1
|
Barber AT, Davis SD, Ferkol TW, Shapiro AJ, Atkinson J, Sagel SD, Dell SD, Olivier K, Milla C, Rosenfeld M, Li L, Lin F, Sullivan KM, Capps NA, Zariwala MA, Knowles MR, Leigh MW, the Genetic Disorders of Mucociliary Clearance Consortium (GDMCC). The Association of Neonatal Respiratory Distress With Ciliary Ultrastructure and Genotype in Primary Ciliary Dyskinesia. Pediatr Pulmonol 2025; 60:e71091. [PMID: 40344341 PMCID: PMC12063519 DOI: 10.1002/ppul.71091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/20/2025] [Accepted: 04/01/2025] [Indexed: 05/11/2025]
Abstract
OBJECTIVE To evaluate the relationship between ciliary ultrastructure/genotype and prevalence of neonatal respiratory distress (NRD) in primary ciliary dyskinesia (PCD). STUDY DESIGN This was a retrospective analysis from a multicenter, prospective study of children and adults with PCD. Participants were classified by ultrastructural defect associated with their diagnostic genetic variants: 1) outer dynein arm defect alone (ODA), 2) outer plus inner dynein arm defect (ODA/IDA), 3) inner dynein arm defect with microtubular disorganization (IDA/MTD), 4) DNAH11 (encodes ODA protein but has normal ultrastructure), and 5) normal/near-normal/other. The likelihood of NRD between ultrastructure groups or genotypes was evaluated by multivariate analysis using logistic regression, controlled for age, gender, race, and variant type. Similar analysis was performed within individual genotypes to assess association of NRD with the presence of 2 loss-of-function variants. RESULTS Of the 455 participants analyzed, 305 (67.0%) reported NRD. The odds ratio for NRD in the DNAH11 group was significantly lower (OR: 0.35, 95% CI: 0.16-0.76) compared to NRD in the ODA group. Within the DNAH5 group, those with two loss-of-function variants were more likely to have NRD compared to those with possible residual function variants (OR: 3.06, 95% CI: 1.33-7). CONCLUSION NRD is less common in those with DNAH11 variants, thus a high index of suspicion should remain for PCD in the absence of NRD. Variant type (loss-of-function vs. residual function) may explain phenotypic variability within individual PCD genes.
Collapse
Affiliation(s)
- Andrew T. Barber
- Department of PediatricsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Stephanie D. Davis
- Department of PediatricsUniversity of North Carolina at Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
| | - Thomas W. Ferkol
- Department of PediatricsUniversity of North Carolina at Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
| | - Adam J. Shapiro
- Department of PediatricsMontreal Children's HospitalMontrealQuebecCanada
| | - Jeff Atkinson
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Scott D. Sagel
- Department of Pediatrics, Children's Hospital ColoradoUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Sharon D. Dell
- Department of PediatricsBC Children's HospitalVancouverBritish ColumbiaCanada
| | - Kenneth Olivier
- Department of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Carlos Milla
- Department of PediatricsStanford UniversityPalo AltoCaliforniaUSA
| | - Margaret Rosenfeld
- Department of PediatricsUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Lang Li
- Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Feng‐Chang Lin
- Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Kelli M. Sullivan
- Department of Pediatrics and Marsico Lung InstituteUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - Nicole A. Capps
- Department of Pediatrics and Marsico Lung InstituteUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - Maimoona A. Zariwala
- Department of Pathology/Lab Medicine and Marsico Lung InstituteUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - Michael R. Knowles
- Department of Medicine and Marsico Lung InstituteUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - Margaret W. Leigh
- Department of Pediatrics and Marsico Lung InstituteUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | | |
Collapse
|
2
|
Alrahil A, Aljanadi M, Zaal KA, Shaaban ME, Altabaa K, Hasan T. Optimizing outcomes: Management of bronchiectasis and air bullae in a 28-year-old female with kartagener syndrome. Int J Surg Case Rep 2025; 129:111097. [PMID: 40056808 PMCID: PMC11930696 DOI: 10.1016/j.ijscr.2025.111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025] Open
Abstract
INTRODUCTION AND SIGNIFICANCE Kartagener syndrome is a primary ciliary dyskinesia disorder characterized by the classic triad of chronic sinusitis, bronchiectasis, and situs inversus. The clinical presentation and age of diagnosis of this syndrome are variable, and patients require meticulous care, including antibiotics and respiratory therapy, to prevent deterioration of pulmonary function. CASE PRESENTATION We present the case of a female patient with a history of recurrent respiratory infections since birth, treated with antibiotics and complicated by middle ear disease. Investigations revealed a rare presentation of air bullae associated with bronchiectasis. The patient was referred to our care and diagnosed with Kartagener syndrome, subsequently undergoing urgent surgical intervention, which contributed significantly to her overall improvement and the resolution of her thoracic condition. CLINICAL DISCUSSION In clinical practice, it is crucial to emphasize daily chest physiotherapy, appropriate antibiotic therapy, supportive pulmonary care, and prompt and careful therapeutic intervention to achieve optimal health outcomes. CONCLUSION While complications of Kartagener syndrome are relatively uncommon, particularly emphysema with bronchiectasis leading to significant pulmonary lobe damage, they can occur.
Collapse
Affiliation(s)
- Ali Alrahil
- Department of Thoracic Surgery, Damascus Hospital, Damascus, Syria.
| | - Mazen Aljanadi
- Department of Thoracic Surgery, Damascus Hospital, Damascus, Syria
| | | | | | - Kasem Altabaa
- Faculty of Medicine, Al-Sham Private University, Damascus, Syria
| | - Tammam Hasan
- Department of Thoracic Surgery, Damascus Hospital, Damascus, Syria
| |
Collapse
|
3
|
Kim CY, Park B, Jung JY, Kim JH, Nam CM, An J, Won S, Kim YS. Genome wide interaction study of genetic variants associated with lung function decline. Sci Rep 2025; 15:9824. [PMID: 40118907 PMCID: PMC11928451 DOI: 10.1038/s41598-025-93147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 03/05/2025] [Indexed: 03/24/2025] Open
Abstract
Some genetic variants are associated with lung function decline and chronic obstructive pulmonary disease (COPD), but functional studies are necessary to confirm causality. We investigated the genetic susceptibility-associated lung function decline with or without COPD, using data from a community-based cohort (N = 8554). A genome-wide interaction study was conducted to identify the association between genetic variants and pulmonary function, and the way variants relate to lung impairment in accordance with smoking status and amount was examined. We further used a linear mixed model to examine the association and interaction to time effect. We found annual mean FEV1 declines of 41.7 mL for men and 33.4 mL for women, and the annual rate of decline in FEV1 was the fastest for current smokers. We also found a previously identified locus near FAM13A, the most significant SNPs from the results of two likelihood ratio tests for FEV1/FVC (P = 1.56 × 10-10). These selected SNPs were located in the upstream region of FAM13A on chromosome 4 and had similar minor allele frequencies (MAFs). Furthermore, we found that certain SNPs tended to have lower FEV1/FVC values, and lung function decreased much faster with time interactions. The SNP most associated with lung function decline was the rs75679995 SNP on chromosome 7, and those SNPs located within the TAD of the DNAH11 region and the eQTL of rs9991425 revealed a higher expression of MFAP3L and AADAT genes (P = 2.28 × 10-7 and 2.01 × 10-6, respectively). This is the first study to investigate gene-time interactions in lung function decline as a risk factor for COPD in the Korean population. In addition to replicating previously known signals for FAM13A, we identified two genomic regions (DNAH11, AADAT) that are potentially involved in gene-environment interactions, warranting further investigation to confirm their roles.
Collapse
Affiliation(s)
- Chi Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Boram Park
- Department of Public Health Sciences, School of Public Health, Seoul National University, Kwanak-Ro Kwanak-Gu, Seoul, 151-742, South Korea
| | - Ji Ye Jung
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je Hyeong Kim
- Division of Pulmonology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Chung Mo Nam
- Department of Preventive Medicine and Public Health, Yonsei University College of Medicine, Seoul, Korea
| | - Jaehoon An
- Department of Public Health Sciences, School of Public Health, Seoul National University, Kwanak-Ro Kwanak-Gu, Seoul, 151-742, South Korea
- RexSoft Corps, Seoul, South Korea
| | - Sungho Won
- Department of Public Health Sciences, School of Public Health, Seoul National University, Kwanak-Ro Kwanak-Gu, Seoul, 151-742, South Korea.
- Institute of Health and Environment, Seoul National University, Seoul, South Korea.
- RexSoft Corps, Seoul, South Korea.
| | - Young Sam Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Frohlich M, Prentice B, Owens L, Waters S, Morgan L. Beyond the present: current and future perspectives on the role of infections in pediatric PCD. Front Pediatr 2025; 13:1564156. [PMID: 40171169 PMCID: PMC11958984 DOI: 10.3389/fped.2025.1564156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/04/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction Primary Ciliary Dyskinesia (PCD) is a rare genetic disorder affecting motile cilia, leading to impaired mucociliary clearance and increased susceptibility to respiratory infections. These infections contribute to long-term complications such as bronchiectasis and lung function decline. Objectives This review explores both the acute and long-term impact of respiratory infections in children with PCD, while highlighting the multiple contributors to infection susceptibility. The review also evaluates emerging personalized approaches such as gene and mRNA therapy that hold promise for restoring ciliary function and reducing the burden of acute infections in pediatric PCD. Key findings and conclusions Acute respiratory infections have a significant impact on morbidity in pediatric PCD, driving progressive airway remodeling. While current treatment strategies focus on managing infections directly, emerging therapies targeting inflammation and genetic causes hold promise for reducing infection burden and improving long-term outcomes. Future advances in personalized medicine could further enhance therapeutic approaches in this population.
Collapse
Affiliation(s)
- Megan Frohlich
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, Australia
| | - Bernadette Prentice
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, Australia
| | - Louisa Owens
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, Australia
| | - Shafagh Waters
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Lucy Morgan
- Department of Respiratory Medicine, Concord Hospital, Sydney, NSW, Australia
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Cardona-Quiñones RA, Ramírez-Rivera E, Álvarez-Torres E, Salem-Hernández SA, Vargas-Pérez NJ, De Jesús-Rojas W. A Pilot Study of Primary Ciliary Dyskinesia: Sleep-Related Disorders and Neuropsychiatric Comorbidities. J Clin Med 2025; 14:1353. [PMID: 40004884 PMCID: PMC11856783 DOI: 10.3390/jcm14041353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Sleep disorders are characterized by impaired quality, timing, and amount of sleep, resulting in daytime distress and functioning. Primary ciliary dyskinesia (PCD) is a rare genetic condition characterized by oto-sino-pulmonary manifestations with multiple comorbidities, including sleep disorders. Background/Objectives: This pilot study aims to assess sleep disorders and neuropsychiatric comorbidities in Puerto Rican patients with the RSPH4A (c.921+3_921+6delAAGT) PCD founder mutation. However, the literature on sleep-related disorders and their neuropsychiatric comorbidities in PCD is limited. Methods: A cohort of fifteen patients with the RSPH4A (c.921+3_921+6delAAGT) founder mutation (six pediatric, nine adults) were evaluated for sleep quality, cognitive, neurodevelopmental history, and mood-related manifestations, followed by diagnostic polysomnography for sleep-disordered breathing and other sleep-related disorder detection. Results: Twelve out of fifteen (12/15, 80%) patients presented with sleep-related disorders, particularly obstructive sleep apnea where the median Pediatric AHI was 1.25/h (IQR: 1.1-1.75/h), T < 90: 0.1 min (IQR: 0-1.9 min) and adult AHI 1.3 (IQR: 0.9-8), T < 90: 0.2 min (IQR: 0-3.5 min). PCD patients also presented complex sleep behaviors, and more than half had sleep-related movement manifestations such as sleep-related Bruxism, PLMS, among others. All pediatric patients with OSA met criteria for an anxiety disorder, with a GAD-7 of 13 (IQR: 10.5-15.8); this association was not clearly seen in adults. Conclusions: Patients with PCD RSPH4A exhibited multiple sleep and neuropsychiatric manifestations, particularly OSA, sleep-related movement disorders and complex sleep behaviors. Further studies are needed to determine if these manifestations result from obstructive breathing, sleep mechanism disruption, or other neurodevelopmental impairment associated with this ciliopathy.
Collapse
Affiliation(s)
- Roberto A. Cardona-Quiñones
- Department of Psychiatry, School of Medicine, University of Puerto Rico, Medical Science Campus, P.O. Box 365067, San Juan, PR 00936-5067, USA; (E.R.-R.); (E.Á.-T.); (S.A.S.-H.)
| | - Edicer Ramírez-Rivera
- Department of Psychiatry, School of Medicine, University of Puerto Rico, Medical Science Campus, P.O. Box 365067, San Juan, PR 00936-5067, USA; (E.R.-R.); (E.Á.-T.); (S.A.S.-H.)
| | - Edwin Álvarez-Torres
- Department of Psychiatry, School of Medicine, University of Puerto Rico, Medical Science Campus, P.O. Box 365067, San Juan, PR 00936-5067, USA; (E.R.-R.); (E.Á.-T.); (S.A.S.-H.)
| | - Saidy A. Salem-Hernández
- Department of Psychiatry, School of Medicine, University of Puerto Rico, Medical Science Campus, P.O. Box 365067, San Juan, PR 00936-5067, USA; (E.R.-R.); (E.Á.-T.); (S.A.S.-H.)
| | - Noel J. Vargas-Pérez
- Department of Neurology, School of Medicine, University of Puerto Rico, Medical Science Campus, P.O. Box 365067, San Juan, PR 00936-5067, USA;
| | - Wilfredo De Jesús-Rojas
- Basic Science & Pediatrics, Ponce Health Science University, P.O. Box 7004, Ponce, PR 00732, USA;
| |
Collapse
|
6
|
Möller B, Becker LL, Saffari A, Afenjar A, Coci EG, Williamson R, Ward-Melver C, Gibaud M, Sedláčková L, Laššuthová P, Libá Z, Vlčková M, William N, Klee EW, Gavrilova RH, Lévy J, Capri Y, Scavina M, Körner RW, Valivullah Z, Weiß C, Möller GM, Frazier Z, Roberts A, Gener B, Scala M, Striano P, Zara F, Thiel M, Sinnema M, Kamsteeg EJ, Donkervoort S, Duboc V, Zaafrane-Khachnaoui K, Elkhateeb N, Selim L, Margot H, Marin V, Beneteau C, Isidor B, Cogne B, Keren B, Küsters B, Beggs AH, Sveden A, Chopra M, Genetti CA, Nicolai J, Dötsch J, Koy A, Bönnemann CG, von der Hagen M, von Kleist-Retzow JC, Voermans NC, Jungbluth H, Dafsari HS. The expanding clinical and genetic spectrum of DYNC1H1-related disorders. Brain 2025; 148:597-612. [PMID: 38848546 PMCID: PMC11788221 DOI: 10.1093/brain/awae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Intracellular trafficking involves an intricate machinery of motor complexes, including the dynein complex, to shuttle cargo for autophagolysosomal degradation. Deficiency in dynein axonemal chains, as well as cytoplasmic light and intermediate chains, have been linked with ciliary dyskinesia and skeletal dysplasia. The cytoplasmic dynein 1 heavy chain protein (DYNC1H1) serves as a core complex for retrograde trafficking in neuronal axons. Dominant pathogenic variants in DYNC1H1 have been previously implicated in peripheral neuromuscular disorders (NMD) and neurodevelopmental disorders (NDD). As heavy-chain dynein is ubiquitously expressed, the apparent selectivity of heavy chain dyneinopathy for motor neuronal phenotypes remains currently unaccounted for. Here, we aimed to evaluate the full DYNC1H1-related clinical, molecular and imaging spectrum, including multisystem features and novel phenotypes presenting throughout life. We identified 47 cases from 43 families with pathogenic heterozygous variants in DYNC1H1 (aged 0-59 years) and collected phenotypic data via a comprehensive standardized survey and clinical follow-up appointments. Most patients presented with divergent and previously unrecognized neurological and multisystem features, leading to significant delays in genetic testing and establishing the correct diagnosis. Neurological phenotypes include novel autonomic features, previously rarely described behavioral disorders, movement disorders and periventricular lesions. Sensory neuropathy was identified in nine patients (median age of onset 10.6 years), of which five were only diagnosed after the second decade of life, and three had a progressive age-dependent sensory neuropathy. Novel multisystem features included primary immunodeficiency, bilateral sensorineural hearing loss, organ anomalies and skeletal manifestations, resembling the phenotypic spectrum of other dyneinopathies. We also identified an age-dependent biphasic disease course with developmental regression in the first decade and, following a period of stability, neurodegenerative progression after the second decade of life. Of note, we observed several cases in whom neurodegeneration appeared to be prompted by intercurrent systemic infections with double-stranded DNA viruses (Herpesviridae) or single-stranded RNA viruses (Ross River fever, SARS-CoV-2). Moreover, the disease course appeared to be exacerbated by viral infections regardless of age and/or severity of neurodevelopmental disorder manifestations, indicating a role of dynein in anti-viral immunity and neuronal health. In summary, our findings expand the clinical, imaging and molecular spectrum of pathogenic DYNC1H1 variants beyond motor neuropathy disorders and suggest a life-long continuum and age-related progression due to deficient intracellular trafficking. This study will facilitate early diagnosis and improve counselling and health surveillance of affected patients.
Collapse
Affiliation(s)
- Birk Möller
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Lena-Luise Becker
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
- Institute for Cell Biology and Neurobiology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Afshin Saffari
- Heidelberg University, Medical Faculty Heidelberg, University Hospital Heidelberg, Center for Pediatrics and Adolescent Medicine, Department of Pediatrics I, Division of Child Neurology and Metabolic Medicine, 69120 Heidelberg, Germany
| | - Alexandra Afenjar
- Reference Center for Malformations and Congenital Diseases of the Cerebellum and Intellectual Disabilities of Rare Causes, Department of Genetics and Medical Embryology, Sorbonne University, Trousseau Hospital Paris, 75012 Paris, France
| | - Emanuele G Coci
- Department of Paediatrics, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | - Marc Gibaud
- Service de pédiatrie, CHU de Nantes, 44000 Nantes, France
| | - Lucie Sedláčková
- Neurogenetic Laboratory, Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Petra Laššuthová
- Neurogenetic Laboratory, Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Zuzana Libá
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Markéta Vlčková
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Nancy William
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55901, USA
| | - Eric W Klee
- Departments of Clinical Genomics and Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ralitza H Gavrilova
- Departments of Clinical Genomics and Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jonathan Lévy
- Genetics Department, AP-HP, Robert-Debré University Hospital, 75019 Paris, France
| | - Yline Capri
- Genetics Department, AP-HP, Robert-Debré University Hospital, 75019 Paris, France
| | - Mena Scavina
- Division of Neurology, Nemours Children’s Health, Wilmington, Delaware 19803, USA
| | - Robert Walter Körner
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Zaheer Valivullah
- Center for Mendelian Genomics, Broad Institute Harvard, Cambridge, MA 02142, USA
| | - Claudia Weiß
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Greta Marit Möller
- Berlin University of Applied Sciences and Technology, 10587 Berlin, Germany
| | - Zoë Frazier
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Amy Roberts
- Center for Cardiovascular Genetics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Blanca Gener
- Department of Genetics, Cruces University Hospital, Biobizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Moritz Thiel
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Erik-Jan Kamsteeg
- Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke Neurogenetics Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronique Duboc
- Department of Medical Genetics, Université Côte D’Azur, Centre Hospitalier Universitaire Nice, 06000 Nice, France
| | - Khaoula Zaafrane-Khachnaoui
- Department of Medical Genetics, Université Côte D’Azur, Centre Hospitalier Universitaire Nice, 06000 Nice, France
| | - Nour Elkhateeb
- Department of Clinical Genetics, Cambridge University Hospitals NHS Trust, Cambridge CB2 3EH, UK
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine unit, Kasr Al-Ainy School of Medicine, Cairo University, 4390330 Cairo, Egypt
| | - Laila Selim
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine unit, Kasr Al-Ainy School of Medicine, Cairo University, 4390330 Cairo, Egypt
| | - Henri Margot
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France
| | - Victor Marin
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France
| | - Claire Beneteau
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France
| | - Bertrand Isidor
- Genetics Department, Nantes University, CHU de Nantes, 44000 Nantes, France
| | - Benjamin Cogne
- Genetics Department, Nantes University, CHU de Nantes, 44000 Nantes, France
| | - Boris Keren
- Genetic Department, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, 75013 Paris, France
| | - Benno Küsters
- Department of Pathology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alan H Beggs
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02445, USA
| | - Abigail Sveden
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Maya Chopra
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Casie A Genetti
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02445, USA
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke Neurogenetics Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maja von der Hagen
- Department of Neuropediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jürgen-Christoph von Kleist-Retzow
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Nicol C Voermans
- The Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 Nijmegen, The Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology—Neuromuscular Service, Evelina Children’s Hospital, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King’s College London, London SE1 1YR, UK
| | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Paediatric Neurology—Neuromuscular Service, Evelina Children’s Hospital, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King’s College London, London SE1 1YR, UK
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
7
|
Gatt D, Shaw M, Kritzinger F, Solomon M, Dell S, Ratjen F. The Impact of Age of Diagnosis in Children with Primary Ciliary Dyskinesia. Ann Am Thorac Soc 2025; 22:208-215. [PMID: 39269367 DOI: 10.1513/annalsats.202403-230oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024] Open
Abstract
Rationale: The typical symptoms of primary ciliary dyskinesia (PCD) manifest after birth and in early infancy, but diagnosis is often not confirmed during infancy. There is currently a lack of evidence in PCD regarding the impact of the age of the patient at the time of diagnosis on clinical outcomes. Objective: To determine whether early diagnosis of PCD is related to improved long-term outcomes. Methods: This was a retrospective study of patients diagnosed with PCD between 2000 and 2022. We divided our cohort into three groups according to the age at diagnosis: (1) early diagnosis (age <1 year), typical diagnosis (age 1-7 years), and late diagnosis (age 8-14 years). We compared various clinical long-term outcomes between the groups. Results: During the study period, 110 patients were included in the analysis, with 41 patients in the early diagnosis group, 35 in the typical diagnosis group, and 34 in the late diagnosis group. Unexplained neonatal respiratory distress and organ laterality defect were more common in the early diagnosis group, with respective rates in the early, typical, and late diagnosis groups of 80%, 53%, and 61% for neonatal respiratory distress (P = 0.045) and 64%, 50%, and 18% for laterality defect (P < 0.001). At the end of the first decade of life, patients in the early and typical-age diagnosis groups had better forced expiratory volume in 1 second compared with the late diagnosis group (93.5% and 93.1% vs. 80.2%; P = 0.002), but there was no significant change in the annual rate of decline between the groups when diagnosis had been confirmed. Patients diagnosed late had significantly higher rates of pulmonary exacerbations than those diagnosed at a typical age (1.95 vs. 0.75 per year; P < 0.01) Conclusions: Late diagnosis (age ≥8 years) was associated with lower forced expiratory volume in 1 second throughout childhood, although, once diagnosed, the annual rate of decline was not different. These findings demonstrate the negative effect of delayed diagnosis in pediatric PCD.
Collapse
Affiliation(s)
- Dvir Gatt
- Division of Respiratory Medicine, and
| | - Michelle Shaw
- Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; and
| | | | | | - Sharon Dell
- Division of Respiratory Medicine, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Felix Ratjen
- Division of Respiratory Medicine, and
- Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
8
|
Qin Y, Senglong M, Touch K, Xiao J, Fang R, Kang Q, Fan L, Li S, Liu J, Wu J, Wu Y, Shi X, Liu H, Gong X, Lin X, Feng L, Chen S, Li W. Application of copy number variation sequencing combined with whole exome sequencing in prenatal left-right asymmetry disorders. BMC Genomics 2025; 26:82. [PMID: 39875822 PMCID: PMC11773888 DOI: 10.1186/s12864-025-11277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Left-right (LR) asymmetry disorders present a complex etiology, with genetic factors emerging as a primary contributor. This study aims to explore the genetic underpinnings of chromosomal variants and individual genes in fetuses afflicted with prenatal LR asymmetry disorder. METHODS Through a retrospective analysis conducted between 2020 and 2023 at Tongji Hospital, Huazhong University of Science and Technology, genetic outcomes of LR asymmetric disorder were scrutinized utilizing copy number variation sequencing (CNV-seq) and whole exome sequencing (WES) methodologies. RESULTS With a combination of CNV-seq and WES, 5 fetuses in 17 patients with LR asymmetry had chromosomal or genetic variants. CNV-seq revealed a 16p11.2 microdeletion syndrome in a situs inversus fetus presenting pathogenic and a 2q36.3 microduplication syndrome in a fetus with Heterotaxy presenting a variant of uncertain significance (VUS). WES identified NM_198075.4:c.755del in the LRRC56 gene and NM_001454.4:c.865_868dup in the FOXJ1 gene in two situs inversus cases, along with two variants in DNAH5 in two other fetuses. Further bioinformatics scrutiny was conducted to assess the protein structure and function prediction of these variants, ultimately indicating their potential pathogenicity. CONCLUSION The study highlights that fetuses with LR asymmetric disorders may have copy number variants, underscoring the significance of mutations in LRRC56 and FOXJ1 in the development of LR asymmetry disorders.
Collapse
Affiliation(s)
- Yu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Muon Senglong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Koksear Touch
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Juan Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Ruijie Fang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Qingling Kang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Lei Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Shufang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Jing Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Jianli Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Yuanyuan Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Xinwei Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Haiyi Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Xun Gong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Xingguang Lin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China
| | - Suhua Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China.
| | - Wei Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei, 430030, China.
| |
Collapse
|
9
|
Gardner RA, Ferkol TW, Davis SD, Rosenfeld M, Sagel SD, Dell SD, Milla CE, Li L, Lin FC, Sullivan KM, Zariwala MA, Knowles MR, Leigh MW, Genetic Disorders of Mucociliary Clearance Consortium. Therapies Used by Children With Primary Ciliary Dyskinesia: A Natural History Study. Pediatr Pulmonol 2025; 60:e27412. [PMID: 39575633 PMCID: PMC11750599 DOI: 10.1002/ppul.27412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/11/2024] [Accepted: 11/10/2024] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Primary ciliary dyskinesia (PCD) management has not been systematically evaluated and is largely empirical. METHODS Pediatric participants with PCD were enrolled in a prospective, longitudinal, multicenter, observational study. Therapies were recorded at annual visits and categorized by type. Age-related trends in prevalence of therapies were described by serial cross-sectional analyses. Generalized estimating equations analyzed covariates affecting prevalence of certain therapies and whether these covariates impacted oral antibiotic courses. RESULTS A total of 137 participants completed 897 visits over 13 years. All but one received ≥ 1 antibiotic courses during study participation, most often cephalosporins (74%) or amoxicillin-clavulanate (73%). Thirty-one percent reported chronic azithromycin use. Per participant, there was an average of 2.3 (SD = 2.2) oral antibiotic courses annually. The rate of reported antibiotic courses at the 6 United States sites was 2.6 times higher compared to the Canadian site (p < 0.001). As patients got older, they were more likely to report use of amoxicillin-clavulanate (p < 0.001), chronic azithromycin (p < 0.001), fluroquinolones (p < 0.001), inhaled steroids with long-acting beta-agonists (p = 0.010), and hypertonic saline (p < 0.001). Compared to outer dynein arm defects, those with inner dynein arm/microtubular disorganization defects reported increased use of chronic azithromycin (p = 0.011) and inhaled steroids (p = 0.015). DISCUSSION Older participants and those with inner dynein arm/microtubular disorganization defects reported more therapies likely due to disease progression and more severe phenotypes, respectively. We report that a wide range of therapies are used in PCD without disease-specific studies defining benefits and risks.
Collapse
Affiliation(s)
- Robert A. Gardner
- Pediatrics, Levine Children’s Hospital, Wake Forest University School of Medicine, Charlotte, NC, United States
| | - Thomas W. Ferkol
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie D. Davis
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Scott D. Sagel
- Pediatrics, University of Colorado, Aurora, CO, United States
| | - Sharon D. Dell
- Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Carlos E. Milla
- Pediatrics, Stanford University, Palo Alto, CA, United States
| | - Lang Li
- Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Feng-Chang Lin
- Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelli M. Sullivan
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Maimoona A. Zariwala
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael R. Knowles
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Margaret W. Leigh
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | |
Collapse
|
10
|
Farzal Z, Sullivan KM, Zariwala MA, Thorp BD, Senior BA, Ebert CS, Davis S, Leigh MW, Knowles MR, Kimple AJ. Olfactory Dysfunction in Primary Ciliary Dyskinesia. OTO Open 2025; 9:e70084. [PMID: 39896853 PMCID: PMC11783683 DOI: 10.1002/oto2.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Objective Individuals with primary ciliary dyskinesia (PCD) frequently report olfactory dysfunction, yet this deficit is poorly documented. The purpose of this study was to characterize the presence and degree of olfactory dysfunction in PCD compared to controls and determine whether certain PCD genes are associated with worse olfaction. Study Design A prospective cohort study. Setting Tertiary referral center. Methods We administered the University of Pennsylvania Smell Identification Test (UPSIT) to individuals with PCD. Participants were divided into 3 age groups (15-29 years, 30-44 years, and 45+ years) and compared to age- and sex-matched normal controls (n = 2170). Results Twenty-nine individuals with PCD (8 males and 21 females) met the criteria (median age: 38 years; interquartile range: 22-47). Only 27.6% of patients with PCD had UPSIT scores within the normosmia range. The UPSIT median scores of each PCD age group were significantly lower than the median scores of the controls (P < .0001 for each age group). UPSIT scores generally worsened with age: mean 33 (mild hyposmia) for 15 to 29 years, 26.8 (moderate hyposmia) for 30 to 44 years, and 20.9 (severe hyposmia) for 45+ years. The most common genes coded were absent inner dynein arm/microtubule disorientation (IDA/MTD) defect (11/24, 45.8%), followed by absent outer dynein arm defect (8/24, 33.3%). The CCDC39 gene (IDA/MTD) was associated with worse olfactory dysfunction. Conclusion Individuals with PCD have a substantially higher prevalence and degree of olfactory dysfunction compared to age-matched controls. Our study is the first to report greater olfactory dysfunction with age in PCD patients, highlighting an important area for research.
Collapse
Affiliation(s)
- Zainab Farzal
- Department of Otolaryngology–Head and Neck SurgeryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Kelli M. Sullivan
- Marsico Lung Institute/Cystic Fibrosis CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Maimoona A. Zariwala
- Marsico Lung Institute/Cystic Fibrosis CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Pediatrics, Division of Pediatric PulmonologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Brian D. Thorp
- Department of Otolaryngology–Head and Neck SurgeryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Brent A. Senior
- Department of Otolaryngology–Head and Neck SurgeryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Charles S. Ebert
- Department of Otolaryngology–Head and Neck SurgeryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Stephanie Davis
- Department of Pediatrics, Division of Pediatric PulmonologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Margaret W. Leigh
- Marsico Lung Institute/Cystic Fibrosis CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Pediatrics, Division of Pediatric PulmonologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Michael R. Knowles
- Marsico Lung Institute/Cystic Fibrosis CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Medicine, Division of Pulmonary Diseases and Critical Care MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Adam J. Kimple
- Marsico Lung Institute/Cystic Fibrosis CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Otolaryngology–Head and Neck SurgeryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
11
|
Benchimol L, Bricmont N, Bonhiver R, Hans G, Kempeneers C, Lefebvre P, Poirrier AL. Impact of General Anesthesia on Ciliary Functional Analysis by Digital High-Speed Videomicroscopy in Suspected Primary Ciliary Dyskinesia. Diagnostics (Basel) 2024; 14:2436. [PMID: 39518403 PMCID: PMC11544925 DOI: 10.3390/diagnostics14212436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Digital high-speed videomicroscopy (DHSV) is a crucial tool for evaluating ciliary function in children suspected of primary ciliary dyskinesia (PCD). However, until now, samples are taken without anesthesia due to uncertainty about its effect on ciliary function and DHSV interpretation. This study aimed to investigate the impact of general anesthesia on ciliary functional analysis by DHSV in a series of three patients listed for ENT surgeries, which could improve diagnostic procedures for pediatric patients. Patient 1 (7-year-old girl) underwent adenotonsillectomy and tympanostomy placement tube, while patients 2 (17-month-old boy) and 3 (15-month-old girl) underwent adenoidectomy and tympanostomy placement tube. All patients underwent nasal brushing before general anesthesia (control sample). Experimental samples were taken in the contralateral nostril at the time of equilibration of the anesthetic agents (sevoflurane, propofol, sufentanil). Ciliary beat frequency and pattern were measured using digital high-speed videomicroscopy. Our findings highlighted the variability of respiratory ciliary function under general anesthesia among individuals. Our results emphasize the need for caution when interpreting ciliary function data obtained during general anesthesia. Further research with larger cohorts is warranted for validation.
Collapse
Affiliation(s)
- Lionel Benchimol
- Department of ENT, University Hospital Liège, Avenue de l’Hôpital1, 4000 Liège, Belgium;
| | - Noemie Bricmont
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liège, 4000 Liège, Belgium; (N.B.); (R.B.); (C.K.)
- Division of Respirology, Department of Pediatrics, University Hospital Liège, 4000 Liège, Belgium
| | - Romane Bonhiver
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liège, 4000 Liège, Belgium; (N.B.); (R.B.); (C.K.)
- Division of Respirology, Department of Pediatrics, University Hospital Liège, 4000 Liège, Belgium
| | - Grégory Hans
- Department of Anaesthesia and Intensive Care Medicine, CHU of Liege, 4000 Liège, Belgium;
| | - Céline Kempeneers
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liège, 4000 Liège, Belgium; (N.B.); (R.B.); (C.K.)
- Division of Respirology, Department of Pediatrics, University Hospital Liège, 4000 Liège, Belgium
| | - Philippe Lefebvre
- Department of ENT, University Hospital Liège, Avenue de l’Hôpital1, 4000 Liège, Belgium;
| | - Anne-Lise Poirrier
- Department of ENT, University Hospital Liège, Avenue de l’Hôpital1, 4000 Liège, Belgium;
| |
Collapse
|
12
|
Wesselman HM, Arceri L, Nguyen TK, Lara CM, Wingert RA. Genetic mechanisms of multiciliated cell development: from fate choice to differentiation in zebrafish and other models. FEBS J 2024; 291:4159-4192. [PMID: 37997009 DOI: 10.1111/febs.17012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Multiciliated cells (MCCS) form bundles of cilia and their activities are essential for the proper development and physiology of many organ systems. Not surprisingly, defects in MCCs have profound consequences and are associated with numerous disease states. Here, we discuss the current understanding of MCC formation, with a special focus on the genetic and molecular mechanisms of MCC fate choice and differentiation. Furthermore, we cast a spotlight on the use of zebrafish to study MCC ontogeny and several recent advances made in understanding MCCs using this vertebrate model to delineate mechanisms of MCC emergence in the developing kidney.
Collapse
Affiliation(s)
| | - Liana Arceri
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, IN, USA
| |
Collapse
|
13
|
Guo S, Tang D, Chen Y, Yu H, Gu M, Geng H, Fang J, Wu B, Ruan L, Li K, Xu C, Gao Y, Tan Q, Duan Z, Wu H, Hua R, Guo R, Wei Z, Zhou P, Xu Y, Cao Y, He X, Sha Y, Lv M. Association of novel DNAH11 variants with asthenoteratozoospermia lead to male infertility. Hum Genomics 2024; 18:97. [PMID: 39256880 PMCID: PMC11389119 DOI: 10.1186/s40246-024-00658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Bi-allelic variants in DNAH11 have been identified as causative factors in Primary Ciliary Dyskinesia, leading to abnormal respiratory cilia. Nonetheless, the specific impact of these variants on human sperm flagellar and their involvement in male infertility remain largely unknown. METHODS A collaborative effort involving two Chinese reproductive centers conducted a study with 975 unrelated infertile men. Whole-exome sequencing was employed for variant screening, and Sanger sequencing confirmed the identified variants. Morphological and ultrastructural analyses of sperm were conducted using Scanning Electron Microscopy and Transmission Electron Microscopy. Western Blot Analysis and Immunofluorescence Analysis were utilized to assess protein levels and localization. ICSI was performed to evaluate its efficacy in achieving favorable pregnancy outcomes for individuals with DNAH11 variants. RESULTS In this study, we identified seven novel variants in the DNAH11 gene in four asthenoteratozoospermia subjects. These variants led the absence of DNAH11 proteins and ultrastructure defects in sperm flagella, particularly affecting the outer dynein arms (ODAs) and adjacent structures. The levels of ODA protein DNAI2 and axoneme related proteins were down regulated, instead of inner dynein arms (IDA) proteins DNAH1 and DNAH6. Two out of four individuals with DNAH11 variants achieved clinical pregnancies through ICSI. The findings confirm the association between male infertility and bi-allelic deleterious variants in DNAH11, resulting in the aberrant assembly of sperm flagella and contributing to asthenoteratozoospermia. Importantly, ICSI emerges as an effective intervention for overcoming reproductive challenges caused by DNAH11 gene variants.
Collapse
Affiliation(s)
- Senzhao Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Yuge Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hui Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Meng Gu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Jiajun Fang
- The First Clinical Medical College of Anhui Medical University, Hefei, 230032, China
| | - Baoyan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lewen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qing Tan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Provincial Human Sperm Bank First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongliu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Rong Hua
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Rui Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| |
Collapse
|
14
|
Fleming A, Galey M, Briggs L, Edwards M, Hogg C, John S, Wilkinson S, Quinn E, Rai R, Burgoyne T, Rogers A, Patel MP, Griffin P, Muller S, Carr SB, Loebinger MR, Lucas JS, Shah A, Jose R, Mitchison HM, Shoemark A, Miller DE, Morris-Rosendahl DJ. Combined approaches, including long-read sequencing, address the diagnostic challenge of HYDIN in primary ciliary dyskinesia. Eur J Hum Genet 2024; 32:1074-1085. [PMID: 38605126 PMCID: PMC11369241 DOI: 10.1038/s41431-024-01599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Primary ciliary dyskinesia (PCD), a disorder of the motile cilia, is now recognised as an underdiagnosed cause of bronchiectasis. Accurate PCD diagnosis comprises clinical assessment, analysis of cilia and the identification of biallelic variants in one of 50 known PCD-related genes, including HYDIN. HYDIN-related PCD is underdiagnosed due to the presence of a pseudogene, HYDIN2, with 98% sequence homology to HYDIN. This presents a significant challenge for Short-Read Next Generation Sequencing (SR-NGS) and analysis, and many diagnostic PCD gene panels do not include HYDIN. We have used a combined approach of SR-NGS with bioinformatic masking of HYDIN2, and state-of-the-art long-read Nanopore sequencing (LR_NGS), together with analysis of respiratory cilia including transmission electron microscopy and immunofluorescence to address the underdiagnosis of HYDIN as a cause of PCD. Bioinformatic masking of HYDIN2 after SR-NGS facilitated the detection of biallelic HYDIN variants in 15 of 437 families, but compromised the detection of copy number variants. Supplementing testing with LR-NGS detected HYDIN deletions in 2 families, where SR-NGS had detected a single heterozygous HYDIN variant. LR-NGS was also able to confirm true homozygosity in 2 families when parental testing was not possible. Utilising a combined genomic diagnostic approach, biallelic HYDIN variants were detected in 17 families from 242 genetically confirmed PCD cases, comprising 7% of our PCD cohort. This represents the largest reported HYDIN cohort to date and highlights previous underdiagnosis of HYDIN-associated PCD. Moreover this provides further evidence for the utility of LR-NGS in diagnostic testing, particularly for regions of high genomic complexity.
Collapse
Affiliation(s)
- Andrew Fleming
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Miranda Galey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington and Seattle Children's Hospital, Seattle, WA, 98105, USA
| | - Lizi Briggs
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Matthew Edwards
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Claire Hogg
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Shibu John
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Sam Wilkinson
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Ellie Quinn
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Ranjit Rai
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Tom Burgoyne
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Andy Rogers
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Mitali P Patel
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- MRC Prion Unit at UCL, Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Paul Griffin
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Steven Muller
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Siobhan B Carr
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Michael R Loebinger
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Anand Shah
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- MRC Centre of Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Ricardo Jose
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- MRC Prion Unit at UCL, Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Amelia Shoemark
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington and Seattle Children's Hospital, Seattle, WA, 98105, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.
| |
Collapse
|
15
|
Abou Alaiwa MA, Hilkin BM, Price MP, Gansemer ND, Rector MR, Stroik MR, Powers LS, Whitworth KM, Samuel MS, Jain A, Ostedgaard LS, Ernst SE, Philibert W, Boyken LD, Moninger TO, Karp PH, Hornick DB, Sinn PL, Fischer AJ, Pezzulo AA, McCray PB, Meyerholz DK, Zabner J, Prather RS, Welsh MJ, Stoltz DA. Development and Initial Characterization of Pigs with DNAI1 Mutations and Primary Ciliary Dyskinesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.594822. [PMID: 39229081 PMCID: PMC11370470 DOI: 10.1101/2024.05.22.594822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mutations in more than 50 different genes cause primary ciliary dyskinesia (PCD) by disrupting the activity of motile cilia that facilitate mucociliary transport (MCT). Knowledge of PCD has come from studies identifying disease-causing mutations, characterizing structural cilia abnormalities, finding genotype-phenotype relationships, and studying the cell biology of cilia. Despite these important findings, we still lack effective treatments and people with PCD have significant pulmonary impairment. As with many other diseases, a better understanding of pathogenic mechanisms may lead to effective treatments. To pursue disease mechanisms, we used CRISPR-Cas9 to develop a PCD pig with a disrupted DNAI1 gene. PCD pig airway cilia lacked the outer dynein arm and had impaired beating. MCT was impaired under both baseline conditions and after cholinergic stimulation in PCD pigs. Neonatal PCD pigs developed neonatal respiratory distress with evidence of atelectasis, air trapping, and airway mucus obstruction. Despite airway mucus accumulation, lung bacterial counts were similar between neonatal wild-type and PCD pigs. Sinonasal disease was present in all neonatal PCD pigs. Older PCD pigs developed worsening airway mucus obstruction, inflammation, and bacterial infection. This pig model closely mimics the disease phenotype seen in people with PCD and can be used to better understand the pathophysiology of PCD airway disease.
Collapse
Affiliation(s)
- Mahmoud A. Abou Alaiwa
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242
| | - Brie M. Hilkin
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Margaret P. Price
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Michael R. Rector
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Mal R. Stroik
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Linda S. Powers
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | | | - Melissa S. Samuel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211
| | - Akansha Jain
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Lynda S. Ostedgaard
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Sarah E. Ernst
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Winter Philibert
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242
| | - Linda D. Boyken
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Thomas O. Moninger
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Phillip H. Karp
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Douglas B. Hornick
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Patrick L. Sinn
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Anthony J. Fischer
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Alejandro A. Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Paul B. McCray
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - David K. Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Randy S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211
| | - Michael J. Welsh
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa 52242
| | - David A. Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
16
|
Demetriou ZJ, Muñiz-Hernández J, Rosario-Ortiz G, Quiñones FM, Gonzalez-Diaz G, Ramos-Benitez MJ, Mosquera RA, De Jesús-Rojas W. Evaluation of Open-Source Ciliary Analysis Software in Primary Ciliary Dyskinesia: A Comparative Assessment. Diagnostics (Basel) 2024; 14:1814. [PMID: 39202302 PMCID: PMC11354199 DOI: 10.3390/diagnostics14161814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Primary Ciliary Dyskinesia (PCD) is a rare genetic disorder characterized by alterations in motile cilia function. The diagnosis of PCD is challenging due to the lack of standardized methods in clinical practice. High-speed video microscopy analysis (HSVA) directly evaluates ciliary beat frequency (CBF) in PCD. Recently, open-source ciliary analysis software applications have shown promise in measuring CBF accurately. However, there is limited knowledge about the performance of different software applications, creating a gap in understanding their comparative effectiveness in measuring CBF in PCD. We compared two open-source software applications, CiliarMove (v219) and Cilialyzer (v1.2.1-b3098cb), against the manual count method. We used high-speed videos of nasal ciliary brush samples from PCD RSPH4A-positive (PCD (RSPH4A)) patients and healthy controls. All three methods showed lower median CBF values for patients with PCD (RSPH4A) than in healthy controls. CiliarMove and Cilialyzer identified lower CBF in patients with PCD (RSPH4A), similarly to the manual count. Cilialyzer, CiliarMove, and manual count methods demonstrated statistical significance (p-value < 0.0001) in the difference of median CBF values between patients with PCD (RSPH4A) and healthy controls. Correlation coefficients between the manual count values against both software methods demonstrated positive linear relationships. These findings support the utility of open-source software-based analysis tools. Further studies are needed to validate these findings with other genetic variants and identify the optimal software for accurate CBF measurement in patients with PCD.
Collapse
Affiliation(s)
- Zachary J. Demetriou
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA; (Z.J.D.); (G.R.-O.); (F.M.Q.); (G.G.-D.); (M.J.R.-B.)
| | | | - Gabriel Rosario-Ortiz
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA; (Z.J.D.); (G.R.-O.); (F.M.Q.); (G.G.-D.); (M.J.R.-B.)
| | - Frances M. Quiñones
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA; (Z.J.D.); (G.R.-O.); (F.M.Q.); (G.G.-D.); (M.J.R.-B.)
| | - Gabriel Gonzalez-Diaz
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA; (Z.J.D.); (G.R.-O.); (F.M.Q.); (G.G.-D.); (M.J.R.-B.)
| | - Marcos J. Ramos-Benitez
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA; (Z.J.D.); (G.R.-O.); (F.M.Q.); (G.G.-D.); (M.J.R.-B.)
| | - Ricardo A. Mosquera
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Wilfredo De Jesús-Rojas
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA; (Z.J.D.); (G.R.-O.); (F.M.Q.); (G.G.-D.); (M.J.R.-B.)
| |
Collapse
|
17
|
Arwas N, Gatt D, Aviram M, Abramsky R, Hazan G, Goldbart A, Amirav I, Golan-Tripto I. Neonatal diagnosis of primary ciliary dyskinesia in a high consanguinity population: a single tertiary center experience. Eur J Pediatr 2024; 183:3193-3197. [PMID: 38679661 DOI: 10.1007/s00431-024-05574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Though PCD usually presents after birth in term neonates, diagnosing PCD during the neonatal and infancy stages is uncommon, particularly in children who do not exhibit laterality defects. We report our recent experience with the diagnosis of PCD in the neonatal and early infantile period in a highly consanguine population. This was achieved by implementing a novel genetic-based diagnostic approach based on direct testing for recognized regional genetic variants. We conducted a retrospective analysis of children diagnosed with PCD at Soroka University Medical Center during the neonatal or early infantile period between 2020 and 2023. We included children under 3 months of age who had a genetic confirmation of PCD, as evidenced by the presence of two pathogenic variants in recognized genes. Genetic testing targeted regional genetic variants in previously identified PCD genes. Eight patients were included. The median age at diagnosis was 12.5 days. Three (38%) were born prematurely < 34 weeks gestational age. All patients were presented with respiratory distress and hypoxemia after birth. The median duration of oxygen support was 23 days, and upper lobe atelectasis was present in five patients (63%). Congenital cardiac malformation was present in four patients. Organ laterality defects were present in four patients. Genetic mutations identified were in the DNAAF5, DNAL1, DNAAF3, and DNAH1 genes. Conclusion: Neonatal diagnosis of PCD is uncommon, especially in atypical presentations such as children without laterality defects or preterms. Focusing on a genetic diagnosis of the local tribal pathogenic variants promotes a potential cost-efficient test leading to earlier diagnosis. There is a need for a standardized protocol for earlier diagnosis of PCD in high-consanguinity areas. What is Known: • Primary ciliary dyskinesia (PCD) typically presents after birth in term neonates. • Diagnosing PCD during neonatal and infancy stages is challenging, particularly in children without laterality defects. What is New: • A novel genetic-based diagnostic approach was implemented on the neonatal population in a highly consanguine community, focusing on direct testing for regional genetic variants, leading to early and rapid diagnosis of PCD.
Collapse
Affiliation(s)
- Noga Arwas
- Pediatric Pulmonology Unit, Faculty of Health Sciences, Soroka University Medical Center, Ben Gurion University, PO box 151, Beer-Sheva, Israel.
| | - Dvir Gatt
- Pediatric Pulmonology Unit, Faculty of Health Sciences, Soroka University Medical Center, Ben Gurion University, PO box 151, Beer-Sheva, Israel
| | - Micha Aviram
- Pediatric Pulmonology Unit, Faculty of Health Sciences, Soroka University Medical Center, Ben Gurion University, PO box 151, Beer-Sheva, Israel
| | - Ramy Abramsky
- Neonatology Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Guy Hazan
- Pediatric Pulmonology Unit, Faculty of Health Sciences, Soroka University Medical Center, Ben Gurion University, PO box 151, Beer-Sheva, Israel
| | - Aviv Goldbart
- Pediatric Pulmonology Unit, Faculty of Health Sciences, Soroka University Medical Center, Ben Gurion University, PO box 151, Beer-Sheva, Israel
| | - Israel Amirav
- Pediatric Pulmonology Unit, Dana-Dwek Children's Hospital, Tel Aviv, Israel
| | - Inbal Golan-Tripto
- Pediatric Pulmonology Unit, Faculty of Health Sciences, Soroka University Medical Center, Ben Gurion University, PO box 151, Beer-Sheva, Israel
| |
Collapse
|
18
|
Gabriel GC, Ganapathiraju M, Lo CW. The Role of Cilia and the Complex Genetics of Congenital Heart Disease. Annu Rev Genomics Hum Genet 2024; 25:309-327. [PMID: 38724024 DOI: 10.1146/annurev-genom-121222-105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Congenital heart disease (CHD) can affect up to 1% of live births, and despite abundant evidence of a genetic etiology, the genetic landscape of CHD is still not well understood. A large-scale mouse chemical mutagenesis screen for mutations causing CHD yielded a preponderance of cilia-related genes, pointing to a central role for cilia in CHD pathogenesis. The genes uncovered by the screen included genes that regulate ciliogenesis and cilia-transduced cell signaling as well as many that mediate endocytic trafficking, a cell process critical for both ciliogenesis and cell signaling. The clinical relevance of these findings is supported by whole-exome sequencing analysis of CHD patients that showed enrichment for pathogenic variants in ciliome genes. Surprisingly, among the ciliome CHD genes recovered were many that encoded direct protein-protein interactors. Assembly of the CHD genes into a protein-protein interaction network yielded a tight interactome that suggested this protein-protein interaction may have functional importance and that its disruption could contribute to the pathogenesis of CHD. In light of these and other findings, we propose that an interactome enriched for ciliome genes may provide the genomic context for the complex genetics of CHD and its often-observed incomplete penetrance and variable expressivity.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
| | - Madhavi Ganapathiraju
- Carnegie Mellon University in Qatar, Doha, Qatar
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA;
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
| |
Collapse
|
19
|
Koenitzer JR, Gupta DK, Twan WK, Xu H, Hadas N, Hawkins FJ, Beermann ML, Penny GM, Wamsley NT, Berical A, Major MB, Dutcher SK, Brody SL, Horani A. Transcriptional analysis of primary ciliary dyskinesia airway cells reveals a dedicated cilia glutathione pathway. JCI Insight 2024; 9:e180198. [PMID: 39042459 PMCID: PMC11385084 DOI: 10.1172/jci.insight.180198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic condition that results in dysmotile cilia. The repercussions of cilia dysmotility and gene variants on the multiciliated cell remain poorly understood. We used single-cell RNA-Seq, proteomics, and advanced microscopy to compare primary culture epithelial cells from patients with PCD, their heterozygous mothers, and healthy individuals, and we induced pluripotent stem cells (iPScs) generated from a patient with PCD. Transcriptomic analysis revealed unique signatures in PCD airway cells compared with their mothers' cells and the cells of healthy individuals. Gene expression in heterozygous mothers' cells diverged from both control and PCD cells, marked by increased inflammatory and cellular stress signatures. Primary and iPS-derived PCD multiciliated cells had increased expression of glutathione-S-transferases GSTA2 and GSTA1, as well as NRF2 target genes, accompanied by elevated levels of reactive oxygen species (ROS). Immunogold labeling in human cilia and proteomic analysis of the ciliated organism Chlamydomonas reinhardtii demonstrated that GSTA2 localizes to motile cilia. Loss of human GSTA2 and C. reinhardtii GSTA resulted in slowed cilia motility, pointing to local cilia regulatory roles. Our findings identify cellular responses unique to PCD variants and independent of environmental stress and uncover a dedicated ciliary GSTA2 pathway essential for normal motility that may be a therapeutic target.
Collapse
Affiliation(s)
| | - Deepesh Kumar Gupta
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wang Kyaw Twan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Huihui Xu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas Hadas
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine and
- The Pulmonary Center, Department of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | | | | | - Nathan T Wamsley
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew Berical
- Center for Regenerative Medicine and
- The Pulmonary Center, Department of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan K Dutcher
- Department of Genetics and
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Al-Mutairi DA, Alsabah BH, Pennekamp P, Omran H. Novel pathogenic variants of DNAH5 associated with clinical and genetic spectra of primary ciliary dyskinesia in an Arab population. Front Genet 2024; 15:1396797. [PMID: 39045318 PMCID: PMC11264286 DOI: 10.3389/fgene.2024.1396797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/20/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction: Primary ciliary dyskinesia (PCD) is caused by the dysfunction of motile cilia resulting in insufficient mucociliary clearance of the lungs. This study aimed to map novel PCD variants and determine their pathogenicity in PCD patients in Kuwait. Methods: Herein, we present five PCD individuals belonging to a cohort of 105 PCD individuals recruited from different hospitals in Kuwait. Genomic DNAs from the family members were analysed to screen for pathogenic PCD variants. Transmission electron microscopy (TEM) and immunofluorescence (IF) analyses were performed on the nasal biopsies to detect specific structural abnormalities within the ciliated cells. Results: Genetic screening and functional analyses confirmed that the five PCD individuals carried novel pathogenic variants of DNAH5 causing PCD in three Arabic families. Of these, one multiplex family with two affected individuals showed two novel homozygous missense variants in DNAH5 causing PCD with situs inversus; another multiplex family with two affected individuals showed two newly identified compound heterozygous variants in DNAH5 causing PCD with situs solitus. In addition, novel heterozygous variants were identified in a child with PCD and situs solitus from a singleton family with unrelated parents. TEM analysis demonstrated the lack of outer dynein arms (ODAs) in all analysed samples, and IF analysis confirmed the absence of the dynein arm component of DNAH5 from the ciliary axoneme. Conclusion: The newly identified pathogenic variants of DNAH5 are associated with PCD as well as variable pulmonary clinical manifestations in Arabic families.
Collapse
Affiliation(s)
- Dalal A. Al-Mutairi
- Department of Pathology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | | | - Petra Pennekamp
- Department of Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of Pediatrics, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
21
|
Despotes KA, Zariwala MA, Davis SD, Ferkol TW. Primary Ciliary Dyskinesia: A Clinical Review. Cells 2024; 13:974. [PMID: 38891105 PMCID: PMC11171568 DOI: 10.3390/cells13110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous, motile ciliopathy, characterized by neonatal respiratory distress, recurrent upper and lower respiratory tract infections, subfertility, and laterality defects. Diagnosis relies on a combination of tests for confirmation, including nasal nitric oxide (nNO) measurements, high-speed videomicroscopy analysis (HSVMA), immunofluorescent staining, axonemal ultrastructure analysis via transmission electron microscopy (TEM), and genetic testing. Notably, there is no single gold standard confirmatory or exclusionary test. Currently, 54 causative genes involved in cilia assembly, structure, and function have been linked to PCD; this rare disease has a spectrum of clinical manifestations and emerging genotype-phenotype relationships. In this review, we provide an overview of the structure and function of motile cilia, the emerging genetics and pathophysiology of this rare disease, as well as clinical features associated with motile ciliopathies, novel diagnostic tools, and updates on genotype-phenotype relationships in PCD.
Collapse
Affiliation(s)
- Katherine A. Despotes
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maimoona A. Zariwala
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie D. Davis
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas W. Ferkol
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
El Marzouki N, Alaoui-Inboui FZ, Slaoui B. Kartagener's Syndrome: A Case Series. Cureus 2024; 16:e61722. [PMID: 38975481 PMCID: PMC11225540 DOI: 10.7759/cureus.61722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Kartagener's syndrome is an uncommon autosomal recessive ciliary dyskinesia. It combines a triad comprised of bronchiectasis, chronic sinusitis, and situs inversus. This work aims to describe the clinical and paraclinical aspects of primary ciliary dyskinesia using Kartagener's syndrome as a model and to highlight the difficulties of confirming the diagnosis in our context. We report four observations (three boys and one girl with an average age of 10 years) of Kartagener's syndrome collected in the department of pediatric pneumo-allergology. Chronic bronchorrhea and otorhinolaryngological manifestations were found in all cases. Signs of neonatal respiratory distress syndrome were found in only one case. One child had dysmorphic facial features suggestive of Noonan's syndrome and conductive hearing loss. Digital hippocratism was found in half of the cases, along with pulmonary crackles and heart sounds perceived on the right. A chest CT scan showed bronchiectasis in all patients and necrotic adenopathy suggestive of tuberculosis in one case. Sinus imaging showed an appearance of pansinusitis. All children had abdominal situs inversus with dextrocardia. They had received antibiotic therapy with amoxicillin-clavulanic acid associated with respiratory physiotherapy. The girl had benefited from a right lobectomy with a follow-up of 18 months and a good evolution. In light of these four observations, Kartagener's syndrome is a rare disease but can be compatible with normal life if the treatment is done early. However, in our context, the difficulty of confirming the diagnosis explains its delay with the risk of progression of pulmonary lesions.
Collapse
Affiliation(s)
- Nisrine El Marzouki
- Pediatric Pneumo-Allergology Unit, Pediatric Department 2, Hôpital Mère-Enfant Abderrahim Harouchi, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| | - Fatima Zahra Alaoui-Inboui
- Pediatric Pneumo-Allergology Unit, Pediatric Department 2, Hôpital Mère-Enfant Abderrahim Harouchi, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| | - Bouchra Slaoui
- Pediatric Pneumo-Allergology Unit, Pediatric Department 2, Hôpital Mère-Enfant Abderrahim Harouchi, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| |
Collapse
|
23
|
Takeuchi K, Abo M, Date H, Gotoh S, Kamijo A, Kaneko T, Keicho N, Kodama S, Koinuma G, Kondo M, Masuda S, Mori E, Morimoto K, Nagao M, Nakano A, Nakatani K, Nishida N, Nishikido T, Ohara H, Okinaka Y, Sakaida H, Shiraishi K, Suzaki I, Tojima I, Tsunemi Y, Kainuma K, Ota N, Takeno S, Fujieda S. Practical guide for the diagnosis and management of primary ciliary dyskinesia. Auris Nasus Larynx 2024; 51:553-568. [PMID: 38537559 DOI: 10.1016/j.anl.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/30/2023] [Accepted: 02/01/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE Primary ciliary dyskinesia (PCD) is a relatively rare genetic disorder that affects approximately 1 in 20,000 people. Approximately 50 genes are currently known to cause PCD. In light of differences in causative genes and the medical system in Japan compared with other countries, a practical guide was needed for the diagnosis and management of Japanese PCD patients. METHODS An ad hoc academic committee was organized under the Japanese Rhinologic Society to produce a practical guide, with participation by committee members from several academic societies in Japan. The practical guide including diagnostic criteria for PCD was approved by the Japanese Rhinologic Society, Japanese Society of Otolaryngology-Head and Neck Surgery, Japanese Respiratory Society, and Japanese Society of Pediatric Pulmonology. RESULTS The diagnostic criteria for PCD consist of six clinical features, six laboratory findings, differential diagnosis, and genetic testing. The diagnosis of PCD is categorized as definite, probable, or possible PCD based on a combination of the four items above. Diagnosis of definite PCD requires exclusion of cystic fibrosis and primary immunodeficiency, at least one of the six clinical features, and a positive result for at least one of the following: (1) Class 1 defect on electron microscopy of cilia, (2) pathogenic or likely pathogenic variants in a PCD-related gene, or (3) impairment of ciliary motility that can be repaired by correcting the causative gene variants in iPS cells established from the patient's peripheral blood cells. CONCLUSION This practical guide provides clinicians with useful information for the diagnosis and management of PCD in Japan.
Collapse
Affiliation(s)
- Kazuhiko Takeuchi
- Department of Otorhinolaryngology, Head & Neck Surgery, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | - Miki Abo
- Kanazawa University Health Service Center Respiratory Medicine, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University, Japan
| | - Shimpei Gotoh
- Department of Clinical Application, Center for iPS Cell, Research and Application, Kyoto University, Japan
| | | | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University, Japan
| | - Naoto Keicho
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Japan
| | | | - Goro Koinuma
- Department of Medical Subspecialties, Division of Pulmonology, National Center for Child Health and Development, Japan
| | - Mitsuko Kondo
- Department of Respiratory Medicine, Tokyo Women's Medical University, Japan
| | - Sawako Masuda
- Department of Otorhinolaryngology, National Hospital Organization Mie National Hospital, Japan
| | - Eri Mori
- Department of Otorhinolaryngology, Jikei University, Japan
| | - Kozo Morimoto
- Fukujuji Hospital, Japan Anti-Tuberculosis Association, Japan
| | - Mizuho Nagao
- National Hospital Organization Mie National Hospital, Japan
| | - Atsuko Nakano
- Department of Otorhinolaryngology, Chiba Children's Hospital, Japan
| | | | - Naoya Nishida
- Department of Otolaryngology, Ehime University, Japan
| | - Tomoki Nishikido
- Department of Pediatric Pulmonology and Allergy, Osaka Women's and Children's Hospital, Japan
| | - Hirotatsu Ohara
- Department of Otorhinolaryngology, Mito Kyodo General Hospital, Japan
| | - Yosuke Okinaka
- Department of Otorhinolaryngology, Yamaguchi University, Japan
| | - Hiroshi Sakaida
- Department of Otorhinolaryngology, Head & Neck Surgery, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | - Isao Suzaki
- Department of Otorhinolaryngology, Head and Neck Surgery, Showa University, Japan
| | - Ichiro Tojima
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Japan
| | - Yasuhiro Tsunemi
- Department of Otorhinolaryngology, Dokkyo Medical University, Japan
| | | | - Nobuo Ota
- Department of Otorhinolaryngology, Tohoku Medical and Pharmaceutical University, Japan
| | - Sachio Takeno
- Department of Otolaryngology, Head and Neck Surgery, Hiroshima University, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology Head and Neck Surgery, University of Fukui, Japan
| |
Collapse
|
24
|
Bucholz EM, Morton SU, Madriago E, Roberts AE, Ronai C. The Evolving Role of Genetic Evaluation in the Prenatal Diagnosis and Management of Congenital Heart Disease. J Cardiovasc Dev Dis 2024; 11:170. [PMID: 38921669 PMCID: PMC11203735 DOI: 10.3390/jcdd11060170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
Congenital heart disease (CHD) is increasingly diagnosed prenatally and the ability to screen and diagnose the genetic factors involved in CHD have greatly improved. The presence of a genetic abnormality in the setting of prenatally diagnosed CHD impacts prenatal counseling and ensures that families and providers have as much information as possible surrounding perinatal management and what to expect in the future. This review will discuss the genetic evaluation that can occur prior to birth, what different genetic testing methods are available, and what to think about in the setting of various CHD diagnoses.
Collapse
Affiliation(s)
- Emily M. Bucholz
- Section of Cardiology, Department of Pediatrics, University of Colorado Denver, Denver, CO 80204, USA
| | - Sarah U. Morton
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erin Madriago
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Amy E. Roberts
- Department of Cardiology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Christina Ronai
- Department of Cardiology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Carr KA, Moore PE, O'Connor MG. The utility of nasal nitric oxide in the diagnostic evaluation of primary ciliary dyskinesia. Pediatr Pulmonol 2024; 59:1410-1417. [PMID: 38380959 PMCID: PMC11058016 DOI: 10.1002/ppul.26929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/05/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND There is no gold-standard test for primary ciliary dyskinesia (PCD), rather American Thoracic Society guidelines recommend starting with nasal nitric oxide (nNO) in children ≥5 years old and confirming the diagnosis with genetic testing or ciliary biopsy with transmission electron microscopy (TEM). These guidelines have not been studied in a clinical setting. We present a case series describing the PCD diagnostic process at our pediatric PCD center. METHODS Diagnostic data from 131 patients undergoing PCD consultation were reviewed. RESULTS In all participants ≥ 5 years old and who completed nNO using resistor methodology, the first diagnostic test performed was nNO in 77% (73/95), genetic testing in 14% (13/95), and TEM in <1% (9/95). nNO was the only diagnostic test performed in 75% (55/73) of participants who completed nNO first. Seventy-five percent (55/73) had a single above the cutoff nNO value and PCD was determined to be unlikely in 91% (50/55) without performing additional confirmatory testing. Eleven percent (8/73) had multiple below the cutoff nNO values, with 38% (3/8) being diagnosed with PCD by confirmatory testing and 50% (4/8) with negative confirmatory testing, but being managed as PCD. The genetic testing positivity rate was 50% in participants who completed nNO first and 8% when genetic testing was completed first. CONCLUSION nNO is useful in three situations: an initial above the cutoff nNO value makes PCD unlikely and prevents additional confirmatory testing, repetitively below the cutoff nNO values without positive confirmatory testing suggests a probable PCD diagnosis and the yield of genetic testing is higher when nNO is performed first.
Collapse
Affiliation(s)
- Katherine A Carr
- Department of Pediatric Allergy, Immunology and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul E Moore
- Department of Pediatric Allergy, Immunology and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael G O'Connor
- Department of Pediatric Allergy, Immunology and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
26
|
Retuerto-Guerrero M, López-Medrano R, de Freitas-González E, Rivero-Lezcano OM. Nontuberculous Mycobacteria, Mucociliary Clearance, and Bronchiectasis. Microorganisms 2024; 12:665. [PMID: 38674609 PMCID: PMC11052484 DOI: 10.3390/microorganisms12040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) are environmental and ubiquitous, but only a few species are associated with disease, often presented as nodular/bronchiectatic or cavitary pulmonary forms. Bronchiectasis, airways dilatations characterized by chronic productive cough, is the main presentation of NTM pulmonary disease. The current Cole's vicious circle model for bronchiectasis proposes that it progresses from a damaging insult, such as pneumonia, that affects the respiratory epithelium and compromises mucociliary clearance mechanisms, allowing microorganisms to colonize the airways. An important bronchiectasis risk factor is primary ciliary dyskinesia, but other ciliopathies, such as those associated with connective tissue diseases, also seem to facilitate bronchiectasis, as may occur in Lady Windermere syndrome, caused by M. avium infection. Inhaled NTM may become part of the lung microbiome. If the dose is too large, they may grow excessively as a biofilm and lead to disease. The incidence of NTM pulmonary disease has increased in the last two decades, which may have influenced the parallel increase in bronchiectasis incidence. We propose that ciliary dyskinesia is the main promoter of bronchiectasis, and that the bacteria most frequently involved are NTM. Restoration of ciliary function and impairment of mycobacterial biofilm formation may provide effective therapeutic alternatives to antibiotics.
Collapse
Affiliation(s)
- Miriam Retuerto-Guerrero
- Servicio de Reumatología, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Ramiro López-Medrano
- Servicio de Microbiología Clínica, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Elizabeth de Freitas-González
- Servicio de Neumología, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Octavio Miguel Rivero-Lezcano
- Unidad de Investigación, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain
| |
Collapse
|
27
|
Mahat A, Bhusal A, Yadav GK, Mishra U, Duwadi B, Katwal S. Left-sided acute appendicitis in a patient with situs inversus totalis: A case report and a comprehensive review. Radiol Case Rep 2024; 19:1020-1025. [PMID: 38226055 PMCID: PMC10788372 DOI: 10.1016/j.radcr.2023.11.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024] Open
Abstract
AA is a frequent surgical condition that demands urgent intervention. It accounts for approximately 6% of all emergency department visits. Situs inversus is a rare condition in which the orientation of asymmetric organs is a mirror image of normal anatomy. It can be partial (involving either the abdominal or thoracic cavities) or complete (situs inversus totalis: transposition of both abdominal and thoracic organs). SIT is very rare, with an incidence of 1 per 5000 to 10,000 live births. It is inherited in an autosomal recessive pattern with incomplete penetrance. LSAA is very rare and can happen in association with other congenital abnormalities such as situs inversus, midgut malrotation (MM), or a usually long right-sided appendix projecting into the left lower quadrant. SIT is responsible for greater than 67% of left-sided appendicitis cases. Due to atypical clinical presentation, the diagnosis of AA can be difficult and often delayed. Hence, a complete medical history, physical examination, laboratory tests, and imaging tools are necessary to reach a correct diagnosis in a timely manner and prevent complications like abscesses, perforations, and peritonitis. We report a case of a 50-year-old male with symptoms of left lower abdominal pain along with fever, nausea, vomiting, and loose stools that were later diagnosed as LSAA in the setting of SIT.
Collapse
Affiliation(s)
- Asim Mahat
- Department of Radiodiagnosis and Imaging, Nepalese Army Institute of Health Sciences, Kathmandu, Nepal
| | - Amrit Bhusal
- Department of Radio-diagnostics and Imaging, BP Koirala Institute of Health Sciences (BPKIHS), Dharan, Sunsari, Nepal
| | - Gopal Kumar Yadav
- Department of Radio-diagnostics and Imaging, BP Koirala Institute of Health Sciences (BPKIHS), Dharan, Sunsari, Nepal
| | - Upama Mishra
- Department of Obstetrics and Gynaecology, BP Koirala Institute of Health Sciences (BPKIHS), Dharan, Sunsari, Nepal
| | - Bikash Duwadi
- Department of Radiodiagnosis and Imaging, Nepalese Army Institute of Health Sciences, Kathmandu, Nepal
| | | |
Collapse
|
28
|
Ringshausen FC, Shapiro AJ, Nielsen KG, Mazurek H, Pifferi M, Donn KH, van der Eerden MM, Loebinger MR, Zariwala MA, Leigh MW, Knowles MR, Ferkol TW. Safety and efficacy of the epithelial sodium channel blocker idrevloride in people with primary ciliary dyskinesia (CLEAN-PCD): a multinational, phase 2, randomised, double-blind, placebo-controlled crossover trial. THE LANCET. RESPIRATORY MEDICINE 2024; 12:21-33. [PMID: 37660715 DOI: 10.1016/s2213-2600(23)00226-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Mucociliary clearance is dysfunctional in people with primary ciliary dyskinesia, resulting in the accumulation of dehydrated mucus in the airways that is difficult to clear. We undertook a study to assess the benefit on lung function of treatment with a nebulised epithelial sodium channel (ENaC) blocker, idrevloride, with or without hypertonic saline, in people with primary ciliary dyskinesia. METHODS The CLEAN-PCD trial was a phase 2, randomised, double-blind, placebo-controlled crossover trial conducted at 32 tertiary adult and paediatric care centres and university hospitals in Canada, Denmark, Germany, Italy, the Netherlands, Poland, the UK, and the USA. People with a confirmed diagnosis of primary ciliary dyskinesia, aged 12 years or older, with a percentage of predicted FEV1 (ppFEV1) in the range of 40% to <90%, were randomly assigned in a 2:2:1:1 ratio (block size=6), stratified by ppFEV1 at screening, to one of four sequences: (1) idrevloride in hypertonic saline in treatment period 1 then hypertonic saline in treatment period 2; (2) hypertonic saline in treatment period 1 then idrevloride in hypertonic saline in treatment period 2; (3) idrevloride in treatment period 1 then placebo in treatment period 2; and (4) placebo in treatment period 1 then idrevloride in treatment period 2. The idrevloride dose was 85 μg and hypertonic saline was 4·2% NaCl. 3 mL of each study treatment was nebulised twice daily for 28 days in treatment periods 1 and 2; the two 28-day treatment periods were separated by a 28-day washout period. The primary endpoint was absolute change from baseline in ppFEV1 after 28 days. Safety assessments and reports of adverse events were made at clinic visits during each treatment period and by a follow-up telephone call 28 days after the last dose of study drug. Additionally, adverse events could be reported at a follow-up telephone call 3 days after the start of dosing and as they arose. Participants who received at least one dose of study drug were included in the safety analyses (safety set), and those who also had spirometry data were included in the efficacy analyses (full analysis set). The completed study is registered (EudraCT 2015-004917-26; ClinicalTrials.govNCT02871778). FINDINGS Between Sep 14, 2016, and May 31, 2018, 216 patients were screened and 123 were randomly assigned to one of four crossover sequences. Across the two treatment periods, treatment with idrevloride in hypertonic saline was initiated in 80 patients and completed in 78 patients (all 78 had data available and were included in the analysis); hypertonic saline initiated in 81 patients and completed in 76 patients (75 had data available and were included in the analysis); idrevloride initiated in 37 patients and completed in 35 patients (34 had data available and were included in the analysis); and placebo initiated in 36 patients and completed in 34 patients (all 34 had data available and were included in the analysis). Greater absolute increases in ppFEV1 from baseline to 28 days of treatment were seen with idrevloride in hypertonic saline (least-squares mean absolute change from baseline 1·0 percentage points, 95% CI -0·4 to 2·4) than with hypertonic saline alone (least-squares mean absolute change from baseline of -0·5 percentage points, -2·0 to 0·9; difference 1·5 percentage points, 95% CI <0·1 to 3·0; p=0·044). There was no significant difference in ppFEV1 for the parallel comparison of idrevloride in hypertonic saline compared with placebo or the crossover comparison of idrevloride with placebo. Adverse events were similar across treatments (57 to 65% of patients). Cough occurred in a greater proportion of participants during treatments that contained idrevloride or hypertonic saline compared with placebo, and oropharyngeal pain occurred in a greater proportion of participants during idrevloride treatments than during treatment with hypertonic saline alone or placebo, whereas chest discomfort was more common during treatments that included hypertonic saline. INTERPRETATION In this phase 2 crossover study, idrevloride in hypertonic saline was safe and associated with improved lung function over a 28-day period in people with primary ciliary dyskinesia compared with hypertonic saline alone. Larger, longer clinical studies are warranted to explore the potential benefits of idrevloride in combination with hypertonic saline in people with primary ciliary dyskinesia. FUNDING Parion Sciences, under agreement with Vertex Pharmaceuticals.
Collapse
Affiliation(s)
- Felix C Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, German Center for Lung Research and European Reference Network for Rare and Complex Lung Diseases, Hannover Medical School, Hannover, Germany.
| | - Adam J Shapiro
- Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Kim G Nielsen
- Danish Primary Ciliary Dyskinesia Centre, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Henryk Mazurek
- Department of Pneumonology and Cystic Fibrosis, National Institute of Tuberculosis and Lung Disorders, Rabka-Zdroj, Poland
| | - Massimo Pifferi
- Department of Paediatrics, University Hospital of Pisa, Pisa, Italy
| | | | | | - Michael R Loebinger
- Host Defence Unit and National Heart and Lung Institute, Royal Brompton Hospital and Imperial College London, London, UK
| | - Maimoona A Zariwala
- Department of Pathology and Laboratory Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margaret W Leigh
- Department of Pediatrics, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael R Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas W Ferkol
- Department of Pediatrics, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Keicho N, Hijikata M, Miyabayashi A, Wakabayashi K, Yamada H, Ito M, Morimoto K. Impact of primary ciliary dyskinesia: Beyond sinobronchial syndrome in Japan. Respir Investig 2024; 62:179-186. [PMID: 38154292 DOI: 10.1016/j.resinv.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterized by impaired motile cilia function, particularly in the upper and lower airways. To date, more than 50 causative genes related to the movement, development, and maintenance of cilia have been identified. PCD mostly follows an autosomal recessive inheritance pattern, in which PCD symptoms manifest only in the presence of pathogenic variants in both alleles. Several genes causing PCD have been recently identified that neither lead to situs inversus nor cause definitive abnormalities in ciliary ultrastructure. Importantly, the distribution of disease-causing genes and pathogenic variants varies depending on ethnicity. In Japan, homozygosity for a ∼27.7-kb deletion of DRC1 is estimated to be the most common cause of PCD, presumably as a founder mutation. The clinical picture of PCD is similar to that of sinobronchial syndrome, thus making its differentiation from diffuse panbronchiolitis and other related disorders difficult. Given the diagnostic challenges, many cases remain undiagnosed or misdiagnosed, particularly in adults. While no fundamental cure is currently available, lifelong medical subsidies are provided in Japan, and proper respiratory management, along with continued prevention and treatment of infections, is believed to mitigate the decline in respiratory function. Timely action will be necessary when specific treatments for PCD become available in the future. This narrative review focuses on variations in the disease status of PCD in a non-Western country.
Collapse
Affiliation(s)
- Naoto Keicho
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan.
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Masashi Ito
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
30
|
Seidl E, Gatt D, Wee WB, Wilson D, Ratjen F, Grasemann H. Bronchodilator responsiveness in children with primary ciliary dyskinesia. ERJ Open Res 2024; 10:00611-2023. [PMID: 38226068 PMCID: PMC10789254 DOI: 10.1183/23120541.00611-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/05/2023] [Indexed: 01/17/2024] Open
Abstract
Background Reversible airway obstruction is common in children with primary ciliary dyskinesia. However, the diagnostic value of adding bronchodilator (BD) response testing to routine spirometry is unclear. Methods This is a retrospective analysis of pulmonary function test results obtained from children with primary ciliary dyskinesia seen as outpatients at the Hospital for Sick Children, Toronto. Spirometry results were collected for every appointment with BD response testing ("Visit", with pre-BD and post-BD measurements) as well as for the previous ("Baseline") and following ("Follow-up") encounters. Results A positive BD response was seen in 86 out of 474 (18.1%) of the pulmonary function tests from 82 children with primary ciliary dyskinesia. BD responsiveness was associated with a significant absolute change (±sd) in % predicted forced expiratory volume in 1 s (FEV1) from Baseline to Visit pre-BD (-6.5±10.3%, p<0.001), but not from Baseline to Follow-up (0.4±10.8, p=0.757). Antimicrobial therapy was initiated more commonly following a Visit with a positive BD response (OR 3.8, 95% CI 2.2-6.6) compared to no BD response. Children with a positive BD response had a greater annual decline in FEV1 % predicted compared to those with no BD response (-0.9% per year versus -0.5% per year, p<0.001). The annual decline in FEV1 % predicted was greater in children with multiple compared to one measured positive BD responses (-1.3% per year versus -0.6% per year, p<0.001) and in those not treated with antibiotic therapy following a positive BD response compared to those treated with antibiotics (-1.1% versus -0.6%, p<0.001). Conclusion A positive BD response in children with primary ciliary dyskinesia may help identify those at risk for accelerated lung disease progression.
Collapse
Affiliation(s)
- Elias Seidl
- Division of Respiratory Medicine, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Respiratory Medicine, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Dvir Gatt
- Division of Respiratory Medicine, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Wallace B. Wee
- Division of Respiratory Medicine, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - David Wilson
- Division of Respiratory Medicine, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Felix Ratjen
- Division of Respiratory Medicine, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Respiratory Medicine, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Oh J, Lee JS, Park MS, Kang YA, Cho HJ, Kim SY, Jung J, Yoon SO, Kim KW. Diagnosis of Primary Ciliary Dyskinesia via Whole Exome Sequencing and Histologic Findings. Yonsei Med J 2024; 65:48-54. [PMID: 38154480 PMCID: PMC10774650 DOI: 10.3349/ymj.2023.0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 12/30/2023] Open
Abstract
PURPOSE To assess the diagnostic potential of whole-exome sequencing (WES) and elucidate the clinical and genetic characteristics of primary ciliary dyskinesia (PCD) in the Korean population. MATERIALS AND METHODS Forty-seven patients clinically suspected of having PCD were enrolled at a tertiary medical center. WES was performed in all patients, and seven patients received biopsy of cilia and transmission electron microscopy (TEM). RESULTS Overall, PCD was diagnosed in 10 (21.3%) patients: eight by WES (8/47, 17%), four by TEM. Among patients diagnosed as PCD based on TEM results, two patients showed consistent results with WES and TEM of PCD (2/4, 50%). In addition, five patients, who were not included in the final PCD diagnosis group, had variants of unknown significance in PCD-related genes (5/47, 10.6%). The most frequent pathogenic (P)/likely pathogenic (LP) variants were detected in DNAH11 (n=4, 21.1%), DRC1 (n=4, 21.1%), and DNAH5 (n=4, 21.1%). Among the detected 17 P/LP variants in PCD-related genes in this study, 8 (47.1%) were identified as novel variants. Regarding the genotype-phenotype correlation in this study, the authors experienced severe PCD cases caused by the LP/P variants in MCIDAS, DRC1, and CCDC39. CONCLUSION Through this study, we were able to confirm the value of WES as one of the diagnostic tools for PCD, which increases with TEM, rather than single gene tests. These results will prove useful to hospitals with limited access to PCD diagnostic testing but with relatively efficient in-house or outsourced access to genetic testing at a pre-symptomatic or early disease stage.
Collapse
Affiliation(s)
- Jiyoung Oh
- Division of Clinical Genetics, Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Jin-Sung Lee
- Center for Precision Medicine, Incheon Sejong Hospital, Seoul, Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ae Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Song Yee Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
Shaikh Qureshi WM, Hentges KE. Functions of cilia in cardiac development and disease. Ann Hum Genet 2024; 88:4-26. [PMID: 37872827 PMCID: PMC10952336 DOI: 10.1111/ahg.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.
Collapse
Affiliation(s)
- Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
33
|
Zhou W, Guo Z, Chen J, Chen Y, He C, Lu A, Qian L. Airway microbiota correlated with pulmonary exacerbation in primary ciliary dyskinesia patients. Microbiol Spectr 2023; 11:e0221323. [PMID: 37796006 PMCID: PMC10715216 DOI: 10.1128/spectrum.02213-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE PCD is a rare disease characterized by productive cough, rhinitis, and recurrent infections of the upper and lower airways. Because the diagnosis of PCD is often delayed, patients receive more antibiotics, experience a heavier financial burden, and have a worse prognosis; thus, it is very important to identify the pathogeny and use the correct antibiotic. In this large single-center study of PCD microbiota, we identified an outline of the bacterial microbes from the respiratory tract; furthermore, we found that the microbiota diversity in pediatric sputum was richer than that in pediatric BALF through sequencing, indicating a heterogeneous community structure. The microbiota diversity and richness were lower during pulmonary exacerbation than during pulmonary stabilization. A significantly higher abundance of Pseudomonas had a moderate distinguishing effect for lung exacerbation, which attracted more attention for the study of Pseudomonas therapy in pediatric patients with PCD.
Collapse
Affiliation(s)
- Weitao Zhou
- Department of Respiratory Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Zhuoyao Guo
- Department of Respiratory Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Jinglong Chen
- Department of Respiratory Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yao Chen
- Department of Respiratory Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Chen He
- Department of Respiratory Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Aizhen Lu
- Department of Respiratory Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Liling Qian
- Department of Respiratory Medicine, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
34
|
Xia T, Umezu K, Scully DM, Wang S, Larina IV. In vivo volumetric depth-resolved imaging of cilia metachronal waves using dynamic optical coherence tomography. OPTICA 2023; 10:1439-1451. [PMID: 38665775 PMCID: PMC11044847 DOI: 10.1364/optica.499927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 04/28/2024]
Abstract
Motile cilia are dynamic hair-like structures covering epithelial surfaces in multiple organs. The periodic coordinated beating of cilia creates waves propagating along the surface, known as the metachronal waves, which transport fluids and mucus along the epithelium. Motile ciliopathies result from disrupted coordinated cilia beating and are associated with serious clinical complications, including reproductive disorders. Despite the recognized clinical significance, research of cilia dynamics is extremely limited. Here, we present quantitative imaging of cilia metachronal waves volumetrically through tissue layers using dynamic optical coherence tomography (OCT). Our method relies on spatiotemporal mapping of the phase of intensity fluctuations in OCT images caused by the ciliary beating. We validated our new method ex vivo and implemented it in vivo to visualize cilia metachronal wave propagation within the mouse fallopian tube. This method can be extended to the assessment of physiological cilia function and ciliary dyskinesias in various organ systems, contributing to better management of pathologies associated with motile ciliopathies.
Collapse
Affiliation(s)
- Tian Xia
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kohei Umezu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Deirdre M. Scully
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Irina V. Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
35
|
Schneiter M, Tschanz SA, Escher A, Müller L, Frenz M. The Cilialyzer - A freely available open-source software for the analysis of mucociliary activity in respiratory cells. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107744. [PMID: 37598471 DOI: 10.1016/j.cmpb.2023.107744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 07/12/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Primary ciliary dyskinesia (PCD) is a rare genetic disorder causing a defective ciliary structure, which predominantly leads to an impaired mucociliary clearance and associated airway disease. As there is currently no single diagnostic gold standard test, PCD is diagnosed by a combination of several methods comprising genetic testing and the examination of the ciliary structure and function. Among the approved diagnostic methods, only high-speed video microscopy (HSVM) allows to directly observe the ciliary motion and therefore, to directly assess ciliary function. In the present work, we present our recently developed freely available open-source software - termed "Cilialyzer", which has been specifically designed to support and facilitate the analysis of the mucociliary activity in respiratory epithelial cells captured by high-speed video microscopy. METHODS In its current state, the Cilialyzer software enables clinical PCD analysts to load, preprocess and replay recorded image sequences as well as videos with a feature-rich replaying module facilitating the commonly performed qualitative visual assessment of ciliary function (including the assessment of the ciliary beat pattern). The image processing methods made accessible through an intuitive user interface allow clinical specialists to comfortably compute the ciliary beating frequency (CBF), the activity map and the "frequency correlation length" - an observable getting newly introduced. Furthermore, the Cilialyzer contains a simple-to-use particle tracking interface to determine the mucociliary transport speed. RESULTS Cilialyzer is fully written in the Python programming language and freely available under the terms of the MIT license. The proper functioning of the computational analysis methods constituting the Cilialyzer software is demonstrated by using simulated and representative sample data from clinical practice. Additionally, the software was used to analyze high-speed videos showing samples obtained from healthy controls and genetically confirmed PCD cases (DNAI1 and DNAH11 mutations) to show its clinical applicability. CONCLUSIONS Cilialyzer serves as a useful clinical tool for PCD analysts and provides new quantitative information awaiting to be clinically evaluated using cohorts of PCD. As Cilialyzer is freely available under the terms of a permissive open-source license, it serves as a ground frame for further development of computational methods aiming at the quantification and automation of the analysis of mucociliary activity captured by HSVM.
Collapse
Affiliation(s)
- Martin Schneiter
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland; Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland.
| | - Stefan A Tschanz
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Anaïs Escher
- Department of Paediatrics, Inselspital Bern, University Hospital, University of Bern, 3010 Bern, Switzerland; Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Loretta Müller
- Department of Paediatrics, Inselspital Bern, University Hospital, University of Bern, 3010 Bern, Switzerland; Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland.
| |
Collapse
|
36
|
Kim M, Lee MH, Hong SJ, Yu J, Cho J, Suh DI, Kim HY, Kim HY, Jung S, Lee E, Lee S, Jeong K, Shim JY, Kim JH, Chung HL, Jang YY, Kwon JW, Seo JH, Kim JH, Ahn JY, Song KB, Song KS, Kim SY, Kim SY, Kil HR, Chung EH. Clinical Manifestations and Genotype of Primary Ciliary Dyskinesia Diagnosed in Korea: Multicenter Study. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:757-766. [PMID: 37957793 PMCID: PMC10643857 DOI: 10.4168/aair.2023.15.6.757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/10/2023] [Accepted: 06/13/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder that leads to secondary ciliary dysfunction. PCD is a rare disease, and data on it are limited in Korea. This study systematically evaluated the clinical symptoms, diagnostic characteristics, and treatment modalities of pediatric PCD in Korea. METHODS This Korean nationwide, multicenter study, conducted between January 2000 and August 2022, reviewed the medical records of pediatric patients diagnosed with PCD. Prospective studies have been added to determine whether additional genetic testing is warranted in some patients. RESULTS Overall, 41 patients were diagnosed with PCD in 15 medical institutions. The mean age at diagnosis was 11.8 ± 5.4 years (range: 0.5 months-18.9 years). Most patients (40/41) were born full term, 15 (36.6%) had neonatal respiratory symptoms, and 12 (29.3%) had a history of admission to the neonatal intensive care unit. The most common complaint (58.5%) was chronic nasal symptoms. Thirty-three patients were diagnosed with transmission electron microscopy (TEM) and 12 patients by genetic studies. TEM mostly identified outer dynein arm defects (alone or combined with inner dynein arm defects, n = 17). The genes with the highest mutation rates were DNAH5 (3 cases) and DNAAF1 (3 cases). Rare genotypes (RPGR, HYDIN, NME5) were found as well. Chest computed tomography revealed bronchiectasis in 33 out of 41 patients. Among them, 15 patients had a PrImary CiliAry DyskinesiA Rule score of over 5 points. CONCLUSIONS To our knowledge, this is the first multicenter study to report the clinical characteristics, diagnostic methods, and genotypes of PCD in Korea. These results can be used as basic data for further PCD research.
Collapse
Affiliation(s)
- Minji Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea
| | - Mi-Hee Lee
- Department of Pediatrics, Incheon Medical Center, Incheon, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Jinho Yu
- Department of Pediatrics, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Joongbum Cho
- Department of Pediatrics, Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung Young Kim
- Department of Pediatrics, Dongnam Institute of Radiology and Medical Sciences, Busan, Korea
| | - Hye-Young Kim
- Integrated & Respite Care Center for Children, Seoul National University Hospital, Seoul, Korea
| | - Sungsu Jung
- Department of Pediatrics, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, College of Medicine, Pusan National University, Yangsan, Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Sooyoung Lee
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Kyunguk Jeong
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Jung Yeon Shim
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Hee Kim
- Department of Pediatrics, College of Medicine, Inha University, Incheon, Korea
| | - Hai Lee Chung
- Department of Pediatrics, Daegu Catholic University Medical Center, Daegu, Korea
| | - Yoon Young Jang
- Department of Pediatrics, Daegu Catholic University Medical Center, Daegu, Korea
| | - Ji-Won Kwon
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ju-Hee Seo
- Department of Pediatrics, Dankook University Medical School, Cheonan, Korea
| | - Ju Hee Kim
- Department of Pediatrics, Kyung Hee University Medical Center, Seoul, Korea
| | - Ji Young Ahn
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| | - Kun-Baek Song
- Department of Pediatrics, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Kyu-Sang Song
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, Korea
| | - So Yeon Kim
- Department of Laboratory Medicine, National Medical Center, Seoul, Korea
| | - Seon Young Kim
- Department of Laboratory Medicine, Chungnam National University School of Medicine, Daejeon, Korea.
| | - Hong Ryang Kil
- Department of Pediatrics, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun Hee Chung
- Department of Pediatrics, Chungnam National University School of Medicine, Daejeon, Korea.
| |
Collapse
|
37
|
Lu D, Yang W, Zhang R, Li Y, Cheng T, Liao Y, Chen L, Liu H. Clinical Characteristics and Immune Responses in Children with Primary Ciliary Dyskinesia during Pneumonia Episodes: A Case-Control Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1727. [PMID: 38002818 PMCID: PMC10670724 DOI: 10.3390/children10111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023]
Abstract
OBJECTIVE This study explored the clinical features and immune responses of children with primary ciliary dyskinesia (PCD) during pneumonia episodes. METHODS The 61 children with PCD who were admitted to hospital because of pneumonia were retrospectively enrolled into this study between April 2017 and August 2022. A total of 61 children with pneumonia but without chronic diseases were enrolled as the control group. The clinical characteristics, levels of inflammatory indicators, pathogens, and imaging features of the lungs were compared between the two groups. RESULTS The PCD group had higher levels of lymphocytes (42.80% versus 36.00%, p = 0.029) and eosinophils (2.40% versus 1.25%, p = 0.020), but lower neutrophil counts (3.99 versus 5.75 × 109/L, p = 0.011), percentages of neutrophils (46.39% versus 54.24%, p = 0.014), CRP (0.40 versus 4.20 mg/L, p < 0.001) and fibrinogen (257.50 versus 338.00 mg/dL, p = 0.010) levels. Children with PCD and children without chronic diseases were both most commonly infected with Mycoplasma pneumoniae (24.6% versus 51.9%). Children with PCD had significantly more common imaging features, including mucous plugging (p = 0.042), emphysema (p = 0.007), bronchiectasis (p < 0.001), mosaic attenuation (p = 0.012), interstitial inflammation (p = 0.015), and sinusitis (p < 0.001). CONCLUSION PCD is linked to immune system impairment, which significantly contributes to our understanding of the pathophysiology of this entity.
Collapse
Affiliation(s)
- Danli Lu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Wenhao Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Rui Zhang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Yan Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Tianyu Cheng
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Yue Liao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Lina Chen
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
38
|
Papale M, Manti S, Presti S, Mollica F, Parisi GF, Leonardi S. Sleep Respiratory Disorders in Children and Adolescents with Cystic Fibrosis and Primary Ciliary Dyskinesia. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1707. [PMID: 37892370 PMCID: PMC10605080 DOI: 10.3390/children10101707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) are genetic respiratory diseases featured by chronic upper and lower airway inflammation and infection, mainly due to impaired mucociliary clearance due to genetic mutations. Sleep is crucial to healthy children's normal physical and psychological development and has an important value in chronic respiratory diseases. Impaired sleep quality, such as sleep deprivation or insufficient sleep during the night, and sleep respiratory disorders (SRDs) are common in 5% to 30% of the general population. Sleep disruption leads to attention deficits, daytime sleepiness, fatigue and mood disorders and correlates to a worsened quality of life. Furthermore, sleep respiratory disorders (SRSs) are under-recognized comorbidities in CF and PCD patients. SRSs include a spectrum of symptoms ranging from primary snoring through upper airway resistance to obstructive sleep apnea (OSA), nocturnal hypoventilation and hypoxemia occurring in people with moderate to severe lung disease and damaging the disease-related outcomes and quality of life. Effective screening during sleep with polysomnography is very important for the timely initiation of efficacious treatments and to prevent worsened respiratory, metabolic and cardiovascular outcomes. However, the impact of SRDs on health and quality of life is still underinvestigated.
Collapse
Affiliation(s)
- Maria Papale
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (M.P.); (G.F.P.); (S.L.)
| | - Sara Manti
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (M.P.); (G.F.P.); (S.L.)
- Pediatric Unit, Department of Human and Pediatric Pulmonology “Gaetano Barresi”, AOUP G. Martino, University of Messina, 98122 Messina, Italy
| | - Santiago Presti
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (M.P.); (G.F.P.); (S.L.)
| | - Federico Mollica
- Department of Pediatric Pulmonology and Allergology, Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Giuseppe F. Parisi
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (M.P.); (G.F.P.); (S.L.)
| | - Salvatore Leonardi
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (M.P.); (G.F.P.); (S.L.)
| |
Collapse
|
39
|
Al-Mutairi DA, Alsabah BH, Pennekamp P, Omran H. Mapping the Most Common Founder Variant in RSPH9 That Causes Primary Ciliary Dyskinesia in Multiple Consanguineous Families of Bedouin Arabs. J Clin Med 2023; 12:6505. [PMID: 37892643 PMCID: PMC10607267 DOI: 10.3390/jcm12206505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
INTRODUCTION Primary ciliary dyskinesia (PCD) is a congenital thoracic disorder caused by dysfunction of motile cilia, resulting in insufficient mucociliary clearance of the lungs. The overall aim of this study is to identify causative defective genes in PCD-affected individuals in the Kuwaiti population. METHODS A cohort of multiple consanguineous PCD families was identified from Kuwaiti patients and genomic DNA from the family members was isolated using standard procedures. The DNA samples from all affected individuals were analyzed by whole exome sequencing (WES). Transmission electron microscopy (TEM) and immunofluorescent analysis (IF) were performed on samples obtained by nasal brushings to identify specific structural abnormalities within ciliated cells. RESULTS Here, we present six multiplex families with 11 patients who all presented with typical PCD symptoms. Ten out of eleven patients inherited a 3 bp homozygous deletion of GAA in RSPH9, whereas the eleventh patients inherited this variant in trans with a frameshift deletion in RSPH9. Genetic results were confirmed by segregation analysis. The in-frame deletion of GAA in RSPH9 has previously been published as pathogenic in both annotated RSPH9 transcript variants (1 and 2). In contrast, the previously unpublished RSPH9 frameshift deletion identified in KU-15.IV2 impacts only RSPH9 transcript variant two. Regarding all 11 PCD individuals analyzed, IF results demonstrated absence of RSPH9 protein and TEM analysis showed the typical findings in RSPH9 mutant individuals. CONCLUSIONS We present the largest cohort of PCD individuals affected by the founder in-frame deletion GAA in RSPH9. This founder variant is the most common PCD-causing variant in Bedouin Arabs in Kuwait.
Collapse
Affiliation(s)
- Dalal A. Al-Mutairi
- Department of Pathology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | - Basel H. Alsabah
- Zain Hospital for Ear, Nose and Throat, Airport Road, Shuwaikh, Kuwait City 70030, Kuwait
| | - Petra Pennekamp
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Heymut Omran
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| |
Collapse
|
40
|
Bricmont N, Bonhiver R, Benchimol L, Louis B, Papon JF, Monseur J, Donneau AF, Moermans C, Schleich F, Calmès D, Poirrier AL, Louis R, Seghaye MC, Kempeneers C. Temporal Stability of Ciliary Beating Post Nasal Brushing, Modulated by Storage Temperature. Diagnostics (Basel) 2023; 13:2974. [PMID: 37761341 PMCID: PMC10527713 DOI: 10.3390/diagnostics13182974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Primary ciliary dyskinesia is a heterogeneous, inherited motile ciliopathy in which respiratory cilia beat abnormally, and some ultrastructural ciliary defects and specific genetic mutations have been associated with particular ciliary beating alterations. Ciliary beating can be evaluated using digital high-speed videomicroscopy (DHSV). However, normal reference values, essential to assess ciliary beating in patients referred for a PCD diagnostic, vary between centres, as minor variations in protocols might influence ciliary beating. Consequently, establishment of normal values is essential for each PCD diagnostic centre. We aimed to evaluate whether delay after sampling, and temperature for conservation of respiratory ciliated samples, might modify assessments of ciliary beating. In total, 37 healthy nasal brushing samples of respiratory ciliated epithelia were collected. Video sequences were recorded at 37 °C immediately using DHSV. Then, the samples were divided and conserved at 4 °C or at room temperature (RT). Ciliated beating edges were then recorded at 37 °C, at 3 h and at 9 h post sampling. In six samples, recordings were continued up to 72 h after sampling. Ciliary beating was assessed manually by ciliary beat frequency (CBFM) and ciliary beat pattern (CBP). A semi-automatic software was used for quantitative analysis. Both CBF and CBP evaluated manually and by a semi-automated method were stable 9 h after sampling. CBFM was higher when evaluated using samples stored at RT than at 4 °C. CBP and the semi-automated evaluation of ciliary beating were not affected by storage temperature. When establishing normal references values, ciliary beating can be evaluated at 37 °C up to 9 h after nasal brushing, but the storage temperature modifies ciliary beating and needs to be controlled.
Collapse
Affiliation(s)
- Noemie Bricmont
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liège, 4000 Liège, Belgium; (R.B.); (C.M.); (F.S.); (R.L.); (C.K.)
- Division of Respirology, Department of Pediatrics, University Hospital Liège, 4000 Liège, Belgium
| | - Romane Bonhiver
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liège, 4000 Liège, Belgium; (R.B.); (C.M.); (F.S.); (R.L.); (C.K.)
- Division of Respirology, Department of Pediatrics, University Hospital Liège, 4000 Liège, Belgium
| | - Lionel Benchimol
- Department of ENT, University Hospital Liège, 4000 Liège, Belgium; (L.B.); (A.-L.P.)
| | - Bruno Louis
- Institut Mondor de Recherche Biomédicale, INSERM-UPEC UMR 955, CNRS ERL7000, 94010 Créteil, France; (B.L.); (J.-F.P.)
| | - Jean-François Papon
- Institut Mondor de Recherche Biomédicale, INSERM-UPEC UMR 955, CNRS ERL7000, 94010 Créteil, France; (B.L.); (J.-F.P.)
- ENT Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Justine Monseur
- Biostatistics and Research Method Center-Public Health Department, University of Liège, 4000 Liège, Belgium; (J.M.); (A.-F.D.)
| | - Anne-Françoise Donneau
- Biostatistics and Research Method Center-Public Health Department, University of Liège, 4000 Liège, Belgium; (J.M.); (A.-F.D.)
| | - Catherine Moermans
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liège, 4000 Liège, Belgium; (R.B.); (C.M.); (F.S.); (R.L.); (C.K.)
- Department of Pneumology, University Hospital Liège, 4000 Liège, Belgium;
| | - Florence Schleich
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liège, 4000 Liège, Belgium; (R.B.); (C.M.); (F.S.); (R.L.); (C.K.)
- Department of Pneumology, University Hospital Liège, 4000 Liège, Belgium;
| | - Doriane Calmès
- Department of Pneumology, University Hospital Liège, 4000 Liège, Belgium;
| | - Anne-Lise Poirrier
- Department of ENT, University Hospital Liège, 4000 Liège, Belgium; (L.B.); (A.-L.P.)
| | - Renaud Louis
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liège, 4000 Liège, Belgium; (R.B.); (C.M.); (F.S.); (R.L.); (C.K.)
- Department of Pneumology, University Hospital Liège, 4000 Liège, Belgium;
| | - Marie-Christine Seghaye
- Division of Cardiology, Department of Pediatrics, University Hospital Liège, University of Liège, 4000 Liège, Belgium;
| | - Céline Kempeneers
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liège, 4000 Liège, Belgium; (R.B.); (C.M.); (F.S.); (R.L.); (C.K.)
- Division of Respirology, Department of Pediatrics, University Hospital Liège, 4000 Liège, Belgium
| |
Collapse
|
41
|
Keiser NW, Cant E, Sitaraman S, Shoemark A, Limberis MP. Restoring Ciliary Function: Gene Therapeutics for Primary Ciliary Dyskinesia. Hum Gene Ther 2023; 34:821-835. [PMID: 37624733 DOI: 10.1089/hum.2023.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disease characterized by defects in motile cilia, which play an important role in several organ systems. Lung disease is a hallmark of PCD, given the essential role of cilia in airway surface defense. Diagnosis of PCD is complicated due to its reliance on complex tests that are not utilized by every clinic and also its phenotypic overlap with several other respiratory diseases. Nonetheless, PCD is increasingly being recognized as more common than once thought. The disease is genetically complex, with several genes reported to be associated with PCD. There is no cure for PCD, but gene therapy remains a promising therapeutic strategy. In this review, we provide an overview of the clinical symptoms, diagnosis, genetics, and current treatment regimens for PCD. We also describe PCD model systems and discuss the therapeutic potential of different gene therapeutics for targeting the intended cellular target, the ciliated cells of the airway.
Collapse
Affiliation(s)
| | - Erin Cant
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | | | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | | |
Collapse
|
42
|
Raidt J, Loges NT, Olbrich H, Wallmeier J, Pennekamp P, Omran H. Primary ciliary dyskinesia. Presse Med 2023; 52:104171. [PMID: 37516247 DOI: 10.1016/j.lpm.2023.104171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Primary ciliary dyskinesia (PCD, ORPHA:244) is a group of rare genetic disorders characterized by dysfunction of motile cilia. It is phenotypically and genetically heterogeneous, with more than 50 genes involved. Thanks to genetic, clinical, and functional characterization, immense progress has been made in the understanding and diagnosis of PCD. Nevertheless, it is underdiagnosed due to the heterogeneous phenotype and complexity of diagnosis. This review aims to help clinicians navigate this heterogeneous group of diseases. Here, we describe the broad spectrum of phenotypes associated with PCD and address pitfalls and difficult-to-interpret findings to avoid misinterpretation. METHOD Review of literature CONCLUSION: PCD diagnosis is complex and requires integration of history, clinical picture, imaging, functional and structural analysis of motile cilia and, if available, genetic analysis to make a definitive diagnosis. It is critical that we continue to expand our knowledge of this group of rare disorders to improve the identification of PCD patients and to develop evidence-based therapeutic approaches.
Collapse
Affiliation(s)
- Johanna Raidt
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Niki Tomas Loges
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Julia Wallmeier
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
43
|
Jung R, Choi J, Bae H, Jung DI, Cho KO, Yu D. Siewert-Kartagener's syndrome in a dog. J Vet Sci 2023; 24:e57. [PMID: 37532300 PMCID: PMC10404705 DOI: 10.4142/jvs.23029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/02/2023] [Accepted: 06/05/2023] [Indexed: 08/04/2023] Open
Abstract
Siewert-Kartagener's syndrome, a type of primary ciliary dyskinesia, is a complex disease comprising situs inversus, rhinosinusitis, and bronchiectasis. Situs inversus totalis is a condition in which all organs in the thoracic and abdominal cavities are reversed. Furthermore, primary ciliary dyskinesia, an autosomal genetic disease, may coexist with situs inversus totalis. Reports on Siewert-Kartagener's syndrome in veterinary medicine are limited. We report a rare case of primary ciliary dyskinesia with Siewert-Kartagener's syndrome in a dog, concurrently infected with canine distemper virus and type-2 adenovirus. This case highlights that situs inversus totalis can cause primary ciliary dyskinesia, and concurrent infections are possible.
Collapse
Affiliation(s)
- Rankyung Jung
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Jihye Choi
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hyeona Bae
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Dong-In Jung
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Kyoung-Oh Cho
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea.
| | - DoHyeon Yu
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
44
|
Chalmers JD, Elborn S, Greene CM. Basic, translational and clinical aspects of bronchiectasis in adults. Eur Respir Rev 2023; 32:230015. [PMID: 37286220 PMCID: PMC10245133 DOI: 10.1183/16000617.0015-2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 06/09/2023] Open
Abstract
Bronchiectasis is a common progressive respiratory disease with recognisable radiological abnormalities and a clinical syndrome of cough, sputum production and recurrent respiratory infections. Inflammatory cell infiltration into the lung, in particular neutrophils, is central to the pathophysiology of bronchiectasis. Herein we explore the roles and relationships between infection, inflammation and mucociliary clearance dysfunction in the establishment and progression of bronchiectasis. Microbial and host-mediated damage are important processes underpinning bronchiectasis and the relative contribution of proteases, cytokines and inflammatory mediators to the propagation of inflammation is presented. We also discuss the emerging concept of inflammatory endotypes, defined by the presence of neutrophilic and eosinophilic inflammation, and explore the role of inflammation as a treatable trait. Current treatment for bronchiectasis focuses on treatment of underlying causes, enhancing mucociliary clearance, controlling infection and preventing and treating complications. Data on airway clearance approaches via exercise and mucoactive drugs, pharmacotherapy with macrolides to decrease exacerbations and the usefulness of inhaled antibiotics and bronchodilators are discussed, finishing with a look to the future where new therapies targeting host-mediated immune dysfunction hold promise.
Collapse
Affiliation(s)
| | - Stuart Elborn
- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Catherine M Greene
- Lung Biology Group, Department of Clinical Microbiology, RCSI University of Medicine and Heath Sciences, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
45
|
Sous B, Raidah A, Syed F, Jaramillo N, Olafisoye T, Olsen D. Left-Sided Presentation of Acute Appendicitis in a Patient With Situs Inversus Totalis. Cureus 2023; 15:e40839. [PMID: 37492830 PMCID: PMC10363649 DOI: 10.7759/cureus.40839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
Situs inversus totalis (SIT) is a rare condition characterized by mirror-image reversal of the thoracoabdominal organs. Although appendiceal pain is typically located in the right lower quadrant, in SIT, this can occur in the left lower quadrant. We present a case of a 40-year-old male with no medical history who complained of acute left lower quadrant pain, nausea, and vomiting with no other symptoms. A computed tomography scan revealed SIT and left-sided acute appendicitis (LSAA), which was managed surgically. This case highlights the importance of including appendicitis in the differential diagnosis for left lower quadrant pain.
Collapse
Affiliation(s)
- Bassem Sous
- Emergency Medicine, Nassau University Medical Center, East Meadow, USA
| | - Anisa Raidah
- Surgery, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | - Faiz Syed
- Surgery, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | - Nolberto Jaramillo
- Surgery, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | | | - Dean Olsen
- Emergency Medicine, Nassau University Medical Center, East Meadow, USA
| |
Collapse
|
46
|
Fawcett LK, Turgutoglu N, Allan KM, Belessis Y, Widger J, Jaffe A, Waters SA. Comparing Cytology Brushes for Optimal Human Nasal Epithelial Cell Collection: Implications for Airway Disease Diagnosis and Research. J Pers Med 2023; 13:jpm13050864. [PMID: 37241034 DOI: 10.3390/jpm13050864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Primary nasal epithelial cells and culture models are used as important diagnostic, research and drug development tools for several airway diseases. Various instruments have been used for the collection of human nasal epithelial (HNE) cells but no global consensus yet exists regarding the optimal tool. This study compares the efficiency of two cytology brushes (Olympus (2 mm diameter) and Endoscan (8 mm diameter)) in collecting HNE cells. The study involved two phases, with phase one comparing the yield, morphology and cilia beat frequency (CBF) of cells collected from paediatric participants using each of the two brushes. Phase two compared nasal brushing under general anaesthetic and in the awake state, across a wide age range, via the retrospective audit of the use of the Endoscan brush in 145 participants. Results indicated no significant difference in CBF measurements between the two brushes, suggesting that the choice of brush does not compromise diagnostic accuracy. However, the Endoscan brush collected significantly more total and live cells than the Olympus brush, making it a more efficient option. Importantly, the Endoscan brush is more cost-effective, with a notable price difference between the two brushes.
Collapse
Affiliation(s)
- Laura K Fawcett
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2031, Australia
| | - Nihan Turgutoglu
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Katelin M Allan
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yvonne Belessis
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2031, Australia
| | - John Widger
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2031, Australia
| | - Adam Jaffe
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2031, Australia
| | - Shafagh A Waters
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2031, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
47
|
Duan B, Lv HY, Huang Y, Xu ZM, Chen WX. Deep learning for the screening of primary ciliary dyskinesia based on cranial computed tomography. Front Physiol 2023; 14:1098893. [PMID: 37008008 PMCID: PMC10050729 DOI: 10.3389/fphys.2023.1098893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Objective: To analyze the cranial computed tomography (CT) imaging features of patients with primary ciliary dyskinesia (PCD) who have exudative otitis media (OME) and sinusitis using a deep learning model for early intervention in PCD.Methods: Thirty-two children with PCD diagnosed at the Children’s Hospital of Fudan University, Shanghai, China, between January 2010 and January 2021 who had undergone cranial CT were retrospectively analyzed. Thirty-two children with OME and sinusitis diagnosed using cranial CT formed the control group. Multiple deep learning neural network training models based on PyTorch were built, and the optimal model was trained and selected to observe the differences between the cranial CT images of patients with PCD and those of general patients and to screen patients with PCD.Results: The Swin-Transformer, ConvNeXt, and GoogLeNet training models had optimal results, with an accuracy of approximately 0.94; VGG11, VGG16, VGG19, ResNet 34, and ResNet 50, which are neural network models with fewer layers, achieved relatively strong results; and Transformer and other neural networks with more layers or neural network models with larger receptive fields exhibited a relatively weak performance. A heat map revealed the differences in the sinus, middle ear mastoid, and fourth ventricle between the patients with PCD and the control group. Transfer learning can improve the modeling effect of neural networks.Conclusion: Deep learning-based CT imaging models can accurately screen for PCD and identify differences between the cranial CT images.
Collapse
|
48
|
Ribeiro CMP, Higgs MG, Muhlebach MS, Wolfgang MC, Borgatti M, Lampronti I, Cabrini G. Revisiting Host-Pathogen Interactions in Cystic Fibrosis Lungs in the Era of CFTR Modulators. Int J Mol Sci 2023; 24:ijms24055010. [PMID: 36902441 PMCID: PMC10003689 DOI: 10.3390/ijms24055010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulators, a new series of therapeutics that correct and potentiate some classes of mutations of the CFTR, have provided a great therapeutic advantage to people with cystic fibrosis (pwCF). The main hindrances of the present CFTR modulators are related to their limitations in reducing chronic lung bacterial infection and inflammation, the main causes of pulmonary tissue damage and progressive respiratory insufficiency, particularly in adults with CF. Here, the most debated issues of the pulmonary bacterial infection and inflammatory processes in pwCF are revisited. Special attention is given to the mechanisms favoring the bacterial infection of pwCF, the progressive adaptation of Pseudomonas aeruginosa and its interplay with Staphylococcus aureus, the cross-talk among bacteria, the bronchial epithelial cells and the phagocytes of the host immune defenses. The most recent findings of the effect of CFTR modulators on bacterial infection and the inflammatory process are also presented to provide critical hints towards the identification of relevant therapeutic targets to overcome the respiratory pathology of pwCF.
Collapse
Affiliation(s)
- Carla M. P. Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (C.M.P.R.); (G.C.)
| | - Matthew G. Higgs
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marianne S. Muhlebach
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C. Wolfgang
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (C.M.P.R.); (G.C.)
| |
Collapse
|
49
|
Faruqi MA, Keshavamurthy S, Hillenbrand KD, Anstead M, Nandavaram S. Bilateral Lung Transplantation in Kartagener’s Syndrome and Situs Inversus. Cureus 2023; 15:e35785. [PMID: 37025726 PMCID: PMC10072235 DOI: 10.7759/cureus.35785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 03/07/2023] Open
Abstract
Kartagener's syndrome (KS) is a genetic disorder and a subgroup of primary ciliary dyskinesia characterized by situs inversus, chronic sinusitis and bronchiectasis. Patients with KS can develop severe bronchiectasis with end-stage lung disease due to recurrent pulmonary infections. Lung transplantation is a treatment option with good outcomes reported in the literature. Lung transplantation in such patients can be technically challenging given the dextrocardia, bronchial asymmetry and anatomical variation of major vascular structures due to situs inversus. We present a case of a 45-year-old male with KS complicated by recurrent infections and chronic respiratory failure, who successfully underwent a bilateral sequential lung transplant (BSLTx). Because of repeated infections and severe bronchiectasis, the patient's quality of life was impaired, and he was oxygen dependent. As a definitive treatment, successful lung transplantation led to a reversal of hypoxic respiratory failure and the patient's symptoms markedly improved, reinforcing data in the literature to consider lung transplantation in this patient population.
Collapse
|
50
|
Kasai Y, Morino T, Nakayama T, Yamamoto K, Kojima H. Analysis of the potential of human cultured nasal epithelial cell sheets to differentiate into airway epithelium. FASEB Bioadv 2023; 5:89-100. [PMID: 36876298 PMCID: PMC9983074 DOI: 10.1096/fba.2022-00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Understanding the expected efficacy and safety of a new regenerative therapy requires analysis of the fate of the transplanted cell graft. We have shown that transplantation of autologous cultured nasal epithelial cell sheets onto the middle ear mucosa can improve middle ear aeration and hearing. However, it remains unknown whether cultured nasal epithelial cell sheets have the potential to gain mucociliary function in the environment of the middle ear because sampling cell sheets after transplantation is challenging. The present study re-cultured cultured nasal epithelial cell sheets in different culture media and evaluated whether the sheets have the potential to differentiate into airway epithelium. Before re-cultivation, cultured nasal epithelial cell sheets fabricated in keratinocyte culture medium (KCM) contained no FOXJ1-positive and acetyl-α-tubulin-positive multiciliated cells or MUC5AC-positive mucus cells. Interestingly, multiciliated cells and mucus cells were observed when the cultured nasal epithelial cell sheets were re-cultured in conditions that promote differentiation of airway epithelium. However, multiciliated cells, mucus cells and CK1-positive keratinized cells were not observed when cultured nasal epithelial cell sheets were re-cultured in conditions that promote epithelial keratinization. These findings support the suggestion that cultured nasal epithelial cell sheets have the ability to differentiate and gain mucociliary function in response to an appropriate environment (possibly including the environment found in the middle ear) but are unable to develop into an epithelial type that differs from its origins.
Collapse
Affiliation(s)
- Yoshiyuki Kasai
- Department of OtorhinolaryngologyThe Jikei University School of MedicineTokyoJapan
| | - Tsunetaro Morino
- Department of OtorhinolaryngologyThe Jikei University School of MedicineTokyoJapan
| | - Tsuguhisa Nakayama
- Department of OtorhinolaryngologyThe Jikei University School of MedicineTokyoJapan
- Department of Otorhinolaryngology, Head and Neck SurgeryDokkyo Medical UniversityTochigiJapan
| | - Kazuhisa Yamamoto
- Department of OtorhinolaryngologyThe Jikei University School of MedicineTokyoJapan
| | - Hiromi Kojima
- Department of OtorhinolaryngologyThe Jikei University School of MedicineTokyoJapan
| |
Collapse
|