Published online Nov 8, 2015. doi: 10.5409/wjcp.v4.i4.50
Peer-review started: June 1, 2015
First decision: August 14, 2015
Revised: September 14, 2015
Accepted: October 16, 2015
Article in press: October 19, 2015
Published online: November 8, 2015
Processing time: 166 Days and 11.7 Hours
Current pediatric obesity interventions have collectively yielded relatively unsuccessful results. In this Field of Vision, we present plausible physiologic underpinnings fostering ineffectiveness of conventional strategies grounded in requisite induction of negative energy imbalance. Moreover, such recommendations exacerbate the underlying metabolic dysfunction by further limiting metabolic fuel availability, lowering energy expenditure, and increasing hunger (recapitulating the starvation response amid apparent nutritional adequacy) which precede and promote obesity during growth and development. The qualitative aspects of musculoskeletal system (i.e., endocrine response, muscle functional capacity) are likely to improve metabolic function and increase nutrient delivery and utilization. An intricate and complex system including multiple feedback mechanisms operates to homeostatically regulate energy balance and support optimal body composition trajectories and metabolic health, during growth and development. Thus, ignoring the interdependencies of regulatory growth processes initiates a nuanced understanding of energy regulation and thus misguided attempts at preventive strategies. Importantly, these gains are not dependent upon weight-loss, rather we suggest can be achieved through resistance training. Collectively, optimizing musculoskeletal health via resistance training elicits augmentation of competitive capacity across systems. Further, substantial gains can be achieved in skeletal muscle mass, strength, and functional capacity through resistance training in a relatively short period of time.
Core tip: As obesity-related recommendations stand today, most are unproven and ineffective. While energy balance is an integral component, the etiology of pediatric obesity is a consequence of adipocytes “out competing” other cell types (e.g., myocytes, osteocytes, hepatocytes) for energy. The cumulative effect of fat storage, energetically less costly is at the expense of optimal development of other tissues. The out-competition, due to hyperplasia and hypertrophy of adipocytes impairs physiologic pathways producing metabolically compromised obese children irreversible with “simple” energy balance paradigms. Via the activation of endocrine and paracrine effects of the musculoskeletal system, resistance training may be an effective strategy to improve health independent of initial weight loss. However, forced stress on the system is requisite (e.g., resistance training). Resistance training induces systemic anabolism and enhances nutrient delivery and utilization, which are integral in optimizing metabolic control and body composition during growth and development, and in turn overall lifelong health.