1
|
Al-Beltagi M. Human milk oligosaccharide secretion dynamics during breastfeeding and its antimicrobial role: A systematic review. World J Clin Pediatr 2025; 14:104797. [PMID: 40491725 PMCID: PMC11947870 DOI: 10.5409/wjcp.v14.i2.104797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) are bioactive components of breast milk with diverse health benefits, including shaping the gut microbiota, modulating the immune system, and protecting against infections. HMOs exhibit dynamic secretion patterns during lactation, influenced by maternal genetics and environmental factors. Their direct and indirect antimicrobial properties have garnered significant research interest. However, a comprehensive understanding of the secretion dynamics of HMOs and their correlation with antimicrobial efficacy remains underexplored. AIM To synthesize current evidence on the secretion dynamics of HMOs during lactation and evaluate their antimicrobial roles against bacterial, viral, and protozoal pathogens. METHODS A systematic search of PubMed, Scopus, Web of Science, and Cochrane Library focused on studies investigating natural and synthetic HMOs, their secretion dynamics, and antimicrobial properties. Studies involving human, animal, and in vitro models were included. Data on HMO composition, temporal secretion patterns, and mechanisms of antimicrobial action were extracted. Quality assessment was performed using validated tools appropriate for study design. RESULTS A total of 44 studies were included, encompassing human, animal, and in vitro research. HMOs exhibited dynamic secretion patterns, with 2'-fucosyllactose (2'-FL) and lacto-N-tetraose peaking in early lactation and declining over time, while 3-fucosyllactose (3-FL) increased during later stages. HMOs demonstrated significant antimicrobial properties through pathogen adhesion inhibition, biofilm disruption, and enzymatic activity impairment. Synthetic HMOs, including bioengineered 2'-FL and 3-FL, were structurally and functionally comparable to natural HMOs, effectively inhibiting pathogens such as Pseudomonas aeruginosa, Escherichia coli, and Campylobacter jejuni. Additionally, HMOs exhibited synergistic effects with antibiotics, enhancing their efficacy against resistant pathogens. CONCLUSION HMOs are vital in antimicrobial defense, supporting infant health by targeting various pathogens. Both natural and synthetic HMOs hold significant potential for therapeutic applications, particularly in infant nutrition and as adjuncts to antibiotics. Further research, including clinical trials, is essential to address gaps in knowledge, validate findings, and explore the broader applicability of HMOs in improving maternal and neonatal health.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Paediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
2
|
Naseem S, Rizwan M. Imo-induced changes in gut hormones and glucose metabolism: A key to improving insulin sensitivity in type 2 diabetes. Diabetes Res Clin Pract 2025; 226:112285. [PMID: 40449625 DOI: 10.1016/j.diabres.2025.112285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/30/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025]
Abstract
Isomalto-oligosaccharides (IMO) are prebiotic oligosaccharides that have shown promise in improving insulin sensitivity and glucose metabolism, making them potential therapeutic agents for Type 2 Diabetes (T2D). IMO selectively stimulates beneficial gut microbiota, particularly Bifidobacterium and Lactobacillus, leading to the production of short-chain fatty acids (SCFAs) like acetate, propionate, and butyrate. These SCFAs play a pivotal role in enhancing the release of gut hormones such as GLP-1 (Glucagon-like peptide-1) and PYY (Peptide YY), which improve insulin secretion and promote satiety, thus improving glucose homeostasis. Clinical studies have reported that IMO supplementation can lower HbA1c by 0.5% and reduce postprandial glucose spikes, demonstrating its efficacy in glycemic control. Additionally, IMO promotes insulin sensitivity by reducing inflammation and enhancing adiponectin levels. Although the current findings are promising, further research is needed to determine optimal dosing, long-term safety, and the role of individual gut microbiomes in tailoring IMO interventions. Future studies focusing on personalized nutrition strategies and the synergistic effects of IMO with other lifestyle interventions could enhance its applicability as a key component in T2D management.
Collapse
Affiliation(s)
- Sobia Naseem
- Department of Chemistry, University of Engineering and Technology Lahore, Pakistan; Department of Polymer & Process Engineering, University of Engineering and Technology Lahore, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, University of Engineering and Technology Lahore, Pakistan.
| |
Collapse
|
3
|
Kumar A, Kumar V, Pramanik J, Rustagi S, Prajapati B, Jebreen A, Pande R. Lactiplantibacillus Plantarum as a Complementary Approach for Diabetes Treatment and Management. Curr Nutr Rep 2025; 14:72. [PMID: 40434575 DOI: 10.1007/s13668-025-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
PURPOSE OF REVIEW This review explores the impact of Lactiplantibacillus plantarum on diabetes management and discusses the potential mechanism. RECENT FINDINGS Recent studies have highlighted that gut dysbiosis has emerged as a key factor in the development of diabetes. In this context, probiotics, specifically Lactiplantibacillus plantarum, offer potential benefits in modulating gut microbiota and improving metabolic health. Several studies have demonstrated the positive impact of L. plantarum on glycemic control, insulin sensitivity, and inflammatory markers in diabetic animal models. The potential mechanisms of action of L. plantarum in diabetes management include inhibiting enzymes involved in glucose metabolism, modulating inflammatory responses, improving insulin sensitivity, restoring gut microbiota, and producing short-chain fatty acids. SUMMARY The article concludes that L. plantarum is a promising candidate for managing glucose hemostasis, thus offering a potential alternative or adjunct to conventional approaches. However, further clinical studies are necessary to understand the exact mechanism and long-term effects of L. plantarum in humans.
Collapse
Affiliation(s)
- Akash Kumar
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University), Mullana, India.
| | - Vikram Kumar
- Department of Food Technology, SRM University, Delhi NCR, Sonepat, India
| | - Jhilam Pramanik
- Department of Food Technology, William Carey University, Shillong, 793019, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
- Department of Food Technology, School of Agriculture, Maya Devi University, Dehradun, Uttrakhand, India
| | - Bhupendra Prajapati
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Ali Jebreen
- Department of Therapeutic Medical Nutrition, Faculty of Applied Medical Sciences, Palestine Ahliya University, Bethlehem, Palestine
| | - Ranjana Pande
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India.
| |
Collapse
|
4
|
Marino F, Petrella L, Cimmino F, Pizzella A, Monda A, Allocca S, Rotondo R, D’Angelo M, Musco N, Iommelli P, Catapano A, Bagnato C, Paolini B, Cavaliere G. From Obesity to Mitochondrial Dysfunction in Peripheral Tissues and in the Central Nervous System. Biomolecules 2025; 15:638. [PMID: 40427531 PMCID: PMC12108580 DOI: 10.3390/biom15050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Obesity is a condition of chronic low-grade inflammation affecting peripheral organs of the body, as well as the central nervous system. The adipose tissue dysfunction occurring under conditions of obesity is a key factor in the onset and progression of a variety of diseases, including neurodegenerative disorders. Mitochondria, key organelles in the production of cellular energy, play an important role in this tissue dysfunction. Numerous studies highlight the close link between obesity and adipocyte mitochondrial dysfunction, resulting in excessive ROS production and adipose tissue inflammation. This inflammation is transmitted systemically, leading to metabolic disorders that also impact the central nervous system, where pro-inflammatory cytokines impair mitochondrial and cellular functions in different areas of the brain, leading to neurodegenerative diseases. To date, several bioactive compounds are able to prevent and/or slow down neurogenerative processes by acting on mitochondrial functions. Among these, some molecules present in the Mediterranean diet, such as polyphenols, carotenoids, and omega-3 PUFAs, exert a protective action due to their antioxidant and anti-inflammatory ability. The aim of this review is to provide an overview of the involvement of adipose tissue dysfunction in the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, emphasizing the central role played by mitochondria, the main actors in the cross-talk between adipose tissue and the central nervous system.
Collapse
Affiliation(s)
- Francesca Marino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.P.); (A.P.); (A.C.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.P.); (A.P.); (A.C.)
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.P.); (A.P.); (A.C.)
| | - Antonietta Monda
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Telematic University, 00166 Rome, Italy;
| | - Salvatore Allocca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Roberta Rotondo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Margherita D’Angelo
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (N.M.); (P.I.)
| | - Piera Iommelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (N.M.); (P.I.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.P.); (A.P.); (A.C.)
| | - Carmela Bagnato
- Clinical Nutrition Unit, Madonna Delle Grazie Hospital, 75100 Matera, Italy;
| | - Barbara Paolini
- Unit of Dietetics and Clinical Nutrition, Department of Innovation, Experimentation and Clinical Research, S. Maria Alle Scotte Hospital, University of Siena, 53100 Siena, Italy;
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
5
|
Ndeh DA, Nakjang S, Kwiatkowski KJ, Sawyers C, Koropatkin NM, Hirt RP, Bolam DN. A Bacteroides thetaiotaomicron genetic locus encodes activities consistent with mucin O-glycoprotein processing and N-acetylgalactosamine metabolism. Nat Commun 2025; 16:3485. [PMID: 40216766 PMCID: PMC11992087 DOI: 10.1038/s41467-025-58660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
The gut microbiota is a key modulator of human health and the status of major diseases including cancer, diabetes and inflammatory bowel disease. Central to microbiota survival is the ability to metabolise complex dietary and host-derived glycans, including intestinal mucins. The prominent human gut microbe Bacteroides thetaiotaomicron (B. theta) is a versatile and highly efficient complex glycan degrader thanks to the expansion of gene clusters termed polysaccharide utilisation loci (PULs). While the mechanism of action for several singular dietary glycan-induced PULs have been elucidated, studies on the unusually high number of mucin-inducible PULs in B. theta significantly lag behind. Here we show that a mucin inducible PUL BT4240-50 encodes activities consistent with the processing and metabolism of mucin O-glycoproteins and their core sugar N-acetylgalactosamine (GalNAc). PUL BT4240-50 was also shown to be important for competitive growth on mucins in vitro, encoding a kinase (BT4240) critical for GalNAc metabolism. Additionally, BT4240-kinase was shown to be essential for glycosaminoglycan metabolism, extending the PULs function beyond mucins. These data advance our understanding of glycoprotein metabolism at mucosal surfaces, highlighting GalNAc as a key metabolite for competitive microbial survival in the human gut.
Collapse
Affiliation(s)
- Didier A Ndeh
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Sirintra Nakjang
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, UK
| | - Kurt J Kwiatkowski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claire Sawyers
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert P Hirt
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - David N Bolam
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
6
|
Fountoulakis PN, Theofilis P, Vlachakis PK, Karakasis P, Pamporis K, Sagris M, Dimitroglou Y, Tsioufis P, Oikonomou E, Tsioufis K, Tousoulis D. Gut Microbiota in Heart Failure-The Role of Inflammation. Biomedicines 2025; 13:911. [PMID: 40299538 PMCID: PMC12024997 DOI: 10.3390/biomedicines13040911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Heart failure (HF) has become an immense health concern affecting almost 1-2% of the population globally. It is a complex syndrome characterized by activation of the sympathetic nervous system and the Renin-Angiotensin-Aldosterone (RAAS) axis as well as endothelial dysfunction, oxidative stress, and inflammation. The recent literature points towards the interaction between the intestinal flora and the heart, also called the gut-heart axis. The human gastrointestinal tract is naturally inhabited by various microbes, which are distinct for each patient, regulating the functions of many organs. Alterations of the gut microbiome, a process called dysbiosis, may result in systemic diseases and have been associated with heart failure through inflammatory and autoimmune mechanisms. The disorder of intestinal permeability favors the translocation of microbes and many metabolites capable of inducing inflammation, thus further contributing to the deterioration of normal cardiac function. Besides diet modifications and exercise training, many studies have revealed possible gut microbiota targeted treatments for managing heart failure. The aim of this review is to demonstrate the impact of the inflammatory environment induced by the gut microbiome and its metabolites on heart failure and the elucidation of these novel therapeutic approaches.
Collapse
Affiliation(s)
- Petros N. Fountoulakis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Panayotis K. Vlachakis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Paschalis Karakasis
- 2nd Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Konstantinos Pamporis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Marios Sagris
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Yannis Dimitroglou
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Panagiotis Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.F.); (P.T.); (P.K.V.); (K.P.); (M.S.); (Y.D.); (P.T.); (K.T.)
| |
Collapse
|
7
|
Qin X, Chen M, He B, Chen Y, Zheng Y. Role of short-chain fatty acids in non-alcoholic fatty liver disease and potential therapeutic targets. Front Microbiol 2025; 16:1539972. [PMID: 40248431 PMCID: PMC12003400 DOI: 10.3389/fmicb.2025.1539972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is increasing worldwide and has become the greatest potential risk for cirrhosis and hepatocellular carcinoma. The metabolites produced by the gut microbiota act as signal molecules that mediate the interaction between microorganisms and the host and have biphasic effects on human health. The gut microbiota and its metabolites, short-chain fatty acids (SCFAs), have been discovered to ameliorate many prevalent liver diseases, including NAFLD. Currently, SCFAs have attracted widespread attention as potential therapeutic targets for NAFLD, but the mechanism of action has not been fully elucidated. This article summarizes the mechanisms of short-chain fatty acids of gut microbiota metabolites to regulate the metabolism of glucose and lipid, maintain the intestinal barrier, alleviate the inflammatory response, and improve the oxidative stress to improve NAFLD, in order to provide a reference for clinical application.
Collapse
Affiliation(s)
- Xiang Qin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Mengyao Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyan Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuelin Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
8
|
Zhu J, Peng F, Yang H, Luo J, Zhang L, Chen X, Liao H, Lei H, Liu S, Yang T, Luo G, Chen G, Zhao H. Probiotics and muscle health: the impact of Lactobacillus on sarcopenia through the gut-muscle axis. Front Microbiol 2025; 16:1559119. [PMID: 40160272 PMCID: PMC11952772 DOI: 10.3389/fmicb.2025.1559119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Sarcopenia refers to the decline in skeletal muscle mass and function. Due to its increased mortality rate and severe disability, the clinical importance of sarcopenia is becoming increasingly prominent. Although the exact cause of sarcopenia is not fully understood, the gut microbiota (GM) plays a crucial role in the pathogenesis of sarcopenia, and increasing evidence suggests that gut dysbiosis may be associated with disease development. In the past few decades, the use of probiotics has surged, few studies have explored their impact on sarcopenia prevention and treatment. Lactobacillus probiotics are commonly used for gut health and immune support, but their mechanism in sarcopenia via the gut-muscle axis remains uncertain. This review highlights the treatment challenges, GM's role in sarcopenia, and the potential of Lactobacillus as an adjunct therapy. In addition, we also discuss the possible mechanisms by which Lactobacillus affect muscle function, such as alleviating inflammatory states, clearing excessive reactive oxygen species (ROS), improving skeletal muscle metabolism, enhancing intestinal barrier function and modulating the gut microbiota and its metabolites. These mechanisms may collectively contribute to the preservation of muscle mass and function, offering a promising avenue for advancing microbial therapies for sarcopenia.
Collapse
Affiliation(s)
- Jingjun Zhu
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fei Peng
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Huixin Yang
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| | - Jing Luo
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Zhang
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaolong Chen
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Huazhi Liao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hao Lei
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuai Liu
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Tingqian Yang
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guanghua Luo
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guodong Chen
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
9
|
Jimoh AA, Adebo OA. Evaluation of antiobesogenic properties of fermented foods: In silico insights. J Food Sci 2025; 90:e70074. [PMID: 40047326 PMCID: PMC11884235 DOI: 10.1111/1750-3841.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 03/09/2025]
Abstract
Obesity prevalence has steadily increased over the past decades. Standard approaches, such as increased energy expenditure, lifestyle changes, a balanced diet, and the use of specific drugs, are the conventional strategies for preventing or treating the disease and its associated complications. Fermented foods and their subsequent bioactive constituents are now believed to be a novel strategy that can complement already existing approaches for managing and preventing this disease. Recent developments in systems biology and bioinformatics have made it possible to model and simulate compounds and disease interactions. The adoption of such in silico models has contributed to the discovery of novel fermented product targets and helped in testing hypotheses regarding the mechanistic impact and underlying functions of fermented food components. From the studies explored, key findings suggest that fermented foods affect adipogenesis, lipid metabolism, appetite regulation, gut microbiota composition, insulin resistance, and inflammation related to obesity, which could lead to new ways to treat these conditions. These outcomes were linked to probiotics, prebiotics, metabolites, and complex bioactive substances produced during fermentation. Overall, fermented foods and their bioactive compounds show promise as innovative tools for obesity management by influencing metabolic pathways and overall gut health.
Collapse
Affiliation(s)
- Abdullahi Adekilekun Jimoh
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of Johannesburg, DoornfonteinJohannesburgSouth Africa
| | - Oluwafemi Ayodeji Adebo
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of Johannesburg, DoornfonteinJohannesburgSouth Africa
| |
Collapse
|
10
|
Feng X, Qin Y, Ma S, Ming S, Weng Z, Xuan Y, Gong S, Fan F, Chen P, Chu Q, Li Z. Liubao tea extract restrains obesity-related hyperlipidemia via regulation of AMPK/p38/NF-κB pathway and intestinal microbiota. Food Chem 2025; 464:141910. [PMID: 39522375 DOI: 10.1016/j.foodchem.2024.141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Liubao tea, a traditional dark tea, has gained widespread recognition for various health benefits. In this study, the effects of Liubao tea extract (LTE) on obesity-related hyperlipidemia and the potential mechanism involved were explored. Anti-obesity compounds such as tricetin, isovitexin, tiliroside, etc. in LTE were identified. In high-fat diet mouse models, LTE effectively reduced tissues, organs, and body weight growth, and restored abnormal serum lipid levels. LTE could reverse adipocyte enlargement, lipid accumulation, and hepatic microstructure abnormalities. Notably, LTE reshaped gut microbiota by boosting beneficial bacteria (e.g., Bacteroides, Akkermansia, Psychrobacter) and suppressing harmful bacteria (e.g., Dubosiella, Faecalibaculum). Spearman correlation analysis unveiled significant associations between serum lipid levels, weight gain, LTE dosage, and gut microbiota, underlining the modulatory effects of LTE on metabolic disorders via the regulation of intestinal microbiota. Collectively, LTE could serve as a potential therapy for obesity-related hyperlipidemia prevention.
Collapse
Affiliation(s)
- Xinyu Feng
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China; Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuechao Qin
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, China
| | - Shengjin Ming
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| | - Zhihang Weng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuqi Xuan
- Cangwu County Liuwang Forestry Industry Development Co., Ltd, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, China.
| | - Zhongxia Li
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| |
Collapse
|
11
|
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2025; 17:292-314. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the consumption of postbiotics has gained significant attention due to their potential health benefits. However, their application in the bakery industry remains underutilized. This review focuses on recent advances in the use of postbiotics, specifically the metabolites of lactic acid bacteria, in bakery products. We provide a concise overview of the multifaceted benefits of postbiotics, including their role as natural antioxidants, antimicrobials, and preservatives, and their potential to enhance product quality, extend shelf-life, and contribute to consumer welfare. This review combines information from various sources to provide a comprehensive update on recent advances in the role of postbiotics in bakery products, subsequently discussing the concept of sourdough as a leavening agent and its role in improving the nutritional profile of bakery products. We highlighted the positive effects of postbiotics on bakery items, such as improved texture, flavor, and shelf life, as well as their potential to contribute to overall health through their antioxidant properties and their impact on gut health. Overall, this review emphasizes the promising potential of postbiotics to revolutionize the bakery industry and promote healthier and more sustainable food options. The integration of postbiotics into bakery products represents a promising frontier and offers innovative possibilities to increase product quality, reduce food waste, and improve consumer health. Further research into refining techniques to incorporate postbiotics into bakery products is essential for advancing the health benefits and eco-friendly nature of these vital food items.
Collapse
Affiliation(s)
- Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Guidi L, Martinez-Tellez B, Ortega Santos CP. Obesity, gut bacteria, and the epigenetic control of metabolic disease. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:333-368. [DOI: 10.1016/b978-0-443-18979-1.00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Gąsiorowska A, Romanowski M, Walecka-Kapica E, Kaczka A, Chojnacki C, Padysz M, Siedlecka M, Banasik J, Sobolewska-Włodarczyk A, Wiśniewska-Jarosińska M, Bierła JB, Otaru N, Cukrowska B, Steinert RE. Efficacy and Safety of a Mixture of Microencapsulated Sodium Butyrate, Probiotics, and Short Chain Fructooligosaccharides in Patients with Irritable Bowel Syndrome-A Randomized, Double-Blind, Placebo-Controlled Study. J Clin Med 2024; 14:6. [PMID: 39797089 PMCID: PMC11720862 DOI: 10.3390/jcm14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
Objective: Biotics are increasingly being used in the treatment of irritable bowel syndrome (IBS). This study aimed to assess the efficacy and safety of a mixture of microencapsulated sodium butyrate, probiotics (Lactocaseibacillus rhamnosus DSM 26357, Lactobacillus acidophilus DSM 32418, Bifidobacterium longum DSM 32946, Bifidobacterium bifidum DSM 32403, and Bifidobacterium lactis DSM 32269), and short-chain fructooligosaccharides (scFOSs) in IBS patients. Methods: This was a randomized, double-blind, placebo-controlled trial involving 120 adult participants with IBS. The primary outcome of the 12-week intervention was the improvement in IBS symptoms and quality of life (QOL), assessed with the use of IBS-Adequate Relief (IBS-AR), IBS-Global Improvement Scale (IBS-GIS), IBS-Symptom Severity Score (IBS-SSS), and IBS-QOL. Secondary outcomes were the number and type of stools (assessed via the Bristol Stool Form scale), patient-recorded symptoms, anthropometric parameters, and levels of selected inflammatory cytokines. Results: As early as at 4 weeks, there was a higher percentage of patients in the biotic group reporting adequate relief of symptoms (based on IBS-AR) than in the placebo group (64.7% vs. 42.0%, respectively, p = 0.023). At 12 weeks, fewer patients in the biotic group reported a 'worsening of symptoms' (based on IBS-GIS) than in the placebo group (5.9% vs. 16.0% respectively, p = 0.015). There were no significant differences between groups in IBS-QOL or IBS-SSS or any of the secondary outcome measures except the patient-recorded 'urgency to defecate' (p = 0.015) at week 12, which was significantly lower in the biotic group. The intervention was safe and well tolerated. Conclusions: A biotic mixture consisting of microencapsulated butyrate, probiotics, and small amounts of scFOSs is safe and effective in improving gastrointestinal symptoms in patients with IBS.
Collapse
Affiliation(s)
- Anita Gąsiorowska
- Gastroenterology Department, Medical University of Lodz, Pomorska 251, 92-213 Łódź, Poland; (A.G.); (M.R.); (E.W.-K.); (A.K.); (C.C.); (M.P.); (M.S.); (J.B.); (A.S.-W.); (M.W.-J.)
| | - Marek Romanowski
- Gastroenterology Department, Medical University of Lodz, Pomorska 251, 92-213 Łódź, Poland; (A.G.); (M.R.); (E.W.-K.); (A.K.); (C.C.); (M.P.); (M.S.); (J.B.); (A.S.-W.); (M.W.-J.)
| | - Ewa Walecka-Kapica
- Gastroenterology Department, Medical University of Lodz, Pomorska 251, 92-213 Łódź, Poland; (A.G.); (M.R.); (E.W.-K.); (A.K.); (C.C.); (M.P.); (M.S.); (J.B.); (A.S.-W.); (M.W.-J.)
| | - Aleksandra Kaczka
- Gastroenterology Department, Medical University of Lodz, Pomorska 251, 92-213 Łódź, Poland; (A.G.); (M.R.); (E.W.-K.); (A.K.); (C.C.); (M.P.); (M.S.); (J.B.); (A.S.-W.); (M.W.-J.)
| | - Cezary Chojnacki
- Gastroenterology Department, Medical University of Lodz, Pomorska 251, 92-213 Łódź, Poland; (A.G.); (M.R.); (E.W.-K.); (A.K.); (C.C.); (M.P.); (M.S.); (J.B.); (A.S.-W.); (M.W.-J.)
| | - Milena Padysz
- Gastroenterology Department, Medical University of Lodz, Pomorska 251, 92-213 Łódź, Poland; (A.G.); (M.R.); (E.W.-K.); (A.K.); (C.C.); (M.P.); (M.S.); (J.B.); (A.S.-W.); (M.W.-J.)
| | - Marta Siedlecka
- Gastroenterology Department, Medical University of Lodz, Pomorska 251, 92-213 Łódź, Poland; (A.G.); (M.R.); (E.W.-K.); (A.K.); (C.C.); (M.P.); (M.S.); (J.B.); (A.S.-W.); (M.W.-J.)
| | - Julia Banasik
- Gastroenterology Department, Medical University of Lodz, Pomorska 251, 92-213 Łódź, Poland; (A.G.); (M.R.); (E.W.-K.); (A.K.); (C.C.); (M.P.); (M.S.); (J.B.); (A.S.-W.); (M.W.-J.)
| | - Aleksandra Sobolewska-Włodarczyk
- Gastroenterology Department, Medical University of Lodz, Pomorska 251, 92-213 Łódź, Poland; (A.G.); (M.R.); (E.W.-K.); (A.K.); (C.C.); (M.P.); (M.S.); (J.B.); (A.S.-W.); (M.W.-J.)
| | - Maria Wiśniewska-Jarosińska
- Gastroenterology Department, Medical University of Lodz, Pomorska 251, 92-213 Łódź, Poland; (A.G.); (M.R.); (E.W.-K.); (A.K.); (C.C.); (M.P.); (M.S.); (J.B.); (A.S.-W.); (M.W.-J.)
| | - Joanna B. Bierła
- Department of Microbiology and Clinical Immunology, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Nize Otaru
- Health, Nutrition & Care, DSM-Firmenich, 4303 Kaiseraugst, Switzerland; (N.O.); (R.E.S.)
| | - Bożena Cukrowska
- Department of Pathomorphology, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Robert E. Steinert
- Health, Nutrition & Care, DSM-Firmenich, 4303 Kaiseraugst, Switzerland; (N.O.); (R.E.S.)
- Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
14
|
Wang K, Liu X, Huang H, Suo M, Wang J, Liu X, Zhang J, Chen X, Li Z. A new target for treating intervertebral disk degeneration: gut microbes. Front Microbiol 2024; 15:1452774. [PMID: 39678913 PMCID: PMC11638241 DOI: 10.3389/fmicb.2024.1452774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 12/17/2024] Open
Abstract
Intervertebral disk degeneration (IDD) is a common clinical spinal disease and one of the main causes of low back pain (LBP). Generally speaking, IDD is considered a natural degenerative process with age. However, with the deepening of research, people have discovered that IDD is not only related to age, but also has many factors that can induce and accelerate its progression. In addition, the pathogenesis of IDD remains unclear, resulting in limited traditional treatment methods that cannot effectively prevent and treat IDD. Conservative treatment may lead to patients' dependence on drugs, and the pain relief effect is not obvious. Similarly, surgical treatment is highly invasive, with a longer recovery time and a higher recurrence rate. With the deepening of exploration, people have discovered that intestinal microorganisms are an important symbiotic microbial community in the human body and are closely related to the occurrence and development of various diseases. Changes in intestinal microorganisms and their metabolites may affect the body's inflammatory response, immune regulation, and metabolic processes, thereby affecting the health of the intervertebral disk. In this context, the gut microbiota has received considerable attention as a potential target for delaying or treating IDD. This article first introduces the impact of gut microbes on common distal organs, and then focuses on three potential mechanisms by which gut microbes and their metabolites influence IDD. Finally, we also summarized the methods of delaying or treating IDD by interfering with intestinal microorganisms and their metabolites. Further understanding of the potential mechanisms between intestinal microorganisms and IDD will help to formulate reasonable IDD treatment strategies to achieve ideal therapeutic effects.
Collapse
Affiliation(s)
- Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Chen
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning, China
| |
Collapse
|
15
|
Muscogiuri G, Barrea L, Bettini S, El Ghoch M, Katsiki N, Tolvanen L, Verde L, Colao A, Busetto L, Yumuk VD, Hassapidou M, on behalf of EASO Nutrition Working Group. European Association for the Study of Obesity (EASO) Position Statement on Medical Nutrition Therapy for the Management of Individuals with Overweight or Obesity and Cancer. Obes Facts 2024; 18:86-105. [PMID: 39433024 PMCID: PMC12017763 DOI: 10.1159/000542155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Obesity, a prevalent and multifactorial disease, is linked to a range of metabolic abnormalities, including insulin resistance, dyslipidemia, and chronic inflammation. These imbalances not only contribute to cardiometabolic diseases but also play a significant role in cancer pathogenesis. The rising prevalence of obesity underscores the need to investigate dietary strategies for effective weight management for individuals with overweight or obesity and cancer. This European Society for the Study of Obesity (EASO) position statement aimed to summarize current evidence on the role of obesity in cancer and to provide insights on the major nutritional interventions, including the Mediterranean diet (MedDiet), the ketogenic diet (KD), and the intermittent fasting (IF), that should be adopted to manage individuals with overweight or obesity and cancer. The MedDiet, characterized by high consumption of plant-based foods and moderate intake of olive oil, fish, and nuts, has been associated with a reduced cancer risk. The KD and the IF are emerging dietary interventions with potential benefits for weight loss and metabolic health. KD, by inducing ketosis, and IF, through periodic fasting cycles, may offer anticancer effects by modifying tumor metabolism and improving insulin sensitivity. Despite the promising results, current evidence on these dietary approaches in cancer management in individuals with overweight or obesity is limited and inconsistent, with challenges including variability in adherence and the need for personalized dietary plans.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Cattedra Unesco “Educazione Alla Salute E Allo Sviluppo Sostenibile”, University Federico II, Naples, Italy
| | - Luigi Barrea
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, Naples, Italy
| | - Silvia Bettini
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, Padova, Italy
| | - Marwan El Ghoch
- Center for the Study of Metabolism, Body Composition and Lifestyle, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Niki Katsiki
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Liisa Tolvanen
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Obesity, Academic Specialist Center, Stockholm Health Care Services, Stockholm, Sweden
- ESDN Obesity of EFAD, Naarden, The Netherlands
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Annamaria Colao
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Cattedra Unesco “Educazione Alla Salute E Allo Sviluppo Sostenibile”, University Federico II, Naples, Italy
| | - Luca Busetto
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, Padova, Italy
| | - Volkan Demirhan Yumuk
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
- European Association for the Study of Obesity-Collaborating Center for Obesity Management, Istanbul, Turkey
| | - Maria Hassapidou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
- ESDN Obesity of EFAD, Naarden, The Netherlands
| | - on behalf of EASO Nutrition Working Group
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Cattedra Unesco “Educazione Alla Salute E Allo Sviluppo Sostenibile”, University Federico II, Naples, Italy
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, Naples, Italy
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, Padova, Italy
- Center for the Study of Metabolism, Body Composition and Lifestyle, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Obesity, Academic Specialist Center, Stockholm Health Care Services, Stockholm, Sweden
- ESDN Obesity of EFAD, Naarden, The Netherlands
- Department of Public Health, University of Naples Federico II, Naples, Italy
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
- European Association for the Study of Obesity-Collaborating Center for Obesity Management, Istanbul, Turkey
| |
Collapse
|
16
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
17
|
Serrafi A, Chegdani F, Bennis F, Kepinska M. The Importance of Argan Oil in Medicine and Cosmetology. Nutrients 2024; 16:3573. [PMID: 39458566 PMCID: PMC11510224 DOI: 10.3390/nu16203573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Argan oil, rich in unsaturated fatty acids and polyphenols, exerts beneficial effects on both the intestinal and skin microbiotas. In the gut, it promotes the growth of beneficial bacteria, such as lactobacilli, while reducing pathogenic bacteria, due to its anti-inflammatory properties that help maintain microbial balance. Additionally, it improves the integrity of the intestinal mucosa, reducing the risk of dysbiosis. On the skin, argan oil hydrates and balances the lipid environment, creating a favorable setting for beneficial microorganisms, while also possessing antimicrobial and anti-inflammatory properties that soothe conditions like eczema and acne. Thus, argan oil is valuable for overall health, supporting digestion and skin health. The objective of this review is to provide a summary of the benefits of argan oil for alternative and complementary medicine. An exhaustive search of the literature was carried out using targeted keywords. A set of 83 articles were selected and analyzed. As the mechanisms of action of argan oil are not completely understood, this work highlighted the benefits of this oil by analyzing its nutritional properties and its beneficial effects on the intestinal and skin microbiotas. Indeed, argan oil is valuable for overall health.
Collapse
Affiliation(s)
- Agata Serrafi
- Department of Immunochemistry and Chemistry, Wroclaw Medical University, ul. M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland;
| | - Fatima Chegdani
- Laboratory of Immunology and Biodiversity, Department of Biology, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Route El Jadida, BP 5366 Maarif, Casablanca 20100, Morocco; (F.C.); (F.B.)
| | - Faïza Bennis
- Laboratory of Immunology and Biodiversity, Department of Biology, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Route El Jadida, BP 5366 Maarif, Casablanca 20100, Morocco; (F.C.); (F.B.)
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
18
|
Song H, Chen F, Cao Y, Wang F, Wang L, Xiong L, Shen X. Innovative Applications of Pectin in Lipid Management: Mechanisms, Modifications, Synergies, Nanocarrier Systems, and Safety Considerations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20261-20272. [PMID: 39241169 DOI: 10.1021/acs.jafc.4c06586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Pectin, a natural polysaccharide predominantly sourced from the cell walls of terrestrial plants, is widely regarded for its gelling, thickening, and stabilizing properties, which have extensive applications in the food, pharmaceutical, and biotechnological industries. This review discusses the mechanistic pathways by which pectin mediates its lipid-lowering properties, such as pectin's antioxidant activity, the modulation of gut microbiota, its anti-inflammatory properties, its capacity to bind bile acids and cholesterol, and its impact on the expression of genes associated with lipid metabolism. To enhance its hypolipidemic properties, chemical, physical, and enzymatic modification techniques are explored. Additionally, the synergistic effects of pectin in combination with other bioactive compounds such as phytosterols and polyphenols, as well as its potential in nanocarrier-mediated delivery systems for lipid-lowering agents, are highlighted. The review also conducts a critical analysis of the safety and regulatory considerations associated with pectin use, emphasizing the necessity for comprehensive toxicological evaluations and adherence to regulatory standards. This paper underscores the growing potential of pectin not only as a dietary fiber but also as a multifaceted agent for ameliorating hyperlipidemia, catalyzing a shift toward more targeted and efficacious lipid-lowering strategies.
Collapse
Affiliation(s)
- Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fangmin Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yubo Cao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ling Xiong
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
19
|
Wang X, Jiang D, An X, Li S, Qi Y, Yang Y, Wang Z, Sun Q, Ling W, Ji C, Qi Y, Xu H, Han C, Zhao H, Kang B. Effects of wheat germ diet on intestinal antioxidant capacity, immunological function and gut microbiota of Sichuan white geese. Front Microbiol 2024; 15:1435454. [PMID: 39323886 PMCID: PMC11422236 DOI: 10.3389/fmicb.2024.1435454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024] Open
Abstract
Background Wheat germ is known for its antioxidant, anti-inflammatory, and disease resistance properties in animals. However, its effect on the gut of Sichuan white geese remains unclear. Method In this study, thirty 250-day-old geese were divided into three equal groups, the control group, LWG group (21.8% wheat germ) and HWG group (43.6% wheat germ), the experiment lasted 12 weeks. We assessed various aspects of geese intestinal health, including barrier function, digestibility, antioxidant capacity, immunity, microbiota, and metabolism. Results The study revealed a significant increase in villus height (VH), villus height-to-crypt depth (VH/CD) ratio, amylase, and lipase activities in the duodenum and ileum, increased putrescine levels in the duodenum and jejunum, as well as spermidine levels in the jejunum (P < 0.05). LWG increased the total antioxidant capacity (T-AOC) in the duodenum, while decreasing levels of intestinal malondialdehyde (MDA), serum lipopolysaccharide (LPS), interleukin-6 (IL-6), and diamine oxidase (DAO) activity (P < 0.05). Furthermore, LWG increased the relative abundance of Oscillospiraceae_unclassified, Ligilactobacillus, and Roseburia, as well as increased levels of acetic acid, butyric acid, and valeric acid, while decreasing the relative abundance of Subdoligranulum, Flavonifractor, and Klebsiella. Additionally, we observed 17 up-regulated genes and 25 down-regulated genes in the jejunum, which are associated with the cell cycle and immunity. These genes play roles in pathways such as the p53 signaling pathway, cell cycle regulation, and pathways associated with immune modulation. On the other hand, HWG increased intestinal VH and spermidine levels, as well as amylase and lipase activities in the duodenum (P < 0.05). It also elevated ileal T-AOC and sIgA levels (P < 0.05), while reducing intestinal MDA content, serum LPS levels, DAO activity, and propionic acid in cecum contents (P < 0.05). Moreover, HWG increased the relative abundance of Ligilactobacillus, Oscillospiraceae_unclassified, and Roseburia (P < 0.05). Conclusion Overall, wheat germ diets, particularly the LWG diet demonstrated the ability to enhance antioxidant capacity, digestibility, immunity, and barrier properties of the intestinal tract, while modulating the gut microbiota and metabolism. Therefore, wheat germ diets hold promise in improving intestinal health by preserving barrier function and regulating flora structure.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dongmei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoguang An
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuo Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuxin Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yujie Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zelong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qian Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Weikang Ling
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chengweng Ji
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuxuan Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hengyong Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunchun Han
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Yuzbashian E, Berg E, de Campos Zani SC, Chan CB. Cow's Milk Bioactive Molecules in the Regulation of Glucose Homeostasis in Human and Animal Studies. Foods 2024; 13:2837. [PMID: 39272602 PMCID: PMC11395457 DOI: 10.3390/foods13172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity disrupts glucose metabolism, leading to insulin resistance (IR) and cardiometabolic diseases. Consumption of cow's milk and other dairy products may influence glucose metabolism. Within the complex matrix of cow's milk, various carbohydrates, lipids, and peptides act as bioactive molecules to alter human metabolism. Here, we summarize data from human studies and rodent experiments illustrating how these bioactive molecules regulate insulin and glucose homeostasis, supplemented with in vitro studies of the mechanisms behind their effects. Bioactive carbohydrates, including lactose, galactose, and oligosaccharides, generally reduce hyperglycemia, possibly by preventing gut microbiota dysbiosis. Milk-derived lipids of the milk fat globular membrane improve activation of insulin signaling pathways in animal trials but seem to have little impact on glycemia in human studies. However, other lipids produced by ruminants, including polar lipids, odd-chain, trans-, and branched-chain fatty acids, produce neutral or contradictory effects on glucose metabolism. Bioactive peptides derived from whey and casein may exert their effects both directly through their insulinotropic effects or renin-angiotensin-aldosterone system inhibition and indirectly by the regulation of incretin hormones. Overall, the results bolster many observational studies in humans and suggest that cow's milk intake reduces the risk of, and can perhaps be used in treating, metabolic disorders. However, the mechanisms of action for most bioactive compounds in milk are still largely undiscovered.
Collapse
Affiliation(s)
- Emad Yuzbashian
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Emily Berg
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Catherine B Chan
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
21
|
Gou H, Zeng R, Lau HCH, Yu J. Gut microbial metabolites: Shaping future diagnosis and treatment against gastrointestinal cancer. Pharmacol Res 2024; 208:107373. [PMID: 39197712 DOI: 10.1016/j.phrs.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Gastrointestinal cancer is a worldwide health challenge due to its dramatically increasing prevalence and as a leading cause of cancer-related mortality. Increasing evidence has illustrated the vital role of gut microbes-derived metabolites in gastrointestinal cancer progression and treatment. Microbial metabolites are produced by the gut microbiota that utilizes both extrinsic dietary components and intrinsic host-generated compounds. Meanwhile, certain categories of metabolites such as short-chain fatty acids, bile acids, tryptophan, and indole derivatives, are linked to gastrointestinal malignancy. In this review, the major classes of microbial metabolites and their impacts on various gastrointestinal cancers including colorectal cancer, gastric cancer, and hepatocellular carcinoma, have been introduced. The application of microbial metabolites as predictive biomarkers for early diagnosis and prognosis of gastrointestinal cancer has also been explored. In addition, therapeutic potential of strategies that target microbial metabolites against gastrointestinal cancer is further evaluated.
Collapse
Affiliation(s)
- Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ruijie Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
22
|
Khumalo S, Duma Z, Bekker L, Nkoana K, Pheeha SM. Type 2 Diabetes Mellitus in Low- and Middle-Income Countries: The Significant Impact of Short-Chain Fatty Acids and Their Quantification. Diagnostics (Basel) 2024; 14:1636. [PMID: 39125512 PMCID: PMC11311635 DOI: 10.3390/diagnostics14151636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Globally, type 2 diabetes mellitus (T2DM) is a major threat to the public's health, particularly in low- and middle-income countries (LMICs). The production of short-chain fatty acids (SCFAs) by the gut microbiota has been reported to have the potential to reduce the prevalence of T2DM, particularly in LMICs where the disease is becoming more common. Dietary fibers are the primary source of SCFAs; they can be categorized as soluble (such as pectin and inulin) or insoluble (such as resistant starches). Increased consumption of processed carbohydrates, in conjunction with insufficient consumption of dietary fiber, has been identified as a significant risk factor for type 2 diabetes (T2DM). However, there are still controversies over the therapeutic advantages of SCFAs on human glucose homeostasis, due to a lack of studies in this area. Hence, a few questions need to be addressed to gain a better understanding of the beneficial link between SCFAs and glucose metabolism. These include the following: What are the biochemistry and biosynthesis of SCFAs? What role do SCFAs play in the pathology of T2DM? What is the most cost-effective strategy that can be employed by LMICs with limited laboratory resources to enhance their understanding of the beneficial function of SCFAs in patients with T2DM? To address the aforementioned questions, this paper aims to review the existing literature on the protective roles that SCFAs have in patients with T2DM. This paper further discusses possible cost-effective and accurate strategies to quantify SCFAs, which may be recommended for implementation by LMICs as preventive measures to lower the risk of T2DM.
Collapse
Affiliation(s)
- Scelo Khumalo
- Department of Chemical Pathology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa Zone 1, Ga-Rankuwa 0208, South Africa; (Z.D.); (L.B.); (K.N.)
| | - Zamathombeni Duma
- Department of Chemical Pathology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa Zone 1, Ga-Rankuwa 0208, South Africa; (Z.D.); (L.B.); (K.N.)
| | - Lizette Bekker
- Department of Chemical Pathology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa Zone 1, Ga-Rankuwa 0208, South Africa; (Z.D.); (L.B.); (K.N.)
| | - Koketso Nkoana
- Department of Chemical Pathology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa Zone 1, Ga-Rankuwa 0208, South Africa; (Z.D.); (L.B.); (K.N.)
- National Health Laboratory Service, Dr George Mukhari Academic Hospital, Pretoria 0208, South Africa;
| | - Sara Mosima Pheeha
- National Health Laboratory Service, Dr George Mukhari Academic Hospital, Pretoria 0208, South Africa;
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa
| |
Collapse
|
23
|
Bock PM, Martins AF, Schaan BD. Understanding how pre- and probiotics affect the gut microbiome and metabolic health. Am J Physiol Endocrinol Metab 2024; 327:E89-E102. [PMID: 38809510 DOI: 10.1152/ajpendo.00054.2024] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
The gut microbiome, a complex assembly of microorganisms, significantly impacts human health by influencing nutrient absorption, the immune system, and disease response. These microorganisms form a dynamic ecosystem that is critical to maintaining overall well-being. Prebiotics and probiotics are pivotal in regulating gut microbiota composition. Prebiotics nourish beneficial bacteria and promote their growth, whereas probiotics help maintain balance within the microbiome. This intricate balance extends to several aspects of health, including maintaining the integrity of the gut barrier, regulating immune responses, and producing metabolites crucial for metabolic health. Dysbiosis, or an imbalance in the gut microbiota, has been linked to metabolic disorders such as type 2 diabetes, obesity, and cardiovascular disease. Impaired gut barrier function, endotoxemia, and low-grade inflammation are associated with toll-like receptors influencing proinflammatory pathways. Short-chain fatty acids derived from microbial fermentation modulate anti-inflammatory and immune system pathways. Prebiotics positively influence gut microbiota, whereas probiotics, especially Lactobacillus and Bifidobacterium strains, may improve metabolic outcomes, such as glycemic control in diabetes. It is important to consider strain-specific effects and study variability when interpreting these findings, highlighting the need for further research to optimize their therapeutic potential. The aim of this report is therefore to review the role of the gut microbiota in metabolic health and disease and the effects of prebiotics and probiotics on the gut microbiome and their therapeutic role, integrating a broad understanding of physiological mechanisms with a clinical perspective.
Collapse
Affiliation(s)
- Patricia M Bock
- Pharmacology, Institute of Basic Science, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Andreza F Martins
- Microbiology, Department of Microbiology, Immunology, and Parasitology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Beatriz D Schaan
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
24
|
Salsinha AS, Cima A, Araújo-Rodrigues H, Viana S, Reis F, Coscueta ER, Rodríguez-Alcalá LM, Relvas JB, Pintado M. The use of an in vitro fecal fermentation model to uncover the beneficial role of omega-3 and punicic acid in gut microbiota alterations induced by a Western diet. Food Funct 2024; 15:6095-6117. [PMID: 38757812 DOI: 10.1039/d4fo00727a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The influence of gut microbiota in the onset and development of several metabolic diseases has gained attention over the last few years. Diet plays an essential role in gut microbiota modulation. Western diet (WD), characterized by high-sugar and high-fat consumption, alters gut microbiome composition, diversity index, microbial relative levels, and functional pathways. Despite the promising health effects demonstrated by polyunsaturated fatty acids, their impact on gut microbiota is still overlooked. The effect of Fish oil (omega-3 source) and Pomegranate oil (punicic acid source), and a mixture of both oils in gut microbiota modulation were determined by subjecting the oil samples to in vitro fecal fermentations. Cecal samples from rats from two different dietary groups: a control diet (CD) and a high-fat high-sugar diet (WD), were used as fecal inoculum. 16S amplicon metagenomics sequencing showed that Fish oil + Pomegranate oil from the WD group increased α-diversity. This sample can also increase the relative abundance of the Firmicutes and Bacteroidetes phylum as well as Akkermansia and Blautia, which were affected by the WD consumption. All samples were able to increase butyrate and acetate concentration in the WD group. Moreover, tyrosine concentrations, a precursor for dopamine and norepinephrine, increase in the Fish oil + Pomegranate oil WD sample. GABA, an important neurotransmitter, was also increased in WD samples. These results suggest a potential positive impact of these oils' mixture on gut-brain axis modulation. It was demonstrated, for the first time, the great potential of using a mixture of both Fish and Pomegranate oil to restore the gut microbiota changes associated with WD consumption.
Collapse
Affiliation(s)
- Ana Sofia Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - André Cima
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Helena Araújo-Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Sofia Viana
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
- Instituto Politécnico de Coimbra, Escola Superior de Tecnologia da Saúde de Coimbra, Rua 5 de Outubro - S. Martinho Bispo, Apartado 7006, 3046-854 Coimbra, Portugal
| | - Flávio Reis
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Ezequiel R Coscueta
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Luis Miguel Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Departmento de Biomedicina, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
25
|
Boyajian JL, Islam P, Abosalha A, Schaly S, Thareja R, Kassab A, Arora K, Santos M, Shum-Tim C, Prakash S. Probiotics, prebiotics, synbiotics and other microbiome-based innovative therapeutics to mitigate obesity and enhance longevity via the gut-brain axis. MICROBIOME RESEARCH REPORTS 2024; 3:29. [PMID: 39421246 PMCID: PMC11480732 DOI: 10.20517/mrr.2024.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 10/19/2024]
Abstract
The global prevalence of obesity currently exceeds 1 billion people and is accompanied by an increase in the aging population. Obesity and aging share many hallmarks and are leading risk factors for cardiometabolic disease and premature death. Current anti-obesity and pro-longevity pharmacotherapies are limited by side effects, warranting the development of novel therapies. The gut microbiota plays a major role in human health and disease, with a dysbiotic composition evident in obese and aged individuals. The bidirectional communication system between the gut and the central nervous system, known as the gut-brain axis, may link obesity to unhealthy aging. Modulating the gut with microbiome-targeted therapies, such as biotics, is a novel strategy to treat and/or manage obesity and promote longevity. Biotics represent material derived from living or once-living organisms, many of which have therapeutic effects. Pre-, pro-, syn- and post-biotics may beneficially modulate gut microbial composition and function to improve obesity and the aging process. However, the investigation of biotics as next-generation therapeutics has only just begun. Further research is needed to identify therapeutic biotics and understand their mechanisms of action. Investigating the function of the gut-brain axis in obesity and aging may lead to novel therapeutic strategies for obese, aged and comorbid (e.g., sarcopenic obese) patient populations. This review discusses the interrelationship between obesity and aging, with a particular emphasis on the gut microbiome, and presents biotics as novel therapeutic agents for obesity, aging and related disease states.
Collapse
Affiliation(s)
- Jacqueline L. Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Ahmed Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Madison Santos
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Cedrique Shum-Tim
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| |
Collapse
|
26
|
Ratiner K, Ciocan D, Abdeen SK, Elinav E. Utilization of the microbiome in personalized medicine. Nat Rev Microbiol 2024; 22:291-308. [PMID: 38110694 DOI: 10.1038/s41579-023-00998-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
Inter-individual human variability, driven by various genetic and environmental factors, complicates the ability to develop effective population-based early disease detection, treatment and prognostic assessment. The microbiome, consisting of diverse microorganism communities including viruses, bacteria, fungi and eukaryotes colonizing human body surfaces, has recently been identified as a contributor to inter-individual variation, through its person-specific signatures. As such, the microbiome may modulate disease manifestations, even among individuals with similar genetic disease susceptibility risks. Information stored within microbiomes may therefore enable early detection and prognostic assessment of disease in at-risk populations, whereas microbiome modulation may constitute an effective and safe treatment tailored to the individual. In this Review, we explore recent advances in the application of microbiome data in precision medicine across a growing number of human diseases. We also discuss the challenges, limitations and prospects of analysing microbiome data for personalized patient care.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Dragos Ciocan
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Suhaib K Abdeen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany.
| |
Collapse
|
27
|
Cani PD, Van Hul M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nat Rev Gastroenterol Hepatol 2024; 21:164-183. [PMID: 38066102 DOI: 10.1038/s41575-023-00867-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 03/02/2024]
Abstract
Overweight and obesity are characterized by excessive fat mass accumulation produced when energy intake exceeds energy expenditure. One plausible way to control energy expenditure is to modulate thermogenic pathways in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Among the different environmental factors capable of influencing host metabolism and energy balance, the gut microbiota is now considered a key player. Following pioneering studies showing that mice lacking gut microbes (that is, germ-free mice) or depleted of their gut microbiota (that is, using antibiotics) developed less adipose tissue, numerous studies have investigated the complex interactions existing between gut bacteria, some of their membrane components (that is, lipopolysaccharides), and their metabolites (that is, short-chain fatty acids, endocannabinoids, bile acids, aryl hydrocarbon receptor ligands and tryptophan derivatives) as well as their contribution to the browning and/or beiging of WAT and changes in BAT activity. In this Review, we discuss the general physiology of both WAT and BAT. Subsequently, we introduce how gut bacteria and different microbiota-derived metabolites, their receptors and signalling pathways can regulate the development of adipose tissue and its metabolic capacities. Finally, we describe the key challenges in moving from bench to bedside by presenting specific key examples.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
28
|
Xiong Y, Zhu X, Luo Q. Causal relationship between gut microbiota and autoimmune thyroiditis: A mendelian study. Heliyon 2024; 10:e25652. [PMID: 38356548 PMCID: PMC10865322 DOI: 10.1016/j.heliyon.2024.e25652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Background Autoimmune thyroiditis (AIT), also known as Hashimoto's thyroiditis (HT) or chronic lymphocytic thyroiditis, is a prevalent autoimmune disorder. Despite its high prevalence, the pathogenesis of AIT remains unclear. Previous studies have suggested a potential association between gut microbiota and AIT. However, whether this relationship is causal or coincidental remains uncertain. To address this gap in knowledge, our study aimed to investigate the potential causal association between gut microbiota and AIT using the two-sample Mendelian randomization (MR) method. Methods Summary-level gut microbiota data comprising 211 taxa (131 genera, 35 families, 20 orders, 16 classes, and 9 phyla) were obtained from the comprehensive MiBioGen study. Genetic associations with 22 gastrointestinal diseases were extracted from the UK Biobank, FinnGen study, and various extensive GWAS studies. A meticulous MR analysis was conducted to evaluate the causal relationship between genetically predicted gut microbiota and these gastrointestinal diseases. Sensitivity analyses and tests for heterogeneity were systematically performed to validate the reliability of our findings. Results Six gut microbiota species showed significant associations with AIT according to the IVW method. Among them, the following exhibited negative associations with AIT: family Alcaligenaceae, family Pasteurellaceae (ID: 3689), family Peptococcaceae, genus Lachnospira, genus Victivallis, and order Pasteurellales (ID: 3688). No evidence of pleiotropy or heterogeneity was detected. Conclusion The MR analysis uncovered a causal relationship at the genetic prediction level between specific gut microbiota and AIT. These findings offer novel insights into the mechanisms governing the development of AIT mediated by gut microbiota. This knowledge could inform the design of future interventions, potentially involving microbiome-related strategies, to address the mechanisms associated with AIT development.
Collapse
Affiliation(s)
- Yujun Xiong
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China, 100370, Beijing, China
| | - Xingyun Zhu
- Department of Endocrinology, Beijing Jishuitan Hospital, No. 31, East Xinjiekou Street, Xicheng District, 100035, Beijing, China
| | - Qingfeng Luo
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China, 100370, Beijing, China
| |
Collapse
|
29
|
Yu Y, Liu Y, Meng Z. Role of traditional Chinese medicine in age-related macular degeneration: exploring the gut microbiota's influence. Front Pharmacol 2024; 15:1356324. [PMID: 38333011 PMCID: PMC10850396 DOI: 10.3389/fphar.2024.1356324] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The pathogenesis of age-related macular degeneration (AMD), a degenerative retinopathy, remains unclear. Administration of anti-vascular endothelial growth factor agents, antioxidants, fundus lasers, photodynamic therapy, and transpupillary warming has proven effective in alleviating symptoms; however, these interventions cannot prevent or reverse AMD. Increasing evidence suggests that AMD risk is linked to changes in the composition, abundance, and diversity of the gut microbiota (GM). Activation of multiple signaling pathways by GM metabolites, including lipopolysaccharides, oxysterols, short-chain fatty acids (SCFAs), and bile acids (BAs), influences retinal physiology. Traditional Chinese medicine (TCM), known for its multi-component and multi-target advantages, can help treat AMD by altering GM composition and regulating the levels of certain substances, such as lipopolysaccharides, reducing oxysterols, and increasing SCFA and BA contents. This review explores the correlation between GM and AMD and interventions for the two to provide new perspectives on treating AMD with TCM.
Collapse
Affiliation(s)
- Yujia Yu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Province Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhaoru Meng
- The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
30
|
Maslennikov R, Poluektova E, Zolnikova O, Sedova A, Kurbatova A, Shulpekova Y, Dzhakhaya N, Kardasheva S, Nadinskaia M, Bueverova E, Nechaev V, Karchevskaya A, Ivashkin V. Gut Microbiota and Bacterial Translocation in the Pathogenesis of Liver Fibrosis. Int J Mol Sci 2023; 24:16502. [PMID: 38003692 PMCID: PMC10671141 DOI: 10.3390/ijms242216502] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cirrhosis is the end result of liver fibrosis in chronic liver diseases. Studying the mechanisms of its development and developing measures to slow down and regress it based on this knowledge seem to be important tasks for medicine. Currently, disorders of the gut-liver axis have great importance in the pathogenesis of cirrhosis. However, gut dysbiosis, which manifests as increased proportions in the gut microbiota of Bacilli and Proteobacteria that are capable of bacterial translocation and a decreased proportion of Clostridia that strengthen the intestinal barrier, occurs even at the pre-cirrhotic stage of chronic liver disease. This leads to the development of bacterial translocation, a process by which those microbes enter the blood of the portal vein and then the liver tissue, where they activate Kupffer cells through Toll-like receptor 4. In response, the Kupffer cells produce profibrogenic cytokines, which activate hepatic stellate cells, stimulating their transformation into myofibroblasts that produce collagen and other elements of the extracellular matrix. Blocking bacterial translocation with antibiotics, probiotics, synbiotics, and other methods could slow down the progression of liver fibrosis. This was shown in a number of animal models but requires further verification in long-term randomized controlled trials with humans.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Alla Sedova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Anastasia Kurbatova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Yulia Shulpekova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Natyia Dzhakhaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Svetlana Kardasheva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Maria Nadinskaia
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Elena Bueverova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Vladimir Nechaev
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Anna Karchevskaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| |
Collapse
|
31
|
Zhao R, Fajardo J, Shen GX. Influence of Brown or Germinated Brown Rice Supplementation on Fecal Short-Chain Fatty Acids and Microbiome in Diet-Induced Insulin-Resistant Mice. Microorganisms 2023; 11:2629. [PMID: 38004641 PMCID: PMC10673137 DOI: 10.3390/microorganisms11112629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Intake of whole grain foods is associated with improving metabolic profile compared to refined grain products, but the underlying mechanism remains unclear. The present study examined the effects of brown rice (BRR) or germinated brown rice (GBR) supplementation on fecal short-chain fatty acids (SCFAs), and relationship with gut microbiota, metabolism and inflammation in high fat (HF)-diet-fed mice. The results demonstrated that an HF diet supplemented with BRR or GBR comparably increased the abundance of fecal isobutyric acid compared to that in mice receiving HF+white rice (WHR) diet (p < 0.01). The abundance of valeric acid in HF+GBR-diet-fed mice was higher than those receiving HF+WHR diet (p < 0.05). The abundances of fecal isobutyric acid negatively correlated with fasting plasma glucose, insulin, cholesterol, triglycerides, tumor necrosis factor-α, plasminogen activator inhibit-1, monocyte chemotactic protein-1 and homeostatic model assessment of insulin resistance (p < 0.01). The abundance of valeric acids negatively correlated with insulin resistance (p < 0.05). The abundances of isobutyric acid positively correlated with Lactobacillus, but negatively correlated with Dubosiella genus bacteria (p < 0.05). The findings demonstrated that the increases in SCFAs in the feces of BRR and GBR-treated mice were associated with improvements in gut microbiome, metabolic and inflammatory profile, which may contribute to the antidiabetic and anti-inflammatory effects of the whole grains in HF-diet-fed mice.
Collapse
Affiliation(s)
| | | | - Garry X. Shen
- Departments of Internal Medicine, Food and Human Nutritional Science, University of Manitoba, Winnipeg, MB R3E 3P4, Canada; (R.Z.); (J.F.)
| |
Collapse
|