhibited esophageal cancer cell proliferation in vitro (P<0.05) and caused cell cycle G1 phase block, as determined by flow cytometric analysis (P<0.05). Overall, the soluble rhC2ORF40 protein with high purity and biological activity was obtained, which suppressed esophageal cancer cells proliferation by inducing cell cycle G1 phase block in vitro. Therefore, the soluble rhC2ORF40 protein could be potential biological therapy drug for esophageal carcinoma.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Oncology, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Linwei Li
- Department of Oncology, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Wenyu Wang
- Department of Oncology, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yang Yang
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yun Zhou
- Department of Oncology, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Shixin Lu
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
22
|
Porzionato A, Rucinski M, Macchi V, Sarasin G, Malendowicz LK, De Caro R. ECRG4 expression in normal rat tissues: expression study and literature review. Eur J Histochem 2015; 59:2458. [PMID: 26150152 PMCID: PMC4503965 DOI: 10.4081/ejh.2015.2458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/14/2015] [Accepted: 03/18/2015] [Indexed: 01/19/2023] Open
Abstract
The Esophageal Cancer Related Gene 4 (ECRG4) is a highly conserved tumour suppressor gene encoding various peptides (augurin, CΔ16 augurin, ecilin, argilin, CΔ16 argilin) which can be processed and secreted. In the present work, we examined ECRG4 expression and location in a wide range of rat organs and reviewed the available literature. ECRG4 mRNA was identified in all examined tissues by quantitative PCR (qPCR). ECRG4 immunoreaction was mainly cytoplasmic, and was detected in heart and skeletal muscles, smooth muscle cells showing only weak reactions. In the digestive system, ECRG4 immunostaining was stronger in the esophageal epithelium, bases of gastric glands, hepatocytes and pancreatic acinar epithelium. In the lymphatic system, immunoreactive cells were detectable in the thymus cortex, lymph node medulla and splenic red pulp. In the central and peripheral nervous systems, different neuronal groups showed different reaction intensities. In the endocrine system, ECRG4 immunoreaction was detected in the hypothalamic paraventricular and supraoptic nuclei, hypophysis, thyroid and parathyroid glands, adrenal zona glomerularis and medulla and Leydig cells, as well as in follicular and luteal cells of the ovary. In the literature, ECRG4 has been reported to inhibit cell proliferation and increase apoptosis in various cell types. It is down-regulated, frequently due to hypermethylation, in esophageal, prostate, breast and colon cancers, together with glioma (oncosuppressor function), although it is up-regulated in papillary thyroid cancer (oncogenic role). ECRG4 expression is also higher in non-proliferating cells of the lymphatic system. In conclusion, our identification of ECRG4 in many structures suggests the involvement of ECRG4 in the tumorigenesis of other organs and also the need for further research. In addition, on the basis of the location of ECRG4 in neurons and endocrine cells and the fact that it can be secreted, its role as a neurotransmitter/neuromodulator and endocrine factor must be examined in depth in the future.
Collapse
|
23
|
Koch BEV, Stougaard J, Spaink HP. Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology 2015; 25:469-82. [PMID: 25595947 PMCID: PMC4373397 DOI: 10.1093/glycob/cwv005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chitin is a vital polysaccharide component of protective structures in many eukaryotic organisms but seems absent in vertebrates. Chitin or chitin oligomers are therefore prime candidates for non-self-molecules, which are recognized and degraded by the vertebrate immune system. Despite the absence of polymeric chitin in vertebrates, chitinases and chitinase-like proteins (CLPs) are well conserved in vertebrate species. In many studies, these proteins have been found to be involved in immune regulation and in mediating the degradation of chitinous external protective structures of invading pathogens. Several important aspects of chitin immunostimulation have recently been uncovered, advancing our understanding of the complex regulatory mechanisms that chitin mediates. Likewise, the last few years have seen large advances in our understanding of the mechanisms and molecular interactions of chitinases and CLPs in relation to immune response regulation. It is becoming increasingly clear that their function in this context is not exclusive to chitin producing pathogens, but includes bacterial infections and cancer signaling as well. Here we provide an overview of the immune signaling properties of chitin and other closely related biomolecules. We also review the latest literature on chitinases and CLPs of the GH18 family. Finally, we examine the existing literature on zebrafish chitinases, and propose the use of zebrafish as a versatile model to complement the existing murine models. This could especially be of benefit to the exploration of the function of chitinases in infectious diseases using high-throughput approaches and pharmaceutical interventions.
Collapse
Affiliation(s)
- Bjørn E V Koch
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark Leiden University, Institute of Biology, Leiden, The Netherlands
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Herman P Spaink
- Leiden University, Institute of Biology, Leiden, The Netherlands
| |
Collapse
|
24
|
Chaocharoen W, Ranok A, Suginta W, Schulte A. A microfluidic capacitive immunosensor system for human cartilage chitinase-3-like protein 2 (hYKL-39) quantification as an osteoarthritis marker in synovial joint fluid. RSC Adv 2015. [DOI: 10.1039/c5ra11379b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Flow-based electrochemical osteoarthritis biomarker quantification in joint synovial fluid has been established as first alternative to optical ELISA assays.
Collapse
Affiliation(s)
- W. Chaocharoen
- School of Biochemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - A. Ranok
- School of Biochemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - W. Suginta
- School of Biochemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - A. Schulte
- School of Chemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| |
Collapse
|
25
|
Kao S, Shaterian A, Cauvi DM, Dang X, Chun HB, De Maio A, Costantini TW, Coimbra R, Eliceiri BP, Baird A. Pulmonary preconditioning, injury, and inflammation modulate expression of the candidate tumor suppressor gene ECRG4 in lung. Exp Lung Res 2014; 41:162-72. [PMID: 25513848 DOI: 10.3109/01902148.2014.983282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE The human c2orf40 gene encodes a candidate tumor suppressor called Esophageal Cancer-Related Gene-4 (ECRG4) that is a cytokine-like epigenetically-regulated protein that is characteristically downregulated in cancer, injury, inflammation, and infection. Here, we asked whether ECRG4 gene expression is detectable in lung epithelial cells and if its expression changes with inflammation, infection, and/or protective preconditioning. MATERIALS AND METHODS We used immunoblotting, PCR, and quantitative PCR to measure ECRG4 and either inhalation anesthesia preconditioning, lipopolysaccharide injection, or laparotomy to modulate lung inflammation. RESULTS Immunoblotting establishes the presence of the full-length 14 kDa ECRG4 peptide in mouse lung. Immunohistochemistry localizes ECRG4 to type l alveolar epithelial cells. Basal ECRG4 mRNA is greater than TNF-α, IL-1β, and IL-6 but following inflammatory lung injury, TNF-α, IL-1β, IL-6, and IL-10 are upregulated while ECRG4 gene expression is decreased. Similar findings are observed after an intravenous administration of lipopolysaccharide. In contrast, lung preconditioning with isoflurane anesthesia increases lung ECRG4 gene expression. Over-expression of ECRG4 in human lung epithelial cells in vitro decreases cell proliferation implying that a loss of ECRG4 in vivo would be permissive to cell growth. CONCLUSIONS This study supports the hypothesis that ECRG4 acts as a sentinel growth inhibitor in lung alveolar epithelial cells. Its downregulation by injury, infection, and inflammation and upregulation by preconditioning supports a role for ECRG4 in regulating the alveolar epithelium response to injury and inflammation. By extension, the findings support a functional consequence to its inhibition by promoter hypermethylation (i.e. lung cancer) and suggest potential benefits to its upregulation.
Collapse
Affiliation(s)
- Steven Kao
- Department of Surgery Division of Trauma, Surgical Critical Care, Burn and Acute Care Surgery, School of Medicine, University of California in San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ranok A, Wongsantichon J, Robinson RC, Suginta W. Structural and thermodynamic insights into chitooligosaccharide binding to human cartilage chitinase 3-like protein 2 (CHI3L2 or YKL-39). J Biol Chem 2014; 290:2617-29. [PMID: 25477513 DOI: 10.1074/jbc.m114.588905] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Four crystal structures of human YKL-39 were solved in the absence and presence of chitooligosaccharides. The structure of YKL-39 comprises a major (β/α)8 triose-phosphate isomerase barrel domain and a small α + β insertion domain. Structural analysis demonstrates that YKL-39 interacts with chitooligosaccharides through hydrogen bonds and hydrophobic interactions. The binding of chitin fragments induces local conformational changes that facilitate tight binding. Compared with other GH-18 members, YKL-39 has the least extended chitin-binding cleft, containing five subsites for sugars, namely (-3)(-2)(-1)(+1)(+2), with Trp-360 playing a prominent role in the sugar-protein interactions at the center of the chitin-binding cleft. Evaluation of binding affinities obtained from isothermal titration calorimetry and intrinsic fluorescence spectroscopy suggests that YKL-39 binds to chitooligosaccharides with Kd values in the micromolar concentration range and that the binding energies increase with the chain length. There were no significant differences between the Kd values of chitopentaose and chitohexaose, supporting the structural evidence for the five binding subsite topology. Thermodynamic analysis indicates that binding of chitooligosaccharide to YKL-39 is mainly driven by enthalpy.
Collapse
Affiliation(s)
- Araya Ranok
- From the Biochemistry-Electrochemistry Research Unit, School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jantana Wongsantichon
- the Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Biopolis Drive, Singapore 138673, Singapore, and
| | - Robert C Robinson
- the Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Biopolis Drive, Singapore 138673, Singapore, and the Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wipa Suginta
- From the Biochemistry-Electrochemistry Research Unit, School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand,
| |
Collapse
|
27
|
Baird A, Lee J, Podvin S, Kurabi A, Dang X, Coimbra R, Costantini T, Bansal V, Eliceiri BP. Esophageal cancer-related gene 4 at the interface of injury, inflammation, infection, and malignancy. ACTA ACUST UNITED AC 2014; 2014:131-142. [PMID: 25580077 PMCID: PMC4287990 DOI: 10.2147/gictt.s49085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In humans, esophageal cancer-related gene 4 (ECRG4) is encoded by four exons in the c2orf40 locus of chromosome 2. Translation of ECRG4 messenger ribonucleic acid produces a 148 amino acid-secreted 17 KDa protein that is then processed to 14, ten, eight, six, four, and two KDa peptides, depending on the cell in which the gene is expressed. As hypermethylation at the c2orf40 locus inhibits ECRG4 gene expression in many epithelial cancers, several investigators have speculated that ECRG4 is a candidate tumor suppressor. Indeed, overexpression of ECRG4 inhibits cell proliferation in vitro, but it also has a wide range of effects in vivo beyond its antitumor activity. ECRG4 overexpression affects apoptosis, senescence, cell migration, inflammation, injury, and infection responsiveness. ECRG4 activities also depend on its cellular localization, secretion, and post-translational processing. These cytokine/chemokine-like characteristics argue that ECRG4 is not a traditional candidate tumor suppressor gene, as originally predicted by its downregulation in cancer. We review how insights into the regulation of ECRG4 gene expression, knowledge of its primary structure, and the study of its emerging physiological functions come together to support a much more complex role for ECRG4 at the interface of inflammation, infection, and malignancy.
Collapse
Affiliation(s)
- Andrew Baird
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Jisook Lee
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Sonia Podvin
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Arwa Kurabi
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Xitong Dang
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Raul Coimbra
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Todd Costantini
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Vishal Bansal
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Brian P Eliceiri
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| |
Collapse
|
28
|
YKL-40 as a novel factor associated with inflammation and catabolic mechanisms in osteoarthritic joints. Mediators Inflamm 2014; 2014:215140. [PMID: 25132728 PMCID: PMC4124234 DOI: 10.1155/2014/215140] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/04/2014] [Indexed: 11/18/2022] Open
Abstract
YKL-40 is associated with tissue injury and inflammation, and consequently to diseases in which these mechanisms lead to tissue degradation, for example, asthma and rheumatoid arthritis. The purpose of the present study was to investigate if YKL-40 is also a significant factor in osteoarthritis (OA) by assessing associations of YKL-40 with mediators related to the pathogenesis of OA: cartilage destructing matrix metalloproteinases (MMPs) and proinflammatory cytokines interleukin-6 (IL-6) and interleukin-17 (IL-17). Cartilage, synovial fluid (SF), and plasma samples were obtained from 100 OA patients undergoing total knee replacement surgery. SF levels of YKL-40 (1027.9 ± 78.3 ng/mL) were considerably higher than plasma levels (67.2 ± 4.5 ng/mL) and correlated with YKL-40 released from cartilage samples obtained from the same patients (r = 0.37, P = 0.010), indicating that YKL-40 is produced by OA cartilage. Interestingly, YKL-40 concentrations in OA SF correlated positively with MMP-1 (r = 0.36, P = 0.014), MMP-3 (r = 0.46, P = 0.001), IL-6 (r = 0.57, P < 0.001), and IL-17 (r = 0.52, P = 0.010) levels. Moreover, IL-6 and IL-17 enhanced YKL-40 production in human primary chondrocyte cultures. The present study introduces YKL-40 as a cartilage-derived factor associated with mediators of inflammation and cartilage destruction involved in the pathogenesis of OA.
Collapse
|
29
|
Ranok A, Khunkaewla P, Suginta W. Human cartilage chitinase 3-like protein 2: cloning, expression, and production of polyclonal and monoclonal antibodies for osteoarthritis detection and identification of potential binding partners. Monoclon Antib Immunodiagn Immunother 2014; 32:317-25. [PMID: 24111862 DOI: 10.1089/mab.2013.0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human cartilage chitinase 3-like protein 2 (CHI3L2 or YKL-39) is a member of family-18 glycosyl hydrolases that lacks chitinase activity. YKL-39 is known as a potential marker for the activation of chondrocytes and the progression of osteoarthritis. In this study, we cloned and expressed a functional form of human YKL-39 in the bacterial system. The Escherichia coli expressed YKL-30 was used as immugen for production of anti YKL-39 polyclonal and monoclonal antibodies. Both antibody types were highly selective, reacting only with YKL-39. Isotype mapping identified two hybridoma clones (so called clones 6H11 and 8H3) to be IgM isotype. Dot blot assay showed that the monoclonal antibody was strongly active with the synovial fluid of an osteoarthritis patient, human monocyte, and T lymphocyte cell lines. Database search for protein binding partners gave high hits with several glycoproteins that play particular roles in cartilage tissue scaffolding, connective tissue formation, and cell-cell interactions. In conclusion, anti YKL-39 polyclonal and monoclonal antibodies were raised and tested to be suitable for immunological applications, such as the investigation of the YKL-39 regulating pathway and the development of an immunosensing tool for sensitive detection of cartilage tissue destruction.
Collapse
Affiliation(s)
- Araya Ranok
- Biochemistry-Electrochemistry Research Unit, Schools of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology , Nakhon Ratchasima, Thailand
| | | | | |
Collapse
|
30
|
Di Rosa M, Tibullo D, Vecchio M, Nunnari G, Saccone S, Di Raimondo F, Malaguarnera L. Determination of chitinases family during osteoclastogenesis. Bone 2014; 61:55-63. [PMID: 24440516 DOI: 10.1016/j.bone.2014.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/13/2013] [Accepted: 01/09/2014] [Indexed: 01/18/2023]
Abstract
Mammalian chitinases consisting of CHIA, CHIT1, CHI3L1, CHI3L2 and CHID1 exert important biological roles in the monocyte lineage and chronic inflammatory diseases. Pathological bone resorption is a cause of significant morbidity in diseases affecting the skeleton such as rheumatoid arthritis, osteoporosis, periodontitis and cancer metastasis. The biologic role of chitinases in bone resorption is poorly understood. In this study, we evaluated the expression of the chitinases family during osteoclast differentiation. The expression of CHIA, CHI3L2 and CHID1 resulted unchanged during osteoclast differentiation, whereas CHIT1 and CHI3L1 increased significantly. We also observed that CHIT1 and CHI3L1 are involved in osteoclast function. Indeed, silencing CHIT1 and CHI3L1 with siRNA resulted in a significant decrease in bone resorption activity. In addition, transfection with CHIT1 or CHI3L1 siRNA and co-transfection with both decreased the levels of the pro-differentiative marker MMP9. Overall, these discoveries reveal a novel and crucial role for both CHIT1 and CHI3L1 in promoting bone resorption and identifying new potential candidate markers for therapeutic targeting.
Collapse
Affiliation(s)
| | - Daniele Tibullo
- Department of Clinical and Molecular Biomedicine, University of Catania, Ospedale Ferrarotto, Italy
| | - Michele Vecchio
- Physical Medicine and Rehabilitation Unit, University of Catania, Hospital Policlinic Vittorio Emanuele, Catania, Italy
| | - Giuseppe Nunnari
- Department of Clinical and Molecular Biomedicine, Division of Infectious Diseases, University of Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Francesco Di Raimondo
- Department of Clinical and Molecular Biomedicine, University of Catania, Ospedale Ferrarotto, Italy
| | | |
Collapse
|
31
|
Abstract
Biological control of phytopathogenic fungi and insects continues to inspire the research and development of environmentally friendly bioactive alternatives. Potentially lytic enzymes, chitinases can act as a biocontrol agent against agriculturally important fungi and insects. The cell wall in fungi and protective covers, i.e. cuticle in insects shares a key structural polymer, chitin, a β-1,4-linked N-acetylglucosamine polymer. Therefore, it is advantageous to develop a common biocontrol agent against both of these groups. As chitin is absent in plants and mammals, targeting its metabolism will signify an eco-friendly strategy for the control of agriculturally important fungi and insects but is innocuous to mammals, plants, beneficial insects and other organisms. In addition, development of chitinase transgenic plant varieties probably holds the most promising method for augmenting agricultural crop protection and productivity, when properly integrated into traditional systems. Recently, human proteins with chitinase activity and chitinase-like proteins were identified and established as biomarkers for human diseases. This review covers the recent advances of chitinases as a biocontrol agent and its various applications including preparation of medically important chitooligosaccharides, bioconversion of chitin as well as in implementing chitinases as diagnostic and prognostic markers for numerous diseases and the prospect of their future utilization.
Collapse
Affiliation(s)
- Anand Nagpure
- University School of Biotechnology, Guru Gobind Singh Indraprastha University , New Delhi , India
| | | | | |
Collapse
|
32
|
Lu J, Wen M, Huang Y, He X, Wang Y, Wu Q, Li Z, Castellanos-Martin A, Abad M, Cruz-Hernandez JJ, Rodriguez CA, Pérez-Losada J, Mao JH, Wei G. C2ORF40 suppresses breast cancer cell proliferation and invasion through modulating expression of M phase cell cycle genes. Epigenetics 2013; 8:571-83. [PMID: 23770814 DOI: 10.4161/epi.24626] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recently, it has been suggested that C2ORF40 is a candidate tumor suppressor gene in breast cancer. However, the mechanism for reduced expression of C2ORF40 and its functional role in breast cancers remain unclear. Here we show that C2ORF40 is frequently silenced in human primary breast cancers and cell lines through promoter hypermethylation. C2ORF40 mRNA level is significantly associated with patient disease-free survival and distant cancer metastasis. Overexpression of C2ORF4 0 inhibits breast cancer cell proliferation, migration and invasion. By contrast, silencing C2ORF40 expression promotes these biological phenotypes. Bioinformatics and FACS analysis reveal C2ORF40 functions at G2/M phase by downregulation of mitotic genes expression, including UBE2C. Our results suggest that C2ORF40 acts as a tumor suppressor gene in breast cancer pathogenesis and progression and is a candidate prognostic marker for this disease.
Collapse
Affiliation(s)
- Jing Lu
- Department of Anatomy and Key Laboratory of Experimental Teratology; Ministry of Education; Shandong University School of Medicine; Jinan, Shandong, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Einarsson JM, Bahrke S, Sigurdsson BT, Ng CH, Petersen PH, Sigurjonsson OE, Jonsson H, Gislason J, Thormodsson FR, Peter MG. Partially acetylated chitooligosaccharides bind to YKL-40 and stimulate growth of human osteoarthritic chondrocytes. Biochem Biophys Res Commun 2013; 434:298-304. [PMID: 23541584 DOI: 10.1016/j.bbrc.2013.02.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 11/17/2022]
Abstract
Recent evidences indicating that cellular kinase signaling cascades are triggered by oligomers of N-acetylglucosamine (ChOS) and that condrocytes of human osteoarthritic cartilage secrete the inflammation associated chitolectin YKL-40, prompted us to study the binding affinity of partially acetylated ChOS to YKL-40 and their effect on primary chondrocytes in culture. Extensive chitinase digestion and filtration of partially deacetylated chitin yielded a mixture of ChOS (Oligomin™) and further ultrafiltration produced T-ChOS™, with substantially smaller fraction of the smallest sugars. YKL-40 binding affinity was determined for the different sized homologues, revealing micromolar affinities of the larger homologues to YKL-40. The response of osteoarthritic chondrocytes to Oligomin™ and T-ChOS™ was determined, revealing 2- to 3-fold increases in cell number. About 500 μg/ml was needed for Oligomin™ and around five times lower concentration for T-ChOS™, higher concentrations abolished this effect for both products. Addition of chitotriose inhibited cellular responses mediated by larger oligosaccharides. These results, and the fact that the partially acetylated T-ChOS™ homologues should resist hydrolysis, point towards a new therapeutic concept for treating inflammatory joint diseases.
Collapse
Affiliation(s)
- Jon M Einarsson
- Genis hf, KÍM Medical Park, Vatnagarðar 18, IS-104 Reykjavik, Iceland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Miyatake K, Tsuji K, Yamaga M, Yamada J, Matsukura Y, Abula K, Sekiya I, Muneta T. Human YKL39 (chitinase 3-like protein 2), an osteoarthritis-associated gene, enhances proliferation and type II collagen expression in ATDC5 cells. Biochem Biophys Res Commun 2013; 431:52-7. [PMID: 23291184 DOI: 10.1016/j.bbrc.2012.12.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 12/24/2012] [Indexed: 11/16/2022]
Abstract
Human YKL39 (chitinase 3-like protein 2/CHI3L2) is a secreted 39kDa protein produced by articular chondrocytes and synoviocytes. Recent studies showed that hYKL-39 expression is increased in osteoarthritic articular chondrocytes suggesting the involvement of hYKL-39 in the progression of osteoarthritis (OA). However little is known regarding the molecular function of hYKL-39 in joint homeostasis. Sequence analyses indicated that hYKL-39 has significant identity with the human chitotorisidase family molecules, although it is considered that hYKL-39 has no enzymatic activity since it lacks putative chitinase catalytic motif. In this study, to examine the molecular function of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in ATDC5 cells. Here we report that hYKL-39 enhances colony forming activity, cell proliferation, and type II collagen expression in these cells. These data suggest that hYKL-39 is a novel growth and differentiation factor involved in cartilage homeostasis.
Collapse
Affiliation(s)
- Kazumasa Miyatake
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Rosa MD, Tibullo D, Malaguarnera M, Tuttobene M, Malaguarnera L. Comparison of YKL-39 and CHIT-1 expression during macrophages differentiation and polarization. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/mri.2013.24011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Yamaga M, Tsuji K, Miyatake K, Yamada J, Abula K, Ju YJ, Sekiya I, Muneta T. Osteopontin level in synovial fluid is associated with the severity of joint pain and cartilage degradation after anterior cruciate ligament rupture. PLoS One 2012; 7:e49014. [PMID: 23166604 PMCID: PMC3499533 DOI: 10.1371/journal.pone.0049014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022] Open
Abstract
Objective To explore the molecular function of Osteopontin (OPN) in the pathogenesis of human OA, we compared the expression levels of OPN in synovial fluid with clinical parameters such as arthroscopic observation of cartilage damage and joint pain after joint injury. Methods Synovial fluid was obtained from patients who underwent anterior cruciate ligament (ACL) reconstruction surgery from 2009 through 2011 in our university hospital. The amounts of intact OPN (OPN Full) and it’s N-terminal fragment (OPN N-half) in synovial fluid from each patient were quantified by ELISA and compared with clinical parameters such as severity of articular cartilage damage (TMDU cartilage score) and severity of joint pain (Visual Analogue Scale and Lysholm score). Results Within a month after ACL rupture, both OPN Full and N-half levels in patient synovial fluid were positively correlated with the severity of joint pain. In contrast, patients with ACL injuries greater than one month ago felt less pain if they had higher amounts of OPN N-half in synovial fluid. OPN Full levels were positively correlated with articular cartilage damage in lateral tibial plateau. Conclusion Our data suggest that OPN Full and N-half have distinct functions in articular cartilage homeostasis and in human joint pain.
Collapse
Affiliation(s)
- Mika Yamaga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- International Research Center for Molecular Science in Tooth and Bone Diseases (Global Center of Excellence Program), Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | - Kazumasa Miyatake
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Yamada
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kahaer Abula
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Young-Jin Ju
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- International Research Center for Molecular Science in Tooth and Bone Diseases (Global Center of Excellence Program), Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
37
|
Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochem J 2012; 446:149-57. [PMID: 22742450 DOI: 10.1042/bj20120377] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The chitinase-like proteins YKL-39 (chitinase 3-like-2) and YKL-40 (chitinase 3-like-1) are highly expressed in a number of human cells independent of their origin (mesenchymal, epithelial or haemapoietic). Elevated serum levels of YKL-40 have been associated with a negative outcome in a number of diseases ranging from cancer to inflammation and asthma. YKL-39 expression has been associated with osteoarthritis. However, despite the reported association with disease, the physiological or pathological role of these proteins is still very poorly understood. Although YKL-39 is homologous to the two family 18 chitinases in the human genome, it has been reported to lack any chitinase activity. In the present study, we show that human YKL-39 possesses a chitinase-like fold, but lacks key active-site residues required for catalysis. A glycan screen identified oligomers of N-acetylglucosamine as preferred binding partners. YKL-39 binds chitooligosaccharides and a newly synthesized derivative of the bisdionin chitinase-inhibitor class with micromolar affinity, through a number of conserved tryptophan residues. Strikingly, the chitinase activity of YKL-39 was recovered by reverting two non-conservative substitutions in the active site to those found in the active enzymes, suggesting that YKL-39 is a pseudo-chitinase with retention of chitinase-like ligand-binding properties.
Collapse
|
38
|
Baird A, Coimbra R, Dang X, Lopez N, Lee J, Krzyzaniak M, Winfield R, Potenza B, Eliceiri BP. Cell surface localization and release of the candidate tumor suppressor Ecrg4 from polymorphonuclear cells and monocytes activate macrophages. J Leukoc Biol 2012; 91:773-81. [PMID: 22396620 DOI: 10.1189/jlb.1011503] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We identified fresh human leukocytes as an abundant source of the candidate epithelial tumor suppressor gene, Ecrg4, an epigenetically regulated gene, which unlike other tumor suppressor genes, encodes an orphan-secreted, ligand-like protein. In human cell lines, Ecrg4 gene expression was low, Ecrg4 protein undetectable, and Ecrg4 promoter hypermethylation high (45-90%) and reversible by the methylation inhibitor 5-AzaC. In contrast, Ecrg4 gene expression in fresh, normal human PBMCs and PMNs was 600-800 times higher than in cultured cell lines, methylation of the Ecrg4 promoter was low (<3%), and protein levels were readily detectable in lysates and on the cell surface. Flow cytometry, immunofluorescent staining, and cell surface biotinylation established that full-length, 14-kDa Ecrg4 was localized on PMN and monocyte cell surfaces, establishing that Ecrg4 is a membrane-anchored protein. LPS treatment induced processing and release of Ecrg4, as detected by flow and immunoblotting, whereas an effect of fMLF treatment on Ecrg4 on the PMN cell surface was detected on the polarized R2 subpopulation of cells. This loss of cell surface Ecrg4 was associated with the detection of intact and processed Ecrg4 in the conditioned media of fresh leukocytes and was shown to be associated with the inflammatory response that follows severe, cutaneous burn injury. Furthermore, incubation of macrophages with a soluble Ecrg4-derived peptide increased the P-p65, suggesting that processing of an intact sentinel Ecrg4 on quiescent circulating leukocytes leads to processing from the cell surface following injury and macrophage activation.
Collapse
Affiliation(s)
- Andrew Baird
- University of California San Diego School of Medicine, 212 Dickinson St., MC 8236, San Diego, CA 92103, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li LW, Li YY, Li XY, Zhang CP, Zhou Y, Lu SH. A novel tumor suppressor gene ECRG4 interacts directly with TMPRSS11A (ECRG1) to inhibit cancer cell growth in esophageal carcinoma. BMC Cancer 2011; 11:52. [PMID: 21288367 PMCID: PMC3039630 DOI: 10.1186/1471-2407-11-52] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 02/03/2011] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The esophageal carcinoma related gene 4 (ECRG4) was initially identified and cloned from human normal esophageal epithelium in our laboratory (GenBank accession no.AF325503). ECRG4 has been described as a novel tumor suppressor gene associated with prognosis in esophageal squamous cell carcinoma (ESCC). METHODS In this study, binding affinity assay in vitro and co-immunoprecipitation experiment in vivo were utilized to verify the physical interaction between ECRG4 and transmembrane protease, serine 11A (TMPRSS11A, also known as ECRG1, GenBank accession no. AF 071882). Then, p21 protein expression, cell cycle and cell proliferation regulations were examined after ECRG4 and ECRG1 co-transfection in ESCC cells. RESULTS We revealed for the first time that ECRG4 interacted directly with ECRG1 to inhibit cancer cell proliferation and induce cell cycle G1 phase block in ESCC. Binding affinity and co-immunoprecipitation assays demonstrated that ECRG4 interacted directly with ECRG1 in ESCC cells. Furthermore, the ECRG4 and ECRG1 co-expression remarkably upregulatd p21 protein level by Western blot (P < 0.001), induced cell cycle G1 phase block by flow cytometric analysis (P < 0.001) and suppressed cell proliferation by MTT and BrdU assay (both P < 0.01) in ESCC cells. CONCLUSIONS ECRG4 interacts directly with ECRG1 to upregulate p21 protein expression, induce cell cycle G1 phase block and inhibit cancer cells proliferation in ESCC.
Collapse
Affiliation(s)
- Lin-wei Li
- Oncology Department, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | | | | | | | | | | |
Collapse
|
40
|
Li LW, Li YY, Li XY, Zhang CP, Zhou Y, Lu SH. A novel tumor suppressor gene ECRG4 interacts directly with TMPRSS11A (ECRG1) to inhibit cancer cell growth in esophageal carcinoma. BMC Cancer 2011. [PMID: 21162904 DOI: 10.3760/cma.j.issn.0376-2491.2010.38.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The esophageal carcinoma related gene 4 (ECRG4) was initially identified and cloned from human normal esophageal epithelium in our laboratory (GenBank accession no.AF325503). ECRG4 has been described as a novel tumor suppressor gene associated with prognosis in esophageal squamous cell carcinoma (ESCC). METHODS In this study, binding affinity assay in vitro and co-immunoprecipitation experiment in vivo were utilized to verify the physical interaction between ECRG4 and transmembrane protease, serine 11A (TMPRSS11A, also known as ECRG1, GenBank accession no. AF 071882). Then, p21 protein expression, cell cycle and cell proliferation regulations were examined after ECRG4 and ECRG1 co-transfection in ESCC cells. RESULTS We revealed for the first time that ECRG4 interacted directly with ECRG1 to inhibit cancer cell proliferation and induce cell cycle G1 phase block in ESCC. Binding affinity and co-immunoprecipitation assays demonstrated that ECRG4 interacted directly with ECRG1 in ESCC cells. Furthermore, the ECRG4 and ECRG1 co-expression remarkably upregulatd p21 protein level by Western blot (P < 0.001), induced cell cycle G1 phase block by flow cytometric analysis (P < 0.001) and suppressed cell proliferation by MTT and BrdU assay (both P < 0.01) in ESCC cells. CONCLUSIONS ECRG4 interacts directly with ECRG1 to upregulate p21 protein expression, induce cell cycle G1 phase block and inhibit cancer cells proliferation in ESCC.
Collapse
Affiliation(s)
- Lin-wei Li
- Oncology Department, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | | | | | | | | | | |
Collapse
|
41
|
Li L, Zhang C, Li X, Lu S, Zhou Y. The candidate tumor suppressor gene ECRG4 inhibits cancer cells migration and invasion in esophageal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:133. [PMID: 20937111 PMCID: PMC2958930 DOI: 10.1186/1756-9966-29-133] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/11/2010] [Indexed: 01/09/2023]
Abstract
Background The esophageal cancer related gene 4 (ECRG4) was initially identified and cloned in our laboratory from human normal esophageal epithelium (GenBank accession no.AF325503). ECRG4 was a new tumor suppressor gene in esophageal squamous cell carcinoma (ESCC) associated with prognosis. In this study, we investigated the novel tumor-suppressing function of ECRG4 in cancer cell migration, invasion, adhesion and cell cycle regulation in ESCC. Methods Transwell and Boyden chamber experiments were utilized to examined the effects of ECRG4 expression on ESCC cells migration, invasion and adhesion. And flow cytometric analysis was used to observe the impact of ECRG4 expression on cell cycle regulation. Finally, the expression levels of cell cycle regulating proteins p53 and p21 in human ESCC cells transfected with ECRG4 gene were evaluated by Western blotting. Results The restoration of ECRG4 expression in ESCC cells inhibited cancer cells migration and invasion (P < 0.05), which did not affect cell adhesion capacity (P > 0.05). Furthermore, ECRG4 could cause cell cycle G1 phase arrest in ESCC (P < 0.05), through inducing the increased expression of p53 and p21 proteins. Conclusion ECRG4 is a candidate tumor suppressor gene which suppressed tumor cells migration and invasion without affecting cell adhesion ability in ESCC. Furthermore, ECRG4 might cause cell cycle G1 phase block possibly through inducing the increased expression of p53 and p21 proteins in ESCC.
Collapse
Affiliation(s)
- Linwei Li
- Oncology Department, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | | | | | | | | |
Collapse
|
42
|
Li W, Liu X, Zhang B, Qi D, Zhang L, Jin Y, Yang H. Overexpression of candidate tumor suppressor ECRG4 inhibits glioma proliferation and invasion. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:89. [PMID: 20598162 PMCID: PMC2913949 DOI: 10.1186/1756-9966-29-89] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/04/2010] [Indexed: 11/24/2022]
Abstract
Background ECRG4 has been shown to be a candidate tumor suppressor in several tumors, but its role in glioma remains poorly understood. In this study, we examined the mRNA expression of ECRG4 and investigated its biological role in glioma cells. Methods Real-time PCR was used to examine expression of ECRG4 in gliomas and their matched brain tissues. The effect of ECRG4 expression on cell proliferation, invasion, and migration was investigated in human U251 glioma cells. Finally, the regulation of transcription factor NF-kB by ECRG4 was evaluated by western blotting. Results Of the 10 paired samples analyzed, 9 glioma tissues displayed the decreased expression of ECRG4 compared to matched normal brain tissues. Cells transfected with ECRG4 showed significantly decreased cell proliferation as evaluated by MTT and colony formation assays. Furthermore, overexpression inhibited cell migration and invasion in transwell and Boyden chamber experiments and retarded the cell cycle progression from G1 to S phase by FACSCaliber cytometry. Protein levels of nuclear transcription factor NF-kB, which is involved in cell proliferation, inversely correlated with ECRG4 expression. Conclusion Our data suggest that ECRG4 serves as a tumor suppressor in glioma.
Collapse
Affiliation(s)
- Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 130021, PR China
| | | | | | | | | | | | | |
Collapse
|
43
|
Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 2010; 8:1482-517. [PMID: 20559485 PMCID: PMC2885077 DOI: 10.3390/md8051482] [Citation(s) in RCA: 417] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/14/2010] [Accepted: 04/23/2010] [Indexed: 01/17/2023] Open
Abstract
Chitooligosaccharides (CHOS) are homo- or heterooligomers of N-acetylglucosamine and D-glucosamine. CHOS can be produced using chitin or chitosan as a starting material, using enzymatic conversions, chemical methods or combinations thereof. Production of well-defined CHOS-mixtures, or even pure CHOS, is of great interest since these oligosaccharides are thought to have several interesting bioactivities. Understanding the mechanisms underlying these bioactivities is of major importance. However, so far in-depth knowledge on the mode-of-action of CHOS is scarce, one major reason being that most published studies are done with badly characterized heterogeneous mixtures of CHOS. Production of CHOS that are well-defined in terms of length, degree of N-acetylation, and sequence is not straightforward. Here we provide an overview of techniques that may be used to produce and characterize reasonably well-defined CHOS fractions. We also present possible medical applications of CHOS, including tumor growth inhibition and inhibition of T(H)2-induced inflammation in asthma, as well as use as a bone-strengthener in osteoporosis, a vector for gene delivery, an antibacterial agent, an antifungal agent, an anti-malaria agent, or a hemostatic agent in wound-dressings. By using well-defined CHOS-mixtures it will become possible to obtain a better understanding of the mechanisms underlying these bioactivities.
Collapse
|
44
|
Huh YH, Ryu JH, Shin S, Lee DU, Yang S, Oh KS, Chun CH, Choi JK, Song WK, Chun JS. Esophageal cancer related gene 4 (ECRG4) is a marker of articular chondrocyte differentiation and cartilage destruction. Gene 2009; 448:7-15. [PMID: 19735703 DOI: 10.1016/j.gene.2009.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 08/15/2009] [Accepted: 08/24/2009] [Indexed: 11/29/2022]
Abstract
With the aim of identifying novel genes regulating cartilage development and degeneration, we screened a cartilage-specific expressed sequence tag database. Esophageal cancer related gene 4 (ECRG4) was selected, based on the criteria of 'chondrocyte-specific' and 'unknown function.' ECRG4 expression was particularly abundant in chondrocytes and cartilage, compared to various other mouse tissues. ECRG4 is a secreted protein that undergoes cleavage after secretion. The protein is specifically expressed in chondrocytes in a manner dependent on differentiation status. The expression is very low in mesenchymal cells, and dramatically increased during chondrogenic differentiation. The ECRG4 level in differentiated chondrocytes is decreased during hypertrophic maturation, both in vitro and in vivo, and additionally in dedifferentiating chondrocytes induced by interleukin-1beta or serial subculture, chondrocytes of human osteoarthritic cartilage and experimental mouse osteoarthritic cartilage. However, ectopic expression or exogenous ECRG4 treatment in a primary culture cell system does not affect chondrogenesis of mesenchymal cells, hypertrophic maturation of chondrocytes or dedifferentiation of differentiated chondrocytes. Additionally, cartilage development and organization of extracellular matrix are not affected in transgenic mice overexpressing ECRG4 in cartilage tissue. However, ectopic expression of ECRG4 reduced proliferation of primary culture chondrocytes. While the underlying mechanisms of ECRG4 expression and specific roles remain to be elucidated in more detail, our results support its function as a marker of differentiated articular chondrocytes and cartilage destruction.
Collapse
Affiliation(s)
- Yun Hyun Huh
- Cell Dynamics Research Center and BioImaging Research Center, Department of Life Sciences, Gwangju Institute of Science and Technology, Buk-Gu, Gwangju 500-712, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li LW, Yu XY, Yang Y, Zhang CP, Guo LP, Lu SH. Expression of esophageal cancer related gene 4 (ECRG4), a novel tumor suppressor gene, in esophageal cancer and its inhibitory effect on the tumor growth in vitro and in vivo. Int J Cancer 2009; 125:1505-13. [PMID: 19521989 DOI: 10.1002/ijc.24513] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ECRG4 gene was initially identified and cloned in our laboratory from human normal esophageal epithelium (GenBank accession no. AF325503). We revealed the expression of ECRG4 protein was downregulated in 68.5% (89/130) ESCC samples using tissue microarray. The low ECRG4 protein expression was significantly associated with regional lymph node metastasis, primary tumor size, and tumor stage in ESCC (p < 0.05). ECRG4 mRNA expression was downregulated in ESCC due to the hypermethylation in the gene promoter. The treatment with 5-aza-2'-deoxycytidine, which is a DNA methyltransferase inhibitor restored ECRG4 mRNA expression in ESCC cells. The result indicated that promoter hypermethylation may be 1 main mechanism leading to the silencing of ECRG4. The high expression of ECRG4 in patients with ESCC was associated with longer survival compared with those with low ECRG4 expression by Kaplan-Meier survival analysis (p < 0.05). ECRG4 protein was an independent prognostic factor for ESCC by multivariable Cox proportional hazards regression analysis (p < 0.05). The restoration of ECRG4 expression in ESCC cells inhibited cell proliferation, colony formation, anchorage-independent growth, cell cycle progression and tumor growth in vivo (p < 0.05). The transfection of ECRG4 gene in ESCC cells inhibited the expression of NF-kappaB and nuclear translocation, in addition to the expression of COX-2, a NF-kappaB target gene, was attenuated. Taken together, ECRG4 is a novel candidate tumor suppressor gene in ESCC, and ECRG4 protein is a candidate prognostic marker for ESCC.
Collapse
Affiliation(s)
- Lin-Wei Li
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Sutherland TE, Maizels RM, Allen JE. Chitinases and chitinase-like proteins: potential therapeutic targets for the treatment of T-helper type 2 allergies. Clin Exp Allergy 2009; 39:943-55. [PMID: 19400900 DOI: 10.1111/j.1365-2222.2009.03243.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mammalian chitinase and chitinase-like proteins (CLPs) are a family of mediators increasingly associated with infection, T cell-mediated inflammation, wound healing, allergy and asthma. Although our current knowledge of the function of mammalian chitinases and CLPs is very limited, important information can be deduced from research carried out in lower organisms, and in different immunopathological conditions. Enzymatically active mammalian chitinase proteins may have evolved to degrade the copious amounts of chitin mammals are exposed to on a daily basis, and to form an innate barrier to chitin-containing organisms. CLPs are homologous to chitinases but lack the ability to degrade chitin. It is most striking that both chitinases and CLPs are up-regulated in T-helper type 2 (Th2)-driven conditions, and the first evidence is now emerging that these proteins may accentuate Th2 reactivity, and possibly contribute to the repair process that follows inflammation. Following studies demonstrating that chitinase inhibition leads to an attenuated allergic response, several strategies are being used to develop enzyme inhibitors for therapeutic use in human diseases. In this review, we will summarize recent insights into the effects of chitinases and CLPs in the context of Th2-dominated pathology with particular focus on allergy and asthma, discussing whether chitinase enzyme inhibitors may be of therapeutic value.
Collapse
Affiliation(s)
- T E Sutherland
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
47
|
Coffman FD. Chitinase 3-Like-1 (CHI3L1): a putative disease marker at the interface of proteomics and glycomics. Crit Rev Clin Lab Sci 2009; 45:531-62. [PMID: 19003601 DOI: 10.1080/10408360802334743] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chitinase 3-Like-1 (CHI3L1) is a secreted 40 kDa glycoprotein that is upregulated in a number of human cancers and in non-neoplastic disease states characterized by chronic inflammation and tissue remodeling. Increased serum levels of CHI3L1 parallel disease severity, poorer prognosis, and shorter survival in many human neoplasias, including cancers of the breast, colon, prostate, ovaries, brain, thyroid, lung, and liver. Increased serum CHI3L1 also correlates with disease severity in rheumatoid arthritis, osteoarthritis, liver fibrosis, inflammatory bowel disease, and bacterial septicemia. CHI3L1 is a rheumatoid arthritis (RA) autoantigen, and MHC complexes containing specific CHI3L1 peptides have been found in RA patients; however, intranasal introduction of these same CHI3L1 peptides can induce tolerance towards them. CHI3L1 is a nonhydrolytic member of the human chitinase family that binds chitin tightly and heparin at lower affinity. Interactions with type I collagen, CHI3L1's only known protein-binding partner, helps regulate collagen fibril formation. The principal sources of CHI3L1 are activated macrophages and chondrocytes, neutrophils, and some tissue and tumor cells. CHI3L1 can act as a fibroblast mitogen and can activate several signaling pathways, however, no cell surface-binding partner for CHI3L1 has been identified. The ability of CHI3L1 to bind both proteins and carbohydrates allows potential interactions with a variety of cell-surface and extracellular-matrix proteins, proteoglycans, and polysaccharides, and thus CHI3L1 can interface between proteomics and glycomics.
Collapse
Affiliation(s)
- Frederick D Coffman
- Department of Pathology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA.
| |
Collapse
|
48
|
Wilson R, Belluoccio D, Little CB, Fosang AJ, Bateman JF. Proteomic characterization of mouse cartilage degradation in vitro. ACTA ACUST UNITED AC 2008; 58:3120-31. [PMID: 18821673 DOI: 10.1002/art.23789] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To develop proteomics to analyze mouse cartilage degradation and correlate transcriptional and translational responses to catabolic stimuli. METHODS Proteomic techniques were used to analyze catabolism in mouse femoral head cartilage. Using specific methods to prepare cartilage extracts and conditioned media for 2-dimensional polyacrylamide gel electrophoresis and subsequent tandem mass spectrometry, we identified novel proteins and fragments released into the media of control, interleukin-1alpha (IL-1alpha)-treated, and all-trans-retinoic acid (RetA)-treated explants. Fluorescence 2-dimensional difference gel electrophoresis was used to quantify protein expression changes. We also measured changes in messenger RNA (mRNA) expression to distinguish transcriptional and posttranslational regulation of released proteins. RESULTS Differentially abundant proteins in the media of control and treated explants included fragments of thrombospondin 1 and connective tissue growth factor. IL-1alpha stimulated release of the cartilage degeneration marker matrix metalloproteinase 3, as well as proteins with uncharacterized roles in cartilage pathology, such as neutrophil gelatinase-associated lipocalin. RetA stimulated release of the extracellular matrix proteins cartilage oligomeric matrix protein, link protein, and matrilin-3 into the media, which was accompanied by a dramatic reduction in the corresponding mRNA transcript levels. Gelsolin, which has been implicated in cytoskeletal reorganization in arthritis synovial fibroblasts but has not been previously associated with cartilage pathology, was regulated by IL-1alpha and RetA. CONCLUSION In this first analysis of mouse cartilage degradation and protein release using proteomics, we identified proteins and fragments, some of which represent novel candidate biomarkers for cartilage degradation. Applying these proteomic techniques to wild-type and genetically modified mouse cartilage will provide insights into the mechanisms of cartilage degeneration.
Collapse
Affiliation(s)
- Richard Wilson
- University of Melbourne, Murdoch Children's Research Institute, and Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
49
|
Gratchev A, Schmuttermaier C, Mamidi S, Gooi L, Goerdt S, Kzhyshkowska J. Expression of Osteoarthritis Marker YKL-39 is Stimulated by Transforming Growth Factor Beta (TGF-beta) and IL-4 in Differentiating Macrophages. Biomark Insights 2008. [DOI: 10.1177/117727190800300003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
YKL-39 is a Glyco_18 domain containing chitinase-like protein which is currently recognized as a biomarker for the activation of chondrocytes and the progress of the osteoarthritis in human. YKL-39 was identified as an abundantly secreted protein in primary culture of human articular chondrocytes. Two biological activities of YKL-39 might contribute to the disease progression. One is the induction of autoimmune response and second is the participation in tissue remodeling. Other mammalian chitinase-like proteins including chitotriosidase, SI-CLP, YKL-40 and YM1 are expressed by macrophages in various pathological conditions. In contrast, YKL-39 was never reported to be produced by macrophages. We used in vitro model of human monocyte-derived macrophage differentiation to analyse regulation of YKL-39 expression. Expression of YKL-39 was examined by real-time RT-PCR. CD14+ MACS sorted human monocytes differentiated for 6 days under different stimulations including IFNγ, IL-4, dexamethasone and TGF-β. We found that both IL-4 and TGF-β have weak stimulatory effect on YKL-39 expression in all donors tested (3.2 ± 1.7 fold, p = 0.006 and 6.3 ± 3.1 fold, p = 0.014 respectively). However the combination of IL-4 and TGF-β had strong stimulatory effect on the expression of YKL-39 in all analysed individual macrophage cultures (34 ± 36 fold, p = 0.05). IFN-γ did not show statistically significant effect of YKL-39 mRNA expression. Presence of dexamethasone almost completely abolished the stimulatory effects of IL-4 and TGF-β. In summary, we show here for the first time, that human cells of monocyte origin are able to produce YKL-39. Maturation of monocyte derived macrophages in the presence of Th2 cytokine IL-4 and TGF-β leads to the strong activation of YKL-39 expression. Thus elevated levels of YKL-39 observed during chronic inflammations can not be attributed solely to the activity of chondrocytes. In perspective, YKL-39 might serve as a useful biomarker to detect macrophage-specific response in pathologies like tumour, atherosclerosis and Alzheimer disease.
Collapse
Affiliation(s)
- Alexei Gratchev
- Department of Dermatology, University Medical Centre Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany D-68167
| | - Christina Schmuttermaier
- Department of Dermatology, University Medical Centre Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany D-68167
| | - Srinivas Mamidi
- Department of Dermatology, University Medical Centre Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany D-68167
| | - LiMing Gooi
- Department of Dermatology, University Medical Centre Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany D-68167
| | - Sergij Goerdt
- Department of Dermatology, University Medical Centre Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany D-68167
| | - Julia Kzhyshkowska
- Department of Dermatology, University Medical Centre Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany D-68167
| |
Collapse
|
50
|
Aigner T, Haag J, Zimmer R. Functional genomics, evo-devo and systems biology: a chance to overcome complexity? Curr Opin Rheumatol 2007; 19:463-70. [PMID: 17762612 DOI: 10.1097/bor.0b013e3282bf6c68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review addresses the key question of how to integrate a high complexity of processes and data to a unifying picture of disease processes and progression relevant for osteoarthritis. RECENT FINDINGS Many research efforts in the last few years have resulted in the accumulation of a huge amount of data. To date, however, these data have not led to a unifying concept of the pathogenesis and progression of the osteoarthritic disease process. Methods to integrate a lot of information are needed, therefore, in order to progress from experimental findings to practical knowledge. Several such strategies have been followed up in the past: in-vitro models, large-scale gene expression analysis/functional genomics, and an attempt to interpret gene expression patterns on the basis of developmental chondrocyte differentiation. A novel approach is systems biology, which promises to overcome issues of complexity using appropriate models and quantitative simulation. SUMMARY Efforts are required to integrate a continuously growing high complexity of experimental data into an understanding of the joint system and its derangement in osteoarthritis. Modelling of the 'whole' picture appears to be needed so that we do not get lost in the plethora of details.
Collapse
Affiliation(s)
- Thomas Aigner
- Institute of Pathology, University of Leipzig, Leipzig, Germany.
| | | | | |
Collapse
|