1
|
Liang B, Fu L, Liu P. Regulation of lipid droplet dynamics and lipid homeostasis by hydroxysteroid dehydrogenase proteins. Trends Cell Biol 2025; 35:153-165. [PMID: 39603915 DOI: 10.1016/j.tcb.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
The superfamily of hydroxysteroid dehydrogenases (HSDs) has been well-characterized as enzymes in lipid metabolism, and especially in steroid hormone metabolism from bacteria to mammals. Recently, a subset of HSDs members, including 3β-HSD, 11β-HSD, and 17β-HSD, have been shown to be lipid droplet (LD)-associated proteins that are involved in LD dynamics beyond their canonical functions. This review summarizes current understanding of these LD-associated HSD proteins, focusing on how they regulate different LDs with respect to distinct neutral lipids including triacylglycerols (TAGs), cholesterol esters (CEs), and retinyl esters (REs), the evolutionally conserved role of some LD-associated 17β-HSDs in preventing lipolysis, and specific targeting of HSDs for the treatment of metabolic diseases and viral infections.
Collapse
Affiliation(s)
- Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China.
| | - Lin Fu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming 650500, China; Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China.
| | - Pingsheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Ye J, Huang X, Yuan M, Wang J, Jia R, Wang T, Tan Y, Zhu S, Xu Q, Wu X. HSD17B13 liquid-liquid phase separation promotes leukocyte adhesion in chronic liver inflammation. J Mol Cell Biol 2024; 16:mjae018. [PMID: 38692847 PMCID: PMC11631211 DOI: 10.1093/jmcb/mjae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/15/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024] Open
Abstract
The rs72613567:TA polymorphism in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) has been found to reduce the progression from steatosis to metabolic dysfunction-associated steatohepatitis (MASH). In this study, we sought to define the pathogenic role of HSD17B13 in triggering liver inflammation. Here, we demonstrate that HSD17B13 forms liquid-liquid phase separation (LLPS) around lipid droplets in the livers of MASH patients. The dimerization of HSD17B13 supports the LLPS formation and promotes its enzymatic function. HSD17B13 LLPS increases the biosynthesis of platelet activating factor (PAF), which in turn promotes fibrinogen synthesis and leukocyte adhesion. Blockade of the PAF receptor or STAT3 pathway inhibits the fibrinogen synthesis and leukocyte adhesion. Importantly, adeno-associated viral-mediated xeno-expression of human HSD17B13 exacerbates western diet/carbon tetrachloride-induced liver inflammation in Hsd17b13-/- mice. In conclusion, our results suggest that HSD17B13 LLPS triggers liver inflammation by promoting PAF-mediated leukocyte adhesion, and targeting HSD17B13 phase transition could be a promising therapeutic approach for treating hepatic inflammation in chronic liver disease.
Collapse
Affiliation(s)
- Jing Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiyu Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Manman Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing 210008, China
| | - Ru Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tianyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shun Zhu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Kiepura A, Suski M, Stachyra K, Kuś K, Czepiel K, Wiśniewska A, Ulatowska-Białas M, Olszanecki R. The Influence of the FFAR4 Agonist TUG-891 on Liver Steatosis in ApoE-Knockout Mice. Cardiovasc Drugs Ther 2024; 38:667-678. [PMID: 36705799 PMCID: PMC11266261 DOI: 10.1007/s10557-023-07430-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) constitutes an independent risk factor for the development of coronary heart disease. Low-grade inflammation has been shown to play an important role in the development of atherosclerosis and NAFLD. Free fatty acid receptor 4 (FFAR4/GPR120), which is involved in damping inflammatory reactions, may represent a promising target for the treatment of inflammatory diseases. Our objective was to evaluate the effect of TUG-891, the synthetic agonist of FFAR4/GPR120, on fatty liver in vivo. METHODS The effect of TUG-891 on fatty liver was investigated in apoE-/- mice fed a high-fat diet (HFD), using microscopic, biochemical, molecular, and proteomic methods. RESULTS Treatment with TUG-891 inhibited the progression of liver steatosis in apoE-/- mice, as evidenced by histological analysis, and reduced the accumulation of TG in the liver. This action was associated with a decrease in plasma AST levels. TUG-891 decreased the expression of liver genes and proteins involved in de novo lipogenesis (Srebp-1c, Fasn and Scd1) and decreased the expression of genes related to oxidation and uptake (Acox1, Ehhadh, Cd36, Fabp1). Furthermore, TUG-891 modified the levels of selected factors related to glucose metabolism (decreased Glut2, Pdk4 and Pklr, and increased G6pdx). CONCLUSION Pharmacological stimulation of FFAR4 may represent a promising lead in the search for drugs that inhibit NAFLD.
Collapse
Affiliation(s)
- Anna Kiepura
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Kamila Stachyra
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Katarzyna Kuś
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Klaudia Czepiel
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Anna Wiśniewska
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Magdalena Ulatowska-Białas
- Department of Pathomorphology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Rafał Olszanecki
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland.
| |
Collapse
|
4
|
Govardhan B, Anand VK, Nagaraja Rao P, Balachandran Menon P, Mithun S, Sasikala M, Sowmya T, Anuradha S, Smita CP, Nageshwar Reddy D, Ravikanth V. 17-Beta-Hydroxysteroid Dehydrogenase 13 Loss of Function Does Not Confer Protection to Nonalcoholic Fatty Liver Disease in Indian Population. J Clin Exp Hepatol 2024; 14:101371. [PMID: 38523737 PMCID: PMC10956055 DOI: 10.1016/j.jceh.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Background A splice variant in HSD17B13 gene is demonstrated to protect against nonalcoholic fatty liver disease (NAFLD), and mitigate the effect of Patatin-like phospholipase domain-containing 3 (PNPLA3-I148M). It is being explored as a putative drug target and in polygenic risk scores. Based on whole exome sequencing (WES) in our cohort of biopsy proven NAFLD and limited data on the variant in our ethnicity, we sought to explore its role. Methods This is a cross-sectional study that recruited 1,020 individuals with ultrasound/biopsy-confirmed NAFLD and matched controls. Liver enzymes and lipid profiles were estimated (Beckman coulter LX750/DXH800); WES was performed in NAFLD patients and controls (Illumina; HiSeqX); HSD17B13-A-INS/I148M-PNPLA3 variants were genotyped (sequencing/qR T-PCR); HSD17B13 protein expression was estimated (immunohistochemistry); the Student's t-test/Mann-Whitney U/Chi-square test and odds ratio (95% confidence interval) were used. Results There was no significant difference (Odds ratio = 0.76; 95% CI -0.57 to 1.03; P = 0.76) in the frequency of the rs72613567-A-INS between controls and patients (17.8% vs. 14.4%). No difference in the ALT (Alanine transaminase; 72.24 ± 65.13 vs. 73.70 ± 60.06; P = 0.51) and AST levels (Aspartate aminotransferase; 60.72 ± 55.59 vs. 61.63 ± 60.33; P = 0.91) between HSD17B13-wild and variant carriers were noted. Significantly elevated liver enzymes were seen in PNPLA3-148-variant/HSD17B13-wild compared with PNPLA3-148-variant/HSD17B13-variant (90.44 ± 59.0 vs. 112.32 ± 61.78; P = 0.02). No difference in steatosis (P = 0.51) between HSD17B13-wild and variant carriers was noted. No other variants in the intron-exon boundaries were identified. Although, protein expression differences were noted between wild and variant carriers, no difference in the extent of steatosis was seen. Conclusion Our study reports lack of association of the splice variant with reduced risk of NAFLD, and mitigating the effect of PNPLA3 variant. Ethnicity-based validation must be carried out before including it in assessing protection against NAFLD.
Collapse
Affiliation(s)
- Bale Govardhan
- Asian Healthcare Foundation, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - V. Kulkarni Anand
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Padaki Nagaraja Rao
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - P. Balachandran Menon
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Sharma Mithun
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Mitnala Sasikala
- Asian Healthcare Foundation, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - T.R. Sowmya
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Sekaran Anuradha
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - C. Pawar Smita
- Department of Genetics, Osmania University, Hyderabad, Telangana 500032, India
| | - D. Nageshwar Reddy
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Vishnubhotla Ravikanth
- Asian Healthcare Foundation, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| |
Collapse
|
5
|
Alcober-Boquet L, Kraus N, Huber LS, Vutukuri R, Fuhrmann DC, Stross C, Schaefer L, Scholich K, Zeuzem S, Piiper A, Schulz MH, Trebicka J, Welsch C, Ortiz C. BI-3231, an enzymatic inhibitor of HSD17B13, reduces lipotoxic effects induced by palmitic acid in murine and human hepatocytes. Am J Physiol Cell Physiol 2024; 326:C880-C892. [PMID: 38223924 DOI: 10.1152/ajpcell.00413.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
17-β-hydroxysteroid dehydrogenase 13 (HSD17B13), a lipid droplet-associated enzyme, is primarily expressed in the liver and plays an important role in lipid metabolism. Targeted inhibition of enzymatic function is a potential therapeutic strategy for treating steatotic liver disease (SLD). The present study is aimed at investigating the effects of the first selective HSD17B13 inhibitor, BI-3231, in a model of hepatocellular lipotoxicity using human cell lines and primary mouse hepatocytes in vitro. Lipotoxicity was induced with palmitic acid in HepG2 cells and freshly isolated mouse hepatocytes and the cells were coincubated with BI-3231 to assess the protective effects. Under lipotoxic stress, triglyceride (TG) accumulation was significantly decreased in the BI-3231-treated cells compared with that of the control untreated human and mouse hepatocytes. In addition, treatment with BI-3231 led to considerable improvement in hepatocyte proliferation, cell differentiation, and lipid homeostasis. Mechanistically, BI-3231 increased the mitochondrial respiratory function without affecting β-oxidation. BI-3231 inhibited the lipotoxic effects of palmitic acid in hepatocytes, highlighting the potential of targeting HSD17B13 as a specific therapeutic approach in steatotic liver disease.NEW & NOTEWORTHY 17-β-Hydroxysteroid dehydrogenase 13 (HSD17B13) is a lipid droplet protein primarily expressed in the liver hepatocytes. HSD17B13 is associated with the clinical outcome of chronic liver diseases and is therefore a target for the development of drugs. Here, we demonstrate the promising therapeutic effect of BI-3231 as a potent inhibitor of HSD17B13 based on its ability to inhibit triglyceride accumulation in lipid droplets (LDs), restore lipid metabolism and homeostasis, and increase mitochondrial activity in vitro.
Collapse
Affiliation(s)
- Lucia Alcober-Boquet
- Medical Clinic 1, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Nico Kraus
- Medical Clinic 1, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Lisa Sophie Huber
- Faculty of Medicine, Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany
| | - Rajkumar Vutukuri
- Faculty of Medicine, Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany
| | - Dominik C Fuhrmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Claudia Stross
- Medical Clinic 1, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Liliana Schaefer
- Faculty of Medicine, Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany
| | - Klaus Scholich
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Zeuzem
- Medical Clinic 1, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Albrecht Piiper
- Medical Clinic 1, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Marcel H Schulz
- Faculty of Medicine, Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
| | - Jonel Trebicka
- Department of Internal Medicine B, University Hospital Münster, Münster, Germany
| | - Christoph Welsch
- Medical Clinic 1, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Cristina Ortiz
- Medical Clinic 1, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| |
Collapse
|
6
|
Adesanya O, Das D, Kalsotra A. Emerging roles of RNA-binding proteins in fatty liver disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1840. [PMID: 38613185 PMCID: PMC11018357 DOI: 10.1002/wrna.1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
A rampant and urgent global health issue of the 21st century is the emergence and progression of fatty liver disease (FLD), including alcoholic fatty liver disease and the more heterogenous metabolism-associated (or non-alcoholic) fatty liver disease (MAFLD/NAFLD) phenotypes. These conditions manifest as disease spectra, progressing from benign hepatic steatosis to symptomatic steatohepatitis, cirrhosis, and, ultimately, hepatocellular carcinoma. With numerous intricately regulated molecular pathways implicated in its pathophysiology, recent data have emphasized the critical roles of RNA-binding proteins (RBPs) in the onset and development of FLD. They regulate gene transcription and post-transcriptional processes, including pre-mRNA splicing, capping, and polyadenylation, as well as mature mRNA transport, stability, and translation. RBP dysfunction at every point along the mRNA life cycle has been associated with altered lipid metabolism and cellular stress response, resulting in hepatic inflammation and fibrosis. Here, we discuss the current understanding of the role of RBPs in the post-transcriptional processes associated with FLD and highlight the possible and emerging therapeutic strategies leveraging RBP function for FLD treatment. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
| | - Diptatanu Das
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Soto A, Spongberg C, Martinino A, Giovinazzo F. Exploring the Multifaceted Landscape of MASLD: A Comprehensive Synthesis of Recent Studies, from Pathophysiology to Organoids and Beyond. Biomedicines 2024; 12:397. [PMID: 38397999 PMCID: PMC10886580 DOI: 10.3390/biomedicines12020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a widespread contributor to chronic liver disease globally. A recent consensus on renaming liver disease was established, and metabolic dysfunction-associated steatotic liver disease, MASLD, was chosen as the replacement for NAFLD. The disease's range extends from the less severe MASLD, previously known as non-alcoholic fatty liver (NAFL), to the more intense metabolic dysfunction-associated steatohepatitis (MASH), previously known as non-alcoholic steatohepatitis (NASH), characterized by inflammation and apoptosis. This research project endeavors to comprehensively synthesize the most recent studies on MASLD, encompassing a wide spectrum of topics such as pathophysiology, risk factors, dietary influences, lifestyle management, genetics, epigenetics, therapeutic approaches, and the prospective trajectory of MASLD, particularly exploring its connection with organoids.
Collapse
Affiliation(s)
- Allison Soto
- Department of Surgery, University of Illinois College of Medicine, Chicago, IL 60607, USA;
| | - Colby Spongberg
- Touro College of Osteopathic Medicine, Great Falls, MT 59405, USA
| | | | - Francesco Giovinazzo
- General Surgery and Liver Transplant Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
8
|
Zhang X, Yu W, Li Y, Wang A, Cao H, Fu Y. Drug development advances in human genetics-based targets. MedComm (Beijing) 2024; 5:e481. [PMID: 38344397 PMCID: PMC10857782 DOI: 10.1002/mco2.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development is a long and costly process, with a high degree of uncertainty from the identification of a drug target to its market launch. Targeted drugs supported by human genetic evidence are expected to enter phase II/III clinical trials or be approved for marketing more quickly, speeding up the drug development process. Currently, genetic data and technologies such as genome-wide association studies (GWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have identified and validated many potential molecular targets associated with diseases. This review describes the structure, molecular biology, and drug development of human genetics-based validated beneficial loss-of-function (LOF) mutation targets (target mutations that reduce disease incidence) over the past decade. The feasibility of eight beneficial LOF mutation targets (PCSK9, ANGPTL3, ASGR1, HSD17B13, KHK, CIDEB, GPR75, and INHBE) as targets for drug discovery is mainly emphasized, and their research prospects and challenges are discussed. In conclusion, we expect that this review will inspire more researchers to use human genetics and genomics to support the discovery of novel therapeutic drugs and the direction of clinical development, which will contribute to the development of new drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
| | - Haiqiang Cao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yuanlei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
9
|
Wang MX, Peng ZG. 17β-hydroxysteroid dehydrogenases in the progression of nonalcoholic fatty liver disease. Pharmacol Ther 2023; 246:108428. [PMID: 37116587 DOI: 10.1016/j.pharmthera.2023.108428] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a worldwide epidemic and a major public health problem, with a prevalence of approximately 25%. The pathogenesis of NAFLD is complex and may be affected by the environment and susceptible genetic factors, resulting in a highly variable disease course and no approved drugs in the clinic. Notably, 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13), which belongs to the 17β-hydroxysteroid dehydrogenase superfamily (HSD17Bs), is closely related to the clinical outcome of liver disease. HSD17Bs consists of fifteen members, most related to steroid and lipid metabolism, and may have the same biological function as HSD17B13. In this review, we highlight recent advances in basic research on the functional activities, major substrates, and key roles of HSD17Bs in the progression of NAFLD to develop innovative anti-NAFLD drugs targeting HSD17Bs.
Collapse
Affiliation(s)
- Mei-Xi Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
10
|
Lanzaro F, Guarino S, D'Addio E, Salvatori A, D'Anna JA, Marzuillo P, Miraglia Del Giudice E, Di Sessa A. Metabolic-associated fatty liver disease from childhood to adulthood: State of art and future directions. World J Hepatol 2022; 14:1087-1098. [PMID: 35978659 PMCID: PMC9258256 DOI: 10.4254/wjh.v14.i6.1087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/26/2021] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
In 2020, an international group of experts proposed to replace the term of nonalcoholic fatty liver disease with metabolic-associated fatty liver disease (MAFLD). This recent proposal reflects the close association of fatty liver with metabolic derangements, as demonstrated by previous robust data. Several factors [including genetics, inflammation, metabolic abnormalities, insulin resistance (IR), obesity, prenatal determinants, and gut-liver axis] have been found to be involved in MAFLD pathophysiology, but this tangled puzzle remains to be clearly understood. In particular, IR has been recognized as a key player in metabolic impairments development in children with fatty liver. On this ground, MAFLD definition focuses on the pathophysiological basis of the disease, by emphasizing the crucial role of metabolic impairments in this condition. Although primarily developed for adults, MAFLD diagnostic criteria have been recently updated with an age-appropriate definition for sex and age percentiles, because of the increasing attention to cardiometabolic risk in childhood. To date, accumulating evidence is available on the feasibility of MAFLD definition in clinical practice, but some data are still conflicting in highly selected populations. Considering the growing prevalence worldwide of fatty liver and its close relationship with metabolic dysfunction both in children and adults with subsequent increased cardiovascular risk, early strategies for MAFLD identification, treatment and prevention are needed. Novel therapeutic insights for MAFLD based on promising innovative biological techniques are also emerging. We aimed to summarize the most recent evidence in this intriguing research area both in children and adults.
Collapse
Affiliation(s)
- Francesca Lanzaro
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Stefano Guarino
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Elisabetta D'Addio
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Alessandra Salvatori
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Josè Alberto D'Anna
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy.
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Anna Di Sessa
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| |
Collapse
|
11
|
Riccio S, Melone R, Vitulano C, Guida P, Maddaluno I, Guarino S, Marzuillo P, Miraglia del Giudice E, Di Sessa A. Advances in pediatric non-alcoholic fatty liver disease: From genetics to lipidomics. World J Clin Pediatr 2022; 11:221-238. [PMID: 35663007 PMCID: PMC9134151 DOI: 10.5409/wjcp.v11.i3.221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 04/02/2022] [Indexed: 02/06/2023] Open
Abstract
As a result of the obesity epidemic, non-alcoholic fatty liver disease (NAFLD) represents a global medical concern in childhood with a closely related increased cardiometabolic risk. Knowledge on NAFLD pathophysiology has been largely expanded over the last decades. Besides the well-known key NAFLD genes (including the I148M variant of the PNPLA3 gene, the E167K allele of the TM6SF2, the GCKR gene, the MBOAT7-TMC4 rs641738 variant, and the rs72613567:TA variant in the HSD17B13 gene), an intriguing pathogenic role has also been demonstrated for the gut microbiota. More interestingly, evidence has added new factors involved in the "multiple hits" theory. In particular, omics determinants have been highlighted as potential innovative markers for NAFLD diagnosis and treatment. In fact, different branches of omics including metabolomics, lipidomics (in particular sphingolipids and ceramides), transcriptomics (including micro RNAs), epigenomics (such as DNA methylation), proteomics, and glycomics represent the most attractive pathogenic elements in NAFLD development, by providing insightful perspectives in this field. In this perspective, we aimed to provide a comprehensive overview of NAFLD pathophysiology in children, from the oldest pathogenic elements (including genetics) to the newest intriguing perspectives (such as omics branches).
Collapse
Affiliation(s)
- Simona Riccio
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Rosa Melone
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Caterina Vitulano
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Pierfrancesco Guida
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Ivan Maddaluno
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Stefano Guarino
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Emanuele Miraglia del Giudice
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Anna Di Sessa
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| |
Collapse
|
12
|
Kemas AM, Youhanna S, Lauschke VM. Non-alcoholic fatty liver disease - opportunities for personalized treatment and drug development. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2022. [DOI: 10.1080/23808993.2022.2053285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aurino M. Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
13
|
Alarcon-Barrera JC, Kostidis S, Ondo-Mendez A, Giera M. Recent advances in metabolomics analysis for early drug development. Drug Discov Today 2022; 27:1763-1773. [PMID: 35218927 DOI: 10.1016/j.drudis.2022.02.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/25/2022]
Abstract
The pharmaceutical industry adapted proteomics and other 'omics technologies for drug research early following their initial introduction. Although metabolomics lacked behind in this development, it has now become an accepted and widely applied approach in early drug development. Over the past few decades, metabolomics has evolved from a pure exploratory tool to a more mature and quantitative biochemical technology. Several metabolomics-based platforms are now applied during the early phases of drug discovery. Metabolomics analysis assists in the definition of the physiological response and target engagement (TE) markers as well as elucidation of the mode of action (MoA) of drug candidates under investigation. In this review, we highlight recent examples and novel developments of metabolomics analyses applied during early drug development.
Collapse
Affiliation(s)
- Juan Carlos Alarcon-Barrera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Alejandro Ondo-Mendez
- Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
14
|
Kumar S, Duan Q, Wu R, Harris EN, Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev 2021; 176:113869. [PMID: 34280515 PMCID: PMC11792083 DOI: 10.1016/j.addr.2021.113869] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease that encompasses a spectrum of pathological conditions, ranging from simple steatosis (NAFL), nonalcoholic steatohepatitis (NASH), fibrosis/cirrhosis which can further progress to hepatocellular carcinoma and liver failure. The progression of NAFL to NASH and liver fibrosis is closely associated with a series of liver injury resulting from lipotoxicity, oxidative stress, redox imbalance (excessive nitric oxide), ER stress, inflammation and apoptosis that occur sequentially in different liver cells which ultimately leads to the activation of liver regeneration and fibrogenesis, augmenting collagen and extracellular matrix deposition and promoting liver fibrosis and cirrhosis. Type 2 diabetes is a significant risk factor in NAFLD development by accelerating liver damage. Here, we overview recent findings from human study and animal models on the pathophysiological communication among hepatocytes (HCs), Kupffer cells (KCs), hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) during the disease development. The mechanisms of crucial signaling pathways, including Toll-like receptor, TGFβ and hedgehog mediated hepatic injury are also discussed. We further highlight the potentials of precisely targeting hepatic individual cell-type using nanotechnology as therapeutic strategy for the treatment of NASH and liver fibrosis.
Collapse
Affiliation(s)
- Santosh Kumar
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Qihua Duan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Rongxue Wu
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom.
| |
Collapse
|