1
|
Persichetti AS, Shao J, Gotts SJ, Martin A. A functional parcellation of the whole brain in high-functioning individuals with autism spectrum disorder reveals atypical patterns of network organization. Mol Psychiatry 2025; 30:1518-1528. [PMID: 39349967 PMCID: PMC11919759 DOI: 10.1038/s41380-024-02764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Researchers studying autism spectrum disorder (ASD) lack a comprehensive map of the functional network topography in the ASD brain. We used high-quality resting state functional MRI (rs-fMRI) connectivity data and a robust parcellation routine to provide a whole-brain map of functional networks in a group of seventy high-functioning individuals with ASD and a group of seventy typically developing (TD) individuals. The rs-fMRI data were collected using an imaging sequence optimized to achieve high temporal signal-to-noise ratio (tSNR) across the whole-brain. We identified functional networks using a parcellation routine that intrinsically incorporates internal consistency and repeatability of the networks by keeping only network distinctions that agree across halves of the data over multiple random iterations in each group. The groups were tightly matched on tSNR, in-scanner motion, age, and IQ. We compared the maps from each group and found that functional networks in the ASD group are atypical in three seemingly related ways: (1) whole-brain connectivity patterns are less stable across voxels within multiple functional networks, (2) the cerebellum, subcortex, and hippocampus show weaker differentiation of functional subnetworks, and (3) subcortical structures and the hippocampus are atypically integrated with the neocortex. These results were statistically robust and suggest that patterns of network connectivity between the neocortex and the cerebellum, subcortical structures, and hippocampus are atypical in ASD individuals.
Collapse
Affiliation(s)
- Andrew S Persichetti
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Jiayu Shao
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Blader JC, Garrett AS, Pliszka SR. Annual Research Review: What processes are dysregulated among emotionally dysregulated youth? - a systematic review. J Child Psychol Psychiatry 2025; 66:516-546. [PMID: 39969267 PMCID: PMC11920615 DOI: 10.1111/jcpp.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 02/20/2025]
Abstract
Proliferation of the term "emotion dysregulation" in child psychopathology parallels the growing interest in processes that influence negative emotional reactivity. While it commonly refers to a clinical phenotype where intense anger leads to behavioral dyscontrol, the term implies etiology because anything that is dysregulated requires an impaired regulatory mechanism. Many cognitive, affective, behavioral, neural, and social processes have been studied to improve understanding of emotion dysregulation. Nevertheless, the defective regulatory mechanism that might underlie it remains unclear. This systematic review of research on processes that affect emotion dysregulation endeavors to develop an integrative framework for the wide variety of factors investigated. It seeks to ascertain which, if any, constitutes an impaired regulatory mechanism. Based on this review, we propose a framework organizing emotion-relevant processes into categories pertaining to stimulus processing, response selection and control, emotion generation, closed- or open-loop feedback-based regulation, and experiential influences. Our review finds scant evidence for closed-loop (automatic) mechanisms to downregulate anger arousal rapidly. Open-loop (deliberate) regulatory strategies seem effective for low-to-moderate arousal. More extensive evidence supports roles for aspects of stimulus processing (sensory sensitivity, salience, appraisal, threat processing, and reward expectancy). Response control functions, such as inhibitory control, show robust associations with emotion dysregulation. Processes relating to emotion generation highlight aberrant features in autonomic, endocrine, reward functioning, and tonic mood states. A large literature on adverse childhood experiences and family interactions shows the unique and joint effects of interpersonal with child-level risks. We conclude that the defective closed-loop regulatory mechanisms that emotion dysregulation implies require further specification. Integrating research on emotion-relevant mechanisms along an axis from input factors through emotion generation to corrective feedback may promote research on (a) heterogeneity in pathogenesis, (b) interrelationships between these factors, and (c) the derivation of better-targeted treatments that address specific pathogenic processes of affected youth.
Collapse
Affiliation(s)
- Joseph C Blader
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Amy S Garrett
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Steven R Pliszka
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
3
|
Arutiunian V, Buyanova I, Minnigulova A, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O. Left-hemispheric atypicalities in the primary auditory cortex are associated with language comprehension and social skills in children with Autism Spectrum Disorder. Cereb Cortex 2025; 35:bhaf055. [PMID: 40083153 DOI: 10.1093/cercor/bhaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025] Open
Abstract
Low-level auditory processing difficulties have been previously reported in children with Autism Spectrum Disorder (ASD), and some studies showed the relationship between these difficulties in the primary auditory cortex and language impairment in ASD. However, there is still a limited number of studies that comprehensively assess (i) amplitudes, latencies, and sensory gating effects in all early components of auditory processing (M50-M100-M200 complex) at the source level in magnetoencephalography with their relation to structural anatomy (gray matter volume, thickness, gyrification) (ii) and the association between brain metrics and clinical phenotype in the same group of children. To address this question, we used a standard paired-clicks paradigm in magnetoencephalography and brain morphometry analysis in children with and without ASD (NASD = 20, NTD = 20). First, the results revealed a reduction of M200 and altered M200 sensory gating effect in the left auditory cortex in children with ASD. Second, these alterations were related to lower language comprehension skills and higher autistic symptom severity. Finally, altered MEG responses were associated with gray matter thickness reduction as well as abnormal gyrification in the primary auditory cortex in ASD. The study revealed low-level functional and structural atypicalities in children with ASD and their relation to clinical phenotype.
Collapse
Affiliation(s)
- Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Avenue, Seattle, WA 98101, United States
| | - Irina Buyanova
- Center for Language and Brain, HSE University, Krivokolenny pereulok, 3, Moscow 101000, Russia
- University of Otago, 362 Leith Street, Dunedin North, Dunedin 9016, New Zealand
| | - Alina Minnigulova
- Center for Language and Brain, HSE University, Krivokolenny pereulok, 3, Moscow 101000, Russia
| | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Ulitsa Kashenkin Lug, 7, Moscow 127427, Russia
- Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, Shelepikhinskaya Naberezhnaya, 2А, Moscow 123290, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Ulitsa Kashenkin Lug, 7, Moscow 127427, Russia
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Ulitsa Kashenkin Lug, 7, Moscow 127427, Russia
- Haskins Laboratories, 300 George Street, Suite 900, New Haven, CT 06511, United States
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Ulitsa Kashenkin Lug, 7, Moscow 127427, Russia
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Ulitsa Kashenkin Lug, 7, Moscow 127427, Russia
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Ulitsa Kashenkin Lug, 7, Moscow 127427, Russia
- Scientific Research and Practical Center of Pediatric Psychoneurology, Michurinskiy Prospekt, 74, Moscow 119602, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, Krivokolenny pereulok, 3, Moscow 101000, Russia
- Institute of Linguistics, Russian Academy of Sciences, Bolshoy Kislovsky Ln, 1, Moscow 125009, Russia
- Center for Language and Brain, HSE University, Saint Petersburg, Russia
| |
Collapse
|
4
|
Mills J, Duffy O. Speech and Language Therapists' Perspectives of Virtual Reality as a Clinical Tool for Autism: Cross-Sectional Survey. JMIR Rehabil Assist Technol 2025; 12:e63235. [PMID: 40014826 PMCID: PMC11884707 DOI: 10.2196/63235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/04/2024] [Accepted: 01/16/2025] [Indexed: 03/01/2025] Open
Abstract
Background Persistent difficulties with social skills form part of the diagnostic criteria for autism and in the past have required speech and language therapy (SLT) management. However, many speech and language therapists are moving toward neuro-affirmative practices, meaning that social skills approaches are now becoming redundant. Research demonstrates that virtual reality (VR) interventions have shown promise in overcoming challenges and promoting skill generalization for autistic children; however, the majority of these focus on social skills interventions. While VR is emerging as an SLT intervention, its application for autism remains unexamined in clinical practice. Objective This research aimed to examine speech and language therapists' knowledge and attitudes toward immersive VR as a clinical tool for autistic children and explore the reasons for its limited integration into clinical practice. Methods A web-based cross-sectional survey was available from April 3, 2023 to June 30, 2023. The survey, consisting of 23 questions, focused on VR knowledge, attitudes, and the support required by speech and language therapists to incorporate VR into clinical practice. Dissemination occurred through the Royal College of Speech and Language Therapists Clinical Excellence Networks to recruit speech therapists specializing in autism. Results Analysis included a total of 53 responses from the cross-sectional survey. Approximately 92% (n=49) of speech and language therapists were aware of VR but had not used it, and 1.82% (n=1) had used VR with autistic children. Three key themes that emerged were (1) mixed general knowledge of VR, which was poor in relation to applications for autism; (2) positive and negative attitudes toward VR, with uncertainty about autism specific considerations for VR; and (3) barriers to adoption were noted and speech and language therapists required an improved neuro-affirming evidence base, guidelines, and training to adopt VR into clinical practice. Conclusions While some speech and language therapists perceive VR as a promising intervention tool for autistic children, various barriers must be addressed before its full integration into the clinical toolkit. This study establishes a foundation for future co-design, development, and implementation of VR applications as clinical tools for autistic children., This study is the first to explore clinical implementation factors for the use of VR in SLT field, specifically with autistic children. Poor autism-specific VR knowledge, and mixed attitudes toward VR, highlight that specific barriers must be addressed before the technology can successfully integrate into the SLT clinical toolkit., Speech and language therapists require support from employers, funding, a robust neuro-affirming evidence base, and education and training to adopt VR into practice. Recommendations for a SLT VR education and training program for use with autistic children, are provided.
Collapse
Affiliation(s)
- Jodie Mills
- Speech and Language Therapy, School of Health Sciences, University of Ulster, 2-24 York Street, Coleraine, BT15 IAP, United Kingdom, 44 2895365308
| | - Orla Duffy
- Speech and Language Therapy, School of Health Sciences, University of Ulster, 2-24 York Street, Coleraine, BT15 IAP, United Kingdom, 44 2895365308
| |
Collapse
|
5
|
Wang X, Bouton S, Kojovic N, Giraud AL, Schaer M. Atypical audio-visual neural synchrony and speech processing in early autism. J Neurodev Disord 2025; 17:9. [PMID: 39966708 PMCID: PMC11837391 DOI: 10.1186/s11689-025-09593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Children with Autism Spectrum disorder (ASD) often exhibit communication difficulties that may stem from basic auditory temporal integration impairment but also be aggravated by an audio-visual integration deficit, resulting in a lack of interest in face-to-face communication. This study addresses whether speech processing anomalies in young autistic children (mean age 3.09-year-old) are associated with alterations of audio-visual temporal integration. METHODS We used high-density electroencephalography (HD-EEG) and eye tracking to record brain activity and gaze patterns in 31 children with ASD (6 females) and 33 typically developing (TD) children (11 females), while they watched cartoon videos. Neural responses to temporal audio-visual stimuli were analyzed using Temporal Response Functions model and phase analyses for audiovisual temporal coordination. RESULTS The reconstructability of speech signals from auditory responses was reduced in children with ASD compared to TD, but despite more restricted gaze patterns in ASD it was similar for visual responses in both groups. Speech reception was most strongly affected when visual speech information was also present, an interference that was not seen in TD children. These differences were associated with a broader phase angle distribution (exceeding pi/2) in the EEG theta range in children with ASD, signaling reduced reliability of audio-visual temporal alignment. CONCLUSION These findings show that speech processing anomalies in ASD do not stand alone and that they are associated already at a very early development stage with audio-visual imbalance with poor auditory response encoding and disrupted audio-visual temporal coordination.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Auditory Language Group, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland.
- Institut Pasteur, Université Paris Cité, Hearing Institute, Paris, France.
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Sophie Bouton
- Institut Pasteur, Université Paris Cité, Hearing Institute, Paris, France
| | - Nada Kojovic
- Autism Brain & Behavior Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Anne-Lise Giraud
- Auditory Language Group, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
- Institut Pasteur, Université Paris Cité, Hearing Institute, Paris, France
| | - Marie Schaer
- Autism Brain & Behavior Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Chen H, Fu S, Zhi X, Wang Y, Liu F, Li Y, Ren F, Zhang J, Ren L, Wang Y. Research Progress on Neural Processing of Hand and Forearm Tactile Sensation: A Review Based on fMRI Research. Neuropsychiatr Dis Treat 2025; 21:193-212. [PMID: 39906284 PMCID: PMC11792622 DOI: 10.2147/ndt.s488059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Tactile perception is one of the important ways through which humans interact with the external environment. Similar to the neural processing in visual and auditory systems, the neural processing of tactile information is a complex procedure that transforms this information into sensory signals. Neuroimaging techniques, such as functional Magnetic Resonance Imaging (fMRI), provide compelling evidence indicating that different types of tactile signals undergo independent or collective processing within multiple brain regions. This review focuses on fMRI studies employing both task-based (block design or event-related design) and resting-state paradigms. These studies use general linear models (GLM) to identify brain regions activated during touch processing, or employ functional connectivity(FC) analysis to examine interactions between brain regions, thereby exploring the neural mechanisms underlying the central nervous system's processing of various aspects of tactile sensation, including discriminative touch and affective touch. The discussion extends to exploring changes in tactile processing patterns observed in certain disease states. Recognizing the analogy between pain and touch processing patterns, we conclude by summarizing the interaction between touch and pain. Currently, fMRI-based studies have made significant progress in the field of tactile neural processing. These studies not only deepen our understanding of tactile perception but also provide new perspectives for future neuroscience studies.
Collapse
Affiliation(s)
- Hao Chen
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Shifang Fu
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Xiaoyu Zhi
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Yu Wang
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Fanqi Liu
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Yuetong Li
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Fengjiao Ren
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Junfeng Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
- Rehabilitation Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China
| | - Longsheng Ren
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Yanguo Wang
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| |
Collapse
|
7
|
Vaissiere T, Michaelson SD, Creson T, Goins J, Fürth D, Balazsfi D, Rojas C, Golovin R, Meletis K, Miller CA, O'Connor D, Fontolan L, Rumbaugh G. Syngap1 promotes cognitive function through regulation of cortical sensorimotor dynamics. Nat Commun 2025; 16:812. [PMID: 39827187 PMCID: PMC11743135 DOI: 10.1038/s41467-025-56125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, Syngap1, in cortical excitatory neurons is required for the formation of somatomotor networks that promote SMI-mediated perception. Cortical Syngap1 expression was necessary and sufficient for setting tactile sensitivity, sustaining tactile object exploration, and promoting tactile learning. Mice with deficient Syngap1 expression exhibited impaired neural dynamics induced by exploratory touches within a cortical-thalamic network that promotes attention and perception. Disrupted neuronal dynamics were associated with circuit-specific long-range synaptic connectivity abnormalities. Our data support a model where autonomous Syngap1 expression in cortical excitatory neurons promotes cognitive abilities through the assembly of long-range circuits that integrate temporally-overlapping sensory and motor signals, a process that promotes perception and attention. These data provide systems-level insights into the robust association between Syngap1 expression and cognitive ability.
Collapse
Affiliation(s)
- Thomas Vaissiere
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Sheldon D Michaelson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Thomas Creson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jessie Goins
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Daniel Fürth
- SciLifeLab, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Diana Balazsfi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Camilo Rojas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Randall Golovin
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Courtney A Miller
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Daniel O'Connor
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorenzo Fontolan
- Aix-Marseille Université, INSERM, INMED, Turing Centre for Living Systems, Marseille, France
| | - Gavin Rumbaugh
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
8
|
Kiarashi Y, Lantz J, Reyna MA, Anderson C, Rad AB, Foster J, Villavicencio T, Hamlin T, Clifford GD. Predicting Seizures Episodes and High-Risk Events in Autism Through Adverse Behavioral Patterns. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.05.06.24306938. [PMID: 38766049 PMCID: PMC11100855 DOI: 10.1101/2024.05.06.24306938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To determine whether historical behavior data can predict the occurrence of high-risk behavioral or seizure events in individuals with profound Autism Spectrum Disorder (ASD), thereby facilitating early intervention and improved support. To our knowledge, this is the first work to integrate the prediction of seizures with behavioral data, highlighting the interplay between adverse behaviors and seizure risk. APPROACH We analyzed nine years of behavior and seizure data from 353 individuals with profound ASD. Using a deep learning-based algorithm, we predicted the following day's occurrence of seizure and three high-risk behavioral events (aggression, self-injurious behavior (SIB), and elopement). We employed permutationbased statistical tests to assess the significance of our predictive performance. MAIN RESULTS Our model achieved accuracies 70.5% for seizures, 78.3% for aggression, 80.2% for SIB, and 85.7% for elopement. All results were significant for more than 85% of the population. These findings suggest that high-risk behaviors can serve as early indicators, not only of subsequent challenging behaviors but also of upcoming seizure events. SIGNIFICANCE By demonstrating, for the first time, that behavioral patterns can predict seizures as well as adverse behaviors, this approach expands the clinical utility of predictive modeling in ASD. Early warning systems derived from these predictions can guide timely interventions, enhance inclusion in educational and community settings, and improve quality of life by helping anticipate and mitigate severe behavioral and medical events.
Collapse
Affiliation(s)
- Yashar Kiarashi
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | | | - Matthew A Reyna
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | | | - Ali Bahrami Rad
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Jenny Foster
- The Center for Discovery (TCFD), Harris, NY, USA
| | | | | | - Gari D Clifford
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
9
|
Rockwell N, Tofil NM, Rutledge C, Gaither SL, Norwood C, Zinkan JL, Aban I, Willig J, Kong M. Improving Resident Physician History and Physical in Challenging Situations. J Dev Behav Pediatr 2025:00004703-990000000-00229. [PMID: 39819852 DOI: 10.1097/dbp.0000000000001341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/29/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE To educate physician trainees using simulation on best management of children with autism spectrum disorder who have neurocognitive and behavioral challenges when experiencing acute illness. METHOD A simulation-based curriculum including baseline assessment, communication techniques, and use of calming resources was developed to educate residents in assessing children with sensory barriers. Traditional simulation and deliberate practice were used to teach this curriculum to second- and third-year pediatric and internal medicine-pediatric residents. Using alternating assignment, residents were placed into 3 groups: deliberate practice, traditional simulation-based debriefing, and control (no simulation training). The residents were assessed on the initial visit, 2 weeks and 4 to 6 months follow-up periods with a sensory assessment tool. Assessment scores were analyzed using a general linear mixed model with random intercept based on Poisson regression to approximate distribution of the total score. RESULTS Forty-three residents participated: 46.5% men, 53.5% women. There were 15, 16, and 12 residents in the control, deliberate practice and traditional simulation groups, respectively. Both teaching styles showed improved performance at 2 weeks follow-up. In addition, these groups demonstrated higher performance when compared with the control group. We were able to show that resident physicians were able to learn important principles and retain them during 4 to 6 months follow-up. However, there was not a difference between 2 teaching styles both in improvement and retention. CONCLUSION Simulation education, both deliberate and traditional, can be used to enhance teaching of key components in assessing children with sensory and communication barriers, including those with autism spectrum disorder when presenting with acute illness.
Collapse
Affiliation(s)
- Nicholas Rockwell
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Nancy M Tofil
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Chrystal Rutledge
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Stacy L Gaither
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
- Children's of Alabama, Pediatric Simulation Center, Birmingham, AL
| | - Carrie Norwood
- Children's of Alabama, Pediatric Simulation Center, Birmingham, AL
| | - J Lynn Zinkan
- Children's of Alabama, Pediatric Simulation Center, Birmingham, AL
| | - Inmaculada Aban
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - James Willig
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Michele Kong
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
10
|
Smees R, Rinaldi LJ, Simner J. Components of Empathy in Children: Factor Structure of the Empathy Quotient for Children (EQ-C). J Autism Dev Disord 2025:10.1007/s10803-024-06649-z. [PMID: 39786532 DOI: 10.1007/s10803-024-06649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2024] [Indexed: 01/12/2025]
Abstract
Empathy is multifaceted, involving sharing and understanding the emotional and mental states of others. This study investigated the factor structure of the English-language version of the Empathy Quotient for Children (EQ-C; Auyeung et al., 2009), an empathy measure previously well-validated only as a global scale. We aimed to compare children with and without educational differences (i.e., Special Educational Needs & Disabilities, SEND), and explored associations between empathy and sensory sensitivities across the whole sample. Based on responses from 680 parents, we analysed data from English-speaking children aged 6-12 years, via a series of factor analyses using polychoric correlation matrices and bass-ackward analysis. Empathy domain profiling for children with SEND status (versus children without SEND status) was investigated as group differences (t tests). Sensory sensitivities were examined via associations (correlation) and net effects (regression). We identified an optimal four-factor solution (emotional empathy, social-cognitive empathy, negative interactions, antisocial behaviours), and robust higher order one-, two- and three-factor models. Children with SEND status displayed empathy differences across all four empathy domains (all p < .001). Children with greater sensory sensitivities displayed significant differences for social-cognitive empathy and negative interactions only (both p < .001). We demonstrated the potential utility of the English-language EQ-C as a domain-level measure of empathy. Our paper discusses how the domains align with traditional emotional and cognitive dimensions in adults and cross-culturally. Our empathy profiles can be used alongside global empathy measures for different groups of children, with and without educational differences and sensory sensitivities.
Collapse
Affiliation(s)
- Rebecca Smees
- School of Psychology, Pevensey Building, University of Sussex, Brighton, BN1 9QJ, UK.
| | - Louisa J Rinaldi
- School of Psychology, Pevensey Building, University of Sussex, Brighton, BN1 9QJ, UK
| | - Julia Simner
- School of Psychology, Pevensey Building, University of Sussex, Brighton, BN1 9QJ, UK
- Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
11
|
Capelli E, Crippa A, Riboldi EM, Beretta C, Siri E, Cassa M, Molteni M, Riva V. Prospective Interrelation Between Sensory Sensitivity and Fine Motor Skills During the First 18 Months Predicts Later Autistic Features. Dev Sci 2025; 28:e13573. [PMID: 39340773 DOI: 10.1111/desc.13573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Sensory features are included in the diagnostic criteria of autism and atypical sensory responsiveness may produce "cascading effects" on later development. Similarly, autistic individuals often struggle with motor coordination and early delays in the motor domain appear to be linked to later development. However, the longitudinal interrelation between early sensory profiles and motor features on later socio-communicative skills remains to be defined. This study aimed to investigate whether sensory sensitivity impacts fine motor abilities and vice versa from 12 to 18 months of age and to examine how sensory-motor interplay would be associated with later autistic traits at 24-36 months of age. The sample included 118 infant siblings of autistic children recruited at 12 months of age. Sensory sensitivity and eye-hand coordination were assessed at 12 and 18 months of age and autistic traits were evaluated at 24-36 months of age. Cross-lagged panel analysis revealed significant within-domain effects for sensory sensitivity and eye-hand coordination from 12 to 18 months. Furthermore, a significant association between these two domains on later autistic traits was found. In analyzing the longitudinal bidirectional relationship, we found that lower eye-hand coordination skills at 12 months predicted later sensory sensitivity at 18 months, and in turn, social communication skills at 24-36 months. The present study offers new empirical evidence supporting the potential clinical value of including sensory and motor measures besides social communication skills within early autism surveillance programs.
Collapse
Affiliation(s)
- Elena Capelli
- Scientific Institute, IRCCS E. Medea, Child Psychopathology Unit, Bosisio Parini, Lecco, Italy
| | - Alessandro Crippa
- Scientific Institute, IRCCS E. Medea, Child Psychopathology Unit, Bosisio Parini, Lecco, Italy
| | - Elena Maria Riboldi
- Scientific Institute, IRCCS E. Medea, Child Psychopathology Unit, Bosisio Parini, Lecco, Italy
| | - Carolina Beretta
- Scientific Institute, IRCCS E. Medea, Child Psychopathology Unit, Bosisio Parini, Lecco, Italy
| | - Eleonora Siri
- Scientific Institute, IRCCS E. Medea, Child Psychopathology Unit, Bosisio Parini, Lecco, Italy
| | - Maddalena Cassa
- Scientific Institute, IRCCS E. Medea, Child Psychopathology Unit, Bosisio Parini, Lecco, Italy
| | - Massimo Molteni
- Scientific Institute, IRCCS E. Medea, Child Psychopathology Unit, Bosisio Parini, Lecco, Italy
| | - Valentina Riva
- Scientific Institute, IRCCS E. Medea, Child Psychopathology Unit, Bosisio Parini, Lecco, Italy
| |
Collapse
|
12
|
Fabio RA, Suriano R. The Role of Smartphone Use in Sensory Processing: Differences Between Adolescents with ADHD and Typical Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1705. [PMID: 39767544 PMCID: PMC11728006 DOI: 10.3390/ijerph21121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
The use of smartphones is widespread among adolescents and can affect various cognitive processes. However, the effects of smartphone use on sensory processing, particularly among individuals with attention deficit hyperactivity disorder (ADHD), remain largely unknown. The present study investigated the relationship between smartphone use intensity and sensory processing in adolescents with typical development and those with ADHD. The sample included 184 adolescents aged 14 to 18 years (M = 16.56; SD = ±1.87), with 92 diagnosed with ADHD and 92 with typical development, matched for age, gender, and IQ. Participants completed a self-report questionnaire to measure smartphone use intensity, while sensory processing was assessed using the Adolescent Sensory Profile (ASP). The results revealed a significant association between the intensity of smartphone use and heightened sensory responses in adolescents with typical development. However, this relationship was not observed in participants with ADHD. These preliminary findings suggest that smartphone use may influence sensory processing differently depending on neurotypical development or the presence of ADHD, potentially contributing to the promotion or mitigation of sensory dysfunctions. Future studies are needed to further explore the mechanisms underlying these differences and to better understand the impact of digital technologies on sensory functioning.
Collapse
Affiliation(s)
- Rosa Angela Fabio
- Department of Cognitive, Psychological and Pedagogical Sciences and Cultural Studies, University of Messina, 98100 Messina, Italy;
| | | |
Collapse
|
13
|
Persichetti AS, Li TL, Stevens WD, Martin A, Gilmore AW. Atypical scene-selectivity in the retrosplenial complex in individuals with autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628702. [PMID: 39803432 PMCID: PMC11722278 DOI: 10.1101/2024.12.16.628702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
A small behavioral literature on individuals with autism spectrum disorder (ASD) has shown that they can be impaired when navigating using map-based strategies (i.e., memory-guided navigation), but not during visually guided navigation. Meanwhile, there is neuroimaging evidence in typically developing (TD) individuals demonstrating that the retrosplenial complex (RSC) is part of a memory-guided navigation system, while the occipital place area (OPA) is part of a visually-guided navigation system. A key identifying feature of the RSC and OPA is that they respond significantly more to pictures of places compared to faces or objects - i.e., they demonstrate scene-selectivity. Therefore, we predicted that scene-selectivity would be weaker in the RSC of individuals with ASD compared to a TD control group, while the OPA would not show such a difference between the groups. We used functional MRI to scan groups of ASD individuals and matched TD individuals while they viewed pictures of places and faces and performed a one-back task. As predicted, scene-selectivity was significantly lower in the RSC, but not OPA, in the ASD group compared to the TD group. These results suggest that impaired memory-guided navigation in individuals with ASD may, in part, be due to atypical functioning in the RSC.
Collapse
Affiliation(s)
- Andrew S. Persichetti
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Taylor L. Li
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Adrian W. Gilmore
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
14
|
Al-Beltagi M. Nutritional management and autism spectrum disorder: A systematic review. World J Clin Pediatr 2024; 13:99649. [PMID: 39654662 PMCID: PMC11572612 DOI: 10.5409/wjcp.v13.i4.99649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) presents unique challenges related to feeding and nutritional management. Children with ASD often experience feeding difficulties, including food selectivity, refusal, and gastrointestinal issues. Various interventions have been explored to address these challenges, including dietary modifications, vitamin supplementation, feeding therapy, and behavioral interventions. AIM To provide a comprehensive overview of the current evidence on nutritional management in ASD. We examine the effectiveness of dietary interventions, vitamin supplements, feeding therapy, behavioral interventions, and mealtime practices in addressing the feeding challenges and nutritional needs of children with ASD. METHODS We systematically searched relevant literature up to June 2024, using databases such as PubMed, PsycINFO, and Scopus. Studies were included if they investigated dietary interventions, nutritional supplements, or behavioral strategies to improve feeding behaviors in children with ASD. We assessed the quality of the studies and synthesized findings on the impact of various interventions on feeding difficulties and nutritional outcomes. Data extraction focused on intervention types, study designs, participant characteristics, outcomes measured, and intervention effectiveness. RESULTS The review identified 316 studies that met the inclusion criteria. The evidence indicates that while dietary interventions and nutritional supplements may offer benefits in managing specific symptoms or deficiencies, the effectiveness of these approaches varies. Feeding therapy and behavioral interventions, including gradual exposure and positive reinforcement, promise to improve food acceptance and mealtime behaviors. The findings also highlight the importance of creating supportive mealtime environments tailored to the sensory and behavioral needs of children with ASD. CONCLUSION Nutritional management for children with ASD requires a multifaceted approach that includes dietary modifications, supplementation, feeding therapy, and behavioral strategies. The review underscores the need for personalized interventions and further research to refine treatment protocols and improve outcomes. Collaborative efforts among healthcare providers, educators, and families are essential to optimize this population's nutritional health and feeding practices. Enhancing our understanding of intervention sustainability and long-term outcomes is essential for optimizing care and improving the quality of life for children with ASD and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
15
|
Gonzalez-Herrero B, Happé F, Nicholson TR, Morgante F, Pagonabarraga J, Deeley Q, Edwards MJ. Functional Neurological Disorder and Autism Spectrum Disorder: A Complex and Potentially Significant Relationship. Brain Behav 2024; 14:e70168. [PMID: 39705515 DOI: 10.1002/brb3.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 12/22/2024] Open
Abstract
INTRODUCTION Functional neurological disorder (FND) and autism spectrum disorder (ASD) are two complex neuropsychiatric conditions that have been historically classified within psychiatric domains, resulting in a lack of extensive research, insufficient clinical recognition, and persistent societal stigma. In recent years, there has been an increasing recognition among professionals and affected individuals of their possible overlap. This review explores the potential clinical and mechanistic overlap between FND and ASD, with particular attention to shared symptoms across sensory, motor, and psychiatric domains. METHODS We conducted a narrative analysis utilizing the PubMed, CINAHL, MEDLINE, and ScienceDirect databases from inception to June 2024. The search employed specific MeSH terms related to ASD and FND. Given the limited data availability, we included all relevant articles that explored the potential connections between FND and ASD, focusing on established findings and theoretical hypotheses areas. RESULTS Scientific evidence indicates that FND and ASD may co-occur more frequently than previously acknowledged and with notable overlaps in their clinical presentations and pathophysiology. Theoretical models that have been applied to FND and ASD, such as the Bayesian brain theory and the tripartite model of autism, may provide valuable insights into the intersection of these conditions. Although much of the current evidence remains speculative, it underscores the need for hypothesis-driven research to investigate these potential connections further. CONCLUSION ASD and FND are heterogeneous conditions that appear to co-occur in a subset of individuals, with overlapping symptomatology and possibly shared underlying mechanisms. This hypothesis-generating review emphasizes the need for further research to better understand these links, ultimately aiming to improve clinical recognition and develop targeted interventions that enhance the quality of life for affected individuals.
Collapse
Affiliation(s)
- Belen Gonzalez-Herrero
- Departamento de Medicina, Universidad Autónoma de Barcelona (UAB), Bellaterra, Spain
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George's University of London, London, UK
- Queen's Hospital, Barking, Havering and Redbridge University Hospitals, Romford, UK
| | - Francesca Happé
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Timothy R Nicholson
- Neuropsychiatry Research & Education Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Francesca Morgante
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George's University of London, London, UK
| | - Javier Pagonabarraga
- Departamento de Medicina, Universidad Autónoma de Barcelona (UAB), Bellaterra, Spain
- Instituto de Investigación Biomédica de Sant Pau, Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Quinton Deeley
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Autism Unit, South London and Maudsley NHS Foundation Trust, London, UK
| | - Mark J Edwards
- Department of Clinical and Basic Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
16
|
Dewan M, Campbell Daniels E, Hunt JE, Bryant EA, Trikeriotis SI, Kelly DL, Adams HA, Hare SM, Waltz JA. Aberrant salience signaling in auditory processing in schizophrenia: Evidence for abnormalities in both sensory processing and emotional reactivity. Schizophr Res 2024; 274:329-336. [PMID: 39454324 PMCID: PMC11620929 DOI: 10.1016/j.schres.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
It has been long known that people with schizophrenia (SZ) have deficits in perceptual processing, including in the auditory domain. Furthermore, they often experience increased emotional responsivity and dysregulation, which further impacts overall functioning. Increased emotional responsivity to auditory stimuli is also seen in people with misophonia, a condition in which specific sounds elicit robust negative emotional responses. Given the role of emotional reactivity and dysregulation in the pathogenesis of SZ, our study investigated whether misophonia symptoms were elevated in SZ, or if people with SZ have a generalized increase in reactivity to sensory information. To explore the link between emotional reactivity to sound and more general aspects emotional reactivity and salience signaling in SZ, we used the Misophonia Questionnaire, the Sensory Processing Scale (SPS), and Aberrant Salience Inventory (ASI) in 30 people with SZ and 28 demographically-matched healthy volunteers (HVs). We found that people with SZ exhibited more emotional behavior associated with misophonia symptoms (specifically, distress in relation to sound) than HVs (t56 = 4.889, p < 0.001), but did not have elevated rates of misophonia overall. Also, sensory processing abnormalities and heightened emotional responses in people with SZ were not limited to the auditory domain but, rather, extended to all sensory modalities. Our results support the idea that SZ involves dysfunction in salience signaling, regarding auditory stimuli, but that abnormalities in salience signaling in SZ are more domain-general. These results highlight the importance of interventions designed to enhance emotion regulation in patients with SZ regarding stimuli in multiple modalities.
Collapse
Affiliation(s)
- Mahima Dewan
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jared E Hunt
- University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, Catonsville, MD, USA
| | - Emily A Bryant
- University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, Catonsville, MD, USA
| | - Samantha I Trikeriotis
- University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, Catonsville, MD, USA
| | - Deanna L Kelly
- University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, Catonsville, MD, USA; Spring Grove Hospital Center, Catonsville, MD, USA
| | - Heather A Adams
- University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, Catonsville, MD, USA; Spring Grove Hospital Center, Catonsville, MD, USA
| | - Stephanie M Hare
- University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, Catonsville, MD, USA
| | - James A Waltz
- University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, Catonsville, MD, USA.
| |
Collapse
|
17
|
Poulsen R, Williams Z, Dwyer P, Pellicano E, Sowman PF, McAlpine D. How auditory processing influences the autistic profile: A review. Autism Res 2024; 17:2452-2470. [PMID: 39552096 PMCID: PMC11638897 DOI: 10.1002/aur.3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
We need to combine sensory data from various sources to make sense of the world around us. This sensory data helps us understand our surroundings, influencing our experiences and interactions within our everyday environments. Recent interest in sensory-focused approaches to supporting autistic people has fixed on auditory processing-the sense of hearing and the act of listening-and its crucial role in language, communications, and social domains, as well as non-social autism-specific attributes, to understand better how sensory processing might differ in autistic people. In this narrative review, we synthesize published research into auditory processing in autistic people and the relationship between auditory processing and autistic attributes in a contextually novel way. The purpose is to understand the relationship between these domains more fully, drawing on evidence gleaned from experiential perspectives through to neurological investigations. We also examine the relationship between auditory processing and diagnosable auditory conditions, such as hyperacusis, misophonia, phonophobia, and intolerance to loud sounds, as well as its relation to sleep, anxiety, and sensory overload. Through reviewing experiential, behavioral and neurological literature, we demonstrate that auditory processes interact with and shape the broader autistic profile-something not previously considered. Through a better understanding of the potential impact of auditory experiences, our review aims to inform future research on investigating the relationship between auditory processing and autistic traits through quantitative measures or using qualitative experiential inquiry to examine this relationship more holistically.
Collapse
Affiliation(s)
- R. Poulsen
- Department of Linguistics, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Z. Williams
- Medical Scientist Training Program, Vanderbilt University School of MedicineVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of Hearing and Speech SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTennesseeUSA
- Frist Center for Autism and InnovationVanderbilt University School of EngineeringNashvilleTennesseeUSA
| | - P. Dwyer
- Center for the Mind and BrainDepartment of PsychologyMIND InstituteUniversity of CaliforniaDavisCaliforniaUSA
- Olga Tennison Autism Research Centre, School of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
| | - E. Pellicano
- Department of Clinical, Educational and Health PsychologyUniversity College LondonLondonUK
| | - P. F. Sowman
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- School of Clinical SciencesAuckland University of TechnologyAucklandNew Zealand
| | - D. McAlpine
- Department of Linguistics, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
18
|
Chen Y, Xi Z, Saunders R, Simmons D, Totsika V, Mandy W. A systematic review and meta-analysis of the relationship between sensory processing differences and internalising/externalising problems in autism. Clin Psychol Rev 2024; 114:102516. [PMID: 39515075 DOI: 10.1016/j.cpr.2024.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
There is evidence to suggest that sensory processing differences (SPDs) to external stimuli are a plausible underlying mechanism for mental health problems among autistic people. In the current systematic review, we examined the associations between, on the one hand, eleven types of SPDs and, on the other hand, internalising and externalising problems. The literature search was conducted on five databases (MEDLINE, PsycINFO, Web of Science, EMBASE, and CINAHL) between 1990 and August 2024. Studies with autistic people aged under 65 years-old that reported correlations between SPDs and internalising/externalising problems were included. Three-level and random-effects meta-analyses and narrative synthesis were conducted. In total, we included 63 articles (11,659 participants) in the current review. Overall, higher levels of all SPD subtypes were found to be associated with greater internalising/externalising problems. Hypersensitivity, visual, auditory, and tactile sensitivities were strongly associated with internalising/externalising problems, while smaller effects were observed for unusual processing of smell and taste. Sensation seeking was highly linked with externalising problems, whereas it was the least associated sensory subtype with internalising problems. Future studies could address the limitations in the extant literature (e.g., heterogeneity in the estimates of associations, a lack of externalising problem investigations and longitudinal studies) to further advance our understanding of the role of SPDs in the aetiology, development, and treatment of internalising/externalising problems in autism.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Clinical, Educational and Health Psychology, University College London, 1-19 Torrington Place, London, UK.
| | - Zhenyang Xi
- Department of Experimental Psychology, University College London, 26 Bedford Way, London, UK
| | - Rob Saunders
- Department of Clinical, Educational and Health Psychology, University College London, 1-19 Torrington Place, London, UK
| | - David Simmons
- School of Psychology and Neuroscience, University of Glasgow, 62 Hillhead Street, Glasgow, UK
| | - Vasiliki Totsika
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London, UK
| | - Will Mandy
- Department of Clinical, Educational and Health Psychology, University College London, 1-19 Torrington Place, London, UK
| |
Collapse
|
19
|
Brandes-Aitken A, Powers R, Wren J, Chu R, Shapiro KA, Steele M, Mukherjee P, Marco EJ. Sensory processing subtypes relate to distinct emotional and behavioral phenotypes in a mixed neurodevelopmental cohort. Sci Rep 2024; 14:29326. [PMID: 39592662 PMCID: PMC11599893 DOI: 10.1038/s41598-024-78573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Children with autism and other neurodevelopmental concerns (NDC) frequently exhibit an array of sensory processing dysfunction phenotypes, posing a significant challenge their adaptive development. Additionally, these children often encounter difficulties with self-regulation, including emotion dysregulation, anxiety, and symptoms associated with attention and hyperactivity. However, further research is required to comprehend how patterns of sensory processing differences across neurodevelopmental conditions may contribute to regulatory control problems. Adopting a transdiagnostic perspective within the Research Domain Criteria (RDoC) framework, this study examined the relationship between clusters of sensory processing phenotypes and differential patterns of self-regulation behaviors. We recruited a sample of 117 participants (8-12 years) with a diverse range of neurodevelopmental concerns including autism, ADHD, anxiety, and sensory processing differences. This study aimed to (1) establish the prevalence of self-regulation problems in a community-recruited cohort of children with diverse NDCs; (2) construct data-driven sensory processing latent subtypes; (3) investigate group differences in emotion dysregulation, anxiety, and ADHD symptoms. Results showed that 39% of NDC children met clinically concerning thresholds for emotion dysregulation, 19% for anxiety, and 62% for ADHD. Second, latent profile analysis identified five sensory processing subtypes categorized by modality: Typical Processing, Intermediate/Mixed, Sensory Over-Responsive, Sensory Seeking, and Sensory Under-Responsive. Notably, the Sensory Over-Responsive group exhibited distinctively elevated anxiety scores, while the Sensory Seeking and Sensory Under-Responsive groups showed heightened ADHD scores. Intriguingly, the Sensory Over-Responsive, Sensory Under-Responsive, and Sensory Seeking subgroups all demonstrated elevated emotion dysregulation scores, suggesting a potential shared mechanism of emotion dysregulation that might elucidate the connection between sensory processing differences and increased anxiety and ADHD behaviors in children with autism and other NDCs.
Collapse
Affiliation(s)
- Annie Brandes-Aitken
- Department of Applied Psychology, New York University, New York, NY, USA.
- Cortica Healthcare Inc, San Diego, CA, USA.
| | | | - Jamie Wren
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Robyn Chu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Growing Healthy Children Therapy, Rescue, CA, USA
| | - Kevin A Shapiro
- Cortica Healthcare Inc, San Diego, CA, USA
- Division of Neurology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Mary Steele
- Lifetime in Neurodevelopmental Care, Encino, CA, USA
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Elysa J Marco
- Cortica Healthcare Inc, San Diego, CA, USA
- Lifetime in Neurodevelopmental Care, Encino, CA, USA
| |
Collapse
|
20
|
Kariminezhad S, Zomorrodi R, Zrenner C, Blumberger DM, Ameis SH, Lin HY, Lai MC, Rajji TK, Lunsky Y, Sanches M, Desarkar P. Assessing plasticity in the primary sensory cortex and its relation with atypical tactile reactivity in autism: A TMS-EEG protocol. PLoS One 2024; 19:e0305013. [PMID: 39591434 PMCID: PMC11594394 DOI: 10.1371/journal.pone.0305013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Atypical sensory reactivity is a cardinal presentation in autism. Within the tactile domain, atypical tactile reactivity (TR) is common, it emerges early, persists into adulthood, and impedes social interaction and daily functioning. Hence, atypical TR is a key target for biological intervention to improve outcomes. Brain mechanisms informing biological interventions for atypical TR remains elusive. We previously reported hyper-plasticity in the motor cortex in autistic adults and found that repetitive transcranial magnetic stimulation (rTMS), designed to strengthen inhibitory processes in the brain, reduced hyper-plasticity. Whether the primary sensory cortex (S1) is characterized by hyper-plasticity, which may underlie atypical TR in autism is unknown. OBJECTIVES We aim to test whether hyper-plasticity in the S1 underlies atypical TR in autism, and investigate if a single session of rTMS can safely reduce hyper-plasticity in S1 in autistic adults. METHOD Plasticity will be assessed in the left S1 with integrated paired associative stimulation and electroencephalography (PAS-EEG) paradigm in 32 autistic adults and 32 age-, sex-, and intelligence quotient-matched controls. Autistic participants will be further randomized (double-blind, 1:1) to receive a single-session of either sham or active 20 Hz bilateral rTMS over the S1 and the plasticity will be re-assessed over the left S1 on the same day. CONCLUSIONS Atypical TR has been identified as one of the top clinical research priorities that can influence outcome in autistic population. The study findings can be highly valuable to further elucidate the mechanism underlying atypical TR, which in turn can help with developing a mechanism-driven intervention.
Collapse
Affiliation(s)
- Shohreh Kariminezhad
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephanie H. Ameis
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tarek K. Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Yona Lunsky
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Marcos Sanches
- Biostatistical Core, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pushpal Desarkar
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Reddy DU, Kumar KVP, Ramakrishna B, Umaiorubagam GS. An IoT-Based Framework for Automated Assessing and Reporting of Light Sensitivities in Children with Autism Spectrum Disorder. SENSORS (BASEL, SWITZERLAND) 2024; 24:7184. [PMID: 39598963 PMCID: PMC11597899 DOI: 10.3390/s24227184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Identification of light sensitivities, manifesting either as hyper-sensitive (over-stimulating) or hypo-sensitive (under-stimulating) in children with autism spectrum disorder (ASD), is crucial for the development of personalized sensory environments and therapeutic strategies. Traditional methods for identifying light sensitivities often depend on subjective assessments and manual video coding methods, which are time-consuming, and very keen observations are required to capture the diverse sensory responses of children with ASD. This can lead to challenges for clinical practitioners in addressing individual sensory needs effectively. The primary objective of this work is to develop an automated system using Internet of Things (IoT), computer vision, and data mining techniques for assessing visual sensitivities specifically associated with light (color and illumination). For this purpose, an Internet of Things (IoT)-based light sensitivities assessing system (IoT-LSAS) was designed and developed using a visual stimulating device, a bubble tube (BT). The IoT-LSAS integrates various electronic modules for (i) generating colored visual stimuli with different illumination levels and (ii) capturing images to identify children's emotional responses during sensory stimulation sessions. The system is designed to operate in two different modes: a child control mode (CCM) and a system control mode (SCM). Each mode uses a distinct approach for assessing light sensitivities, where CCM uses a preference-based approach, and SCM uses an emotional response tracking approach. The system was tested on a sample of 20 children with ASD, and the results showed that the IoT-LSAS effectively identified light sensitivities, with a 95% agreement rate in the CCM and a 90% agreement rate in the SCM when compared to the practitioner's assessment report. These findings suggest that the IoT-LSAS can be used as an alternative to traditional assessment methods for diagnosing light sensitivities in children with ASD, significantly reducing the practitioner's time required for diagnosis.
Collapse
Affiliation(s)
- Dundi Umamaheswara Reddy
- Diagnostics, Therapeutics and Assistive Devices Laboratory, Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| | - Kanaparthi V. Phani Kumar
- Diagnostics, Therapeutics and Assistive Devices Laboratory, Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| | - Bandaru Ramakrishna
- School of Electronics Engineering (SENSE), VIT-AP University, Vijayawada 522241, Andhra Pradesh, India;
| | - Ganapathy Sankar Umaiorubagam
- SRM College of Occupational Therapy, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| |
Collapse
|
22
|
Fan L, Li Q, Shi Y, Li X, Liu Y, Chen J, Sun Y, Chen A, Yang Y, Zhang X, Wang J, Wu L. Involvement of sphingosine-1-phosphate receptor 1 in pain insensitivity in a BTBR mouse model of autism spectrum disorder. BMC Med 2024; 22:504. [PMID: 39497100 PMCID: PMC11533282 DOI: 10.1186/s12916-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Abnormal sensory perception, particularly pain insensitivity (PAI), is a typical symptom of autism spectrum disorder (ASD). Despite the role of myelin metabolism in the regulation of pain perception, the mechanisms underlying ASD-related PAI remain unclear. METHODS The pain-associated gene sphingosine-1-phosphate receptor 1 (S1PR1) was identified in ASD samples through bioinformatics analysis. Its expression in the dorsal root ganglion (DRG) tissues of BTBR ASD model mice was validated using RNA-seq, western blot, RT-qPCR, and immunofluorescence. Pain thresholds were assessed using the von Frey and Hargreaves tests. Patch-clamp techniques measured KCNQ/M channel activity and neuronal action potentials. The expression of S1PR1, KCNQ/M, mitogen-activated protein kinase (MAPK), and cyclic AMP/protein kinase A (cAMP/PKA) signaling proteins was analyzed before and after inhibiting the S1P-S1PR1-KCNQ/M pathway via western blot and RT-qPCR. RESULTS Through integrated transcriptomic analysis of ASD samples, we identified the upregulated gene S1PR1, which is associated with sphingolipid metabolism and linked to pain perception, and confirmed its role in the BTBR mouse model of ASD. This mechanism involves the regulation of KCNQ/M channels in DRG neurons. The enhanced activity of KCNQ/M channels and the decreased action potentials in small and medium DRG neurons were correlated with PAI in a BTBR mouse model of ASD. Inhibition of the S1P/S1PR1 pathway rescued baseline insensitivity to pain by suppressing KCNQ/M channels in DRG neurons, mediated through the MAPK and cAMP/PKA pathways. Investigating the modulation and underlying mechanisms of the non-opioid pathway involving S1PR1 will provide new insights into clinical targeted interventions for PAI in ASD. CONCLUSIONS S1PR1 may contribute to PAI in the PNS in ASD. The mechanism involves KCNQ/M channels and the MAPK and cAMP/PKA signaling pathways. Targeting S1PR1 in the PNS could offer novel therapeutic strategies for the intervention of pain dysesthesias in individuals with ASD.
Collapse
Affiliation(s)
- Lili Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Qi Li
- School of Nursing, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaxin Shi
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xiang Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jiaqi Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yaqi Sun
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Anjie Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yuan Yang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xirui Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
- Department of Developmental Behavioral Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150023, China.
| |
Collapse
|
23
|
Chen Y, Yang C, Gao B, Chen K, Jao Keehn RJ, Müller RA, Yuan LX, You Y. Altered Functional Connectivity of Unimodal Sensory and Multisensory Integration Networks Is Related to Symptom Severity in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00313-6. [PMID: 39491786 DOI: 10.1016/j.bpsc.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Atypical sensory processing is a prevalent feature of autism spectrum disorder (ASD) and constitutes a core diagnostic criterion in DSM-5. However, the neurocognitive underpinnings of atypical unimodal and multimodal sensory processing and their relationships with autism symptoms remain unclear. METHODS In this study, we examined intrinsic functional connectivity (FC) patterns among 5 unimodal sensory and multisensory integration (MSI) networks in ASD using a large multisite dataset (N = 646) and investigated the relationships between altered FC, atypical sensory processing, social communicative deficits, and overall autism symptoms using correlation and mediation analyses. RESULTS Compared with typically developing control participants, participants in the ASD group demonstrated increased FC of the olfactory network, decreased FC within the MSI network, and decreased FC of the MSI-unimodal sensory networks. Furthermore, altered FC was positively associated with autism symptom severity, and such associations were completely mediated by atypical sensory processing and social communicative deficits. CONCLUSIONS ASD-specific olfactory overconnectivity and MSI-unimodal sensory underconnectivity lend support to the intense world theory and weak central coherence theory, suggesting olfactory hypersensitivity at the expense of MSI as a potential neural mechanism underlying atypical sensory processing in ASD. These atypical FC patterns suggest potential targets for psychological and neuromodulatory interventions.
Collapse
Affiliation(s)
- Yahui Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Yang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Bicheng Gao
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kehui Chen
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - R Joanne Jao Keehn
- Department of Psychology, San Diego State University, San Diego, California
| | - Ralph-Axel Müller
- Department of Psychology, San Diego State University, San Diego, California
| | - Li-Xia Yuan
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yuqi You
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Liu M, Zhang H, Shi F, Shen D. Hierarchical Graph Convolutional Network Built by Multiscale Atlases for Brain Disorder Diagnosis Using Functional Connectivity. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:15182-15194. [PMID: 37339027 DOI: 10.1109/tnnls.2023.3282961] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnosis of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected functional interactions across different spatial scales in hierarchical manners. In this study, we propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis. We first use a set of well-defined multiscale atlases to compute multiscale FCNs. Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling across multiple spatial scales, namely "Atlas-guided Pooling (AP)." Accordingly, we propose a multiscale-atlases-based hierarchical graph convolutional network (MAHGCN), built on the stacked layers of graph convolution and the AP, for a comprehensive extraction of diagnostic information from multiscale FCNs. Experiments on neuroimaging data from 1792 subjects demonstrate the effectiveness of our proposed method in the diagnoses of Alzheimer's disease (AD), the prodromal stage of AD [i.e., mild cognitive impairment (MCI)], as well as autism spectrum disorder (ASD), with the accuracy of 88.9%, 78.6%, and 72.7%, respectively. All results show significant advantages of our proposed method over other competing methods. This study not only demonstrates the feasibility of brain disorder diagnosis using resting-state fMRI empowered by deep learning but also highlights that the functional interactions in the multiscale brain hierarchy are worth being explored and integrated into deep learning network architectures for a better understanding of the neuropathology of brain disorders. The codes for MAHGCN are publicly available at "https://github.com/MianxinLiu/MAHGCN-code."
Collapse
|
25
|
Pirník Z, Szadvári I, Borbélyová V, Tomova A. Altered sex differences related to food intake, hedonic preference, and FosB/deltaFosB expression within central neural circuit involved in homeostatic and hedonic food intake regulation in Shank3B mouse model of autism spectrum disorder. Neurochem Int 2024; 181:105895. [PMID: 39461669 DOI: 10.1016/j.neuint.2024.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder accompanied by narrow interests, difficulties in communication and social interaction, and repetitive behavior. In addition, ASD is frequently associated with eating and feeding problems. Although the symptoms of ASD are more likely to be observed in boys, the prevalence of eating disorders is more common in females. The ingestive behavior is regulated by the integrative system of the brain, which involves both homeostatic and hedonic neural circuits. Sex differences in the physiology of food intake depend on sex hormones regulating the expression of the ASD-associated Shank genes. Shank3 mutation leads to ASD-like traits and Shank3B -/- mice have been established as an animal model to study the neurobiology of ASD. Therefore, the long-lasting neuronal activity in the central neural circuit related to the homeostatic and hedonic regulation of food intake was evaluated in both sexes of Shank3B mice, followed by the evaluation of the food intake and preference. In the Shank3B +/+ genotype, well-preserved relationships in the tonic activity within the homeostatic neural network together with the relationships between ingestion and hedonic preference were observed in males but were reduced in females. These interrelations were partially or completely lost in the mice with the Shank3B -/- genotype. A decreased hedonic preference for the sweet taste but increased total food intake was found in the Shank3B -/- mice. In the Shank3B -/- group, there were altered sex differences related to the amount of tonic cell activity in the hedonic and homeostatic neural networks, together with altered sex differences in sweet and sweet-fat solution intake. Furthermore, the Shank3B -/- females exhibited an increased intake and preference for cheese compared to the Shank3B +/+ ones. The obtained data indicate altered functional crosstalk between the central homeostatic and hedonic neural circuits involved in the regulation of food intake in ASD.
Collapse
Affiliation(s)
- Zdenko Pirník
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia; Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Ivan Szadvári
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Aleksandra Tomova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
26
|
Kumar M, Mehan S, Kumar A, Sharma T, Khan Z, Tiwari A, Das Gupta G, Narula AS. Therapeutic efficacy of Genistein in activation of neuronal AC/cAMP/CREB/PKA and mitochondrial ETC-Complex pathways in experimental model of autism: Evidence from CSF, blood plasma and brain analysis. Brain Res 2024; 1846:149251. [PMID: 39384128 DOI: 10.1016/j.brainres.2024.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
Autism is a complex neurodevelopmental condition characterized by repetitive behaviors, impaired social communication, and various associated conditions such as depression and anxiety. Its multifactorial etiology includes genetic, environmental, dietary, and gastrointestinal contributions. Pathologically, Autism is linked to mitochondrial dysfunction, oxidative stress, neuroinflammation, and neurotransmitter imbalances involving GABA, glutamate, dopamine, and oxytocin. Propionic acid (PRPA) is a short-chain fatty acid produced by gut bacteria, influencing central nervous system functions. Elevated PRPA levels can exacerbate Autism-related symptoms by disrupting metabolic processes and crossing the blood-brain barrier. Our research investigates the neuroprotective potential of Genistein (GNT), an isoflavone compound with known benefits in neuropsychiatric and neurodegenerative disorders, through modulation of the AC/cAMP/CREB/PKA signaling pathway and mitochondrial ETC complex (I-IV) function. In silico analyses revealed GNT's high affinity for these targets. Subsequent in vitro and in vivo experiments using a PRPA-induced rat model of autism demonstrated that GNT (40 and 80 mg/kg., orally) significantly improves locomotion, neuromuscular coordination, and cognitive functions in PRPA-treated rodents. Behavioral assessments showed reduced immobility in the forced swim test, enhanced Morris water maze performance, and restored regular locomotor activity. On a molecular level, GNT restored levels of key signaling molecules (AC, cAMP, CREB, PKA) and mitochondrial complexes (I-V), disrupted by PRPA exposure. Additionally, GNT reduced neuroinflammation and apoptosis, normalized neurotransmitter levels, and improved the complete blood count profile. Histopathological analyses confirmed that GNT ameliorated PRPA-induced brain injuries, restored normal brain morphology, reduced demyelination, and promoted neurogenesis. The study supports GNT's potential in autism treatment by modulating neural pathways, reducing inflammation, and restoring neurotransmitter balance.
Collapse
Affiliation(s)
- Manjeet Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India; Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
27
|
Horata E, Ay H, Aslan D. Autistic-like behaviour and changes in thalamic cell numbers a rat model of valproic acid-induced autism; A behavioural and stereological study. Brain Res 2024; 1840:149047. [PMID: 38823508 DOI: 10.1016/j.brainres.2024.149047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The contribution of the thalamus to the development and behavioural changes in autism spectrum disorders (ASD), a neurodevelopmental syndrome, remains unclear. The aim of this study was to determine the changes in thalamic volume and cell number in the valproic acid (VPA)-induced ASD model using stereological methods and to clarify the relationship between thalamus and ASD-like behaviour. Ten pregnant rats were administered a single dose (600 mg/kg) of VPA intraperitoneally on G12.5 (VPA group), while five pregnant rats were injected with 5 ml saline (control group). Behavioural tests were performed to determine appropriate subjects and ASD-like behaviours. At P55, the brains of the subjects were removed. The sagittal sections were stained with cresyl violet and toluidine blue. The thalamic and hemispheric volumes with their ratios, the total number of thalamic cells, neurons and non-neuronal cells were calculated using stereological methods. Data were compared using a t-test and a Pearson correlation analysis was performed to examine the relationship between behaviour and stereological outcomes. VPA-treated rats had lower sociability and sociability indexes. There was no difference in social novelty preference and anxiety. The VPA group had larger hemispheric volume, lower thalamic volume, and fewer neurons. The highest percentage decrease was in non-neuronal cells. There was a moderate positive correlation between the number of non-neuronal cells and sociability, thalamic volume and the number of neurons as well as the time spent in the light box. The correlation between behaviour and stereological data suggests that the thalamus is associated with ASD-like behaviour.
Collapse
Affiliation(s)
- Erdal Horata
- Orthopedic Prosthesis Orthotics, Atatürk Health Services Vocational School, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | - Hakan Ay
- Department of Anatomy, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Duygu Aslan
- Department of Anatomy, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
28
|
Bigelow LJ, Jarvis JH, Fiset C, Pope EK, Le Maistre-Matthys C, Benke TA, Bernard PB. Early life seizures and olfactory communication in rats. Epilepsia 2024; 65:3091-3099. [PMID: 39221936 PMCID: PMC11495993 DOI: 10.1111/epi.18099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Early life seizures (ELS) are commonly associated with autism spectrum disorder (ASD); however, the exact role of ELS in the pathology is unknown. Prior studies have demonstrated social deficits, a core feature of ASD, following ELS; consequently, alterations in sensory modalities may contribute to the overall social deficits. Considering the speculated contribution of sensory deficit to social communication, we examined the developmental consequences of early postnatal kainic acid (KA)-induced seizures on olfactory preference and neural markers in the olfactory bulb in both male and female Sprague Dawley rats. METHODS KA-induced seizures or saline was administered. Rats were then exposed to a series of biologically relevant scents including male scent, female scent, nest scent, and phenylethylamine during the juvenile period and again during adulthood. Alterations in sensory modalities were expected to be expressed via abnormal preference for certain scents and/or production of abnormal ultrasonic vocalizations in response to scents. The olfactory bulbs were also assessed for the biologically relevant markers glial fibrillary acidic protein (GFAP) and calcium/calmodulin-dependent protein kinase II (CAMKII). RESULTS Our findings resulted in no significant differences in olfactory preference following ELS for juveniles or adults compared to controls. Similarly, there were no differences in GFAP expression or the ratio of phosphorylated CAMKII to CAMKII in either olfactory bulb. Interestingly, despite a lack of treatment differences, different scents were shown to elicit different responses in juvenile rats, yet these differences subsided in adulthood. SIGNIFICANCE Overall, the results of this study suggest that olfaction does not contribute to socialization deficit following ELS within the KA model.
Collapse
Affiliation(s)
- Logan J. Bigelow
- University of Prince Edward Island, Biomedical Sciences, Charlottetown, PE, Canada
| | - Jack H.M. Jarvis
- University of Prince Edward Island, Biomedical Sciences, Charlottetown, PE, Canada
| | - Catherine Fiset
- University of Prince Edward Island, Biomedical Sciences, Charlottetown, PE, Canada
| | - Emily K. Pope
- University of Prince Edward Island, Biomedical Sciences, Charlottetown, PE, Canada
| | | | - Tim A. Benke
- University of Colorado School of Medicine, Department of Pediatrics, Aurora, CO, United States
| | - Paul B. Bernard
- University of Prince Edward Island, Biomedical Sciences, Charlottetown, PE, Canada
| |
Collapse
|
29
|
Sivapalan S, Sivayokan B, Raveenthiran K, Sivayokan S. Sensory Issues and Their Impact Among Autistic Children: A Cross-Sectional Study in Northern Sri Lanka. Cureus 2024; 16:e72130. [PMID: 39575000 PMCID: PMC11580710 DOI: 10.7759/cureus.72130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Sensory processing issues are among the key diagnostic criteria for autism spectrum disorder (ASD). As altered sensory processing causes autistic children to react differently to sensory experiences and has a profound impact on their development, affecting their learning ability, social interaction, and ability to adapt to a new environment, there is a need to recognize and address these issues in children diagnosed with ASD during assessments and interventions. This study aimed to identify the patterns of sensory issues and their impact, and selected correlates among autistic children attending a center for neurodevelopmental disorders in northern Sri Lanka. METHODS This institution-based, descriptive, cross-sectional study was conducted at a center for neurodevelopmental disorders in Jaffna among 100 children diagnosed with ASD. The sociodemographic details of the child, and scores of the Childhood Autism Rating Scale second edition (CARS™ 2), Sensory Profile™ 2, and a locally developed Behavioral Checklist were extracted from the records available at the center. Data were analyzed using R statistical computing software (R Foundation for Statistical Computing, Vienna, Austria) using general linear models. RESULTS All the children in this study had at least one sensory issue, with 50% having visual processing issues. The severity of ASD increased as auditory processing issues increased. Behavioral issues, in general, increased significantly with increasing auditory and visual processing issues. Repetitive behaviors significantly increased with increasing auditory processing issues, while problems with self-regulation increased significantly with increasing visual and movement processing issues. Conduct-related issues were found to increase significantly with increasing movement and visual processing issues, and attentional response issues were found to increase significantly with increasing auditory, visual, and touch processing issues. CONCLUSION The high prevalence of sensory issues in autistic children and its impact on the severity of ASD and behavioral issues are reiterated in this study. These results emphasize the importance of including interventions targeting sensory issues with the routine therapy for ASD.
Collapse
Affiliation(s)
| | - Bhavana Sivayokan
- Department of Psychological Sciences, Kansas State University, Manhattan, USA
| | - Kounthini Raveenthiran
- Mathavam - Center for Neurodevelopmental Disorders, Regional Directorate of Health Services, Jaffna, LKA
| | - Sambasivamoorthy Sivayokan
- Mental Health Unit, Teaching Hospital Jaffna, Jaffna, LKA
- Department of Psychiatry, University of Jaffna, Jaffna, LKA
| |
Collapse
|
30
|
Vaissiere T, Michaelson SD, Creson T, Goins J, Fürth D, Balazsfi D, Rojas C, Golovin R, Meletis K, Miller CA, O’Connor D, Fontolan L, Rumbaugh G. Syngap1 Promotes Cognitive Function through Regulation of Cortical Sensorimotor Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.27.559787. [PMID: 37808765 PMCID: PMC10557642 DOI: 10.1101/2023.09.27.559787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, Syngap1, in cortical excitatory neurons is required for formation of somatomotor networks that promote SMI-mediated perception. Cortical Syngap1 expression was necessary and sufficient for setting tactile sensitivity, sustaining tactile object exploration, and promoting tactile learning. Mice with deficient Syngap1 expression exhibited impaired neural dynamics induced by exploratory touches within a cortical-thalamic network known to promote attention and perception. Disrupted neuronal dynamics were associated with circuit-specific long-range synaptic connectivity abnormalities. Our data support a model where autonomous Syngap1 expression in cortical excitatory neurons promotes cognitive abilities through assembly of circuits that integrate temporally-overlapping sensory and motor signals, a process that promotes perception and attention. These data provide systems-level insights into the robust association between Syngap1 expression and cognitive ability.
Collapse
Affiliation(s)
- Thomas Vaissiere
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Sheldon D. Michaelson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Thomas Creson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jessie Goins
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Daniel Fürth
- SciLifeLab, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Diana Balazsfi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Camilo Rojas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Randall Golovin
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Courtney A. Miller
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Daniel O’Connor
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorenzo Fontolan
- Aix-Marseille Université, INSERM, INMED, Turing Centre for Living Systems, Marseille, 13009, France
| | - Gavin Rumbaugh
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| |
Collapse
|
31
|
Sahoo B, Snyder AC. Neural Dynamics Underlying False Alarms in Extrastriate Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611738. [PMID: 39314344 PMCID: PMC11418951 DOI: 10.1101/2024.09.06.611738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The unfolding of neural population activity can be approximated as a dynamical system. Stability in the latent dynamics that characterize neural population activity has been linked with consistency in animal behavior, such as motor control or value-based decision-making. However, whether similar dynamics characterize perceptual activity and decision-making in the visual cortex is not well understood. To test this, we recorded V4 populations in monkeys engaged in a non-match-to-sample visual change-detection task that required sustained engagement. We measured how the stability in the latent dynamics in V4 might affect monkeys' perceptual behavior. Specifically, we reasoned that unstable sensory neural activity around dynamic attractor boundaries may make animals susceptible to taking incorrect actions when withholding action would have been correct ("false alarms"). We made three key discoveries: 1) greater stability was associated with longer trial sequences; 2) false alarm rate decreased (and reaction times slowed) when neural dynamics were more stable; and, 3) low stability predicted false alarms on a single-trial level, and this relationship depended on the elapsed time during the trial, consistent with the latent neural state approaching an attractor boundary. Our results suggest the same outward false alarm behavior can be attributed to two different potential strategies that can be disambiguated by examining neural stability: 1) premeditated false alarms that might lead to greater stability in population dynamics and faster reaction time and 2) false alarms due to unstable sensory activity consistent with misperception.
Collapse
Affiliation(s)
- Bikash Sahoo
- Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Adam C. Snyder
- Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
32
|
Wilde M, Ghanbari A, Mancienne T, Moran A, Poulsen RE, Constantin L, Lee C, Scholz LA, Arnold J, Qin W, Karle TJ, Petrou S, Favre-Bulle I, Hoffman EJ, Scott EK. Brain-wide circuitry underlying altered auditory habituation in zebrafish models of autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611137. [PMID: 39282371 PMCID: PMC11398315 DOI: 10.1101/2024.09.04.611137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Auditory processing is widely understood to occur differently in autism, though the patterns of brain activity underlying these differences are not well understood. The diversity of autism also means brain-wide networks may change in various ways to produce similar behavioral outputs. We used larval zebrafish to investigate auditory habituation in four genetic lines relevant to autism: fmr1, mecp2, scn1lab and cntnap2. In free-swimming behavioral tests, we found each line had a unique profile of auditory hypersensitivity and/or delayed habituation. Combining the optical transparency of larval zebrafish with genetically encoded calcium indicators and light-sheet microscopy, we then observed brain-wide activity at cellular resolution during auditory habituation. As with behavior, each line showed unique alterations in brain-wide spontaneous activity, auditory processing, and adaptation in response to repetitive acoustic stimuli. We also observed commonalities in activity across our genetic lines that indicate shared circuit changes underlying certain aspects of their behavioral phenotypes. These were predominantly in regions involved in sensory integration and sensorimotor gating rather than primary auditory areas. Overlapping phenotypes include differences in the activity and functional connectivity of the telencephalon, thalamus, dopaminergic regions, and the locus coeruleus, and excitatory/inhibitory imbalance in the cerebellum. Unique phenotypes include loss of activity in the habenula in scn1lab, increased activity in auditory regions in fmr1, and differences in network activity over time in mecp2 and cntnap2. Comparing these distinct but overlapping brain-wide auditory networks furthers our understanding of how diverse genetic factors can produce similar behavioral effects through a range of circuit- and network-scale mechanisms.
Collapse
Affiliation(s)
- Maya Wilde
- Queensland Brain Institute, University of Queensland, QLD, Australia
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Anahita Ghanbari
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Tessa Mancienne
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Ailís Moran
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Rebecca E. Poulsen
- Department of Linguistics, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Lena Constantin
- Queensland Brain Institute, University of Queensland, QLD, Australia
| | - Conrad Lee
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Leandro Aluisio Scholz
- Queensland Brain Institute, University of Queensland, QLD, Australia
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Joshua Arnold
- Queensland Brain Institute, University of Queensland, QLD, Australia
| | - Wei Qin
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Timothy J. Karle
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Itia Favre-Bulle
- Queensland Brain Institute, University of Queensland, QLD, Australia
| | - Ellen J. Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Ethan K. Scott
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| |
Collapse
|
33
|
Sanglakh Ghoochan Atigh A, Joghataei MT, Moradkhani S, Alizadeh Zarei M, Nazari MA. Early Auditory Temporal Processing Deficit in Children with Autism Spectrum Disorder: The Research Domain Criteria Framework. Brain Sci 2024; 14:896. [PMID: 39335392 PMCID: PMC11430892 DOI: 10.3390/brainsci14090896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Altered sensory processing especially in the auditory system is considered a typical observation in children with autism spectrum disorder (ASD). Auditory temporal processing is known to be impaired in ASD children. Although research suggests that auditory temporal processing abnormalities could be responsible for the core aspects of ASD, few studies have examined early time processing and their results have been conflicting. The present event-related potential (ERP) study investigated the early neural responses to duration and inter-stimulus interval (ISI) deviants in nonspeech contexts in children with ASD and a control group of typically developing (TD) children matched in terms of age and IQ. A passive auditory oddball paradigm was employed to elicit the mismatch negativity (MMN) for change detection considering both the duration and ISI-based stimulus. The MMN results showed that the ASD group had a relatively diminished amplitude and significant delayed latency in response to duration deviants. The findings are finally discussed in terms of hyper-hyposensitivity of auditory processing and the fact that the observed patterns may potentially act as risk factors for ASD development within the research domain criteria (RDoC) framework.
Collapse
Affiliation(s)
- Atoosa Sanglakh Ghoochan Atigh
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.G.A.); (M.T.J.)
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.G.A.); (M.T.J.)
| | - Shadi Moradkhani
- Department of Neuroscience, Faculty of Psychology and Educational Science, University of Tabriz, Tabriz 5166616471, Iran;
| | - Mehdi Alizadeh Zarei
- Occupational Therapy Department, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran 1545913487, Iran;
| | - Mohammad Ali Nazari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.G.A.); (M.T.J.)
| |
Collapse
|
34
|
Yang D, Svoboda AM, George TG, Mansfield PK, Wheelock MD, Schroeder ML, Rafferty SM, Sherafati A, Tripathy K, Burns-Yocum T, Forsen E, Pruett JR, Marrus NM, Culver JP, Constantino JN, Eggebrecht AT. Mapping neural correlates of biological motion perception in autistic children using high-density diffuse optical tomography. Mol Autism 2024; 15:35. [PMID: 39175054 PMCID: PMC11342641 DOI: 10.1186/s13229-024-00614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD), a neurodevelopmental disorder defined by social communication deficits plus repetitive behaviors and restricted interests, currently affects 1/36 children in the general population. Recent advances in functional brain imaging show promise to provide useful biomarkers of ASD diagnostic likelihood, behavioral trait severity, and even response to therapeutic intervention. However, current gold-standard neuroimaging methods (e.g., functional magnetic resonance imaging, fMRI) are limited in naturalistic studies of brain function underlying ASD-associated behaviors due to the constrained imaging environment. Compared to fMRI, high-density diffuse optical tomography (HD-DOT), a non-invasive and minimally constraining optical neuroimaging modality, can overcome these limitations. Herein, we aimed to establish HD-DOT to evaluate brain function in autistic and non-autistic school-age children as they performed a biological motion perception task previously shown to yield results related to both ASD diagnosis and behavioral traits. METHODS We used HD-DOT to image brain function in 46 ASD school-age participants and 49 non-autistic individuals (NAI) as they viewed dynamic point-light displays of coherent biological and scrambled motion. We assessed group-level cortical brain function with statistical parametric mapping. Additionally, we tested for brain-behavior associations with dimensional metrics of autism traits, as measured with the Social Responsiveness Scale-2, with hierarchical regression models. RESULTS We found that NAI participants presented stronger brain activity contrast (coherent > scrambled) than ASD children in cortical regions related to visual, motor, and social processing. Additionally, regression models revealed multiple cortical regions in autistic participants where brain function is significantly associated with dimensional measures of ASD traits. LIMITATIONS Optical imaging methods are limited in depth sensitivity and so cannot measure brain activity within deep subcortical regions. However, the field of view of this HD-DOT system includes multiple brain regions previously implicated in both task-based and task-free studies on autism. CONCLUSIONS This study demonstrates that HD-DOT is sensitive to brain function that both differentiates between NAI and ASD groups and correlates with dimensional measures of ASD traits. These findings establish HD-DOT as an effective tool for investigating brain function in autistic and non-autistic children. Moreover, this study established neural correlates related to biological motion perception and its association with dimensional measures of ASD traits.
Collapse
Affiliation(s)
- Dalin Yang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Alexandra M Svoboda
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Tessa G George
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Patricia K Mansfield
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Medical Education, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Muriah D Wheelock
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University School of Engineering, St. Louis, MO, 63130, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mariel L Schroeder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Speech, Language, and Hearing Science, Purdue University, West Lafayette, IL, 47907, USA
| | - Sean M Rafferty
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Arefeh Sherafati
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Physics, Washington University School of Arts and Science, St. Louis, MO, 63130, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kalyan Tripathy
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
- University of Pittsburgh Medical Center, Western Psychiatric Hospital, Pittsburgh, PA, 15213, USA
| | - Tracy Burns-Yocum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Evolytics, Parkville, MO, 64152, USA
| | - Elizabeth Forsen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Doctor of Medicine Program, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Natasha M Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph P Culver
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University School of Engineering, St. Louis, MO, 63130, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Physics, Washington University School of Arts and Science, St. Louis, MO, 63130, USA
- Department of Electrical and System Engineering, Washington University School of Engineering, St. Louis, MO, 63112, USA
- Department Imaging Sciences Engineering, Washington University School of Engineering, St. Louis, MO, 63112, USA
| | - John N Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Behavioral and Mental Health, Children's Healthcare of Atlanta, Atlanta, GA, 30329, USA
| | - Adam T Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University School of Engineering, St. Louis, MO, 63130, USA.
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Physics, Washington University School of Arts and Science, St. Louis, MO, 63130, USA.
- Department of Electrical and System Engineering, Washington University School of Engineering, St. Louis, MO, 63112, USA.
- Department Imaging Sciences Engineering, Washington University School of Engineering, St. Louis, MO, 63112, USA.
| |
Collapse
|
35
|
Zanin J, Tomlin D, Rance G. Effectiveness of Noise Cancelling Earbuds in Reducing Hearing and Auditory Attention Deficits in Children with Autism. J Clin Med 2024; 13:4786. [PMID: 39200929 PMCID: PMC11355770 DOI: 10.3390/jcm13164786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Autism spectrum disorder (ASD) is a lifelong neurodevelopmental condition characterised by impairments in social communication, sensory abnormalities, and attentional deficits. Children with ASD often face significant challenges with speech perception and auditory attention, particularly in noisy environments. This study aimed to assess the effectiveness of noise cancelling Bluetooth earbuds (Nuheara IQbuds Boost) in improving speech perception and auditory attention in children with ASD. Methods: Thirteen children aged 6-13 years diagnosed with ASD participated. Pure tone audiometry confirmed normal hearing levels. Speech perception in noise was measured using the Consonant-Nucleus-Consonant-Word test, and auditory/visual attention was evaluated via the Integrated Visual and Auditory Continuous Performance Task. Participants completed these assessments both with and without the IQbuds in situ. A two-week device trial evaluated classroom listening and communication improvements using the Listening Inventory for Education-Revised (teacher version) questionnaire. Results: Speech perception in noise was significantly poorer for the ASD group compared to typically developing peers and did not change with the IQbuds. Auditory attention, however, significantly improved when the children were using the earbuds. Additionally, classroom listening and communication improved significantly after the two-week device trial. Conclusions: While the noise cancelling earbuds did not enhance speech perception in noise for children with ASD, they significantly improved auditory attention and classroom listening behaviours. These findings suggest that Bluetooth earbuds could be a viable alternative to remote microphone systems for enhancing auditory attention in children with ASD, offering benefits in classroom settings and potentially minimising the stigma associated with traditional assistive listening devices.
Collapse
Affiliation(s)
| | | | - Gary Rance
- Department of Audiology and Speech Pathology, The University of Melbourne, 550 Swanston St Carlton, Melbourne, VIC 3053, Australia; (J.Z.); (D.T.)
| |
Collapse
|
36
|
Crasta JE, Green OJ, Gavin WJ, Davies PL. The Relationship Between Attention, Sensory Processing, and Social Responsiveness Among Adults on the Autism Spectrum. J Autism Dev Disord 2024; 54:2972-2986. [PMID: 37270447 DOI: 10.1007/s10803-023-06019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
This study evaluated attention, sensory processing, and social responsiveness and the relationship between these constructs among autistic and neurotypical adults. Participants included 24 autistic adults (17-30 years) and 24 neurotypical peers who completed the Test of Everyday Attention, Adolescent/Adult Sensory Profile (AASP), and the Social Responsiveness Scale-2. Autistic individuals showed greater attention, sensory processing, and social responsiveness challenges compared to neurotypical peers. Using mediation models, we showed that the relationship between attention and social responsiveness was mediated by sensory processing, specifically the low registration and sensation-seeking AASP quadrants. The relationship between attention, sensory processing, and social responsiveness suggests that adults with greater attention issues may have greater sensory and social challenges. Specifically, having poor attention may lead to poor sensory processing skills which compound poor social responsiveness. Understanding the relationships between these domains is critical for developing effective interventions and support for autistic adults.
Collapse
Affiliation(s)
- Jewel Elias Crasta
- Occupational Therapy Division, The Ohio State University, Columbus, OH, USA.
| | - Olivia J Green
- Occupational Therapy Division, The Ohio State University, Columbus, OH, USA
| | - William J Gavin
- Molecular, Cellular, Integrated Neuroscience Program, Colorado State University, Fort Collins, CO, USA
| | - Patricia L Davies
- Molecular, Cellular, Integrated Neuroscience Program, Colorado State University, Fort Collins, CO, USA
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
37
|
Gigliotti F, Giovannone F, Belli A, Sogos C. Atypical Sensory Processing in Neurodevelopmental Disorders: Clinical Phenotypes in Preschool-Aged Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:875. [PMID: 39062324 PMCID: PMC11276037 DOI: 10.3390/children11070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Sensory processing issues are frequent in neurodevelopmental disorders (NDDs), with very variable prevalence rates ranging from 20% to 95%. This study aimed to investigate sensory processing in preschool-aged children with NDDs, to clarify the epidemiology, and to identify associated or correlated clinical and psychometric variables. METHODS A total of 141 NDD children (age range 2-5 years old) were included and enrolled in two subgroups: 72 with ASD and 69 with other NDDs. A standardized neuropsychological evaluation was assessed (Griffiths III/WPPSI-III/Leiter-R, ADOS-2) and the parents completed the CBCL ½-5, the SPM-P, and the ADI-R. RESULTS Atypical sensory processing was reported in 39.7% of the total sample, more frequently in ASD (44.4%) than in other NDDs (34.8%). No statistically significant differences were found regarding gender and developmental level. A positive correlation was found between sensory processing abnormalities and behavioral problems (p < 0.01). CONCLUSIONS Compared to other NDDs, ASDs more frequently have atypical sensory processing and appear to present a specific vulnerability in the processing of proprioceptive and vestibular inputs. Our results suggest that sensory processing difficulties should be considered regardless of developmental level and in children with behavioral problems.
Collapse
Affiliation(s)
| | | | | | - Carla Sogos
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (F.G.); (F.G.); (A.B.)
| |
Collapse
|
38
|
Talley M, Brown C, Wingo N, Conway J, Maha J, Kong M. Neurodivergent patient experience in a tertiary children's hospital-a qualitative analysis. Front Pediatr 2024; 12:1427433. [PMID: 39081926 PMCID: PMC11286462 DOI: 10.3389/fped.2024.1427433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Sensory processing challenges are commonly encountered in pediatric patients, particularly in those who are neurodivergent. We previously developed a novel clinical pathway (named "Sensory Pathway") which aimed at improving patient care for those with sensory barriers via staff training, provision of sensory toolkits and early integration of families throughout the hospital stay. We hypothesized that utilization of this pathway will result in improved patient experience and provide valuable feedback to improve care. Methods A voluntary survey was made available to all patients who utilized this resource as part of our hospital wide patient satisfaction survey. Qualitative data was coded using open coding as part of the constant comparison method data using NVivo 12 for Windows software for analysis. Software was used to create word clouds and clusters for visualization, which confirmed the themes and patterns that were noted from initial open coding. Results Between 2021 and 2022, surveys were obtained from 160 patients who utilized the Sensory Pathway. More than 50% reported that the most helpful components of the pathway were the approach by the staff and sensory tools. The three major themes identified from the survey were (1) Tools and techniques that benefited their children; (2) Positive interactions and communication with the hospital staff, and (3) Suggestions for future improvement. Conclusion The survey results highlight the importance of having tools readily available to aid with sensory regulation and comfort of patients during healthcare encounters, the value of a positive patient and staff encounter, as well as opportunities for improvement.
Collapse
Affiliation(s)
- Michele Talley
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chelsea Brown
- Children’s of Alabama, Birmingham, AL, United States
| | - Nancy Wingo
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Michele Kong
- Children’s of Alabama, Birmingham, AL, United States
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
39
|
Sumathipala SH, Khan S, Kozol RA, Araki Y, Syed S, Huganir RL, Dallman JE. Context-dependent hyperactivity in syngap1a and syngap1b zebrafish models of SYNGAP1-related disorder. Front Mol Neurosci 2024; 17:1401746. [PMID: 39050824 PMCID: PMC11266194 DOI: 10.3389/fnmol.2024.1401746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Background and aims SYNGAP1-related disorder (SYNGAP1-RD) is a prevalent genetic form of Autism Spectrum Disorder and Intellectual Disability (ASD/ID) and is caused by de novo or inherited mutations in one copy of the SYNGAP1 gene. In addition to ASD/ID, SYNGAP1 disorder is associated with comorbid symptoms including treatment-resistant-epilepsy, sleep disturbances, and gastrointestinal distress. Mechanistic links between these diverse symptoms and SYNGAP1 variants remain obscure, therefore, our goal was to generate a zebrafish model in which this range of symptoms can be studied. Methods We used CRISPR/Cas9 to introduce frameshift mutations in the syngap1a and syngap1b zebrafish duplicates (syngap1ab) and validated these stable models for Syngap1 loss-of-function. Because SYNGAP1 is extensively spliced, we mapped splice variants to the two zebrafish syngap1a and b genes and identified mammalian-like isoforms. We then quantified locomotory behaviors in zebrafish syngap1ab larvae under three conditions that normally evoke different arousal states in wild-type larvae: aversive, high-arousal acoustic, medium-arousal dark, and low-arousal light stimuli. Results We show that CRISPR/Cas9 indels in zebrafish syngap1a and syngap1b produced loss-of-function alleles at RNA and protein levels. Our analyses of zebrafish Syngap1 isoforms showed that, as in mammals, zebrafish Syngap1 N- and C-termini are extensively spliced. We identified a zebrafish syngap1 α1-like variant that maps exclusively to the syngap1b gene. Quantifying locomotor behaviors showed that syngap1ab mutant larvae are hyperactive compared to wild-type but to differing degrees depending on the stimulus. Hyperactivity was most pronounced in low arousal settings, and hyperactivity was proportional to the number of mutant syngap1 alleles. Limitations Syngap1 loss-of-function mutations produce relatively subtle phenotypes in zebrafish compared to mammals. For example, while mouse Syngap1 homozygotes die at birth, zebrafish syngap1ab-/- survive to adulthood and are fertile, thus some aspects of symptoms in people with SYNGAP1-Related Disorder are not likely to be reflected in zebrafish. Conclusion Our data support mutations in zebrafish syngap1ab as causal for hyperactivity associated with elevated arousal that is especially pronounced in low-arousal environments.
Collapse
Affiliation(s)
- Sureni H. Sumathipala
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Suha Khan
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Robert A. Kozol
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Department of Biological Sciences, St. John’s University, Queens, NY, United States
| | - Yoichi Araki
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, United States
| | - Richard L. Huganir
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
40
|
Bouteldja AA, Penichet D, Srivastava LK, Cermakian N. The circadian system: A neglected player in neurodevelopmental disorders. Eur J Neurosci 2024; 60:3858-3890. [PMID: 38816965 DOI: 10.1111/ejn.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Patients with neurodevelopmental disorders, such as autism spectrum disorder, often display abnormal circadian rhythms. The role of the circadian system in these disorders has gained considerable attention over the last decades. Yet, it remains largely unknown how these disruptions occur and to what extent they contribute to the disorders' development. In this review, we examine circadian system dysregulation as observed in patients and animal models of neurodevelopmental disorders. Second, we explore whether circadian rhythm disruptions constitute a risk factor for neurodevelopmental disorders from studies in humans and model organisms. Lastly, we focus on the impact of psychiatric medications on circadian rhythms and the potential benefits of chronotherapy. The literature reveals that patients with neurodevelopmental disorders display altered sleep-wake cycles and melatonin rhythms/levels in a heterogeneous manner, and model organisms used to study these disorders appear to support that circadian dysfunction may be an inherent characteristic of neurodevelopmental disorders. Furthermore, the pre-clinical and clinical evidence indicates that circadian disruption at the environmental and genetic levels may contribute to the behavioural changes observed in these disorders. Finally, studies suggest that psychiatric medications, particularly those prescribed for attention-deficit/hyperactivity disorder and schizophrenia, can have direct effects on the circadian system and that chronotherapy may be leveraged to offset some of these side effects. This review highlights that circadian system dysfunction is likely a core pathological feature of neurodevelopmental disorders and that further research is required to elucidate this relationship.
Collapse
Affiliation(s)
- Ahmed A Bouteldja
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Danae Penichet
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Lalit K Srivastava
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
41
|
Riboldi EM, Capelli E, Cantiani C, Beretta C, Molteni M, Riva V. Differentiating early sensory profiles in toddlers at elevated likelihood of autism and association with later clinical outcome and diagnosis. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:1654-1666. [PMID: 37795823 PMCID: PMC11191663 DOI: 10.1177/13623613231200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
LAY ABSTRACT Early sensory responsiveness may produce cascading effects on later development, but the relation between sensory profiles and autistic diagnosis remains unclear. In a longitudinal sample of toddlers at elevated likelihood for autism, we aimed to characterize sensory subgroups and their association with clinical outcomes later on. Three sensory subgroups were described and early sensory sensitivity plays a significant role in later development and diagnosis. This study supported the importance of examining different levels of sensory patterns to dissect the phenotypic heterogeneity in sensory processing. As sensory differences are associated with later developmental outcomes, these results may be critical when designing intervention needs and support for children at increased likelihood for neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Elena Capelli
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Chiara Cantiani
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Carolina Beretta
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Massimo Molteni
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Valentina Riva
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| |
Collapse
|
42
|
Jin X, Zhang K, Lu B, Li X, Yan CG, Du Y, Liu Y, Lu J, Luo X, Gao X, Liu J. Shared atypical spontaneous brain activity pattern in early onset schizophrenia and autism spectrum disorders: evidence from cortical surface-based analysis. Eur Child Adolesc Psychiatry 2024; 33:2387-2396. [PMID: 38147111 PMCID: PMC11255015 DOI: 10.1007/s00787-023-02333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023]
Abstract
Schizophrenia and autism spectrum disorders (ASD) were considered as two neurodevelopmental disorders and had shared clinical features. we hypothesized that they have some common atypical brain functions and the purpose of this study was to explored the shared brain spontaneous activity strength alterations in early onset schizophrenia (EOS) and ASD in the children and adolescents with a multi-center large-sample study. A total of 171 EOS patients (aged 14.25 ± 1.87), 188 ASD patients (aged 9.52 ± 5.13), and 107 healthy controls (aged 11.52 ± 2.82) had scanned with Resting-fMRI and analyzed surface-based amplitude of low-frequency fluctuations (ALFF). Results showed that both EOS and ASD had hypoactivity in the primary sensorimotor regions (bilateral primary and early visual cortex, left ventral visual stream, left primary auditory cortex) and hyperactivity in the high-order transmodal regions (bilateral SFL, bilateral DLPFC, right frontal eye fields), and bilateral thalamus. EOS had more severe abnormality than ASD. This study revealed shared functional abnormalities in the primary sensorimotor regions and the high-order transmodal regions in EOS and ASD, which provided neuroimaging evidence of common changes in EOS and ASD, and may help with better early recognition and precise treatment for EOS and ASD.
Collapse
Affiliation(s)
- Xingyue Jin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Kun Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yasong Du
- Shanghai Mental Health Center, No.600 Wanping Nan Road, Shanghai, China
| | - Yi Liu
- Shanghai Mental Health Center, No.600 Wanping Nan Road, Shanghai, China
| | - Jianping Lu
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Xuerong Luo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Xueping Gao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Jing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
43
|
Alsaedi RH, Carrington S, Watters JJ. Caregivers' Assessment of the Sensory Processing Patterns Exhibited by Children with Autism in the Gulf Region. J Autism Dev Disord 2024; 54:2693-2709. [PMID: 37171762 PMCID: PMC11286682 DOI: 10.1007/s10803-023-05937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 05/13/2023]
Abstract
This study explored the nature, prevalence, and developmental profiles of sensory processing disorders among children with autism spectrum disorder (ASD). The participants comprised 119 children with ASD and 30 typically developing children and their parents. The Child Sensory Profile-2 was used to assess the children's sensory processing characteristics. The children with ASD exhibited elevated sensory processing difficulties. Deficits were observed in all the sensory modalities among the children with ASD, except the visual processing modality. Age-related improvements were observed in most sensory processing domains, although non-significant differences were noted in three domains. These findings should enhance understanding of the sensory challenges faced by children with ASD and contribute to the development of individually tailored, targeted, and age-specific therapeutic interventions.
Collapse
Affiliation(s)
- Rehab H Alsaedi
- Faculty of Creative Industries, Education and Social Justice, Queensland University of Technology (QUT), Victoria Park Road, Kelvin Grove, Brisbane, QLD, 4059, Australia.
- The Department of Special Education, Taibah University, Janadah Bin Umayyah Road, Madinah, 41477, Saudi Arabia.
| | - Suzanne Carrington
- Faculty of Creative Industries, Education and Social Justice, Queensland University of Technology (QUT), Victoria Park Road, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - James J Watters
- Faculty of Creative Industries, Education and Social Justice, Queensland University of Technology (QUT), Victoria Park Road, Kelvin Grove, Brisbane, QLD, 4059, Australia
| |
Collapse
|
44
|
Doszyn O, Kedra M, Zmorzynska J. Hyperactive mTORC1 disrupts habenula function and light preference in zebrafish model of Tuberous sclerosis complex. iScience 2024; 27:110149. [PMID: 38947496 PMCID: PMC11214417 DOI: 10.1016/j.isci.2024.110149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is an integration hub for extracellular and intracellular signals necessary for brain development. Hyperactive mTORC1 is found in autism spectrum disorder (ASD) characterized by atypical reactivity to sensory stimuli, among other symptoms. In Tuberous sclerosis complex (TSC) inactivating mutations in the TSC1 or TSC2 genes result in hyperactivation of the mTORC1 pathway and ASD. Here, we show that lack of light preference of the TSC zebrafish model, tsc2 vu242/vu242 is caused by aberrant processing of light stimuli in the left dorsal habenula and tsc2 vu242/vu242 fish have impaired function of the left dorsal habenula, in which neurons exhibited higher activity and lacked habituation to the light stimuli. These characteristics were rescued by rapamycin. We thus discovered that hyperactive mTorC1 caused aberrant habenula function resulting in lack of light preference. Our results suggest that mTORC1 hyperactivity contributes to atypical reactivity to sensory stimuli in ASD.
Collapse
Affiliation(s)
- Olga Doszyn
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
- Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, 02-247 Warsaw, Poland
| | - Magdalena Kedra
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Justyna Zmorzynska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
- Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, 02-247 Warsaw, Poland
| |
Collapse
|
45
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Metabolomic changes in children with autism. World J Clin Pediatr 2024; 13:92737. [PMID: 38947988 PMCID: PMC11212761 DOI: 10.5409/wjcp.v13.i2.92737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and repetitive behaviors. Metabolomic profiling has emerged as a valuable tool for understanding the underlying metabolic dysregulations associated with ASD. AIM To comprehensively explore metabolomic changes in children with ASD, integrating findings from various research articles, reviews, systematic reviews, meta-analyses, case reports, editorials, and a book chapter. METHODS A systematic search was conducted in electronic databases, including PubMed, PubMed Central, Cochrane Library, Embase, Web of Science, CINAHL, Scopus, LISA, and NLM catalog up until January 2024. Inclusion criteria encompassed research articles (83), review articles (145), meta-analyses (6), systematic reviews (6), case reports (2), editorials (2), and a book chapter (1) related to metabolomic changes in children with ASD. Exclusion criteria were applied to ensure the relevance and quality of included studies. RESULTS The systematic review identified specific metabolites and metabolic pathways showing consistent differences in children with ASD compared to typically developing individuals. These metabolic biomarkers may serve as objective measures to support clinical assessments, improve diagnostic accuracy, and inform personalized treatment approaches. Metabolomic profiling also offers insights into the metabolic alterations associated with comorbid conditions commonly observed in individuals with ASD. CONCLUSION Integration of metabolomic changes in children with ASD holds promise for enhancing diagnostic accuracy, guiding personalized treatment approaches, monitoring treatment response, and improving outcomes. Further research is needed to validate findings, establish standardized protocols, and overcome technical challenges in metabolomic analysis. By advancing our understanding of metabolic dysregulations in ASD, clinicians can improve the lives of affected individuals and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Pediatric, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Bahrain, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Chest Disease, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| |
Collapse
|
46
|
Reddy NA, Clements RG, Brooks JCW, Bright MG. Simultaneous cortical, subcortical, and brainstem mapping of sensory activation. Cereb Cortex 2024; 34:bhae273. [PMID: 38940832 PMCID: PMC11212354 DOI: 10.1093/cercor/bhae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Nonpainful tactile sensory stimuli are processed in the cortex, subcortex, and brainstem. Recent functional magnetic resonance imaging studies have highlighted the value of whole-brain, systems-level investigation for examining sensory processing. However, whole-brain functional magnetic resonance imaging studies are uncommon, in part due to challenges with signal to noise when studying the brainstem. Furthermore, differentiation of small sensory brainstem structures such as the cuneate and gracile nuclei necessitates high-resolution imaging. To address this gap in systems-level sensory investigation, we employed a whole-brain, multi-echo functional magnetic resonance imaging acquisition at 3T with multi-echo independent component analysis denoising and brainstem-specific modeling to enable detection of activation across the entire sensory system. In healthy participants, we examined patterns of activity in response to nonpainful brushing of the right hand, left hand, and right foot (n = 10 per location), and found the expected lateralization, with distinct cortical and subcortical responses for upper and lower limb stimulation. At the brainstem level, we differentiated the adjacent cuneate and gracile nuclei, corresponding to hand and foot stimulation respectively. Our findings demonstrate that simultaneous cortical, subcortical, and brainstem mapping at 3T could be a key tool to understand the sensory system in both healthy individuals and clinical cohorts with sensory deficits.
Collapse
Affiliation(s)
- Neha A Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, United States
| | - Rebecca G Clements
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, United States
| | - Jonathan C W Brooks
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Molly G Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, United States
| |
Collapse
|
47
|
Basile GA, Tatti E, Bertino S, Milardi D, Genovese G, Bruno A, Muscatello MRA, Ciurleo R, Cerasa A, Quartarone A, Cacciola A. Neuroanatomical correlates of peripersonal space: bridging the gap between perception, action, emotion and social cognition. Brain Struct Funct 2024; 229:1047-1072. [PMID: 38683211 PMCID: PMC11147881 DOI: 10.1007/s00429-024-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Peripersonal space (PPS) is a construct referring to the portion of space immediately surrounding our bodies, where most of the interactions between the subject and the environment, including other individuals, take place. Decades of animal and human neuroscience research have revealed that the brain holds a separate representation of this region of space: this distinct spatial representation has evolved to ensure proper relevance to stimuli that are close to the body and prompt an appropriate behavioral response. The neural underpinnings of such construct have been thoroughly investigated by different generations of studies involving anatomical and electrophysiological investigations in animal models, and, recently, neuroimaging experiments in human subjects. Here, we provide a comprehensive anatomical overview of the anatomical circuitry underlying PPS representation in the human brain. Gathering evidence from multiple areas of research, we identified cortical and subcortical regions that are involved in specific aspects of PPS encoding.We show how these regions are part of segregated, yet integrated functional networks within the brain, which are in turn involved in higher-order integration of information. This wide-scale circuitry accounts for the relevance of PPS encoding in multiple brain functions, including not only motor planning and visuospatial attention but also emotional and social cognitive aspects. A complete characterization of these circuits may clarify the derangements of PPS representation observed in different neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| | - Elisa Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY, 10031, USA
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Bruno
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Maria Rosaria Anna Muscatello
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Cerasa
- S. Anna Institute, Crotone, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, Messina, Italy
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | | | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
48
|
Gernert CC, Falter-Wagner CM, Noreika V, Jachs B, Jassim N, Gibbs K, Streicher J, Betts H, Bekinschtein TA. Stress in autism (STREAM): A study protocol on the role of circadian activity, sleep quality and sensory reactivity. PLoS One 2024; 19:e0303209. [PMID: 38768146 PMCID: PMC11104633 DOI: 10.1371/journal.pone.0303209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
Mental health issues are markedly increased in individuals with autism, making it the number one research priority by stakeholders. There is a crucial need to use personalized approaches to understand the underpinnings of mental illness in autism and consequently, to address individual needs. Based on the risk factors identified in typical mental research, we propose the following themes central to mental health issues in autism: sleep difficulties and stress. Indeed, the prevalence of manifold circadian disruptions and sleep difficulties in autism, alongside stress related to sensory overload, forms an integral part of autistic symptomatology. This proof-of-concept study protocol outlines an innovative, individualised approach towards investigating the interrelationships between stress indices, sleep and circadian activation patterns, and sensory sensitivity in autism. Embracing an individualized methodology, we aim to collect 14 days of data per participant from 20 individuals with autism diagnoses and 20 without. Participants' sleep will be monitored using wearable EEG headbands and a sleep diary. Diurnal tracking of heart rate and electrodermal activity through wearables will serve as proxies of stress. Those objective data will be synchronized with subjective experience traces collected throughout the day using the Temporal Experience Tracing (TET) method. TET facilitates the quantification of relevant aspects of individual experience states, such as stress or sensory sensitivities, by providing a continuous multidimensional description of subjective experiences. Capturing the dynamics of subjective experiences phase-locked to neural and physiological proxies both between and within individuals, this approach has the potential to contribute to our understanding of critical issues in autism, including sleep problems, sensory reactivity and stress. The planned strives to provide a pathway towards developing a more nuanced and individualized approach to addressing mental health in autism.
Collapse
Affiliation(s)
- Clara C. Gernert
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | | | - Valdas Noreika
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Barbara Jachs
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Nazia Jassim
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Prediction and Learning Lab, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | | | - Joaquim Streicher
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Hannah Betts
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Tristan A. Bekinschtein
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
49
|
Kang J, Li Y, Lv S, Hao P, Li X. Effects of transcranial direct current stimulation on brain activity and cortical functional connectivity in children with autism spectrum disorders. Front Psychiatry 2024; 15:1407267. [PMID: 38812483 PMCID: PMC11135472 DOI: 10.3389/fpsyt.2024.1407267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) has emerged as a therapeutic option to mitigate symptoms in individuals with autism spectrum disorder (ASD). Our study investigated the effects of a two-week regimen of tDCS targeting the left dorsolateral prefrontal cortex (DLPFC) in children with ASD, examining changes in rhythmic brain activity and alterations in functional connectivity within key neural networks: the default mode network (DMN), sensorimotor network (SMN), and dorsal attention network (DAN). Methods We enrolled twenty-six children with ASD and assigned them randomly to either an active stimulation group (n=13) or a sham stimulation group (n=13). The active group received tDCS at an intensity of 1mA to the left DLPFC for a combined duration of 10 days. Differences in electrical brain activity were pinpointed using standardized low-resolution brain electromagnetic tomography (sLORETA), while functional connectivity was assessed via lagged phase synchronization. Results Compared to the typically developing children, children with ASD exhibited lower current source density across all frequency bands. Post-treatment, the active stimulation group demonstrated a significant increase in both current source density and resting state network connectivity. Such changes were not observed in the sham stimulation group. Conclusion tDCS targeting the DLPFC may bolster brain functional connectivity in patients with ASD, offering a substantive groundwork for potential clinical applications.
Collapse
Affiliation(s)
- Jiannan Kang
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Yuqi Li
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Shuaikang Lv
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Pengfei Hao
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
50
|
Wollet M, Hernandez A, Nip K, Pugh J, Kim JH. Impacts of Perinatal Nicotine Exposure on nAChR Expression and Glutamatergic Synaptic Transmission in the Mouse Auditory Brainstem. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.592930. [PMID: 38765998 PMCID: PMC11100749 DOI: 10.1101/2024.05.08.592930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Exposure to nicotine in utero, often due to maternal smoking, significantly elevates the risk of auditory processing deficits in offspring. This study investigated the effects of chronic nicotine exposure during a critical developmental period on the functional expression of nicotinic acetylcholine receptors (nAChRs), glutamatergic synaptic transmission, and auditory processing in the mouse auditory brainstem. We evaluated the functionality of nAChRs at a central synapse and explored the impact of perinatal nicotine exposure (PNE) on synaptic currents and auditory brainstem responses (ABR) in mice. Our findings revealed developmentally regulated changes in nAChR expression in the medial nucleus of the trapezoid body (MNTB) neurons and presynaptic Calyx of Held terminals. PNE was associated with enhanced acetylcholine-evoked postsynaptic currents and compromised glutamatergic neurotransmission, highlighting the critical role of nAChR activity in the early stages of auditory synaptic development. Additionally, PNE resulted in elevated ABR thresholds and diminished peak amplitudes, suggesting significant impairment in central auditory processing without cochlear dysfunction. This study provides novel insights into the synaptic disturbances that contribute to auditory deficits resulting from chronic prenatal nicotine exposure, underlining potential targets for therapeutic intervention.
Collapse
|