1
|
He W, Zhao Y, Yin L, Du Q, Ren W, Mao L, Liu A, Wang D, Qian J. The transcription factor XBP1 regulates mitochondrial remodel and autophagy in spontaneous abortion. Int Immunopharmacol 2025; 152:114398. [PMID: 40068517 DOI: 10.1016/j.intimp.2025.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
PURPOSE Spontaneous abortion (SA) remains a clinical challenge in early pregnancy. It has been reported that endoplasmic reticulum stress (ERS) is implicated in pregnancy-related complications. However, the precise mechanistic role of ERS in SA pathogenesis remains elusive. This study aims to explore the therapeutic potential of targeting ERS-related decidual dysfunction in SA. METHODS An ERS model was established in both decidualized stromal cells (DSCs) and pregnant mice through tunicamycin (Tu) administration. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were performed to determine the interaction between XBP1s and the transcription factor binding site (TFBS) of tumor necrosis factor receptor-associated factor 6 (TRAF6). Mitochondrial membrane potential (MMP) and mitochondrial function were assessed using JC-1 and TMRM staining following ERS induction in DSCs. The effects of XBP1s inhibitors on mitochondrial metabolism and autophagy were evaluated through RT-qPCR, Western blotting, RNA-Seq, TUNEL assays, ROS and MitoSOX detection, and histological analyses in Tu-treated DSCs and SA patients. STF-083010 (STF) or shXBP1 was utilized to assess the inhibitory effects of X-box binding protein 1 (XBP1s) on DSC function both in vitro and in vivo. RESULTS We observed significant upregulation of XBP1s in decidual tissues from SA patients and Tu-exposed DSCs. Tu exposure significantly increased the proportion of TUNEL-positive cells and upregulated pro-inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-18) in DSCs. XBP1s inhibition via shXBP1 or pharmacological inhibitor STF attenuated Tu-induced apoptosis and inflammatory cytokine expression. Notably, STF or shXBP1 treatment enhanced MMP and upregulated LC3-II expression in Tu-treated DSCs, indicating autophagy activation.Intriguingly, chloroquine (CQ)-mediated autophagy suppression exacerbated apoptosis in STF/Tu-co-treated DSCs, suggesting that XBP1s inhibition confers cytoprotection through autophagy induction. Mechanistically, XBP1s directly bound to the TFBS of TRAF6, a ubiquitin E3 ligase. TRAF6 overexpression exacerbated mitochondrial dysfunction and apoptosis while suppressing autophagy via inhibition of mTORC2/Akt pathway in Tu-treated DSCs. CONCLUSION XBP1s inhibition restored mitochondrial homeostasis and promoted autophagy by modulating the TRAF6/mTORC2 axis under ERS conditions, providing novel mechanistic insights into SA pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Weihua He
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yating Zhao
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lijun Yin
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiangxing Du
- Department of Obstetrics and Gynecology, Jingning She Autonomous County People's Hospital, Lishui, Zhejiang, China
| | - Wenfen Ren
- Department of Obstetrics and Gynecology, Jingning She Autonomous County People's Hospital, Lishui, Zhejiang, China
| | - Liwei Mao
- Department of Obstetrics and Gynecology, Jingning She Autonomous County People's Hospital, Lishui, Zhejiang, China
| | - Aixia Liu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China.
| | - Dimin Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China.
| | - Jianhua Qian
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Su Y, Long J, Diao J, Li W, Chen X, Liao J, Tong C, Tan L, Zhang S, Li F, He J, Wang Y, Li C, Gao R. Dysregulation of the circ-Hdac4/miR-30c/RBPJ axis in decidua impairs placental function in preeclampsia. Cell Biol Toxicol 2025; 41:68. [PMID: 40208437 PMCID: PMC11985660 DOI: 10.1007/s10565-025-10016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
Embryo implantation relies on complex mother-fetus interactions. Abnormal decidualization can cause various pregnancy complications such as placental abnormalities, preeclampsia, and fetal growth restriction. circRNAs play a key role in various cellular processes. This study focuses on the role of circ-Hdac4, a circRNA derived from the Hdac4 gene, in decidualization and placental function. Mouse models revealed a spatiotemporally regulated expression of circ-Hdac4 in the endometrium during early pregnancy, with enhanced expression surrounding implantation sites. In vitro and in vivo assays confirmed that circ-Hdac4 is crucial for stromal cell decidualization, as its knockdown resulted in reduced expression of decidualization markers and disrupted endometrial architecture. Furthermore, we found that circ-Hdac4 functions as a microRNA sponge for miR-30c, which negatively regulates RBPJ, a critical protein for decidual remodeling. Proteomic analysis revealed that RBPJ was downregulated upon circ-Hdac4 silencing, and we validated the direct interaction between miR-30c and RBPJ using luciferase reporter assays. A mouse preeclampsia model showed that downregulation of circ-Hdac4 during decidualization exacerbated preeclampsia-related phenotypes, including reduced fetal counts, weights, and placental weights. In addition, we observed decreased expression of circ-Hdac4 and RBPJ in the decidual surface of placental tissues from preeclampsia patients, further supporting our findings in the mouse model. Collectively, our study provides evidence that circ-Hdac4 regulates decidualization through the miR-30c-RBPJ axis and that its abnormal expression during decidualization contributes to placental dysfunction in preeclampsia. This research offers novel insights into the molecular mechanisms underlying pregnancy complications and potential therapeutic targets for their prevention and treatment.
Collapse
Affiliation(s)
- Yan Su
- Joint International Research Laboratory of Reproduction & Development (Ministry of Education), School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Jing Long
- Joint International Research Laboratory of Reproduction & Development (Ministry of Education), School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jiani Diao
- Joint International Research Laboratory of Reproduction & Development (Ministry of Education), School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Weike Li
- Joint International Research Laboratory of Reproduction & Development (Ministry of Education), School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproduction & Development (Ministry of Education), School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jiujiang Liao
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Chao Tong
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liping Tan
- Joint International Research Laboratory of Reproduction & Development (Ministry of Education), School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Shuang Zhang
- Joint International Research Laboratory of Reproduction & Development (Ministry of Education), School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction & Development (Ministry of Education), School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Junlin He
- Joint International Research Laboratory of Reproduction & Development (Ministry of Education), School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction & Development (Ministry of Education), School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China.
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China.
| | - Chunli Li
- Joint International Research Laboratory of Reproduction & Development (Ministry of Education), School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China.
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China.
| | - Rufei Gao
- Joint International Research Laboratory of Reproduction & Development (Ministry of Education), School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China.
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China.
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China.
| |
Collapse
|
3
|
Imagawa T, Tanaka K, Ito M, Matsuda M, Suzuki T, Ando T, Yaguchi C, Miyamoto K, Takabayashi S, Suzuki R, Takasaki T, Itoh H, Kosugi I, Suzuki T. Pathological characterization of female reproductive organs prior to miscarriage induced by Zika virus infection in the pregnant common marmoset. Microbiol Spectr 2025; 13:e0228224. [PMID: 39998269 PMCID: PMC11960083 DOI: 10.1128/spectrum.02282-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
While Zika virus (ZIKV) infection in pregnant women is known to increase the risk of miscarriage and stillbirth, the mechanism by which ZIKV infection leads to the inability to continue a pregnancy is not clear. In our common marmoset models of ZIKV infection in pregnant individuals, miscarriage was observed in dams infected in the first or second trimester, and preterm delivery was observed in a dam infected in the third trimester. Serum progesterone levels were significantly lower prior to miscarriage or preterm delivery in the infected marmosets. To elucidate the pathology of the placental region just before the onset of ZIKV-induced miscarriage, we newly prepared an infected marmoset in the first trimester of pregnancy and euthanized it when the serum progesterone concentration was markedly reduced. Pathological analysis revealed significant degeneration in cells at the maternal-fetal interface, presumably trophoblasts. Cleaved-caspase was widely observed in the endometrial to placental region, and TNFα at 200 pg/mL was detected in the amniotic fluid, suggesting that apoptosis may progress in the endometrium and placenta, leading to decreased trophoblast function and miscarriage. ZIKV NS1 protein was found sporadically in the cellular degeneration area and widely in the basal layer of the endometrium. Furthermore, the viral protein was frequently detected in the follicles and corpus luteum of the ovary. The developed ZIKV infection model in pregnant marmosets would be useful not only to better understand the mechanism of ZIKV-induced miscarriage but also to analyze the effects of the viral infection on female reproductive tissues. IMPORTANCE Although several viruses, including Zika virus (ZIKV), are known to increase the risk of miscarriage upon viral infection, the mechanism by which miscarriage is induced by viral infection is largely unknown. This is partly due to the difficulty of pathological analysis of maternal tissues in the period following viral infection and prior to miscarriage. In this study, we predicted the occurrence of miscarriage by monitoring serum progesterone levels and performed pathological analysis of peri-placental tissues at a time point assumed to be just before miscarriage. This is the first report of trophoblast degeneration prior to miscarriage, suggesting that the experimental method used here is useful for analyzing the pathogenesis of virus infection-related miscarriage. Further immunostaining revealed that ZIKV NS1 was distributed not only in the uterus but also in the ovaries, with particularly pronounced staining of oocytes. Whether ZIKV infection affects female reproductive function should be clarified in the future.
Collapse
Affiliation(s)
- Toshifumi Imagawa
- Department of Medical Virology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuo Tanaka
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Ando
- Research and Development Division, FUJIREBIO INC., Tokyo, Japan
| | - Chizuko Yaguchi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | - Shuji Takabayashi
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomohiko Takasaki
- Advanced Technology and Development Division, BML, INC., Kawagoe, Japan
| | - Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
4
|
Stone AM, Camp OG, Biernat MM, Bai D, Awonuga AO, Abu-Soud HM. Re-Evaluating the Use of Glyphosate-based Herbicides: Implications on Fertility. Reprod Sci 2025; 32:950-964. [PMID: 40072826 DOI: 10.1007/s43032-025-01834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used herbicides in the United States, accounting for 19% of estimated global use. Although the Environmental Protection Agency (EPA) has reaffirmed that the active ingredient glyphosate (GLY) is safe for humans, recent studies on exposure have suggested association with cancer, metabolic disorders, endocrine disruption and infertility, Alzheimer's and Parkinson's disease, and psychological disorders. Current literature on the effects of GLY exposure on reproductive function suggests potential clinical implications on women's reproductive health, including polycystic ovarian syndrome (PCOS), endometriosis, infertility, and adverse pregnancy outcomes. The continued debate surrounding GLY exposure increasingly exemplifies the public health issue surrounding its consequences on female reproductive health, human fertility, and the potential epigenetic effects. In this review, we discuss the potential mechanisms of toxicity and endocrine disruption of GLY on the female reproductive tract and highlight possible implications of GLY exposure on reproductive health outcomes. GLY adversely affects the female reproductive system through increased oxidative stress, endocrine disruption of reproductive hormones, histological changes in ovarian and uterus tissue, and diminished ovarian function in human cell lines and animals. We conclude that increased research efforts are warranted regarding the safety and efficacy of GBH as it pertains to female reproduction, as well as investments in cost-effective alternatives with the potential to reduce GBH usage.
Collapse
Affiliation(s)
- Alexandra M Stone
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mia M Biernat
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - David Bai
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Huang X, Yin T, Yu M, Zhu G, Hu X, Yu H, Zhao W, Chen J, Du J, Wu Q, Zhang W, Liu L, Du M. Decidualization-associated recruitment of cytotoxic memory CD8 +T cells to the maternal-fetal interface for immune defense. Mucosal Immunol 2025; 18:366-379. [PMID: 39675728 DOI: 10.1016/j.mucimm.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Decidual CD8+T (dCD8+T) cells are pivotal in the maintenance of the delicate balance between immune tolerance towards the fetus and immune resistance against pathogens. The endometrium and decidua represent the uterine environments before and during pregnancy, respectively, yet the composition and phenotypic alterations of uterine CD8+T cells in these tissues remain unclear. Using flow cytometry and analysis of transcriptome profiles, we demonstrated that human dCD8+T and endometrial CD8+T (eCD8+T) cells exhibited similar T cell differentiation statuses and phenotypes of tissue infiltrating or residency, compared to peripheral CD8+T (pCD8+T) cells. However, dCD8+T cells showed decreased expression of coinhibitory marker (PD-1), chemotaxis marker (CXCR3), and tissue-resident markers (CD69 and CD103), along with increased expression of granzyme B and granulysin, compared to eCD8+T cells. In vitro cytotoxicity assays further demonstrated that dCD8+T cells had greater effector functions than eCD8+T cells. Additionally, both in vitro and in vivo chemotaxis assays confirmed the recruitment of non-resident effector memory T cell subsets to the pregnant decidua, contributing to the dCD8+T cell-mediated anti-infection mechanism at the maternal-fetal interface. This work demonstrates dCD8+T cells replenished from the circulation retain their cytotoxic capacity, which may serve as an enhanced defense mechanism against infection during pregnancy.
Collapse
Affiliation(s)
- Xixi Huang
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Tingxuan Yin
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Min Yu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Guohua Zhu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xianyang Hu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Hailin Yu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Weijie Zhao
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Longgang Maternity Child Institute of Shantou University Medical College, Shenzhen 518172, China
| | - Jiajia Chen
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jiangyuan Du
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Wei Zhang
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lu Liu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China.
| | - Meirong Du
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China; Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, 200434, China.
| |
Collapse
|
6
|
Li SY, DeMayo FJ. Revolutionizing Implantation Studies: Uterine-Specific Models and Advanced Technologies. Biomolecules 2025; 15:450. [PMID: 40149986 PMCID: PMC11940528 DOI: 10.3390/biom15030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Implantation is a complex and tightly regulated process essential for the establishment of pregnancy. It involves dynamic interactions between a receptive uterus and a competent embryo, orchestrated by ovarian hormones such as estrogen and progesterone. These hormones regulate proliferation, differentiation, and gene expression within the three primary uterine tissue types: myometrium, stroma, and epithelium. Advances in genetic manipulation, particularly the Cre/loxP system, have enabled the in vivo investigation of the role of genes in a uterine compartmental and cell type-specific manner, providing valuable insights into uterine biology during pregnancy and disease. The development of endometrial organoids has further revolutionized implantation research. They mimic the native endometrial structure and function, offering a powerful platform for studying hormonal responses, implantation, and maternal-fetal interactions. Combined with omics technologies, these models have uncovered the molecular mechanisms and signaling pathways that regulate implantation. This review provides a comprehensive overview of uterine-specific genetic tools, endometrial organoids, and omics. We explore how these advancements enhance our understanding of implantation biology, uterine receptivity, and decidualization in reproductive research.
Collapse
Affiliation(s)
| | - Francesco John DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA;
| |
Collapse
|
7
|
van den Bersselaar LM, van de Laar IMBH, Baars MJH, Baas A, Dulfer E, Helderman-van den Enden ATJM, Hilhorst-Hofstee Y, Kauling RM, Kempers MJE, Oudijk MA, Maugeri A, Brüggenwirth HT, Houweling AC, Demirdas S. Pregnancy and Delivery Outcomes in Vascular Ehlers-Danlos Syndrome: A Retrospective Multicentre Cohort Study. BJOG 2025. [PMID: 40104886 DOI: 10.1111/1471-0528.18142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
OBJECTIVE We aim to increase knowledge on pregnancy and delivery risks in vascular Ehlers-Danlos Syndrome (vEDS). Our outcomes can contribute to establishing future guidelines for pregnancy and delivery management in women with vEDS. DESIGN Retrospective multicentre cohort study. SETTING Women with vEDS due to pathogenic/likely pathogenic (P/LP) COL3A1 variants are at increased risk for arterial dissection and pregnancy-related complications during pregnancy and delivery. POPULATION Women with a P/LP COL3A1 variant were included from 2019 until 2021. METHODS Genetic and clinical data was collected through retrospective analysis. MAIN OUTCOME MEASURES Description of the genotype and pregnancy-related outcomes. RESULTS We collected information about 121 pregnancies of 43 women with vEDS, including nine women with a haploinsufficient variant. Neither uterine rupture nor life-threatening or fatal vascular events occurred in the perinatal period. The miscarriage rate was 19% (23/121) and 19.1% of the live births were preterm (18/94). Miscarriages were significantly more frequent in women with a glycine substitution in COL3A1 compared to other COL3A1 variant types (19/23, 82.6%, p = 0.018). Thirty-four women had a vaginal birth (79.1%), including 1/7 with known vEDS. Eight deliveries were complicated by severe perineal tears, and six by postpartum haemorrhage. CONCLUSIONS No pregnancy-related deaths, arterial dissections or uterine ruptures occurred in our cohort. Since no life-threatening events occurred during pregnancy and delivery, discouragement of pregnancy in all women with vEDS in current guidelines might be too strict. Based on these data, we propose a shared decision-making process.
Collapse
Affiliation(s)
| | - Ingrid M B H van de Laar
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Marieke J H Baars
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Annette Baas
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eelco Dulfer
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Yvonne Hilhorst-Hofstee
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Robert M Kauling
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marlies J E Kempers
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Martijn A Oudijk
- Department of Obstetrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alessandra Maugeri
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hennie T Brüggenwirth
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Serwet Demirdas
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
8
|
Abd-Elkareem M, Alnasser SM, Meshal A, Kotob MH, Amer AS, Abdullah RI, Ali AU. The effect of norethisterone acetate on the uterine telocytes, immune cells and progesterone receptors in albino rats. Sci Rep 2025; 15:8997. [PMID: 40089502 PMCID: PMC11910565 DOI: 10.1038/s41598-025-92354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
This study is the first attempt to examine the effects of NETA on immune cells and telocytes. The results of this study form an important knowledge base for the development of new information on the mechanism of contraceptive action of NETA in the uterus. Norethisterone acetate (NETA) is a synthetic progestogen medication commonly utilized in birth control pills, menopausal hormone therapy, and for curing abnormal uterine bleeding and endometriosis. Furthermore NETA has many beneficial uses in veterinary medicine as control and synchronization of estrous cycle. The impact of NETA on the endometrial stromal cells (ESCs), telocytes, and uterine immune cells is not well understood. Therefore, this study focuses on assessing changes in uterine immune cells, ESCs, and telocytes following exposure to NETA in albino rats. To achieve this objective, fourteen adult female albino rats were randomly divided into two groups: a control group and an NETA-treated group. Rats in the control group received daily pelleted food, water, and were oral administered of 2 ml distilled water. In contrast, rats in the NETA-treated group received daily pelleted food, water, and were orally administered 20 µg of NETA dissolved in 2 ml distilled water. The experiment spanned three weeks. The findings of this study revealed that NETA usage increases the infiltration and activity of immune cells (eosinophils, neutrophils, macrophages, lymphocytes, and mast cells). Furthermore, it enhances the vesicular activity of uterine telocytes and their communication with various immune cells. NETA also influences decidualization and the immunoexpression of progesterone receptors in uterine epithelial and immune cells. This study concludes that the primary mechanism by which NETA controls pregnancy is through decidual (pregnancy-like) effects or improper decidualization, which inhibits fertilization and implantation respectively. Our research provides evidence of the contraceptive mechanism of NETA from an immunological perspective in an animal model.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Alotaibi Meshal
- Pharmacy Practice, College of Pharmacy, University of Hafr Albatin, Hafr Albatin,, Saudi Arabia
| | - Mohamed H Kotob
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090, Vienna, Austria
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ayman S Amer
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Raghda Ismail Abdullah
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, New Valley University, El Kharga, Egypt
| | - Ahmed U Ali
- Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Yamaguchi T, Takamura M, Tochigi H, Mizuno Y, Mizuno Y, Sato T, Tamaru S, Kusama K, Tamura K, Kamei Y, Kajihara T. Loss of miR-424 and miR-503 promotes decidualization of human endometrial stromal cells by increasing SCARA5 expression. Med Mol Morphol 2025:10.1007/s00795-025-00431-5. [PMID: 40085209 DOI: 10.1007/s00795-025-00431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
This study aims to investigate the function of miR-424 and miR-503, identified as putative regulatory miRNAs of FOXO1, a key factor for decidualization. The expression of both miR-424 and miR-503 in human endometrial stromal cells (HESCs) were measured before and after decidualization. Then, HESCs were transfected with both miR-424 and miR-503 before decidualization. Quantitative reverse transcription PCR, actin staining analysis, migration assay, fluorescence immunostaining, and luciferase assay were performed. MiR-424 and miR-503 expression was decreased after decidualization. Overexpression of both miR-424 and miR-503 inhibited major decidual maker genes, including FOXO1, PRL, IGFBP1, WNT4, and SCARA5, and altered F-actin's subcellular distribution from the periphery to all over the cytoplasm, concomitantly increasing cell mobility. Moreover, immunohistochemical analysis revealed overexpression of both miRNAs resulted in FOXO1 protein accumulation in the cytoplasm. Knocking down FOXO1 decreased SCARA5 expression, revealing SCARA5 is a downstream target of FOXO1. In addition, a luciferase reporter assay confirmed that the 3'-untranslated region of FOXO1 mRNA is targeted by miR-424. These results suggest that both miRNAs may play an important role in endometrial decidualization by regulating transcriptional activity of FOXO1, which alters decidualization-related gene expression such as SCARA5.Abstract: Journal standard instruction requires an unstructured abstract; hence structured abstract changed to unstructured.Thank you for the correction. I approve this change.
Collapse
Affiliation(s)
- Tetsu Yamaguchi
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Masashi Takamura
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan.
| | - Hideno Tochigi
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Yumi Mizuno
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
- Division of Biomedical Research Center, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Yosuke Mizuno
- Division of Biomedical Research Center, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Tomomi Sato
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
- Department of Anatomy, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Shunsuke Tamaru
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Kazuhiro Tamura
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Yoshimasa Kamei
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Takeshi Kajihara
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| |
Collapse
|
10
|
Shamsad A, Gautam T, Singh R, Banerjee M. Genetic and epigenetic alterations associated with gestational diabetes mellitus and adverse neonatal outcomes. World J Clin Pediatr 2025; 14:99231. [DOI: 10.5409/wjcp.v14.i1.99231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 12/20/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder, recognised during 24-28 weeks of pregnancy. GDM is linked with adverse newborn outcomes such as macrosomia, premature delivery, metabolic disorder, cardiovascular, and neurological disorders. Recent investigations have focused on the correlation of genetic factors such as β-cell function and insulin secretary genes (transcription factor 7 like 2, potassium voltage-gated channel subfamily q member 1, adiponectin etc.) on maternal metabolism during gestation leading to GDM. Epigenetic alterations like DNA methylation, histone modification, and miRNA expression can influence gene expression and play a dominant role in feto-maternal metabolic pathways. Interactions between genes and environment, resulting in differential gene expression patterns may lead to GDM. Researchers suggested that GDM women are more susceptible to insulin resistance, which alters intrauterine surroundings, resulting hyperglycemia and hyperinsulinemia. Epigenetic modifications in genes affecting neuroendocrine activities, and metabolism, increase the risk of obesity and type 2 diabetes in offspring. There is currently no treatment or effective preventive method for GDM, since the molecular processes of insulin resistance are not well understood. The present review was undertaken to understand the pathophysiology of GDM and its effects on adverse neonatal outcomes. In addition, the study of genetic and epigenetic alterations will provide lead to researchers in the search for predictive molecular biomarkers.
Collapse
Affiliation(s)
- Amreen Shamsad
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Tanu Gautam
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Renu Singh
- Department of Obstetrics and Gynecology, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
11
|
An J, Ma T, Wang Q, Zhang J, Santerre JP, Wang W, Ma P, Zhang X. Defining optimal electrospun membranes to enhance biological activities of human endometrial MSCs. Front Bioeng Biotechnol 2025; 13:1551791. [PMID: 40078795 PMCID: PMC11896994 DOI: 10.3389/fbioe.2025.1551791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Human endometrial mesenchymal stem cells (H-EMSCs) can inhibit endometrial fibrosis and repair damaged endometrium. However, direct cell injection into dam-aged endometrium shows limited cell survival. Cell seeding onto biomaterial-based electrospun membranes could improve H-EMSCs' survival and prolong their stay at the damaged endometrium. Polycaprolactone (PCL), silk fibroin (SF) and hyaluronic acid (HA) are synthetic or natural biomaterials used by the biomedicine field, however, their effects on the biological activities of H-EMSCs remain unclear. Methods In this study, CD90+CD73+CD45- H-EMSCs were extracted from human endometrium and H-EMSCs showed enhanced adhesion, proliferation on PCL-HA vs. PCL, PCL-SF, establishing the potential of the composite to address cell survival issues. Results H-EMSCs cultured on PCL-HA showed decreased IL-6 gene expression and increased IL-10, VEGFA, TGF-β gene expression vs. PCL-SF, establishing the potential to create a favorable micro-environment for generating vascularized endometrial tissues. PCL, PCL-SF, PCL-HA all supported CD90 and Meflin expression of the seeded H-EMSCs, establishing PCL as a platform to form enhanced biomaterial composites for endometrial repair in the future. Discussion This study provided significant evidence sup-porting the potential of appropriately tailored composites of PCL and HA to moder-ate inflammation and wound-healing, which can be applied for endometrial tissue repair and regeneration.
Collapse
Affiliation(s)
- Jiangru An
- International Joint Laboratory of Biomaterials and Tissue Regeneration, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Tianyi Ma
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qiuhua Wang
- International Joint Laboratory of Biomaterials and Tissue Regeneration, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jinyi Zhang
- International Joint Laboratory of Biomaterials and Tissue Regeneration, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - J. Paul Santerre
- International Joint Laboratory of Biomaterials and Tissue Regeneration, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Wenshuang Wang
- Department of Gynecology, Yuhuangding Hospital, Yantai, Shandong, China
| | - Peng Ma
- International Joint Laboratory of Biomaterials and Tissue Regeneration, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Xiaoqing Zhang
- International Joint Laboratory of Biomaterials and Tissue Regeneration, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Pallathadka H, Khaleel AQ, Hjazi A, Kumar A, Aloraibi F, Kadhum WR, Pramanik A, Hamzah HF, Mohammed SK, Mustafa YF. Decoding immune tolerance in infertility: Exploring immune pathways and non-coding RNAs as pioneering biomarkers and therapeutic targets. Hum Immunol 2025; 86:111264. [PMID: 39978249 DOI: 10.1016/j.humimm.2025.111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Infertility, impacting a significant number of couples, is characterized by the failure to conceive after one year of consistent, unprotected sexual intercourse. It is multifactorial, with etiological contributors including ovulatory dysfunction, male reproductive anomalies, and tubal patency issues. Approximately 15% of infertility cases are classified as "unexplained," highlighting the complexity of this condition. Lifestyle determinants such as obesity and smoking further complicate reproductive outcomes, while infertility can also indicate underlying chronic health conditions. A specialized category, immune infertility, arises from a breakdown of immunological tolerance, an essential aspect for conception and the maintenance of pregnancy. The role of various immunological components, including immune cells, cytokines, chemokines, factors like HLA-G, etc., is pivotal in this context. Moreover, non-coding RNAs (ncRNAs) have emerged as critical regulators of immune tolerance within the reproductive axis. This review synthesizes the complex immunological pathways vital for successful implantation and the early stages of pregnancy alongside the regulatory roles of ncRNAs in these processes. Offering an integrated view of molecular and immunological interactions associated with infertility seeks to enhance our understanding of potential strategies to facilitate successful conception and sustain early pregnancy.
Collapse
Affiliation(s)
| | - Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar, 31001, Iraq.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - Farah Aloraibi
- Department of Density, Al-Manara College for Medical Sciences, Maysan, Iraq.
| | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq; Advanced Research Center, Kut University College, Kut 52001, Wasit, Iraq.
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India.
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq.
| | - Saad Khudhur Mohammed
- College of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq.
| |
Collapse
|
13
|
Huang Y, Zhu Q, Sun Y. Glucose metabolism and endometrium decidualization. Front Endocrinol (Lausanne) 2025; 16:1546335. [PMID: 40034230 PMCID: PMC11872720 DOI: 10.3389/fendo.2025.1546335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Prior to embryo implantation, the endometrial stromal cells (ESCs) during the menstrual cycle undergo a significant structural and functional transformation known as decidualization to support conception. During this process, glucose consumption and utilization by endometrial cells increase to meet energy demands. Abnormal glucose metabolism in the endometrium impairs decidualization, leading to pregnancy complications, including implantation failure and pregnancy loss. However, the mechanisms modulating glucose metabolism in endometrial stromal cells during decidualization are still unclear. In this review, we describe the functions and regulation of glucose transporters (GLUTs) involved in glucose uptake, as well as the modulation of key enzymes catalyzing glucose utilization. Moreover, we present recent findings on the role of glucose related metabolites in the decidualization of ESCs.
Collapse
Affiliation(s)
- Yunfei Huang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Qinling Zhu
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yun Sun
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Sun F, Yu T, Zhang Y, Zhong X, Wang D, Li Y, Wang M, Zhang S, Yang T. AURKA inhibits the decidualization of the eutopic endometrium in endometriosis through nuclear factor-κB p65†. Biol Reprod 2025; 112:297-308. [PMID: 39673489 DOI: 10.1093/biolre/ioae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024] Open
Abstract
Endometriosis is an estrogen dependent disease, which is related to infertility. Decidualization is a prerequisite for successful implantation of human embryos, and endometriosis affects the occurrence of decidualization. However, the mechanism that affects decidualization in endometriosis is not fully understood. Here, we find that Aurora kinase A (AURKA) is upregulated in the eutopic endometrium of endometriosis. AURKA inhibits the decidualization of stromal cells in the eutopic endometrium of endometriosis. Furthermore, in animal experiments, AURKA promotes endometriosis and inhibits decidualization in mice with endometriosis, leading to decreased expression of decidualization markers, such as prolactin, insulin-like growth factor-binding protein-1, and desmin. Afterwards, we find that nuclear factor-κB (NF-κB) p65 is a new substrate of AURKA. AURKA interacts with p65 to promote its phosphorylation and nuclear translocation. Meanwhile, AURKA enhances the protein stability of p65 by prolonging its half-life. In summary, AURKA inhibits the decidualization of the eutopic endometrium in patients with endometriosis by regulating p65, which may provide new ideas for improving decidualization defect in patients with endometriosis.
Collapse
Affiliation(s)
- Fangyuan Sun
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, People's Republic of China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Ting Yu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, People's Republic of China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Ying Zhang
- Department of Gynecology, Zhucheng People's Hospital Affiliated to Shandong Second Medical University, Weifang, Shandong Province, People's Republic of China
| | - Xiaoyan Zhong
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Dan Wang
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Yuanyuan Li
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, People's Republic of China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Mengxue Wang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, People's Republic of China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Shucai Zhang
- Department of Emergency Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| |
Collapse
|
15
|
Acuña F, Gualdoni GS, Rivollier F, Barril C, Portiansky EL, Barbeito CG, Cebral E. Differential Remodelling of Endometrial Extracellular Matrix in the Non-Pregnant Uterus of Lagostomus maximus as a Potential Mechanism Underlying Embryonic Death. Animals (Basel) 2025; 15:542. [PMID: 40003024 PMCID: PMC11851369 DOI: 10.3390/ani15040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
During development, the remodelling of fibrillar components of the uterine extracellular matrix (ECM), mediated by the matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), plays an essential role in embryonic survival. Previously, we observed that in the plains viscacha (Lagostomus maximus), only caudal implantation sites (IS) contain viable embryos, whereas embryos at cranial and middle IS die and are reabsorbed. The objective of this study was to analyse the distribution and expression of key components of the endometrial ECM, including fibrillar collagens, MMPs 2 and 9, and TIMPs 1 and 2, in three uterine segments (US) of the non-pregnant adult viscachas. In sections from three US, we observed a significant craniocaudal increase in collagen fibres (Van Gieson and Picrosirius red staining) and elastic fibres (Verhoeff-Van Gieson trichrome staining), along with the immunolabelling levels of MMP-2, MMP-9, TIMP-1, and TIMP-2 (immunohistochemistry). Zymography revealed similar gelatinolytic activity of MMP-2 in the three US but higher than the MMP-9 activity. However, MMP-9 activity in the caudal segment was significantly higher than that in the cranial and middle ones. These findings suggest that uterine ECM variations along the craniocaudal axis may contribute to uterine remodelling processes that regulate embryonic survival during gestation.
Collapse
Affiliation(s)
- Francisco Acuña
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP1900, Buenos Aires, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata CP1900, Buenos Aires, Argentina;
| | - Gisela Soledad Gualdoni
- Laboratorio de Reproducción y Fisiología Materno-Embrionaria, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires CP1428, Buenos Aires, Argentina; (G.S.G.); (C.B.); (E.C.)
| | - Francisco Rivollier
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP1900, Buenos Aires, Argentina;
| | - Camila Barril
- Laboratorio de Reproducción y Fisiología Materno-Embrionaria, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires CP1428, Buenos Aires, Argentina; (G.S.G.); (C.B.); (E.C.)
| | - Enrique Leo Portiansky
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata CP1900, Buenos Aires, Argentina;
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP1900, Buenos Aires, Argentina
| | - Claudio Gustavo Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP1900, Buenos Aires, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata CP1900, Buenos Aires, Argentina;
| | - Elisa Cebral
- Laboratorio de Reproducción y Fisiología Materno-Embrionaria, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires CP1428, Buenos Aires, Argentina; (G.S.G.); (C.B.); (E.C.)
| |
Collapse
|
16
|
Unser AC, Monsivais D. Integral Roles of the TGFβ Signaling Pathway in Uterine Function and Disease. Endocrinology 2025; 166:bqaf032. [PMID: 39950970 PMCID: PMC11843549 DOI: 10.1210/endocr/bqaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Indexed: 02/22/2025]
Abstract
The uterus is a complex organ that requires precise signaling networks to mediate functions necessary for homeostasis and reproductive processes. The transforming growth factor β (TGFβ) superfamily regulates integral signaling pathways throughout many physiological processes, including cell proliferation, differentiation, and development. In this review, we summarize the current understanding of how the TGFβ signaling family controls key uterine functions, with a specific focus on the endometrium. These uterine functions include endometrial receptivity, implantation, decidualization, placentation, remodeling, and regeneration. Improving our understanding of the signaling networks that regulate these processes is integral to identifying, diagnosing, and treating uterine and reproductive diseases such as endometriosis, adenomyosis, recurrent pregnancy loss, and recurrent implantation failure.
Collapse
Affiliation(s)
- Anna Catherine Unser
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Development, Disease Models, & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Development, Disease Models, & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Mikhalev SA, Kurtser MA, Radzinsky VE, Orazov MR, Beeraka NM, Mikhaleva LM. Exploring the Role of Lower Genital Tract Microbiota and Cervical-Endometrial Immune Metabolome in Unknown Genesis of Recurrent Pregnancy Loss. Int J Mol Sci 2025; 26:1326. [PMID: 39941094 PMCID: PMC11818274 DOI: 10.3390/ijms26031326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Recurrent pregnancy loss (RPL) of unknown genesis is a complex condition with multifactorial origins, including genetic, hormonal, and immunological factors. However, the specific mechanisms underlying endocervical cell proliferation disorders in women with RPL remain inadequately understood, particularly concerning the role of microbiota and viral infections. The aim of this study was to investigate the mechanisms of endocervical cell proliferation disorders in women with RPL of unknown genesis by examining microbiota, human papillomavirus (HPV) typing, and the expression levels of key molecular biological markers, including p16/Ki-67, BCL-2, miR-145, and miR-34a. A prospective observational comparative study was executed on women with RPL and healthy pregnant controls with full ethical approval. Samples were collected for HPV typing and immunocytochemical analysis to evaluate the expression of p16, Ki-67, BCL-2, and the anti-oncogenic microRNAs (miR-145 and miR-34a). The expression of mRNA for the progesterone receptor (PGR-A) was also assessed, alongside local immune status markers, including proinflammatory T-lymphocytes (Th17/Th1) and regulatory CD4+ Tregs. Overexpression of p16, Ki-67, and BCL-2 was observed in 52.5% of women with RPL who had an ASC-US/LSIL cytogram, with the average double expression of p16/Ki-67 being three times higher than in the healthy pregnant group. A significant decrease in PGR-A mRNA expression in the endocervix of women with RPL was noted, accompanied by a dysregulated local immune status characterized by an increased prevalence of Th17/Th1 cells and a reduction in regulatory CD4+ Tregs. Additionally, the expression of miR-145 and miR-34a in the endocervix and endometrium of women with RPL significantly differed from the physiological pregnancy group, particularly in the context of high-risk HPV infection. The findings describe that disorders of endocervical cell proliferation in women with RPL of unknown genesis are associated with overexpression of specific molecular markers, impaired immune regulation, and altered microRNA profiles. These alterations may contribute to the pathophysiology of RPL, highlighting the need for further research into targeted interventions that could improve reproductive outcomes in affected individuals.
Collapse
Affiliation(s)
- Sergey A. Mikhalev
- Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (S.A.M.); (M.A.K.)
- City Clinical Hospital No. 31 Named After Academician G.M. Savelyeva of the Department of Health, 119415 Moscow, Russia
| | - Mark A. Kurtser
- Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (S.A.M.); (M.A.K.)
| | - Victor E. Radzinsky
- Department of Obstetrics and Gynecology, Federal State Autonomous Educational Institution of Higher Education «Peoples’ Friendship University of Russia», 117198 Moscow, Russia; (V.E.R.); (M.R.O.)
| | - Mekan R. Orazov
- Department of Obstetrics and Gynecology, Federal State Autonomous Educational Institution of Higher Education «Peoples’ Friendship University of Russia», 117198 Moscow, Russia; (V.E.R.); (M.R.O.)
| | - Narasimha M. Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu 515721, Andhra Pradesh, India
- Department of Studies in Molecular Biology, University of Mysore, Mysore 570006, Karnataka, India
| | - Lyudmila M. Mikhaleva
- Scientific Research Institute of Human Morphology Named After Academician A.P. Avtsyn of the Federal State Budgetary Scientific Institution “Russian Scientific Center of Surgery Named After Academician B.V. Petrovsky”, 125315 Moscow, Russia
| |
Collapse
|
18
|
Zhang XK, Li X, Han XX, Sun DY, Wang YQ, Cao ZZ, Liu L, Meng ZH, Li GJ, Dong YJ, Li DY, Peng XQ, Zou HJ, Zhang D, Xu XF. Cadmium induces spontaneous abortion by impairing endometrial stromal cell decidualization. Toxicology 2025; 511:154069. [PMID: 39892737 DOI: 10.1016/j.tox.2025.154069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Cadmium (Cd) is a toxic heavy metal with a high propensity to accumulate within the body, and Cd accumulation has been shown to cause organ damage. However, it is unclear whether Cd accumulation is a cause of impaired decidualization, which induces to spontaneous abortion (SA). In this study, we found that the decidual Cd concentration was increased in patients with SA and positively correlated with the occurrence of SA. The levels of two decidualization markers (prolactin, PRL and insulin-like growth factor binding protein 1, IGFBP1) were reduced in the decidua of all-cause SA patients. Using 8-week ICR female mice, we further established a uterus-specific Cd accumulation mouse model and verified that Cd-accumulating mice had increased numbers of absorbed fetuses and defective decidualization. Finally, using in vitro-cultured human ENdometrial stromal cells (hEnSCs), we found that Cd accumulation significantly inhibited decidualization; and moreover, Cd treatment downregulated the regulatory genes upstream of PRL and IGFBP1 such as PGR, ESR1, ESR2 and FOXO1. This study suggests that Cd accumulation could produce impaired decidualization by downregulating the upstream regulators of PRL and IGFBP1, thereby increasing the risk of SA. Our study offered new possibilities for the prevention and treatment of spontaneous abortion.
Collapse
Affiliation(s)
- Xue-Ke Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xuan Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xing-Xing Han
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Dong-Ying Sun
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yu-Qin Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Zi-Zhuo Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Zi-Han Meng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Guo-Jing Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yu-Jie Dong
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Dan-Yang Li
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Xiao-Qing Peng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hui-Juan Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Dong Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Xiao-Feng Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
19
|
Zhang H, Wu Z, Yang N, Wu S, Fan J, Wang P, Li X. Granulocyte Colony Stimulating Factor Enhances Decidualization Process of Endometrial Stromal Cells Through STAT3/HOXA10 Axis. Adv Biol (Weinh) 2025; 9:e2400279. [PMID: 39692583 DOI: 10.1002/adbi.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/04/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Recurrent implantation failure (RIF) is characterized by the repeated failure of implantation, often linked to impaired endometrial receptivity. This study investigates how granulocyte colony-stimulating factor (G-CSF) promotes endometrial stromal cell decidualization. METHODS THESCs (human telomerase reverse transcriptase-immortalized endometrial stromal cells) were used as an in vitro cell model to induce decidualization. The effects of G-CSF on the expression of decidualization genes and apoptosis during decidualization were examined. Additionally, a chemical inhibitor of signal transducer and activator of transcription 3 (STAT3) and the small interfering RNA (siRNA) targeting Homeobox A10 (Hoxa10) were employed to explore the involvement of the STAT3/HOXA10 axis in the action of G-CSF. RESULTS G-CSF promoted decidualization markers expression and suppressed apoptosis in THESCs Treatment with G-CSF enhanced STAT3 activation during decidualization induction. STAT3 inhibition diminished the effects of G-CSF on decidualization marker expression and apoptosis suppression. Furthermore, it was demonstrated that G-CSF increased Hoxa10 expression in a STAT3-dependent manner. Silencing Hoxa10 abrogated the effects of G-CSF on promoting decidualization. CONCLUSION G-CSF enhances decidualization of endometrial stromal cells via STAT3/HOXA10 axis activation. These findings suggest that optimal G-CSF delivery strategies could improve endometrial receptivity in RIF patients.
Collapse
Affiliation(s)
- Huakun Zhang
- Reproductive Medicine Center, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, Guangdong Province, 518000, China
| | - Zhengzhong Wu
- Reproductive Medicine Center, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, Guangdong Province, 518000, China
| | - Ningjie Yang
- Reproductive Medicine Center, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, Guangdong Province, 518000, China
| | - Shuhua Wu
- Department of Reproductive Immunology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, Guangdong Province, 518000, China
| | - Jing Fan
- Reproductive Medicine Center, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, Guangdong Province, 518000, China
| | - Ping Wang
- Reproductive Medicine Center, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, Guangdong Province, 518000, China
| | - Xuemei Li
- Reproductive Medicine Center, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, Guangdong Province, 518000, China
| |
Collapse
|
20
|
Gan J, Yang L, Yang SH, Gu WW, Gu Y, Shi Y, Shi JX, Xu HR, Xin YW, Zhang X, Wang J. FXYD1 was identified as a hub gene in recurrent miscarriage and involved in decidualization via regulating Na/K-ATPase activity. J Assist Reprod Genet 2025; 42:665-678. [PMID: 39730944 PMCID: PMC11871252 DOI: 10.1007/s10815-024-03363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024] Open
Abstract
PURPOSE Recurrent miscarriage (RM) is a distressing and complicated adverse pregnancy outcome. It is commonly recognized that insufficient decidualization could result in RM, but the molecular mechanisms of decidual impairment are still not fully understood. Thus, this study aimed to identify novel key genes potentially involved in RM and explore their roles played in endometrial decidualization. METHODS Initially, a combinative analysis of decidual and mid-secretory endometrial transcriptomes was performed to discover hub genes involved in the etiology of RM. And the expression levels of hub genes were evaluated in both primary decidual stromal cells (DSCs) and decidual tissues. Subsequently, the immortalized human endometrial cell line, T-HESCs, was used to investigate whether FXYD1 overexpression affects decidualization by regulating Na/K-ATPase activity. RESULTS FXYD domain containing ion transport regulator 1 (FXYD1) was identified as a hub gene in the pathogenesis of RM through various bioinformatic methods. Abnormally increased FXYD1 expression was observed in DSCs and decidual tissues from RM patients compared to that of the normal group. Furthermore, in vitro decidualization was obviously inhibited by the overexpression of FXYD1. Additionally, Na/K-ATPase activity was significantly elevated during decidualization, whereas overexpression of FXYD1 reduced Na/K-ATPase activity. Bufalin, a Na/K-ATPase inhibitor, showed an effectively inhibitory effect on decidualization. CONCLUSIONS Collectively, FXYD1 was discovered as a hub gene associated with RM, and its expression levels in RM patients were significantly upregulated. Increased FXYD1 expression might lead to decidualization defects by reducing Na/K-ATPase activity, of which presented a novel prospective treatment target for RM.
Collapse
Affiliation(s)
- Jie Gan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China
| | - Long Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China
| | - Shu-Han Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China
| | - Wen-Wen Gu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China
| | - Yan Gu
- The Second Hospital of Tianjin Medical University, Tianjin, 300221, China
| | - Yan Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China
| | - Jia-Xin Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China
| | - Hao-Ran Xu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China
| | - Ya-Wei Xin
- The Second Hospital of Tianjin Medical University, Tianjin, 300221, China
| | - Xuan Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China.
| | - Jian Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China.
| |
Collapse
|
21
|
Muñoz-Blat I, Pérez-Moraga R, Castillo-Marco N, Cordero T, Ochando A, Ortega-Sanchís S, Parras-Moltó M, Monfort-Ortiz R, Satorres-Perez E, Novillo B, Perales A, Gormley M, Granados-Aparici S, Noguera R, Roson B, Fisher SJ, Simón C, Garrido-Gómez T. Multi-omics-based mapping of decidualization resistance in patients with a history of severe preeclampsia. Nat Med 2025; 31:502-513. [PMID: 39775038 PMCID: PMC11835751 DOI: 10.1038/s41591-024-03407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Endometrial decidualization resistance (DR) is implicated in various gynecological and obstetric conditions. Here, using a multi-omic strategy, we unraveled the cellular and molecular characteristics of DR in patients who have suffered severe preeclampsia (sPE). Morphological analysis unveiled significant glandular anatomical abnormalities, confirmed histologically and quantified by the digitization of hematoxylin and eosin-stained tissue sections. Single-cell RNA sequencing (scRNA-seq) of endometrial samples from patients with sPE (n = 11) and controls (n = 12) revealed sPE-associated shifts in cell composition, manifesting as a stromal mosaic state characterized by proliferative stromal cells (MMP11 and SFRP4) alongside IGFBP1+ decidualized cells, with concurrent epithelial mosaicism and a dearth of epithelial-stromal transition associated with decidualization. Cell-cell communication network mapping underscored aberrant crosstalk among specific cell types, implicating crucial pathways such as endoglin, WNT and SPP1. Spatial transcriptomics in a replication cohort validated DR-associated features. Laser capture microdissection/mass spectrometry in a second replication cohort corroborated several scRNA-seq findings, notably the absence of stromal to epithelial transition at a pathway level, indicating a disrupted response to steroid hormones, particularly estrogens. These insights shed light on potential molecular mechanisms underpinning DR pathogenesis in the context of sPE.
Collapse
Affiliation(s)
- Irene Muñoz-Blat
- Carlos Simon Foundation, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
| | | | | | | | | | | | | | - Rogelio Monfort-Ortiz
- Department of Obstetrics and Gynecology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Elena Satorres-Perez
- Department of Obstetrics and Gynecology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Blanca Novillo
- Department of Obstetrics and Gynecology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Alfredo Perales
- Department of Obstetrics and Gynecology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Matthew Gormley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Science, University of California San Francisco, San Francisco, CA, USA
| | - Sofia Granados-Aparici
- INCLIVA Health Research Institute, Valencia, Spain
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Noguera
- INCLIVA Health Research Institute, Valencia, Spain
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Susan J Fisher
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Science, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA, USA
| | - Carlos Simón
- Carlos Simon Foundation, Valencia, Spain.
- INCLIVA Health Research Institute, Valencia, Spain.
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain.
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Tamara Garrido-Gómez
- Carlos Simon Foundation, Valencia, Spain.
- INCLIVA Health Research Institute, Valencia, Spain.
| |
Collapse
|
22
|
Tindal K, Cousins F, Palmer KR, Ellery S, Vollenhoven B, Gargett CE, Gordon A, Bradford B, Davies-Tuck M. Your period and your pregnancy, a cohort study of pregnant patients investigating the associations between menstruation and birth outcomes in Australia: study protocol. BMJ Open 2025; 15:e091813. [PMID: 39843375 PMCID: PMC11784170 DOI: 10.1136/bmjopen-2024-091813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
INTRODUCTION Early pregnancy care involves the screening and identification of women with risk factors for adverse pregnancy outcomes, including stillbirth or preterm birth, to tailor pregnancy care and interventions accordingly. Most stillbirths and approximately two-thirds of preterm births, however, occur in the absence of evident risk factors. The majority of stillbirths occur in the preterm period, yet there are few interventions targeting this period, and progress to reduce stillbirth rates remains slow. Placental dysfunction is a major contributor to stillbirth, particularly, preterm stillbirth. Here, the endometrial environment may shed light on factors that influence placental development and the trajectory of a pregnancy. Menstrual symptoms or abnormal uterine bleeding (AUB) can indicate endometrial disorders, which are associated with infertility and adverse pregnancy outcomes. Whether AUB is associated with pregnancy outcomes in the absence of a diagnosed endometrial pathology, however, remains unknown. Limited information regarding a woman's menstrual cycle is captured in routine early pregnancy assessments, such as the last menstrual period and menstrual cycle length. Given the latent diagnosis of endometrial disorders and that up to a third of all women experience AUB during their lifetime, determining the association between menstrual characteristics and pregnancy outcomes has the potential to uncover new clinical strategies to reduce adverse pregnancy outcomes. Therefore, this study aims to understand the association between menstruation and pregnancy outcomes to identify which menstrual characteristics could provide value as a pregnancy risk assessment tool. METHODS AND ANALYSIS This is a prospective study of women aged 18-45 with a singleton pregnancy. Participants will be recruited in early pregnancy at their antenatal appointment and not have a known diagnosed endometrial pathology (endometriosis, adenomyosis, endometrial cancer or an endometrial submucosal fibroid) or have had an endometrial ablation. Participants will also be excluded if there is a planned termination of pregnancy or a termination of pregnancy for psychosocial reasons. Women will complete a menstrual history survey to capture menstrual cycle length, regularity, level of pain, heaviness of flow and other menstrual symptoms. Participants will consent to having the survey data linked with their pregnancy and birth outcome information. The primary outcome is a composite of stillbirth, spontaneous preterm birth, pre-eclampsia or fetal growth restriction. Participants will also be invited to complete an optional fetal movements survey at 28-32 and 36+ weeks' gestation, and consent for placental collection at the time of birth will be sought. ETHICS AND DISSEMINATION Ethics approval was obtained from Monash Health Human Research Ethics Committee (83559) on 24 April 2024. The study will be conducted in accordance with these conditions. Findings will be disseminated through peer-reviewed publications and conference presentations.
Collapse
Affiliation(s)
- Kirstin Tindal
- The Ritchie Centre at Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
| | - Fiona Cousins
- The Ritchie Centre at Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
| | - Kirsten Rebecca Palmer
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
- Women's Health Research Program, Monash Health, Melbourne, Victoria, Australia
| | - Stacey Ellery
- The Ritchie Centre at Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Beverley Vollenhoven
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
- Women's Health Research Program, Monash Health, Melbourne, Victoria, Australia
| | - Caroline E Gargett
- The Ritchie Centre at Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
| | - Adrienne Gordon
- Department of Paediatrics, University of Sydney - Camden Campus, Camden, New South Wales, Australia
| | - Billie Bradford
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
| | - Miranda Davies-Tuck
- The Ritchie Centre at Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
23
|
Yang SH, Gan J, Xu HR, Shi JX, Wang J, Zhang X. The BMP Signaling Pathway: Bridging Maternal-Fetal Crosstalk in Early Pregnancy. Reprod Sci 2025:10.1007/s43032-024-01777-4. [PMID: 39821798 DOI: 10.1007/s43032-024-01777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
The maintenance of early pregnancy is a complex and distinctive process, primarily characterized by critical reproductive events such as embryo implantation, trophoblasts differentiation, decidualization, and extravillous trophoblasts (EVTs) invasion etc. However, dysregulation of these essential reproductive processes can result in various pregnancy complications, including recurrent miscarriage, preeclampsia, and fetal growth restriction etc. Notably, these complications exhibit an interconnected regulatory network that suggests shared underlying pathophysiological mechanisms. Meanwhile, the role of the BMP signaling pathway in sustaining early pregnancy is increasingly being investigated and elucidated. In this review, we have clarified the specific molecular mechanisms which are fundamental to essential reproductive processes and summarize an overview of animal models associated with BMP signaling molecules. In addition, we present a novel perspective on several contentious viewpoints regarding the functional roles of BMP ligands. Therefore, we anticipated a comprehensive understanding of the precise ways in which the BMP signaling pathway affects reproductive events during early pregnancy could provide new perspectives and approaches for preventing and addressing early pregnancy complications.
Collapse
Affiliation(s)
- Shu-Han Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Jie Gan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Hao-Ran Xu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Jia-Xin Shi
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Jian Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China.
| | - Xuan Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China.
| |
Collapse
|
24
|
Zhao Q, Samuels C, Timmins P, Massri N, Chemerinski A, Wu T, Loia R, Cheung EK, Zhang X, Arora R, Babwah AV, Douglas NC. Signaling via retinoic acid receptors mediates decidual angiogenesis in mice and human stromal cell decidualization. FASEB J 2025; 39:e70291. [PMID: 39777800 PMCID: PMC11706222 DOI: 10.1096/fj.202400766r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
At the maternal-fetal interface, tightly regulated levels of retinoic acid (RA), the physiologically active metabolite of vitamin A, are required for embryo implantation and pregnancy success. Herein, we utilize mouse models, primary human cells, and pharmacological tools to demonstrate how depletion of RA signaling via RA receptor (RAR) disrupts implantation and progression of early pregnancy. To inhibit RAR signaling during early pregnancy, BMS493, an inverse pan-RAR agonist that prevents RA-induced differentiation, was administered to pregnant mice during the peri-implantation period. Attenuation of RA/RAR signaling prior to embryo implantation results in implantation failure, whereas attenuation of RA/RAR signaling after embryo implantation disrupts the post-implantation decidual vasculature and results in pregnancy failure by mid-gestation. To inhibit RAR signaling during human endometrial stromal cell (HESC) decidualization, primary HESCs and decidualized primary HESCs were transfected with silencing RNA specific for human RARA. Inhibition of RA/RARA signaling prevents initiation of HESC decidualization, but not maintenance of the decidualized HESC phenotype. These data show that RA/RAR signaling is required for maintenance of the decidual vasculature that supports early pregnancy in mice, and distinct RAR signaling is required for initiation, but not maintenance of primary HESC decidualization in vitro.
Collapse
Affiliation(s)
- Qingshi Zhao
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Cherie‐Ann Samuels
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Patrick Timmins
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Noura Massri
- Department of Obstetrics, Gynecology and Reproductive BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Anat Chemerinski
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Tracy Wu
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Rachel Loia
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Emma K. Cheung
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Xusheng Zhang
- Epigenomics/Computational Genomics CoreAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Andy V. Babwah
- Department of PediatricsRobert Wood Johnson Medical School, Rutgers Biomedical and Health SciencesNew BrunswickNew JerseyUSA
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
- Center for Immunity and InflammationRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| |
Collapse
|
25
|
Davalieva K, Kocarev D, Plaseska-Karanfilska D. Decoding recurrent pregnancy loss: insights from comparative proteomics studies. Biol Reprod 2025; 112:1-17. [PMID: 39288094 DOI: 10.1093/biolre/ioae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024] Open
Abstract
Recurrent pregnancy loss represents a common disorder that affects up to 2% of the women aiming at childbirth with long-term consequences on family and society. Factors contributing to it in more than half of the cases are still unknown. Comparative proteomic analysis can provide new insights into the biological pathways underlining the pathogenesis of recurrent pregnancy loss. Until now, chorionic villi, decidua, placenta, endometrium, and maternal blood from women with recurrent pregnancy loss have been analyzed by comparative proteomics studies. In this review, we aimed to provide a critical evaluation of the published comparative studies of recurrent pregnancy loss on human samples, gathered by systematic literature search using PubMed and Google Scholar databases. We provide a detailed overview of the analyzed materials, proteomics platforms, proposed candidate biomarkers and altered pathways and processes linked with recurrent pregnancy loss. The top, most identified and validated biomarker candidates from all studies are discussed, followed by bioinformatics analysis of the available high-throughput data and presentation of common altered processes and pathways in recurrent pregnancy loss. Finally, future directions aimed at developing new and efficient therapeutic strategies are discussed as well.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| | - Damjan Kocarev
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| |
Collapse
|
26
|
Cao D, Liu Y, Cheng Y, Wang J, Zhang B, Zhai Y, Zhu K, Liu Y, Shang Y, Xiao X, Chang Y, Lee YL, Yeung WSB, Huang Y, Yao Y. Time-series single-cell transcriptomic profiling of luteal-phase endometrium uncovers dynamic characteristics and its dysregulation in recurrent implantation failures. Nat Commun 2025; 16:137. [PMID: 39747825 PMCID: PMC11695634 DOI: 10.1038/s41467-024-55419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Understanding human endometrial dynamics in the establishment of endometrial receptivity remains a challenge, which limits early diagnosis and treatment of endometrial-factor infertility. Here, we decode the endometrial dynamics of fertile women across the window of implantation and characterize the endometrial deficiency in women with recurrent implantation failure. A computational model capable of both temporal prediction and pattern discovery is used to analyze single-cell transcriptomic data from over 220,000 endometrial cells. The time-series atlas highlights a two-stage stromal decidualization process and a gradual transitional process of the luminal epithelial cells across the window of implantation. In addition, a time-varying gene set regulating epithelium receptivity is identified, based on which the recurrent implantation failure endometria are stratified into two classes of deficiencies. Further investigation uncovers a hyper-inflammatory microenvironment for the dysfunctional endometrial epithelial cells of recurrent implantation failure. The holistic characterization of the physiological and pathophysiological window of implantation and a computational tool trained on this temporal atlas provide a platform for future therapeutic developments.
Collapse
Affiliation(s)
- Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yijun Liu
- School of Biomedical Sciences, the University of Hong Kong, Hong Kong SAR, China
- School of Artificial Intelligence, Jilin University, Jilin, China
| | - Yanfei Cheng
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jue Wang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Bolun Zhang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- School of Medicine, Nankai University, Tianjin, China
| | - Yanhui Zhai
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kongfu Zhu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ye Liu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ye Shang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiao Xiao
- Genomics Institute, Geneplus-Shenzhen, Shenzhen, China
| | - Yi Chang
- School of Artificial Intelligence, Jilin University, Jilin, China
| | - Yin Lau Lee
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynaecology, the University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Building 17 W, The Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - William Shu Biu Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Obstetrics and Gynaecology, the University of Hong Kong, Hong Kong SAR, China.
- Centre for Translational Stem Cell Biology, Building 17 W, The Hong Kong Science and Technology Park, Hong Kong SAR, China.
| | - Yuanhua Huang
- School of Biomedical Sciences, the University of Hong Kong, Hong Kong SAR, China.
- Centre for Translational Stem Cell Biology, Building 17 W, The Hong Kong Science and Technology Park, Hong Kong SAR, China.
- Department of Statistics and Actuarial Science, the University of Hong Kong, Hong Kong SAR, China.
| | - Yuanqing Yao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Gynecology and Obstetrics, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
27
|
Hong W, Wu Z, Li L, Wang B, Li X. Intrauterine adhesions treated with hysteroscopic adhesiolysis and subsequent obstetric outcome: A retrospective matched cohort study. BJOG 2025; 132:155-164. [PMID: 38418403 DOI: 10.1111/1471-0528.17793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/01/2024]
Abstract
OBJECTIVE To examine whether a history of hysteroscopic adhesiolysis (HA)-treated intrauterine adhesions (IUAs) was associated with an increased risk of adverse obstetrical outcomes in subsequent pregnancies. DESIGN Retrospective cohort study. SETTING A tertiary-care hospital in Shanghai, China. POPULATION A cohort of 114 142 pregnant women who were issued an antenatal card and received routine antenatal care in Shanghai First Maternity and Infant Hospital, between January 2016 and October 2021. METHODS From the cohort of 114 142 pregnant women, each woman with a history of HA-treated IUA prior to the current pregnancy (n = 780) was matched with four women without a history of IUAs (n = 3010) using propensity score matching. The matching variables were maternal age and parity, mode of conception, pre-pregnancy body mass index and prior history of abortion. MAIN OUTCOME MEASURES Pregnancy complications, placental abnormalities, postpartum haemorrhage and adverse birth outcomes. RESULTS Compared with women with no history of IUAs, women with a history of HA-treated IUAs were at higher risk of pre-eclampsia (RR 1.69, 95% CI 1.23-2.33), placenta accreta spectrum (RR 4.72, 95% CI 3.9-5.73), placenta praevia (RR 4.23, 95% CI 2.85-6.30), postpartum haemorrhage (RR 2.86, 95% CI 1.94-4.23), preterm premature rupture of membranes (RR 3.02, 95% CI 1.97-4.64) and iatrogenic preterm birth (RR 2.86, 95% CI 2.14-3.81). Those women were also more likely to receive cervical cerclage (RR 5.63, 95% CI 3.95-8.02) during pregnancy and haemostatic therapies after delivery (RR 2.17, 95% CI 1.75-2.69). Moreover, we observed that the RRs of those adverse obstetrical outcomes increased with the increasing number of hysteroscopic surgeries. CONCLUSIONS This study found that a history of HA-treated IUAs, especially a history of repeated HAs, was associated with an increased risk of adverse obstetrical outcomes.
Collapse
Affiliation(s)
- Wei Hong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiping Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Beiying Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaocui Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Łuszczyński K, Komorowski M, Soszyńska M, Lewandowska P, Zdanowski R, Szafarowska M, Kamiński P, Niemcewicz M, Malejczyk J, Lutyńska A, Ścieżyńska A. Surface Molecular Markers for the Isolation of Viable Fibroblast Subpopulations in the Female Reproductive Tract: A Comprehensive Review. Int J Mol Sci 2024; 26:233. [PMID: 39796089 PMCID: PMC11720034 DOI: 10.3390/ijms26010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/15/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Advancements in single-cell analyzis technologies, particularly single-cell RNA sequencing (scRNA-seq) and Fluorescence-Activated Cell Sorting (FACS), have enabled the analyzis of cellular diversity by providing resolutions that were not available previously. These methods enable the simultaneous analyzis of thousands of individual transcriptomes, facilitating the classification of cells into distinct subpopulations, based on transcriptomic differences, adding a new level of complexity to biomolecular and medical research. Fibroblasts, despite being one of the most abundant cell types in the human body and forming the structural backbone of tissues and organs, remained poorly characterized for a long time. This is largely due to the high morphological similarity between different types of fibroblasts and the lack of specific markers to identify distinct subpopulations. Once thought to be cells responsible solely for the synthesis of extracellular matrix (ECM) components, fibroblasts are now recognized as active participants in diverse physiological processes, including inflammation and antimicrobial responses. However, defining the molecular profile of fibroblast subpopulations remains a significant challenge. In this comprehensive review, which is based on over two thousand research articles, we focus on the identification and characterization of fibroblast subpopulations and their specific surface markers, with an emphasis on their potential as molecular targets for selective cell isolation. By analyzing surface markers, alongside intra- and extracellular protein profiles, we identified multiple fibroblast subtypes within the female reproductive system. These subtypes exhibit distinct molecular signatures and functional attributes, shaped by their anatomical localization and the surrounding physiological or pathological conditions. Our findings underscore the heterogeneity of fibroblasts and their diverse roles in various biological contexts. This improved understanding of fibroblast subpopulations paves the way for innovative diagnostic and therapeutic strategies, offering the potential for precision targeting of specific fibroblast subsets in clinical applications.
Collapse
Affiliation(s)
- Krzysztof Łuszczyński
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland; (K.Ł.); (R.Z.); (A.L.)
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.K.); (M.S.); (P.L.); (J.M.)
| | - Michał Komorowski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.K.); (M.S.); (P.L.); (J.M.)
| | - Marta Soszyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.K.); (M.S.); (P.L.); (J.M.)
| | - Paulina Lewandowska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.K.); (M.S.); (P.L.); (J.M.)
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland; (K.Ł.); (R.Z.); (A.L.)
| | - Monika Szafarowska
- Department of Gynecology and Oncological Gynecology, Military Institute of Medicine, 128 Szaserów Street, 04-141 Warsaw, Poland; (M.S.); (P.K.)
| | - Paweł Kamiński
- Department of Gynecology and Oncological Gynecology, Military Institute of Medicine, 128 Szaserów Street, 04-141 Warsaw, Poland; (M.S.); (P.K.)
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 68 Narutowicza Street, 90-136 Lodz, Poland;
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.K.); (M.S.); (P.L.); (J.M.)
| | - Anna Lutyńska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland; (K.Ł.); (R.Z.); (A.L.)
| | - Aneta Ścieżyńska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland; (K.Ł.); (R.Z.); (A.L.)
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.K.); (M.S.); (P.L.); (J.M.)
| |
Collapse
|
29
|
Singh A, Perez ML, Kirsanov O, Padilla-Banks E, Guardia CM. Autophagy in reproduction and pregnancy-associated diseases. iScience 2024; 27:111268. [PMID: 39628569 PMCID: PMC11613427 DOI: 10.1016/j.isci.2024.111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
As advantageous as sexual reproduction is during progeny generation, it is also an expensive and treacherous reproductive strategy. The viviparous eukaryote has evolved to survive stress before, during, and after pregnancy. An important and conserved intracellular pathway for the control of metabolic stress is autophagy. The autophagy process occurs in multiple stages through the coordinated action of autophagy-related genes. This review summarizes the evidence that autophagy is an integral component of reproduction. Additionally, we discuss emerging in vitro techniques that will enable cellular and molecular studies of autophagy and its associated pathways in reproduction. Finally, we discuss the role of autophagy in the pathogenesis and progression of several pregnancy-related disorders such as preterm birth, preeclampsia, and intra-uterine growth restriction, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Asmita Singh
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Maira L. Perez
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Oleksandr Kirsanov
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Elizabeth Padilla-Banks
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Carlos M. Guardia
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| |
Collapse
|
30
|
Zhao H, Liu J, Yin S, Bao H. PAI-1 promotes human endometrial stromal decidualization via inhibiting VEGFR2/PI3K/AKT signaling pathway mediated F-actin reorganization. FASEB J 2024; 38:e70233. [PMID: 39718443 DOI: 10.1096/fj.202401882r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024]
Abstract
Decidualization of endometrial stromal cells is a prerequisite for successful embryo implantation and early pregnancy. Decidualization dysregulation results in implantation failure. In our previous study, we reported that PAI-1 is abnormally downregulated in the endometrial tissue samples of patients with recurrent implantation failure. This study will explore the dynamic expression changes of PAI-1 in the endometrium during the menstrual cycle and its molecular mechanism affecting endometrial decidualization. Our findings indicated that the abundance of PAI-1 increased in the mid-secretory phase and attached a peak in the decidual phase in the endometrium of women with regular menstrual cycles. In human endometrial stromal cells (HESCs), PAI-1 knockdown attenuated endometrial decidualization by upregulating VEGFR2/PI3K/AKT signaling pathway and impaired the F-actin reorganization. Furthermore, axitinib (a VEGFR2 inhibitor) was used to inhibit the VEGFR2 protein activity and the results suggested that it eliminated the effects of PAI-1 on PI3K/AKT signaling pathways and F-actin remodeling. In addition, the interaction between PAI-1 and KNG1 was confirmed by coimmunoprecipitation assay in HESCs. Altogether, PAI-1-KNG1 may enhance the decidualization of endometrium by inhibiting VEGFR2/PI3K/AKT signaling pathway-mediated F-actin reorganization in healthy females.
Collapse
Affiliation(s)
- Huishan Zhao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| | - Juan Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shuyuan Yin
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| | - Hongchu Bao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| |
Collapse
|
31
|
Meng Y, Meng Y, Li L, Li Y, He J, Shan Y. The role of DNA methylation in placental development and its implications for preeclampsia. Front Cell Dev Biol 2024; 12:1494072. [PMID: 39691449 PMCID: PMC11649665 DOI: 10.3389/fcell.2024.1494072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
Preeclampsia (PE) is a prevalent and multifaceted pregnancy disorder, characterized by high blood pressure, edema, proteinuria, and systemic organ dysfunction. It remains one of the leading causes of pregnancy complications, yet its exact origins and pathophysiological mechanisms are not fully understood. Currently, the only definitive treatment is delivery, often requiring preterm termination of pregnancy, which increases neonatal and maternal morbidity and mortality rates, particularly in severe cases. This highlights the urgent need for further research to elucidate its underlying mechanisms and develop targeted interventions. PE is thought to result from a combination of factors, including inflammatory cytokines, trophoblast dysfunction, and environmental influences, which may trigger epigenetic changes, particularly DNA methylation. The placenta, a vital organ for fetal and maternal exchange, plays a central role in the onset of PE. Increasing evidence suggests a strong association between DNA methylation, placental function, and the development of PE. This review focuses on the impact of DNA methylation on placental development and its contribution to PE pathophysiology. It aims to clarify the epigenetic processes essential for normal placental development and explore potential epigenetic biomarkers and therapeutic targets for PE. Such insights could lead to the development of novel preventive and therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Yizi Meng
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yimei Meng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linli Li
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yuan Li
- Department of General Gynecology I, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Dangudubiyyam SV, Hofmann A, Yadav P, Kumar S. Per- and polyfluoroalkyl substances (PFAS) and hypertensive disorders of Pregnancy- integration of epidemiological and mechanistic evidence. Reprod Toxicol 2024; 130:108702. [PMID: 39222887 PMCID: PMC11625001 DOI: 10.1016/j.reprotox.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) remain a significant global health burden despite medical advancements. HDP prevalence appears to be rising, leading to increased maternal and fetal complications, mortality, and substantial healthcare costs. The etiology of HDP are complex and multifaceted, influenced by factors like nutrition, obesity, stress, metabolic disorders, and genetics. Emerging evidence suggests environmental pollutants, particularly Per- and polyfluoroalkyl substances (PFAS), may contribute to HDP development. OBJECTIVE This review integrates epidemiological and mechanistic data to explore the intricate relationship between PFAS exposure and HDP. EPIDEMIOLOGICAL EVIDENCE Studies show varying degrees of association between PFAS exposure and HDP, with some demonstrating positive correlations, particularly with preeclampsia. Meta-analyses suggest potential fetal sex-specific differences in these associations. MECHANISTIC INSIGHTS Mechanistically, PFAS exposure appears to disrupt vascular hemodynamics, placental development, and critical processes like angiogenesis and sex steroid regulation. Experimental studies reveal alterations in the renin-angiotensin system, trophoblast invasion, oxidative stress, inflammation, and hormonal dysregulation - all of which contribute to HDP pathogenesis. Elucidating these mechanisms is crucial for developing preventive strategies. THERAPEUTIC POTENTIAL Targeted interventions such as AT2R agonists, caspase inhibitors, and modulation of specific microRNAs show promise in mitigating adverse outcomes associated with PFAS exposure during pregnancy. KNOWLEDGE GAPS AND FUTURE DIRECTIONS Further research is needed to comprehensively understand the full spectrum of PFAS-induced placental alterations and their long-term implications for maternal and fetal health. This knowledge will be instrumental in developing effective preventive and therapeutic strategies for HDP in a changing environmental landscape.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Alissa Hofmann
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.
| |
Collapse
|
33
|
Potiris A, Stavros S, Zouganeli I, Machairiotis N, Drakaki E, Zikopoulos A, Anagnostaki I, Zachariou A, Gerede A, Domali E, Drakakis P. Investigating the Imperative Role of microRNAs Expression in Human Embryo Implantation: A Narrative Review Based on Recent Evidence. Biomedicines 2024; 12:2618. [PMID: 39595182 PMCID: PMC11592390 DOI: 10.3390/biomedicines12112618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Embryo implantation is a highly complex process that requires the precise regulation of numerous molecules to be orchestrated successfully. Micro RNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a crucial role in the regulation of embryo implantation. This article aims to summarize the key findings of the literature regarding the role of miRNAs in human embryo implantation, emphasizing their involvement in critical stages such as decidualization, endometrial receptivity and trophoblast adhesion. METHODS This review includes primary research articles from the past decade. The studies utilize a range of experimental methodologies, including gene expression analysis and in vitro studies. RESULTS MicroRNAs, like miR-320a, miR-149, and miR30d secreted by preimplantation embryos and blastocysts significantly influence endometrial receptivity by promoting essential cellular processes, such as cell migration and trophoblast cell attachment, while others-miR17-5p, miR-193-3p, miR-372, and miR-542-3p-secreted from the endometrium regulate the decidualization phase. During the apposition and adhesion phases, miRNAs play a complex role by promoting, for example, miR-23b-3p, and inhibiting-as do miR-29c and miR-519d-3p-important biological pathways of these stages. During invasion, miR-26a-5p and miR-125-5p modulate important genes. CONCLUSIONS This review underscores the critical impact of miRNAs in the regulation of embryo implantation and early pregnancy. The ability of miRNAs to modulate gene expression at various stages of reproduction presents promising therapeutic avenues for improving assisted reproductive technologies outcomes and addressing infertility. Further research into miRNA-based diagnostic tools and therapeutic strategies is essential to enhance our understanding of their role in reproductive health and to exploit their potential for clinical applications.
Collapse
Affiliation(s)
- Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.S.); (I.Z.); (N.M.); (A.Z.); (I.A.); (P.D.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.S.); (I.Z.); (N.M.); (A.Z.); (I.A.); (P.D.)
| | - Ioanna Zouganeli
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.S.); (I.Z.); (N.M.); (A.Z.); (I.A.); (P.D.)
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.S.); (I.Z.); (N.M.); (A.Z.); (I.A.); (P.D.)
| | - Eirini Drakaki
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (E.D.); (E.D.)
| | - Athanasios Zikopoulos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.S.); (I.Z.); (N.M.); (A.Z.); (I.A.); (P.D.)
| | - Ismini Anagnostaki
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.S.); (I.Z.); (N.M.); (A.Z.); (I.A.); (P.D.)
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 451 10 Ioannina, Greece;
| | - Angeliki Gerede
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 691 00 Alexandroupolis, Greece;
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (E.D.); (E.D.)
| | - Peter Drakakis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.S.); (I.Z.); (N.M.); (A.Z.); (I.A.); (P.D.)
| |
Collapse
|
34
|
Li X, Luan T, Lu J, Wei Y, Zhang J, Zhao C, Ling X. Perinatal and obstetric-neonatal outcomes following frozen embryo transfer cycles with a thinner endometrium: a retrospective study. BMC Pregnancy Childbirth 2024; 24:741. [PMID: 39533220 PMCID: PMC11558912 DOI: 10.1186/s12884-024-06946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the relationship of thin endometrial thickness (EMT) on the maternal and child health outcome of frozen-thawed embryo transfer (FET) cycles with singletons. METHODS The retrospective cohort study included 1,771 live singleton deliveries, with 273 in the thin endometrium group (EMT ≤ 7.5 mm) and 1,498 in the control group (EMT > 7.5 mm). Pregnancy, perinatal complications and neonatal outcomes were compared between the two groups. RESULTS Women in the thinner endometrium group had higher rates of preeclampsia (7.69% vs. 7.00%), placenta previa (4.39% vs. 2.43%), postpartum haemorrhage (15.38% vs. 11.42%) than the control groups, although they were not significantly different. Significant difference was observed in the rates of placental abruption (1.09% vs. 0.07%, P = 0.001), abnormal placental cord insertion (3.66% vs. 1.74%, P = 0.011), placental adherence (15.38% vs. 7.14%, P < 0.001) between the two groups. No significant difference could be found regarding preterm labour, macrosomia, Apgar ≤ 7, large for gestational age (LGA) and appropriate for gestational age (AGA), and singletons from the thinner endometrium group had a significantly lower birthweight than those from the controls. Then after adjusting for confounders, thinner endometrium was still statistically significantly associated with placental adherence, postpartum haemorrhage and low birthweight (LBW). CONCLUSION These findings highlight the important role of endometrial thickness in influencing perinatal and obstetric-neonatal outcomes in FET cycles. The study contributes to the growing body of evidence supporting the clinical relevance of endometrial thickness in FET cycles and underscores the need for close monitoring and management of pregnancies in women with a thin endometrium. Future research should focus on elucidating the underlying mechanisms and identifying effective interventions to improve endometrial thickness and pregnancy outcomes in this patient population.
Collapse
Affiliation(s)
- Xin Li
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfeixiang, Mochou Road, Qinhuai District, Nanjing, JiangSu, China
| | - Ting Luan
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Jueyun Lu
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfeixiang, Mochou Road, Qinhuai District, Nanjing, JiangSu, China
| | - Yi Wei
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfeixiang, Mochou Road, Qinhuai District, Nanjing, JiangSu, China
| | - Juanjuan Zhang
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfeixiang, Mochou Road, Qinhuai District, Nanjing, JiangSu, China
| | - Chun Zhao
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfeixiang, Mochou Road, Qinhuai District, Nanjing, JiangSu, China.
| | - Xiufeng Ling
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfeixiang, Mochou Road, Qinhuai District, Nanjing, JiangSu, China.
| |
Collapse
|
35
|
Hu XT, Wu XF, Xu JY, Xu X. Lactate-mediated lactylation in human health and diseases: Progress and remaining challenges. J Adv Res 2024:S2090-1232(24)00529-0. [PMID: 39522689 DOI: 10.1016/j.jare.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Lactate was once considered as metabolic waste for a long time. In 2019, Professor Zhao Yingming's team from the University of Chicago found that lactate could also be used as a substrate to induce histone lactylation and regulate gene expression. Since then, researchers have discovered that lactate-mediated lactylation play important regulatory roles in various physiological and pathological processes. AIM OF REVIEW In this review, we aim to discuss the roles and mechanisms of lactylation in human health and diseases, as well as the effects of lactylation on proteins and metabolic modulators targeting lactylation. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we emphasize the crucial regulatory roles of lactylation in the development of numerous physiological and pathological processes. Of relevance, we discuss the current issues and challenges pertaining to lactylation. This review provides directions and a theoretical basis for future research and clinical translation of lactylation.
Collapse
Affiliation(s)
- Xue-Ting Hu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiao-Feng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jin-Yi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
36
|
Yan P, Guo M, Gan Y, Zhu M, Han X, Wu J. Early pregnancy exposure to Microcystin-LR compromises endometrial decidualization in mice via the PI3K/AKT/FOXO1 signaling pathway. CHEMOSPHERE 2024; 366:143466. [PMID: 39369752 DOI: 10.1016/j.chemosphere.2024.143466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Previous experimental studies have found that exposure to Microcystin-leucine arginine can impact pregnancy outcomes in female mice. The impact of MC-LR on early pregnancy in mammals is not yet well understood. Both mice and humans need to undergo decidualization to maintain pregnancy. In this study, we tried to evaluate whether MC-LR affects decidualization process in mice. Our research showed that MC-LR decreased maternal weight gain, uterine weight, and implantation site weight. These findings suggested that MC-LR exerted adverse effects on decidualization. In mice, we examined decreased number of polyploid decidual cells, but marked proliferation of mouse endometrial stromal cells the expression levels of prolactin (PRL)and insulin-like growth factor binding protein 1 (IGFBP1) were significantly downregulated in the decidual tissue and primary endometrial stromal cells following MC-LR treatment. Furthermore, further in vitro experiments identified that MC-LR promoted endometrial stromal cell division and cycle transition. Lastly, our study demonstrated that MC-LR impaired decidualization through the PI3K/AKT/FOXO1 pathway. Collectively, these data suggested that exposure to MC-LR impaired decidualization during early pregnancy.
Collapse
Affiliation(s)
- Pinru Yan
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Meihong Guo
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yibin Gan
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Mengjiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Jiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
37
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
38
|
Hu J, Qin C, Xu Y, Liu X, Wei X, Wu J, Zhao X, Chen C, Lin Y. Decreased thrombospondin-1 impairs endometrial stromal decidualization in unexplained recurrent spontaneous abortion†. Biol Reprod 2024; 111:448-462. [PMID: 38780057 DOI: 10.1093/biolre/ioae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Inappropriate endometrial stromal decidualization has been implied as an important reason of many pregnancy-related complications, such as unexplained recurrent spontaneous abortion, preeclampsia, and intrauterine growth restriction. Here, we observed that thrombospondin-1, an adhesive glycoprotein, was significantly downregulated in endometrial decidual cells from patients with unexplained recurrent spontaneous abortion. The immortalized human endometrial stromal cell line was used to investigate the possible THBS1-mediated regulation of decidualization. In vitro experiments found that the expression level of THBS1 increased with the normal decidualization process. Knockdown of THBS1 could decrease the expression levels of prolactin and insulin-like growth factor binding protein-1, two acknowledged human decidualization markers, whereas THBS1 overexpression could reverse these effects. The RNA sequencing results demonstrated that the extracellular regulated protein kinases signaling pathway was potentially affected by the knockdown of THBS1. We further confirmed that the regulation of THBS1 on decidualization was achieved through the ERK signaling pathway by the treatment of inhibitors. Moreover, knockdown of THBS1 in pregnant mice could impair decidualization and result in an increased fetus resorption rate. Altogether, our study demonstrated a crucial role of THBS1 in the pathophysiological process of unexplained recurrent spontaneous abortion and provided some new insights into the research of pregnancy-related complications.
Collapse
Affiliation(s)
- Jianing Hu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Chuanmei Qin
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Yichi Xu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Xueqing Liu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Xiaowei Wei
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai 200030, China
| | - Jiayi Wu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Xiaomiao Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106 Zhongshan Second Road, Yuexiu District, Guangzhou 510080, China
| | - Cailian Chen
- Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, No. 800 Dongchuan Road, Minhang District, Shanghai 201100, China
| | - Yi Lin
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai 200030, China
| |
Collapse
|
39
|
Li MY, Shen HH, Cao XY, Gao XX, Xu FY, Ha SY, Sun JS, Liu SP, Xie F, Li MQ. Targeting a mTOR/autophagy axis: a double-edged sword of rapamycin in spontaneous miscarriage. Biomed Pharmacother 2024; 177:116976. [PMID: 38906022 DOI: 10.1016/j.biopha.2024.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Immune dysfunction is a primary culprit behind spontaneous miscarriage (SM). To address this, immunosuppressive agents have emerged as a novel class of tocolytic drugs, modulating the maternal immune system's tolerance towards the embryo. Rapamycin (PubChem CID:5284616), a dual-purpose compound, functions as an immunosuppressive agent and triggers autophagy by targeting the mTOR pathway. Its efficacy in treating SM has garnered significant research interest in recent times. Autophagy, the cellular process of self-degradation and recycling, plays a pivotal role in numerous health conditions. Research indicates that autophagy is integral to endometrial decidualization, trophoblast invasion, and the proper functioning of decidual immune cells during a healthy pregnancy. Yet, in cases of SM, there is a dysregulation of the mTOR/autophagy axis in decidual stromal cells or immune cells at the maternal-fetal interface. Both in vitro and in vivo studies have highlighted the potential benefits of low-dose rapamycin in managing SM. However, given mTOR's critical role in energy metabolism, inhibiting it could potentially harm the pregnancy. Moreover, while low-dose rapamycin has been deemed safe for treating recurrent implant failure, its potential teratogenic effects remain uncertain due to insufficient data. In summary, rapamycin represents a double-edged sword in the treatment of SM, balancing its impact on autophagy and immune regulation. Further investigation is warranted to fully understand its implications.
Collapse
Affiliation(s)
- Meng-Ying Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Yan Cao
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Xiao Gao
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Feng-Yuan Xu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Si-Yao Ha
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510235, China
| | - Jian-Song Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Song-Ping Liu
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China.
| | - Feng Xie
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China.
| | - Ming-Qing Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Department of Gynecologic Endocrinology and Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, People's Republic of China.
| |
Collapse
|
40
|
Park S, Hunter ES. Modeling the human placenta: in vitro applications in developmental and reproductive toxicology. Crit Rev Toxicol 2024; 54:431-464. [PMID: 39016688 DOI: 10.1080/10408444.2023.2295349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 07/18/2024]
Abstract
During its temporary tenure, the placenta has extensive and specialized functions that are critical for pre- and post-natal development. The consequences of chemical exposure in utero can have profound effects on the structure and function of pregnancy-associated tissues and the life-long health of the birthing person and their offspring. However, the toxicological importance and critical functions of the placenta to embryonic and fetal development and maturation have been understudied. This narrative will review early placental development in humans and highlight some in vitro models currently in use that are or can be applied to better understand placental processes underlying developmental toxicity due to in utero environmental exposures.
Collapse
Affiliation(s)
- Sarah Park
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, NC, USA
| | - Edward Sidney Hunter
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, NC, USA
| |
Collapse
|
41
|
Deng ZM, Dai FF, Wang RQ, Deng HB, Yin TL, Cheng YX, Chen GT. Organ-on-a-chip: future of female reproductive pathophysiological models. J Nanobiotechnology 2024; 22:455. [PMID: 39085921 PMCID: PMC11290169 DOI: 10.1186/s12951-024-02651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
The female reproductive system comprises the internal and external genitalia, which communicate through intricate endocrine pathways. Besides secreting hormones that maintain the female secondary sexual characteristics, it also produces follicles and offspring. However, the in vitro systems have been very limited in recapitulating the specific anatomy and pathophysiology of women. Organ-on-a-chip technology, based on microfluidics, can better simulate the cellular microenvironment in vivo, opening a new field for the basic and clinical research of female reproductive system diseases. This technology can not only reconstruct the organ structure but also emulate the organ function as much as possible. The precisely controlled fluidic microenvironment provided by microfluidics vividly mimics the complex endocrine hormone crosstalk among various organs of the female reproductive system, making it a powerful preclinical tool and the future of pathophysiological models of the female reproductive system. Here, we review the research on the application of organ-on-a-chip platforms in the female reproductive systems, focusing on the latest progress in developing models that reproduce the physiological functions or disease features of female reproductive organs and tissues, and highlighting the challenges and future directions in this field.
Collapse
Affiliation(s)
- Zhi-Min Deng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Fang-Fang Dai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Rui-Qi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Hong-Bing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei, 430060, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Gan-Tao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| |
Collapse
|
42
|
Tindal K, Cousins FL, Ellery SJ, Palmer KR, Gordon A, Filby CE, Gargett CE, Vollenhoven B, Davies-Tuck ML. Investigating Menstruation and Adverse Pregnancy Outcomes: Oxymoron or New Frontier? A Narrative Review. J Clin Med 2024; 13:4430. [PMID: 39124698 PMCID: PMC11312851 DOI: 10.3390/jcm13154430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Not discounting the important foetal or placental contribution, the endometrium is a key determinant of pregnancy outcomes. Given the inherently linked processes of menstruation, pregnancy and parturition with the endometrium, further understanding of menstruation will help to elucidate the maternal contribution to pregnancy. Endometrial health can be assessed via menstrual history and menstrual fluid, a cyclically shed, easily and non-invasively accessible biological sample that represents the distinct, heterogeneous composition of the endometrial environment. Menstrual fluid has been applied to the study of endometriosis, unexplained infertility and early pregnancy loss; however, it is yet to be examined regarding adverse pregnancy outcomes. These adverse outcomes, including preeclampsia, foetal growth restriction (FGR), spontaneous preterm birth and perinatal death (stillbirth and neonatal death), lay on a spectrum of severity and are often attributed to placental dysfunction. The source of this placental dysfunction is largely unknown and may be due to underlying endometrial abnormalities or endometrial interactions during placentation. We present existing evidence for the endometrial contribution to adverse pregnancy outcomes and propose that a more comprehensive understanding of menstruation can provide insight into the endometrial environment, offering great potential value as a diagnostic tool to assess pregnancy risk. As yet, this concept has hardly been explored.
Collapse
Affiliation(s)
- Kirstin Tindal
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
- NHMRC Centre for Research Excellence (CRE) in Stillbirth, Brisbane, QLD 4101, Australia;
| | - Fiona L. Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
| | - Stacey J. Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
| | - Kirsten R. Palmer
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
- Women’s and Newborn Program, Monash Health, Clayton, VIC 3168, Australia
| | - Adrienne Gordon
- NHMRC Centre for Research Excellence (CRE) in Stillbirth, Brisbane, QLD 4101, Australia;
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Caitlin E. Filby
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
| | - Beverley Vollenhoven
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
- Women’s and Newborn Program, Monash Health, Clayton, VIC 3168, Australia
| | - Miranda L. Davies-Tuck
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
- NHMRC Centre for Research Excellence (CRE) in Stillbirth, Brisbane, QLD 4101, Australia;
| |
Collapse
|
43
|
Gusella A, Martignoni G, Giacometti C. Behind the Curtain of Abnormal Placentation in Pre-Eclampsia: From Molecular Mechanisms to Histological Hallmarks. Int J Mol Sci 2024; 25:7886. [PMID: 39063129 PMCID: PMC11277090 DOI: 10.3390/ijms25147886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Successful human pregnancy needs several highly controlled steps to guarantee an oocyte's fertilization, the embryo's pre-implantation development, and its subsequent implantation into the uterine wall. The subsequent placenta development ensures adequate fetal nutrition and oxygenation, with the trophoblast being the first cell lineage to differentiate during this process. The placenta sustains the growth of the fetus by providing it with oxygen and nutrients and removing waste products. It is not surprising that issues with the early development of the placenta can lead to common pregnancy disorders, such as recurrent miscarriage, fetal growth restriction, pre-eclampsia, and stillbirth. Understanding the normal development of the human placenta is essential for recognizing and contextualizing any pathological aberrations that may occur. The effects of these issues may not become apparent until later in pregnancy, during the mid or advanced stages. This review discusses the process of the embryo implantation phase, the molecular mechanisms involved, and the abnormalities in those mechanisms that are thought to contribute to the development of pre-eclampsia. The review also covers the histological hallmarks of pre-eclampsia as found during the examination of placental tissue from pre-eclampsia patients.
Collapse
Affiliation(s)
- Anna Gusella
- Pathology Unit, Department of Diagnostic Services, ULLS 6 Euganea, 35131 Padova, Italy;
| | - Guido Martignoni
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy;
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, 37129 Verona, Italy
| | - Cinzia Giacometti
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy;
| |
Collapse
|
44
|
Poordast T, Alborzi S, Kiani Z, Omidifar N, Askary E, Chamanara K, Shokripour M, Keshtvarz Hesam Abadi A. The role of progesterone and estrogen receptors in treatment choice after endometriosis surgery: A cross-sectional study. Int J Reprod Biomed 2024; 22:567-578. [PMID: 39355309 PMCID: PMC11441281 DOI: 10.18502/ijrm.v22i7.16970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Accepted: 05/15/2024] [Indexed: 10/03/2024] Open
Abstract
Background The lack of improvement in some endometriotic people's pain after surgery even while using hormone treatment may suggest an inappropriate response to routine hormonal therapies. Objective This study aimed to determine a cut-off point for selecting the most appropriate treatment based on the hormone receptors of endometriotic lesions. Materials and Methods In this cross-sectional study, by reviewing the medical records of participants and testing their archive samples and phone interviews (if needed), 86 symptomatic women after endometriosis surgery who were operated into governmental hospitals, Shahid Faghihi and Hazrate Zeinab Shiraz Iran were enrolled between March 2017 and March 2019. Women were divided into 2 groups: responsiveness (n = 73 for dysmenorrhea, n = 60 for dyspareunia) to medical treatment and surgery, and unresponsiveness (n = 13, n = 7). We examined the pathological slides of 86 women to determine the amount of hormone receptors and the relationship between the type of medical treatment and the level of hormone receptors on pain relief within 1 yr after surgery. Results Based on the receiver operating characteristic curve, dysmenorrhea in the presence of tissue estrogen receptors > 60% (p = 0.1065), and dyspareunia in the presence of tissue progesterone receptors > 80% (p = 0.0001) responded well to medical treatment after surgery. In the presence of endometrioma-dysmenorrhea showed the best response to oral contraceptive pills (69.4%), while in deep infiltrative endometriosis-dyspareunia showed the best response to progesterone treatment (75%). Conclusion Prescribing an appropriate hormone therapy based on a specific immunohistochemistry staining pattern can improve the life quality of postoperative endometriosis individuals.
Collapse
Affiliation(s)
- Tahereh Poordast
- Department of Obstetrics and Gynecology, School of Medicine, Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Alborzi
- Department of Obstetrics and Gynecology, School of Medicine, Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ziba Kiani
- Department of Obstetrics and Gynecology, School of Medicine, Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Askary
- Department of Obstetrics and Gynecology, School of Medicine, Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kefayat Chamanara
- Department of Obstetrics and Gynecology, School of Medicine, Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansoureh Shokripour
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
45
|
Li Z, Dai F, Zhu R, Zhang Y, Chen J, Chen L, Liu H, Cheng Y. Dysregulation of CREB5 Impairs Decidualization and Maternal-Fetal Interactions by Inhibiting Autophagy in Recurrent Spontaneous Abortion. Reprod Sci 2024; 31:1983-2000. [PMID: 38424407 DOI: 10.1007/s43032-024-01474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Clinically, recurrent spontaneous abortion (RSA) is a pregnancy illness that is difficult to treat. Impaired decidualization is a documented cause of RSA, but the etiology and mechanism are still unknown. cAMP-responsive element binding protein 5 (CREB5) is a member of the ATF/CREB family. CREB5 has been reported to be related to pathological pregnancy, but there are few related studies on this topic in patients with RSA, and the underlying mechanism is unclear. METHODS We collected decidual tissues from RSA patients and healthy pregnant women to measure the expression level of CREB5, PRL, IGFBP1, ATG5, LC3B, and SQSTM/p62. Then, the changes in CREB5 expression and autophagy levels were measured in human endometrial stromal cells (hESCs) during decidualization. The expression levels of PRL and IGFBP1 were tested in sh-CREB5/ov-CREB5 hESCs after decidualization induction, and the autophagy level in sh-CREB5/ov-CREB5 hESCs was measured without decidualization induction. The decidualization ability of sh-CREB5 and ov-CREB5 hESCs treated with an autophagy inducer or inhibitor was measured. To investigate the effect of CREB5 in hESCs on the invasion and migration of HTR8/SVneo cells, we performed a coculture experiment. Finally, we examined the expression of CREB5 and autophagy key proteins in mouse decidual tissues by constructing an abortion mouse model. RESULTS In our study, we found that the expression of CREB5 was unusually elevated in the uterine decidua of RSA patients, but the expression of PRL, IGFBP1, and autophagy were decreased. During the decidualization of hESCs, the expression of CREB5 gradually decreases in a time-dependent manner with increasing autophagy. Moreover, by knocking down or overexpressing CREB5 in hESCs, it was found that CREB5 can impair decidualization and reduce autophagy in hESCs. Furthermore, the damage caused by CREB5 in terms of decidualization can be reversed by the addition of an autophagy inducer (rapamycin). In addition, CREB5 can increase the secretion of proteins (IL-1β and TGF-β1) in hESCs to inhibit trophoblast invasion and migration. CONCLUSIONS Our data support the supposition that CREB5 disturbs the decidualization of endometrial stromal cells and interactions at the maternal-fetal interface by inhibiting autophagy and that its abnormal upregulation and dysfunction may lead to RSA. It may function as a diagnostic and therapeutic target for RSA. Similarly, we found that in the spontaneous abortion mouse model, the expression of CREB5 in the decidual tissue of the abortion group was significantly increased, and autophagy was decreased.
Collapse
Affiliation(s)
- Zhidian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Ronghui Zhu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Jing Chen
- Caidian District People's Hospital of Wuhan, Wuhan, Hubei, 430100, People's Republic of China
| | - Liping Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
46
|
Cuadrado-Torroglosa I, García-Velasco JA, Alecsandru D. The Impacts of Inflammatory and Autoimmune Conditions on the Endometrium and Reproductive Outcomes. J Clin Med 2024; 13:3724. [PMID: 38999290 PMCID: PMC11242609 DOI: 10.3390/jcm13133724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
Background: A healthy pregnancy begins with an adequate endometrial state, even before the arrival of a blastocyst. Proper endometrial priming and the development of a tolerogenic decidua are key steps in creating the perfect environment for implantation and pregnancy. In these processes, the involvement of the maternal immune system seems to be of great relevance, modulating the different decidual immune populations to prepare the endometrium for a potential pregnancy. However, certain local pathologies of an inflammatory and autoimmune nature appear to have a direct impact on these phenomena, thus altering patients' reproductive outcomes. Methods: This literature review analyzes original articles, reviews, systematic reviews, and meta-analyses published between 1990 and 2024, concerning the impact of different inflammatory and autoimmune conditions on endometrial status and fertility. The included papers were obtained from Medline (Pubmed) and the Cochrane library. Results: There is evidence that endometriosis, adenomyosis, and chronic endometritis, through the promotion of a chronic inflammatory environment, are capable of altering endometrial immune populations, and, thus, processes essential for early pregnancy. Among other effects, these conditions have been linked to impaired decidualization, alterations in progesterone responsiveness, and hindered placentation. Similarly, antiphospholipid syndrome (APS), thyroid dysfunction, diabetes, and other pathologies related to glucose and gluten metabolism, due to their autoimmune nature, also appear to have a local impact on the uterine environment, affecting reproductive success through different mechanisms, including altered hormonal response and, again, impaired decidualization. Conclusions: The management of inflammatory and autoimmune diseases in assisted reproduction patients is gaining importance due to their direct impact on the endometrium. It is necessary to follow current expert recommendations and established therapeutic approaches in order to improve patients' prospects, ranging from antibiotic treatment in chronic endometritis to heparin and aspirin in APS, as well as hormonal treatments for endometriosis/adenomyosis or a gluten-free diet in celiac disease. All of them and the rest of the therapeutic perspectives, both current and under investigation, are presented throughout this work, assessing the possible improvements for reproductive outcomes.
Collapse
Affiliation(s)
- Isabel Cuadrado-Torroglosa
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106, Torre A, Planta 1a, 46026 Valencia, Spain; (I.C.-T.); (J.A.G.-V.)
| | - Juan A. García-Velasco
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106, Torre A, Planta 1a, 46026 Valencia, Spain; (I.C.-T.); (J.A.G.-V.)
- IVIRMA Global Research Alliance, IVIRMA Madrid, Av. del Talgo, 68, 28023 Madrid, Spain
- Department of Obstetrics and Gynaecology, Rey Juan Carlos University, Av. de Atenas, s/n, 28922 Alcorcón, Spain
| | - Diana Alecsandru
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106, Torre A, Planta 1a, 46026 Valencia, Spain; (I.C.-T.); (J.A.G.-V.)
- IVIRMA Global Research Alliance, IVIRMA Madrid, Av. del Talgo, 68, 28023 Madrid, Spain
| |
Collapse
|
47
|
Zhang XX, Zhang ZC, Liu YS, Zhou L, Hu YQ, Zhang CH, Song WH, Wu XH. Bioinformatic Analysis of the Significance of the KIR2DL4 Gene in Recurrent Implantation Failure. Biochem Genet 2024:10.1007/s10528-024-10857-8. [PMID: 38858283 DOI: 10.1007/s10528-024-10857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Related studies have pointed out that Killer immunoglobulin-like receptor 2DL4 (KIR2DL4) was associated with vascular remodeling in early pregnancy, and it might play an important role in immunity. In this study, recurrent implantation failure (RIF)-related GSE58144 dataset was extracted from the Gene Expression Omnibus (GEO) database. Firstly, the immune micro-environment analyses were conducted to analyze the pathogenesis of KIR2DL4 in RIF. Then, the gene set enrichment analysis (GSEA) was performed to investigate the function of KIR2DL4. Moreover, the TF-mRNA-miRNA and the co-expression networks were constructed to reveal the potential regulation of KIR2DL4. Furthermore, the genes that were associated with KIR2DL4 and differentially expressed in RIF were obtained and defined as key genes, and the functions of these genes were further explored. KIR2DL4 could be used for clinical diagnosis of RIF, and it was correlated with the changes in the immune micro-environment in RIF. From the perspective of function, KIR2DL4 was associated with complement and coagulation cascades, natural killer cell-mediated cytotoxicity, etc. Moreover, the TF-mRNA-miRNA regulatory network was constructed with KIR2DL4, 9 TFs, and 29 miRNAs. Furthermore, KIR2DL4, ACSM1, IL2RB, and PTPN11 were screened as key genes, which were associated with immune-related functions. This study deeply analyzed the function of KIR2DL4 and its role in RIF, and we found that STAT1 might up-regulate KIR2DL4 by INF-γ/JAK2/STAT1 signaling pathway. Besides, over-expressed KIR2DL4 in the mid-luteal endometrium might influence embryo implantation by affecting the embryo implantation microenvironment, which might help deepen the understanding of the molecular mechanism of RIF.
Collapse
Affiliation(s)
- Xin-Xian Zhang
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 206 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
| | - Zhi-Chao Zhang
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
| | - Yu-Shan Liu
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
| | - Li Zhou
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 206 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
| | - Yu-Qin Hu
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 206 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
| | - Cai-Hong Zhang
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 206 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
| | - Wen-Hui Song
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 206 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
| | - Xiao-Hua Wu
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 206 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China.
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
48
|
Zhao Y, Zhao X, Feng X. Alpha-lipoic acid upregulates the PPARγ/NRF2/GPX4 signal pathway to inhibit ferroptosis in the pathogenesis of unexplained recurrent pregnancy loss. Open Med (Wars) 2024; 19:20240963. [PMID: 38859880 PMCID: PMC11163161 DOI: 10.1515/med-2024-0963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/16/2024] [Accepted: 04/07/2024] [Indexed: 06/12/2024] Open
Abstract
Aim With unknown etiology and limited treatment options, unexplained recurrent pregnancy loss (URPL) remains a thorny problem. Ferroptosis, a newly identified type of cell death, has been shown to be crucial in the development in reproductive disorders. This study aims to explore the specific mechanism of ferroptosis in URPL and to uncover whether alpha-lipoic acid (ALA) can inhibit ferroptosis, and then exert a protective effect in URPL. Method The decidua tissues of URPL and control patients who actively terminated pregnancy were collected. The CBA/J × DBA/2 murine models of URPL were established, and were randomly treated with peroxisome proliferator activated receptor γ (PPARγ) agonists (Rosiglitazone) and ALA. The CBA/J × BALB/c murine models of normal pregnancy were intraperitoneally injected with PPARγ inhibitors (T0070907). Here, we used reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH)/GSSG, and FeRhoNox-1 analysis to detect the level of ferroptosis. We used quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis to evaluate the mRNA level of PPARγ. Besides, western blot and immunofluorescence were utilized to test the expression profile of PPARγ/nuclear factor erythroid 2-related factor 2 (NRF2)/glutathione peroxidase 4 (GPX4). Results In this study, we found that iron deposition was increased in the decidual tissue of patients with URPL. Additionally, the changes in cell morphology, the level of ROS, MDA, GSH, and the expression of ferroptosis marker proteins NRF2/GPX4 confirmed activated ferroptosis in URPL. Besides, bioinformatics analysis combined with experiments confirmed that PPARγ was critical in triggering NRF2/GPX4 pathway in URPL. Furthermore, URPL mouse models were established, and the results showed that PPARγ/NRF2/GPX4-mediated ferroptosis was also significantly increased, which could be mitigated by ALA treatment. Conclusion Overall, these findings suggest that ferroptosis may play an important role in URPL, and ALA might be a promising therapeutic drug for improving pregnancy outcomes in URPL via targeting the PPARγ/NRF2/GPX4 pathway.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
49
|
Andreescu M. Correlation Between Maternal-Fetus Interface and Placenta-Mediated Complications. Cureus 2024; 16:e62457. [PMID: 38882223 PMCID: PMC11180486 DOI: 10.7759/cureus.62457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 06/18/2024] Open
Abstract
Pregnancy is a highly regulated biological phenomenon that involves the development of a semi-allogeneic fetus inside the uterus of the mother. The maternal-fetal interface is a critical junction where communication takes place between the fetal and maternal immune systems, which determine the outcome of the pregnancy. The interface is composed of the decidua and placenta. The main cells present at the maternal-fetal interface include invading trophoblasts, maternal immune cells, and decidual stromal cells. Although maternal tolerance is crucial for maintaining a successful pregnancy, the role of the placenta in pregnancy is also important. Dysregulation of the placenta leads to various placenta-mediated complications, such as preeclampsia, intrauterine growth restriction, and placental abruption. Although the exact mechanism involving these complications is unclear, research has elucidated various factors involved in these pregnancy disorders. This review aimed to provide a summary of the maternal-fetal interface and immune mechanisms involved in placenta-mediated complications.
Collapse
Affiliation(s)
- Mihaela Andreescu
- Faculty of Medicine, Titu Maiorescu University, Bucharest, ROU
- Hematology, Colentina Clinical Hospital, Bucharest, ROU
| |
Collapse
|
50
|
Chen L, Dai F, Huang Y, Chen J, Li Z, Liu H, Cheng Y. Mechanisms of YAP1-mediated trophoblast ferroptosis in recurrent pregnancy loss. J Assist Reprod Genet 2024; 41:1669-1685. [PMID: 38526774 PMCID: PMC11224240 DOI: 10.1007/s10815-024-03096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
PURPOSE The purpose of our study is to investigate the function of YAP1 in the trophoblast ferroptosis and maternal-fetal interface communication of RPL. METHODS We collected 25 villous tissues and detected the expression of YAP1. Cell counting kit-8 assay, scratch wound-healing assay, and Matrigel invasion assay were performed to observe the proliferation, migration, and invasion of HTR-8/SVneo and JAR cells. Subsequently, measured the levels of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH), SLC7A11, SOD2, and GPX4. Ultimately, the use of ferroptosis activator (erastin) and inhibitor (Ferrostatin-1, fer-1) further confirmed the regulation by YAP1. In addition, established an in vitro-induced cell model to study the effect of YAP1 on the decidualization process. Finally, animal models were implemented for further confirmation. RESULTS We found that YAP1 was downregulated in RPL patients. Overexpression of YAP1 could significantly enhance the proliferation, migration, and invasion of trophoblasts, and inhibit ferroptosis. Knocking down YAP1 exhibited the opposite effect. Rescue experiments have shown that YAP1 could upregulate the expression of SLC7A11 and GPX4, which are key molecules in the classic pathway of ferroptosis. In addition, the decidualization was impaired when hESCs were treated with conditioned medium of YAP1 knockdown trophoblasts. Moreover, we found that Yap1, Slc7a11, and Gpx4 were downregulated in the RPL mice, along with increased MDA and decreased GSH. CONCLUSION Downregulation of YAP1 induces ferroptosis, thereby damaging the trophoblast invasion processes, which also disturbs the communication at the maternal-fetal interface. Our study identified YAP1 as a potential key molecule in the pathogenesis of RPL.
Collapse
Affiliation(s)
- Liping Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yanjie Huang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Jing Chen
- Caidian District People's Hospital of Wuhan, Wuhan, Hubei, 430100, People's Republic of China
| | - Zhidian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|