1
|
Choi J, Tang Z, Dong W, Ulibarri J, Mehinovic E, Thomas S, Höke A, Jin SC. Unleashing the Power of Multiomics: Unraveling the Molecular Landscape of Peripheral Neuropathy. Ann Clin Transl Neurol 2025. [PMID: 40126913 DOI: 10.1002/acn3.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Peripheral neuropathies (PNs) affect over 20 million individuals in the United States, manifesting as a wide range of sensory, motor, and autonomic nerve symptoms. While various conditions such as diabetes, metabolic disorders, trauma, autoimmune disease, and chemotherapy-induced neurotoxicity have been linked to PN, approximately one-third of PN cases remain idiopathic, underscoring a critical gap in our understanding of these disorders. Over the years, considerable efforts have focused on unraveling the complex molecular pathways underlying PN to advance diagnosis and treatment. Traditional methods such as linkage analysis, fluorescence in situ hybridization, polymerase chain reaction, and Sanger sequencing identified initial genetic variants associated with PN. However, the establishment and application of next-generation sequencing (NGS) and, more recently, long-read/single-cell sequencing have revolutionized the field, accelerating the discovery of novel disease-causing variants and challenging previous assumptions about pathogenicity. This review traces the evolution of genomic technologies in PN research, emphasizing the pivotal role of NGS in uncovering genetic complexities. We provide a comprehensive analysis of established genomic approaches such as genome-wide association studies, targeted gene panel sequencing, and whole-exome/genome sequencing, alongside emerging multiomic technologies including RNA sequencing and proteomics. Integrating these approaches promises holistic insights into PN pathophysiology, potentially revealing new biomarkers and therapeutic targets. Furthermore, we discuss the clinical implications of genomic and multiomic integration, highlighting their potential to enhance diagnostic accuracy, prognostic assessment, and personalized treatment strategies for PN. Challenges and questions in standardizing these technologies for clinical use are raised, underscoring the need for robust guidelines to maximize their clinical utility.
Collapse
Affiliation(s)
- Julie Choi
- Department of Genetics, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Zitian Tang
- Department of Genetics, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Wendy Dong
- Department of Genetics, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jenna Ulibarri
- Department of Genetics, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Elvisa Mehinovic
- Department of Genetics, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Simone Thomas
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheng Chih Jin
- Department of Genetics, School of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Pediatrics, School of Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Vajpayee K, Paida V, Shukla RK. Nanoparticle-assisted PCR: fundamentals, mechanisms, and forensic implications. Int J Legal Med 2025:10.1007/s00414-024-03402-0. [PMID: 39841191 DOI: 10.1007/s00414-024-03402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025]
Abstract
Polymerase Chain Reaction (PCR) has transformed forensic DNA analysis but is still limited when dealing with compromised trace or inhibitor-containing samples. Nanotechnology has been integrated into nanoPCR (nanoparticle-assisted PCR) to overcome these obstacles. Nanomaterials improve PCR sensitivity, selectivity, and efficiency. Examples of these materials are semiconductor quantum dots and metal nanoparticles. They enhance DNA binding to primers, stabilize enzymes, and function as effective heat conductors, making accurate amplification possible even with tainted samples. The developments in nanoPCR have potential uses in forensics, as they allow for the more sensitive analysis of smaller, polluted, or deteriorated samples. Nevertheless, there are methodological and ethical issues. To provide credible and legitimate forensic evidence, rigorous validation and standardization of NanoPCR techniques are vital. The article addresses the relevant ethical and methodological aspects in forensic casework while examining the integration of nanotechnology into PCR.
Collapse
Affiliation(s)
- Kamayani Vajpayee
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India
| | - Vidhi Paida
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India
| | - Ritesh K Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India.
| |
Collapse
|
3
|
Bui XTT, Vu DD. Population genetics analysis of Diospyrosmun A.Chev. ex Lecomte (Ebenaceae) based on EST-SSR markers derived from a novel transcriptome. Biodivers Data J 2024; 12:e130385. [PMID: 39329056 PMCID: PMC11424986 DOI: 10.3897/bdj.12.e130385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Diospyrosmun A.Chev. ex Lecomte (Ebenaceae), a native evergreen tree in Vietnam, has important economic and ecological values. The absence of effective and reliable molecular markers has hampered the study of D.mun's genetic diversity and population structure, even though it is an endemic and endangered species. Therefore, significant enrichment of genomic resources is urgently needed to uncover and better understand the genetic architecture of D.mun. This study aims to demonstrate an efficient and reliable tool to explore the polymorphism within D.mun germplasm. It provides a valuable platform for the breeding and conservation of this species and other endangered species worldwide. The Illumina HiSeq™ 4000 sequencing technology was applied for the transcriptomic analysis, genetic differentiation and population structure of D.mun in Vietnam. In this study, the transcriptomes of D.mun were analysed using the Illumina HiSeqTM 4000 sequencing system and a total of 5,588,615,700 base pairs were generated. De novo assembly indicated that 91,134 unigenes were generated (average length = 645.55 bp, N50 = 957 bp, Q20 = 98.08% and Q30 = 94.51%). A total of 92,798 and 21,134 unigenes had significant similarities amongst Nr and Swiss-Prot, respectively. In the GO database, 19,929 unigenes were annotated and these genes were divided into three major categories and 50 subcategories. In the KOG analysis, 18,499 unigenes were annotated and divided into 25 gene function categories. In the KEGG analysis, 12,017 unigenes were annotated. According to the related pathways involved, they could be classified into 56 subclasses. In this study, we have identified a total of 9,391 EST-SSR markers. Ten microsatellite loci were employed to assess the genetic diversity and structure of 82 adult D.mun trees across three populations in Vietnam. The results indicated moderate levels of genetic diversity with PIC = 0.77, NA = 3.9, NE = 2.8, Ho = 0.56 and HE = 0.58 and the fixation index value was recorded as positive for three populations (NS, NH and CP). Genetic differentiation among populations was low (FST = 0.045), suggesting limited gene flow (Nm = 5.34). This result indicates gene exchange between the populations of ancient D.mun from different geographical areas and regions. The analysis of molecular variance (AMOVA) showed that high genetic variation existed within individuals (91%) compared to amongst populations (4%). Genetic structure analysis, DAPC and the NJ tree indicated that the three populations were divided into three main clusters. With this study, we provide a molecular resoureces for the breeding and conservation of D.mun.
Collapse
Affiliation(s)
- Xuan Thi Tuyet Bui
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, VietnamInstitute of Ecology and Biological Resources, Vietnam Academy of Science and TechnologyHanoiVietnam
| | - Duy Dinh Vu
- Join Vietnam–Russia Tropical Science and Technology Research Center, Hanoi, VietnamJoin Vietnam–Russia Tropical Science and Technology Research CenterHanoiVietnam
| |
Collapse
|
4
|
Al-Beltagi M, Saeed NK, Bediwy AS, Bediwy EA, Elbeltagi R. Decoding the genetic landscape of autism: A comprehensive review. World J Clin Pediatr 2024; 13:98468. [PMID: 39350903 PMCID: PMC11438927 DOI: 10.5409/wjcp.v13.i3.98468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings. Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD, influencing both diagnosis and therapeutic strategies. AIM To explore the genetic architecture of ASD, elucidate mechanistic insights into genetic mutations, and examine gene-environment interactions. METHODS A comprehensive systematic review was conducted, integrating findings from studies on genetic variations, epigenetic mechanisms (such as DNA methylation and histone modifications), and emerging technologies [including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and single-cell RNA sequencing]. Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar. RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD, yet many cases remain unexplained by known factors, suggesting undiscovered genetic components. Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving. Epigenetic modifications, particularly DNA methylation and non-coding RNAs, also play significant roles in ASD pathogenesis. Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data. CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments. Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice. Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies, ultimately enhancing outcomes for individuals affected by ASD.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Eman A Bediwy
- Internal Medicine, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| |
Collapse
|
5
|
Hermanto I, Chandra CK, Utari A, Winarni TI, Cayami FK. Knowledge of genetics and attitudes toward genetic testing among university students in Indonesia. J Community Genet 2024; 15:433-447. [PMID: 38851656 PMCID: PMC11410749 DOI: 10.1007/s12687-024-00711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/02/2024] [Indexed: 06/10/2024] Open
Abstract
The development in human genetics must be tracked with the knowledge to provide support and positive attitudes towards genetic research and its healthcare applications, including genetic testing. Unfortunately, there has been a delay in enacting public policies related to the genetics professionals as well as the diagnosis, treatment, and prevention of genetic diseases in Indonesia. This research was conducted to build an overview of genetic knowledge and public attitudes toward genetic testing among Indonesian undergraduates. This cross-sectional study involved undergraduate students selected using the convenience sampling method. The questionnaire consisted of two parts: a true/false questionnaire (16 statements) regarding knowledge of genetics and a 5-points Likert scale questionnaire (27 statements) pertaining to attitudes towards genetic testing. A total of 1596 undergraduate students completed online questionnaire. The highest knowledge score and the most positive overall attitudes were observed in the healthcare-related majors compared to those who studied science and technology and social and humanity. A weak positive correlation was observed between knowledge and attitude toward genetic testing (Pearson's r = 0.206, p < 0.001). Undergraduate students from healthcare-related majors displayed better in both knowledge of genetics and had more positive attitudes toward genetic testing.
Collapse
Affiliation(s)
- Iskandar Hermanto
- Faculty of Medicine, Universitas Diponegoro, Semarang, 50275, Central Java, Indonesia
| | | | - Agustini Utari
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang, 50275, Central Java, Indonesia
- Department of Pediatric, Faculty of Medicine, Universitas Diponegoro/Dr, Kariadi Hospital Semarang, Semarang, 50275, Central Java, Indonesia
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang, 50275, Central Java, Indonesia
- Department of Anatomy, Faculty of Medicine, Universitas Diponegoro, Semarang, 50275, Central Java, Indonesia
| | - Ferdy Kurniawan Cayami
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang, 50275, Central Java, Indonesia.
- Department of Anatomy, Faculty of Medicine, Universitas Diponegoro, Semarang, 50275, Central Java, Indonesia.
| |
Collapse
|
6
|
Bonilla DA, Orozco CA, Forero DA, Odriozola A. Techniques, procedures, and applications in host genetic analysis. ADVANCES IN GENETICS 2024; 111:1-79. [PMID: 38908897 DOI: 10.1016/bs.adgen.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter overviews genetic techniques' fundamentals and methodological features, including different approaches, analyses, and applications that have contributed to advancing health and disease. The aim is to describe laboratory methodologies and analyses employed to understand the genetic landscape of different biological contexts, from conventional techniques to cutting-edge technologies. Besides describing detailed aspects of the polymerase chain reaction (PCR) and derived types as one of the principles for many novel techniques, we also discuss microarray analysis, next-generation sequencing, and genome editing technologies such as transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems. These techniques study several phenotypes, ranging from autoimmune disorders to viral diseases. The significance of integrating diverse genetic methodologies and tools to understand host genetics comprehensively and addressing the ethical, legal, and social implications (ELSI) associated with using genetic information is highlighted. Overall, the methods, procedures, and applications in host genetic analysis provided in this chapter furnish researchers and practitioners with a roadmap for navigating the dynamic landscape of host-genome interactions.
Collapse
Affiliation(s)
- Diego A Bonilla
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá, Colombia.
| | - Carlos A Orozco
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología de Colombia, Bogotá, Colombia
| | - Diego A Forero
- School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Adrián Odriozola
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
7
|
Kernohan KD, Boycott KM. The expanding diagnostic toolbox for rare genetic diseases. Nat Rev Genet 2024; 25:401-415. [PMID: 38238519 DOI: 10.1038/s41576-023-00683-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 05/23/2024]
Abstract
Genomic technologies, such as targeted, exome and short-read genome sequencing approaches, have revolutionized the care of patients with rare genetic diseases. However, more than half of patients remain without a diagnosis. Emerging approaches from research-based settings such as long-read genome sequencing and optical genome mapping hold promise for improving the identification of disease-causal genetic variants. In addition, new omic technologies that measure the transcriptome, epigenome, proteome or metabolome are showing great potential for variant interpretation. As genetic testing options rapidly expand, the clinical community needs to be mindful of their individual strengths and limitations, as well as remaining challenges, to select the appropriate diagnostic test, correctly interpret results and drive innovation to address insufficiencies. If used effectively - through truly integrative multi-omics approaches and data sharing - the resulting large quantities of data from these established and emerging technologies will greatly improve the interpretative power of genetic and genomic diagnostics for rare diseases.
Collapse
Affiliation(s)
- Kristin D Kernohan
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
- Newborn Screening Ontario, CHEO, Ottawa, ON, Canada
| | - Kym M Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada.
- Department of Genetics, CHEO, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Sessa F, Chisari M, Salerno M, Esposito M, Zuccarello P, Capasso E, Scoto E, Cocimano G. Congenital heart diseases (CHDs) and forensic investigations: Searching for the cause of death. Exp Mol Pathol 2024; 137:104907. [PMID: 38820762 DOI: 10.1016/j.yexmp.2024.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Congenital Heart Diseases (CHDs) are a group of structural abnormalities or defects of the heart that are present at birth. CHDs could be connected to sudden death (SD), defined by the WHO (World Health Organization) as "death occurring within 24 h after the onset of the symptoms" in an apparently "healthy" subject. These conditions can range from relatively mild defects to severe, life-threatening anomalies. The prevalence of CHDs varies across populations, but they affect millions of individuals worldwide. This article aims to discuss the post-mortem investigation of death related to CHDs, exploring the forensic approach, current methodologies, challenges, and potential advancements in this challenging field. A further goal of this article is to provide a guide for understanding these complex diseases, highlighting the pivotal role of autopsy, histopathology, and genetic investigations in defining the cause of death, and providing evidence about the translational use of autopsy reports. Forensic investigations play a crucial role in understanding the complexities of CHDs and determining the cause of death accurately. Through collaboration between medical professionals and forensic experts, meticulous examinations, and analysis of evidence, valuable insights can be gained. These insights not only provide closure to the families affected but also contribute to the prevention of future tragedies.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Mario Chisari
- "Rodolico-San Marco" Hospital, Santa Sofia Street, 87, Catania 95121, Italy.
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | | | - Pietro Zuccarello
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Emanuele Capasso
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Edmondo Scoto
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy
| | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Vanvitelli", 80121 Napoli, Italy.
| |
Collapse
|
9
|
Garcês A, Pires I, Garcês S. Ancient Diseases in Vertebrates: Tumours through the Ages. Animals (Basel) 2024; 14:1474. [PMID: 38791691 PMCID: PMC11117314 DOI: 10.3390/ani14101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Paleo-oncology studies neoplastic diseases in fossilised animals, including human remains. Recent advancements have enabled more accurate diagnoses of ancient pathologies despite the inherent challenges in identifying tumours in fossils-such as the rarity of well-preserved specimens, the predominance of bone remains, and the difficulty in distinguishing neoplastic from non-neoplastic lesions. This study compiles reports of tumours in fossilised animals, highlighting that neoplasms are present in a wide range of vertebrates and drawing comparisons to modern instances of similar diseases. The findings underscore the multifactorial aetiology of tumours, which involves genetic, environmental, and lifestyle factors, and suggest that tumours have been around for at least 350 million years.
Collapse
Affiliation(s)
- Andreia Garcês
- Exotic and Wildlife Service, Veterinary Hospital University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 4500-801 Vila Real, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science—AL4AnimalS, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
| | - Isabel Pires
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science—AL4AnimalS, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
| | - Sara Garcês
- Earth and Memory Institute, 6120-750 Mação, Portugal;
- Polytechnic Institute of Tomar (IPT), Geosciences Center (UID73), 2300-000 Tomar, Portugal
- Geosciences Centre, University of Coimbra (u. ID73–FCT), 3001-401 Coimbra, Portugal
| |
Collapse
|
10
|
Wang Y, He Y, Shi Y, Qian DC, Gray KJ, Winn R, Martin AR. Aspiring toward equitable benefits from genomic advances to individuals of ancestrally diverse backgrounds. Am J Hum Genet 2024; 111:809-824. [PMID: 38642557 PMCID: PMC11080611 DOI: 10.1016/j.ajhg.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/22/2024] Open
Abstract
Advancements in genomic technologies have shown remarkable promise for improving health trajectories. The Human Genome Project has catalyzed the integration of genomic tools into clinical practice, such as disease risk assessment, prenatal testing and reproductive genomics, cancer diagnostics and prognostication, and therapeutic decision making. Despite the promise of genomic technologies, their full potential remains untapped without including individuals of diverse ancestries and integrating social determinants of health (SDOHs). The NHGRI launched the 2020 Strategic Vision with ten bold predictions by 2030, including "individuals from ancestrally diverse backgrounds will benefit equitably from advances in human genomics." Meeting this goal requires a holistic approach that brings together genomic advancements with careful consideration to healthcare access as well as SDOHs to ensure that translation of genetics research is inclusive, affordable, and accessible and ultimately narrows rather than widens health disparities. With this prediction in mind, this review delves into the two paramount applications of genetic testing-reproductive genomics and precision oncology. When discussing these applications of genomic advancements, we evaluate current accessibility limitations, highlight challenges in achieving representativeness, and propose paths forward to realize the ultimate goal of their equitable applications.
Collapse
Affiliation(s)
- Ying Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Yixuan He
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yue Shi
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - David C Qian
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kathryn J Gray
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Robert Winn
- Virginia Commonwealth University Massey Cancer Center, Richmond, VA, USA
| | - Alicia R Martin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Wu Z, Wang W, Li J, Ma C, Chen L, Che Q, Zhang G, Zhu T, Li D. Evolution-Based Discovery of Polyketide Acylated Valine from a Cytochalasin-Like Gene Cluster in Simplicillium lamelliciola HDN13430. JOURNAL OF NATURAL PRODUCTS 2024; 87:1222-1229. [PMID: 38447096 DOI: 10.1021/acs.jnatprod.3c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Utilizing a gene evolution-oriented approach for gene cluster mining, a cryptic cytochalasin-like gene cluster (sla) in Antarctic-derived Simplicillium lamelliciola HDN13430 was identified. Compared with the canonical cytochalasin biosynthetic gene clusters (BGCs), the sla gene cluster lacks the key α,β-hydrolase gene. Heterologous expression of the sla gene cluster led to the discovery of a new compound, slamysin (1), characterized by an N-acylated amino acid structure and demonstrating weak anti-Bacillus cereus activity. These findings underscore the potential of genetic evolution in uncovering novel compounds and indicating specific adaptive evolution within specialized habitats.
Collapse
Affiliation(s)
- Zuodong Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Wenxue Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Jilong Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Liangzhen Chen
- Qingdao Vland Biotech Group Co., Ltd. Qingdao, Shandong 266102, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong 266237, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
12
|
Hong YR, Yadav S, Wang R, Vadaparampil S, Bian J, George TJ, Braithwaite D. Genetic Testing for Cancer Risk and Perceived Importance of Genetic Information Among US Population by Race and Ethnicity: a Cross-sectional Study. J Racial Ethn Health Disparities 2024; 11:382-394. [PMID: 36689121 PMCID: PMC9870197 DOI: 10.1007/s40615-023-01526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Genetic testing can help determine the risk of many cancers and guide cancer prevention and treatment plans. Despite increasing concern about disparities in precision cancer medicine, public knowledge and cancer genetic testing by race and ethnicity have not been well investigated. METHODS We analyzed data from the 2020 Health Information National Trends Survey in 2022. Self-reported cancer genetic testing (e.g., Lynch syndrome, BRCA1/2) knowledge and utilization were compared by race and ethnicity. Perceived importance of genetic information for cancer care (prevention, detection, and treatment) was also examined in relation to the uptake of cancer genetic testing. Multivariable logistic regression models were employed to examine factors associated with knowledge and genetic testing to calculate predicted probability of undergoing genetic testing by race and ethnicity. RESULTS Of 3551 study participants, 37.8% reported having heard of genetic testing for cancer risk and 3.9% stated that they underwent cancer genetic testing. Being non-Hispanic Black (OR=0.47, 95% CI=0.30-0.75) or Hispanic (OR=0.56, CI=0.35-0.90) was associated with lower odds of genetic testing knowledge. Although Hispanic or non-Hispanic Black respondents were more likely to perceive higher importance of genetic information versus non-Hispanic Whites, they had a lower predicted probability of cancer genetic testing. CONCLUSION Non-Hispanic Black and Hispanic adults had lower knowledge and were less likely to undergo cancer genetic testing than non-Hispanic Whites. Further research is needed on sources of genetic testing information for racial and ethnic minorities and the barriers to accessing genetic testing to inform the development of effective cancer risk genetic testing promotion.
Collapse
Affiliation(s)
- Young-Rock Hong
- Department of Health Services Research, Management and Policy, College of Public Health and Health Professions, University of Florida, PO Box 100195, Gainesville, FL, 32610, USA.
- UF Health Cancer Center, Gainesville, USA.
| | - Sandhya Yadav
- Department of Health Services Research, Management and Policy, College of Public Health and Health Professions, University of Florida, PO Box 100195, Gainesville, FL, 32610, USA
| | - Ruixuan Wang
- Department of Health Services Research, Management and Policy, College of Public Health and Health Professions, University of Florida, PO Box 100195, Gainesville, FL, 32610, USA
| | - Susan Vadaparampil
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, USA
- Department of Oncological Sciences, Morsani College of Medicine, University of South Florida, Gainesville, USA
| | - Jiang Bian
- UF Health Cancer Center, Gainesville, USA
- Department of Health Outcomes and Biomedical informatics, College of Medicine, University of Florida, Gainesville, USA
| | - Thomas J George
- UF Health Cancer Center, Gainesville, USA
- Department of Medicine, Division of Hematology & Oncology, College of Medicine, University of Florida, Gainesville, USA
| | - Dejana Braithwaite
- UF Health Cancer Center, Gainesville, USA
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
- Department of Surgery, College of Medicine, University of Florida, Gainesville, USA
| |
Collapse
|
13
|
van Wijngaarden V, de Wilde H, Mink van der Molen D, Petter J, Stegeman I, Gerrits E, Smit AL, van den Boogaard MJ. Genetic outcomes in children with developmental language disorder: a systematic review. Front Pediatr 2024; 12:1315229. [PMID: 38298611 PMCID: PMC10828955 DOI: 10.3389/fped.2024.1315229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Introduction Developmental language disorder (DLD) is a common childhood condition negatively influencing communication and psychosocial development. An increasing number of pathogenic variants or chromosomal anomalies possibly related to DLD have been identified. To provide a base for accurate clinical genetic diagnostic work-up for DLD patients, understanding the specific genetic background is crucial. This study aims to give a systematic literature overview of pathogenic variants or chromosomal anomalies causative for DLD in children. Methods We conducted a systematic search in PubMed and Embase on available literature related to the genetic background of diagnosed DLD in children. Included papers were critically appraised before data extraction. An additional search in OMIM was performed to see if the described DLD genes are associated with a broader clinical spectrum. Results The search resulted in 15,842 papers. After assessing eligibility, 47 studies remained, of which 25 studies related to sex chromosome aneuploidies and 15 papers concerned other chromosomal anomalies (SCAs) and/or Copy Number Variants (CNVs), including del15q13.1-13.3 and del16p11.2. The remaining 7 studies displayed a variety of gene variants. 45 (candidate) genes related to language development, including FOXP2, GRIN2A, ERC1, and ATP2C2. After an additional search in the OMIM database, 22 of these genes were associated with a genetic disorder with a broader clinical spectrum, including intellectual disability, epilepsy, and/or autism. Conclusion Our study illustrates that DLD can be related to SCAs and specific CNV's. The reported (candidate) genes (n = 45) in the latter category reflect the genetic heterogeneity and support DLD without any comorbidities and syndromic language disorder have an overlapping genetic etiology.
Collapse
Affiliation(s)
| | - Hester de Wilde
- Department of Pediatric Otorhinolaryngology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jildo Petter
- Faculty of Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Inge Stegeman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ellen Gerrits
- Research Group Speech and Language Therapy, HU University of Applied Sciences Utrecht, Utrecht, Netherlands
- Department of Languages, Literature and Communication, Faculty of Humanities, Utrecht University, Utrecht, Netherlands
| | - Adriana L. Smit
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Research Group Speech and Language Therapy, HU University of Applied Sciences Utrecht, Utrecht, Netherlands
| | | |
Collapse
|
14
|
Samir S. Human DNA Mutations and their Impact on Genetic Disorders. Recent Pat Biotechnol 2024; 18:288-315. [PMID: 37936448 DOI: 10.2174/0118722083255081231020055309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023]
Abstract
DNA is a remarkably precise medium for copying and storing biological information. It serves as a design for cellular machinery that permits cells, organs, and even whole organisms to work. The fidelity of DNA replication results from the action of hundreds of genes involved in proofreading and damage repair. All human cells can acquire genetic changes in their DNA all over life. Genetic mutations are changes to the DNA sequence that happen during cell division when the cells make copies of themselves. Mutations in the DNA can cause genetic illnesses such as cancer, or they could help humans better adapt to their environment over time. The endogenous reactive metabolites, therapeutic medicines, and an excess of environmental mutagens, such as UV rays all continuously damage DNA, compromising its integrity. One or more chromosomal alterations and point mutations at a single site (monogenic mutation) including deletions, duplications, and inversions illustrate such DNA mutations. Genetic conditions can occur when an altered gene is inherited from parents, which increases the risk of developing that particular condition, or some gene alterations can happen randomly. Moreover, symptoms of genetic conditions depend on which gene has a mutation. There are many different diseases and conditions caused by mutations. Some of the most common genetic conditions are Alzheimer's disease, some cancers, cystic fibrosis, Down syndrome, and sickle cell disease. Interestingly, scientists find that DNA mutations are more common than formerly thought. This review outlines the main DNA mutations that occur along the human genome and their influence on human health. The subject of patents pertaining to DNA mutations and genetic disorders has been brought up.
Collapse
Affiliation(s)
- Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
15
|
Mason W, Levin AM, Buhl K, Ouchi T, Parker B, Tan J, Ashammakhi N, Jones LR. Translational Research Techniques for the Facial Plastic Surgeon: An Overview. Facial Plast Surg 2023; 39:466-473. [PMID: 37339663 DOI: 10.1055/a-2113-5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
The field of facial plastic and reconstructive surgery (FPRS) is an incredibly diverse, multispecialty field that seeks innovative and novel solutions for the management of physical defects on the head and neck. To aid in the advancement of medical and surgical treatments for these defects, there has been a recent emphasis on the importance of translational research. With recent technological advancements, there are now a myriad of research techniques that are widely accessible for physician and scientist use in translational research. Such techniques include integrated multiomics, advanced cell culture and microfluidic tissue models, established animal models, and emerging computer models generated using bioinformatics. This study discusses these various research techniques and how they have and can be used for research in the context of various important diseases within the field of FPRS.
Collapse
Affiliation(s)
- William Mason
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Albert M Levin
- Department of Public Health Science, Henry Ford Health, Detroit, Michigan
- Center for Bioinformatics, Henry Ford Health, Detroit, Michigan
| | - Katherine Buhl
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Takahiro Ouchi
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Bianca Parker
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Jessica Tan
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering, Michigan State University, Michigan
- Department of Biomedical Engineering, College of Engineering, Michigan State University, Michigan
- College of Human Medicine, Michigan State University, Michigan
| | - Lamont R Jones
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
16
|
Cufer T, Kosty MP. ESMO/ASCO Recommendations for a Global Curriculum in Medical Oncology Edition 2023. JCO Glob Oncol 2023; 9:e2300277. [PMID: 37867478 PMCID: PMC10664856 DOI: 10.1200/go.23.00277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 10/24/2023] Open
Abstract
The European Society for Medical Oncology (ESMO) and ASCO are publishing a new edition of the ESMO/ASCO Global Curriculum (GC) with contributions from more than 150 authors. The purpose of the GC is to provide recommendations for the training of physicians in medical oncology and to establish a set of educational standards for trainees to qualify as medical oncologists. This edition builds on prior ones in 2004, 2010, and 2016 and incorporates scientific advances and input from an ESMO ASCO survey on GC adoption conducted in 2019, which revealed that GC has been adopted or adapted in as many as two thirds of the countries surveyed. To make GC even more useful and applicable, certain subchapters were rearranged into stand-alone chapters, that is, cancer epidemiology, diagnostics, and research. In line with recent progress in the field of multidisciplinary cancer care new (sub)chapters, such as image-guided therapy, cell-based therapy, and nutritional support, were added. Moreover, this edition includes an entirely new chapter dedicated to cancer control principles, aiming to ensure that medical oncologists are able to identify and implement sustainable and equitable cancer care, tailored to local needs and resources. Besides content renewal, modern didactic principles were introduced. GC content is presented using two chapter templates (cancer-specific and non-cancer-specific), with three didactic points (objectives, key concepts, and skills). The next step is promoting GC as a contemporary and comprehensive document applicable all over the world, particularly due to its capacity to harmonize education in medical oncology and, in so doing, help to reduce global disparities in cancer care.
Collapse
Affiliation(s)
- Tanja Cufer
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michael P. Kosty
- Division of Hematology and Oncology, Scripps MD Anderson Cancer Center, La Jolla, CA
| |
Collapse
|
17
|
Schlottmann PG, Luna JD, Labat N, Yadarola MB, Bainttein S, Esposito E, Ibañez A, Barbaro EI, Álvarez Mendiara A, Picotti CP, Chirino Misisian A, Andreussi L, Gras J, Capalbo L, Visotto M, Dipierri JE, Alcoba E, Fernández Gabrielli L, Ávila S, Aucar ME, Martin DM, Ormaechea GJ, Inga ME, Francone AA, Charles M, Zompa T, Pérez PJ, Lotersztein V, Nuova PJ, Canonero IB, Mahroo OA, Michaelides M, Arno G, Daich Varela M. Nationwide genetic analysis of more than 600 families with inherited eye diseases in Argentina. NPJ Genom Med 2023; 8:8. [PMID: 37217489 DOI: 10.1038/s41525-023-00352-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
This study corresponds to the first large-scale genetic analysis of inherited eye diseases (IED) in Argentina and describes the comprehensive genetic profile of a large cohort of patients. Medical records of 22 ophthalmology and genetics services throughout 13 Argentinian provinces were analyzed retrospectively. Patients with a clinical diagnosis of an ophthalmic genetic disease and a history of genetic testing were included. Medical, ophthalmological and family history was collected. A total of 773 patients from 637 families were included, with 98% having inherited retinal disease. The most common phenotype was retinitis pigmentosa (RP, 62%). Causative variants were detected in 379 (59%) patients. USH2A, RPGR, and ABCA4 were the most common disease-associated genes. USH2A was the most frequent gene associated with RP, RDH12 early-onset severe retinal dystrophy, ABCA4 Stargardt disease, PROM1 cone-rod dystrophy, and BEST1 macular dystrophy. The most frequent variants were RPGR c.1345 C > T, p.(Arg449*) and USH2A c.15089 C > A, p.(Ser5030*). The study revealed 156/448 (35%) previously unreported pathogenic/likely pathogenic variants and 8 possible founder mutations. We present the genetic landscape of IED in Argentina and the largest cohort in South America. This data will serve as a reference for future genetic studies, aid diagnosis, inform counseling, and assist in addressing the largely unmet need for clinical trials to be conducted in the region.
Collapse
Affiliation(s)
| | - José D Luna
- Centro Privado de Ojos Romagosa SA, Córdoba, Argentina
| | - Natalia Labat
- Centro Privado de Ojos Romagosa SA, Córdoba, Argentina
| | | | | | - Evangelina Esposito
- University Clinic Reina Fabiola, Córdoba, Córdoba, Argentina
- Catholic University of Cordoba, Cordoba, Argentina
| | - Agustina Ibañez
- University Clinic Reina Fabiola, Córdoba, Córdoba, Argentina
- Catholic University of Cordoba, Cordoba, Argentina
| | | | | | | | | | | | | | | | - Mauro Visotto
- Instituto Oftalmológico Trelew, Trelew, Chubut, Argentina
| | | | - Emilio Alcoba
- Hospital Materno Infantil Dr Héctor Quintana, Jujuy, Argentina
| | | | - Silvia Ávila
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Río Negro, Argentina
| | | | | | | | - M Eugenia Inga
- Organización Medica de Investigación, Buenos Aires, Argentina
| | | | | | - Tamara Zompa
- Charles Centro Oftalmológico, Buenos Aires, Argentina
| | | | | | - Pedro J Nuova
- Ocularyb Oftalmoclinica, Yerba Buena, Tucumán, Argentina
| | | | - Omar A Mahroo
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Michel Michaelides
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Gavin Arno
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Malena Daich Varela
- Moorfields Eye Hospital, London, UK.
- UCL Institute of Ophthalmology, University College London, London, UK.
| |
Collapse
|
18
|
Molecular Cytogenetics in Domestic Bovids: A Review. Animals (Basel) 2023; 13:ani13050944. [PMID: 36899801 PMCID: PMC10000107 DOI: 10.3390/ani13050944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The discovery of the Robertsonian translocation (rob) involving cattle chromosomes 1 and 29 and the demonstration of its deleterious effects on fertility focused the interest of many scientific groups on using chromosome banding techniques to reveal chromosome abnormalities and verify their effects on fertility in domestic animals. At the same time, comparative banding studies among various species of domestic or wild animals were found useful for delineating chromosome evolution among species. The advent of molecular cytogenetics, particularly the use of fluorescence in situ hybridization (FISH), has allowed a deeper investigation of the chromosomes of domestic animals through: (a) the physical mapping of specific DNA sequences on chromosome regions; (b) the use of specific chromosome markers for the identification of the chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchoring of radiation hybrid and genetic maps to specific chromosome regions; (d) better comparisons of related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) the study of meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better demonstration of conserved or lost DNA sequences in chromosome abnormalities; (g) the use of informatic and genomic reconstructions, in addition to CGH arrays, to predict conserved or lost chromosome regions in related species; and (h) the study of some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications.
Collapse
|
19
|
Forero DA, Chand V. Methods in molecular biology and genetics: looking to the future. BMC Res Notes 2023; 16:26. [PMID: 36864454 PMCID: PMC9980850 DOI: 10.1186/s13104-023-06298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
In recent decades, advances in methods in molecular biology and genetics have revolutionized multiple areas of the life and health sciences. However, there remains a global need for the development of more refined and effective methods across these fields of research. In this current Collection, we aim to showcase articles presenting novel molecular biology and genetics techniques developed by scientists from around the world.
Collapse
Affiliation(s)
- Diego A. Forero
- grid.442076.30000 0000 9574 5136School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Vaibhav Chand
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
20
|
Boot E, Óskarsdóttir S, Loo JCY, Crowley TB, Orchanian-Cheff A, Andrade DM, Arganbright JM, Castelein RM, Cserti-Gazdewich C, de Reuver S, Fiksinski AM, Klingberg G, Lang AE, Mascarenhas MR, Moss EM, Nowakowska BA, Oechslin E, Palmer L, Repetto GM, Reyes NGD, Schneider M, Silversides C, Sullivan KE, Swillen A, van Amelsvoort TAMJ, Van Batavia JP, Vingerhoets C, McDonald-McGinn DM, Bassett AS. Updated clinical practice recommendations for managing adults with 22q11.2 deletion syndrome. Genet Med 2023; 25:100344. [PMID: 36729052 DOI: 10.1016/j.gim.2022.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 02/03/2023] Open
Abstract
This review aimed to update the clinical practice guidelines for managing adults with 22q11.2 deletion syndrome (22q11.2DS). The 22q11.2 Society recruited expert clinicians worldwide to revise the original clinical practice guidelines for adults in a stepwise process according to best practices: (1) a systematic literature search (1992-2021), (2) study selection and synthesis by clinical experts from 8 countries, covering 24 subspecialties, and (3) formulation of consensus recommendations based on the literature and further shaped by patient advocate survey results. Of 2441 22q11.2DS-relevant publications initially identified, 2344 received full-text review, with 2318 meeting inclusion criteria (clinical care relevance to 22q11.2DS) including 894 with potential relevance to adults. The evidence base remains limited. Thus multidisciplinary recommendations represent statements of current best practice for this evolving field, informed by the available literature. These recommendations provide guidance for the recognition, evaluation, surveillance, and management of the many emerging and chronic 22q11.2DS-associated multisystem morbidities relevant to adults. The recommendations also address key genetic counseling and psychosocial considerations for the increasing numbers of adults with this complex condition.
Collapse
Affiliation(s)
- Erik Boot
- Advisium, 's Heeren Loo Zorggroep, Amersfoort, The Netherlands; The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands.
| | - Sólveig Óskarsdóttir
- Department of Pediatric Rheumatology and Immunology, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Joanne C Y Loo
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Terrence Blaine Crowley
- 22q and You Center, Clinical Genetics Center, and Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ani Orchanian-Cheff
- Library and Information Services, and The Institute of Education Research (TIER), University Health Network, Toronto, Ontario, Canada
| | - Danielle M Andrade
- Adult Genetic Epilepsy Program, Toronto Western Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Jill M Arganbright
- Division of Otolaryngology, Children's Mercy Hospital and University of Missouri Kansas City School of Medicine, Kansas City, MO
| | - René M Castelein
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Steven de Reuver
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ania M Fiksinski
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands; Department of Pediatric Psychology, University Medical Centre, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | | | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Maria R Mascarenhas
- Division of Gastroenterology and 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA
| | | | | | - Erwin Oechslin
- Toronto Adult Congenital Heart Disease Program, Peter Munk Cardiac Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Lisa Palmer
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Gabriela M Repetto
- Rare Diseases Program, Institute for Sciences and Innovation in Medicine, Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Nikolai Gil D Reyes
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Maude Schneider
- Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Candice Silversides
- Toronto ACHD Program, Mount Sinai and Toronto General Hospitals, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen E Sullivan
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA; Division of Allergy and Immunology and 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ann Swillen
- Center for Human Genetics, University Hospital UZ Leuven, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Jason P Van Batavia
- Department of Surgery, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA; Division of Urology and 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Claudia Vingerhoets
- Advisium, 's Heeren Loo Zorggroep, Amersfoort, The Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Donna M McDonald-McGinn
- 22q and You Center, Clinical Genetics Center, and Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA; Department of Human Biology and Medical Genetics, Sapienza University, Rome, Italy.
| | - Anne S Bassett
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Mental Health and Division of Cardiology, Department of Medicine, and Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Halim-Fikri H, Syed-Hassan SNRK, Wan-Juhari WK, Assyuhada MGSN, Hernaningsih Y, Yusoff NM, Merican AF, Zilfalil BA. Central resources of variant discovery and annotation and its role in precision medicine. ASIAN BIOMED 2022; 16:285-298. [PMID: 37551357 PMCID: PMC10392146 DOI: 10.2478/abm-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Rapid technological advancement in high-throughput genomics, microarray, and deep sequencing technologies has accelerated the possibility of more complex precision medicine research using large amounts of heterogeneous health-related data from patients, including genomic variants. Genomic variants can be identified and annotated based on the reference human genome either within the sequence as a whole or in a putative functional genomic element. The American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) mutually created standards and guidelines for the appraisal of proof to expand consistency and straightforwardness in clinical variation interpretations. Various efforts toward precision medicine have been facilitated by many national and international public databases that classify and annotate genomic variation. In the present study, several resources are highlighted with recognition and data spreading of clinically important genetic variations.
Collapse
Affiliation(s)
- Hashim Halim-Fikri
- Malaysian Node of the Human Variome Project, School of Medical Sciences, Universiti Sains Malaysia, Kelantan16150, Malaysia
| | | | - Wan-Khairunnisa Wan-Juhari
- Malaysian Node of the Human Variome Project, School of Medical Sciences, Universiti Sains Malaysia, Kelantan16150, Malaysia
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kelantan16150, Malaysia
| | - Mat Ghani Siti Nor Assyuhada
- Malaysian Node of the Human Variome Project, School of Medical Sciences, Universiti Sains Malaysia, Kelantan16150, Malaysia
| | - Yetti Hernaningsih
- Department of Clinical Pathology, Faculty of Medicine Universitas Airlangga, Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | - Narazah Mohd Yusoff
- Department of Clinical Pathology, Faculty of Medicine Universitas Airlangga, Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
- Clinical Diagnostic Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang13200, Malaysia
| | - Amir Feisal Merican
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur50603, Malaysia
- Center of Research for Computational Sciences and Informatics in Biology, Bio Industry, Environment, Agriculture and Healthcare (CRYSTAL), University of Malaya, Kuala Lumpur50603, Malaysia
| | - Bin Alwi Zilfalil
- Malaysian Node of the Human Variome Project, School of Medical Sciences, Universiti Sains Malaysia, Kelantan16150, Malaysia
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kelantan16150, Malaysia
| |
Collapse
|
22
|
Eid OM, El Zomor H, Mohamed AM, El-Bassyouni HT, Afifi HH, El-Ayadi M, Sadek SH, Hammad SA, Salem SI, Mahrous R, Fadel IM, Refaat K, Afifi MA, Shelil AE, Ziko OAO, Abdel Azeem AA, El-Haddad A. Multiplex ligation-dependent probe amplification versus fluorescent in situ hybridization for screening RB1 copy number variations in Egyptian patients with retinoblastoma. Ophthalmic Genet 2022; 43:789-794. [PMID: 36098066 DOI: 10.1080/13816810.2022.2116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Retinoblastoma (RB) is the most common primary intraocular malignant tumor in children. RB is mostly caused by biallelic mutations in RB1 and occurs in hereditary and non-hereditary forms according to the "two-hit" theory. RB1 mutations comprise point mutations, indels, large deletions, and duplications. Genetic testing is essential for the comprehensive treatment and management of patients with RB. AIM The aim was to evaluate RB1 copy number variations (CNVs) using MLPA versus FISH assays in group of Egyptian patients with RB. RESULTS 16.67% showed an RB1 deletion, abnormal methylation status, or both. CONCLUSION Our results suggested MLPA is a fast, reliable, and powerful method and should be used as a first-line screening tool for detecting RB1 CNVs in patients with RB. Moreover, MLPA is advantageous as it evaluates the methylation status/inactivation of RB1, not possible by FISH.
Collapse
Affiliation(s)
- Ola M Eid
- Human Cytogenetics Department, National Research Centre, Cairo, Egypt
| | - Hosam El Zomor
- Pediatric Department, Children's Cancer Hospital, Cairo, Egypt.,Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Amal M Mohamed
- Human Cytogenetics Department, National Research Centre, Cairo, Egypt
| | | | - Hanan H Afifi
- Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Moatasem El-Ayadi
- Pediatric Department, Children's Cancer Hospital, Cairo, Egypt.,Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sherin H Sadek
- Ophthalmology Department, Children's Cancer Hospital, Egypt.,Ophthalmology Department, Fayoum University, Faiyum, Egypt
| | - Saida A Hammad
- Human Cytogenetics Department, National Research Centre, Cairo, Egypt
| | - Sherine I Salem
- Clinical Pathology Department, Children's Cancer Hospital, Egypt.,Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rana Mahrous
- Human Cytogenetics Department, National Research Centre, Cairo, Egypt
| | - Islam M Fadel
- Human Cytogenetics Department, National Research Centre, Cairo, Egypt
| | - Khaled Refaat
- Human Cytogenetics Department, National Research Centre, Cairo, Egypt
| | | | - Abdallah E Shelil
- Ophthalmology Department, Children's Cancer Hospital, Egypt.,Ophthalmology Department, Al-Azhar University, Cairo, Egypt
| | - Othman A O Ziko
- Ophthalmology Department, Ain Shams University, Cairo, Egypt
| | - Amira A Abdel Azeem
- Ophthalmic Genetics Department, Research Institute of Ophthalmology, Cairo, Egypt
| | - Alaa El-Haddad
- Pediatric Department, Children's Cancer Hospital, Cairo, Egypt.,Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Hopkins CE, Brock T, Caulfield TR, Bainbridge M. Phenotypic screening models for rapid diagnosis of genetic variants and discovery of personalized therapeutics. Mol Aspects Med 2022; 91:101153. [PMID: 36411139 PMCID: PMC10073243 DOI: 10.1016/j.mam.2022.101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/19/2022]
Abstract
Precision medicine strives for highly individualized treatments for disease under the notion that each individual's unique genetic makeup and environmental exposures imprints upon them not only a disposition to illness, but also an optimal therapeutic approach. In the realm of rare disorders, genetic predisposition is often the predominant mechanism driving disease presentation. For such, mostly, monogenic disorders, a causal gene to phenotype association is likely. As a result, it becomes important to query the patient's genome for the presence of pathogenic variations that are likely to cause the disease. Determining whether a variant is pathogenic or not is critical to these analyses and can be challenging, as many disease-causing variants are novel and, ergo, have no available functional data to help categorize them. This problem is exacerbated by the need for rapid evaluation of pathogenicity, since many genetic diseases present in young children who will experience increased morbidity and mortality without rapid diagnosis and therapeutics. Here, we discuss the utility of animal models, with a focus mainly on C. elegans, as a contrast to tissue culture and in silico approaches, with emphasis on how these systems are used in determining pathogenicity of variants with uncertain significance and then used to screen for novel therapeutics.
Collapse
Affiliation(s)
| | | | - Thomas R Caulfield
- Mayo Clinic, Department of Neuroscience, Department of Computational Biology, Department of Clinical Genomics, Jacksonville, FL, 32224, Rochester, MN, 55905, USA
| | | |
Collapse
|
24
|
von Scheibler EN, van Eeghen AM, de Koning TJ, Kuijf ML, Zinkstok JR, Müller AR, van Amelsvoort TA, Boot E. Parkinsonism in Genetic Neurodevelopmental Disorders: A Systematic Review. Mov Disord Clin Pract 2022; 10:17-31. [PMID: 36699000 PMCID: PMC9847320 DOI: 10.1002/mdc3.13577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/25/2022] [Accepted: 08/16/2022] [Indexed: 01/28/2023] Open
Abstract
Background With advances in clinical genetic testing, associations between genetic neurodevelopmental disorders and parkinsonism are increasingly recognized. In this review, we aimed to provide a comprehensive overview of reports on parkinsonism in genetic neurodevelopmental disorders and summarize findings related to genetic diagnosis, clinical features and proposed disease mechanisms. Methods A systematic literature review was conducted in PubMed and Embase on June 15, 2021. Search terms for parkinsonism and genetic neurodevelopmental disorders, using generic terms and the Human Phenotype Ontology, were combined. Study characteristics and descriptive data were extracted from the articles using a modified version of the Cochrane Consumers and Communication Review Group's data extraction template. The protocol was registered in PROSPERO (CRD42020191035). Results The literature search yielded 208 reports for data-extraction, describing 69 genetic disorders in 422 patients. The five most reported from most to least frequent were: 22q11.2 deletion syndrome, beta-propeller protein-associated neurodegeneration, Down syndrome, cerebrotendinous xanthomatosis, and Rett syndrome. Notable findings were an almost equal male to female ratio, an early median age of motor onset (26 years old) and rigidity being more common than rest tremor. Results of dopaminergic imaging and response to antiparkinsonian medication often supported the neurodegenerative nature of parkinsonism. Moreover, neuropathology results showed neuronal loss in the majority of cases. Proposed disease mechanisms included aberrant mitochondrial function and disruptions in neurotransmitter metabolism, endosomal trafficking, and the autophagic-lysosomal and ubiquitin-proteasome system. Conclusion Parkinsonism has been reported in many GNDs. Findings from this study may provide clues for further research and improve management of patients with GNDs and/or parkinsonism.
Collapse
Affiliation(s)
- Emma N.M.M. von Scheibler
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands
| | - Agnies M. van Eeghen
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Emma Children's HospitalUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tom J. de Koning
- Department of GeneticsUniversity of GroningenGroningenThe Netherlands,Expertise Centre Movement Disorders GroningenUniversity Medical Centre GroningenGroningenThe Netherlands,Pediatrics, Department of Clinical SciencesLund UniversityLundSweden
| | - Mark L. Kuijf
- Department of NeurologyMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Janneke R. Zinkstok
- Department of PsychiatryRadoud University Medical CentreNijmegenThe Netherlands,Karakter child and adolescent psychiatryNijmegenThe Netherlands,Department of Psychiatry and Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Annelieke R. Müller
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Emma Children's HospitalUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Erik Boot
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands,The Dalglish Family 22q ClinicUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
25
|
Wang LQ, Fernandez-Boyano I, Robinson WP. Genetic variation in placental insufficiency: What have we learned over time? Front Cell Dev Biol 2022; 10:1038358. [PMID: 36313546 PMCID: PMC9613937 DOI: 10.3389/fcell.2022.1038358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic variation shapes placental development and function, which has long been known to impact fetal growth and pregnancy outcomes such as miscarriage or maternal pre-eclampsia. Early epidemiology studies provided evidence of a strong heritable component to these conditions with both maternal and fetal-placental genetic factors contributing. Subsequently, cytogenetic studies of the placenta and the advent of prenatal diagnosis to detect chromosomal abnormalities provided direct evidence of the importance of spontaneously arising genetic variation in the placenta, such as trisomy and uniparental disomy, drawing inferences that remain relevant to this day. Candidate gene approaches highlighted the role of genetic variation in genes influencing immune interactions at the maternal-fetal interface and angiogenic factors. More recently, the emergence of molecular techniques and in particular high-throughput technologies such as Single-Nucleotide Polymorphism (SNP) arrays, has facilitated the discovery of copy number variation and study of SNP associations with conditions related to placental insufficiency. This review integrates past and more recent knowledge to provide important insights into the role of placental function on fetal and perinatal health, as well as into the mechanisms leading to genetic variation during development.
Collapse
Affiliation(s)
- Li Qing Wang
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Icíar Fernandez-Boyano
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Alamri AM, Alkhilaiwi FA, Ullah Khan N. Era of Molecular Diagnostics Techniques before and after the COVID-19 Pandemic. Curr Issues Mol Biol 2022; 44:4769-4789. [PMID: 36286040 PMCID: PMC9601158 DOI: 10.3390/cimb44100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the growth of molecular diagnosis from the era of Hippocrates, the emergence of COVID-19 is still remarkable. The previously used molecular techniques were not rapid enough to screen a vast population at home, in offices, and in hospitals. Additionally, these techniques were only available in advanced clinical laboratories.The pandemic outbreak enhanced the urgency of researchers and research and development companies to invent more rapid, robust, and portable devices and instruments to screen a vast community in a cost-effective and short time. There has been noteworthy progress in molecular diagnosing tools before and after the pandemic. This review focuses on the advancements in molecular diagnostic techniques before and after the emergence of COVID-19 and how the pandemic accelerated the implantation of molecular diagnostic techniques in most clinical laboratories towardbecoming routine tests.
Collapse
Affiliation(s)
- Ahmad M. Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61413, Saudi Arabia
- Cancer Research Unit, King Khalid University, Abha 61413, Saudi Arabia
| | - Faris A. Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar 25130, Pakistan
| |
Collapse
|
27
|
Lee A, Neidich J, Nguyen H. Outpatient Primary Care Genetic Testing Primer: What to Order and Testing Considerations. MISSOURI MEDICINE 2022; 119:390-396. [PMID: 36118815 PMCID: PMC9462914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The field of genetics has evolved rapidly over the last few decades, from testing methods to genetic diagnoses, bringing new genetic testing guidelines and considerations for health care providers. Overall geneticists are limited in number and availability, particularly in non-academic settings, and many patients first present to a primary care provider. Here, we aim to review various modalities of genetic testing, their indications, limitations, and other pretest considerations for the primary care provider. In addition, we comment on the limitations of direct-to-consumer (DTC) genetic testing, which has seen a rise in popularity among the general population.
Collapse
Affiliation(s)
- Angela Lee
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Julie Neidich
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Hoanh Nguyen
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Convers KD, Slack M, Kanarek HJ. Take a Leap of Faith: Implement Routine Genetic Testing in Your Office. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1676-1687. [PMID: 35643275 DOI: 10.1016/j.jaip.2022.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Genetic testing is a state-of-the-art and readily accessible diagnostic tool and is increasingly indicated in the evaluation process when relevant and possible, although incorporation of this modality into the daily practice of allergists-immunologists in both academic and nonacademic or community settings is still a challenge. Educational sessions and resources support the use of genetic testing in the diagnosis and management of primary immunodeficiency by both the American Academy of Allergy, Asthma & Immunology and the Clinical Immunology Society. Genetic testing for primary immunodeficiency has become much more convenient and affordable over the past decade; allergist-immunologists in private practice are now able to offer patients high-quality and comprehensive genetic testing panels to help diagnose or characterize underlying immune abnormalities among patients with recurrent infections, and even patients with allergic disorder and noninfectious complications. Although genetic testing has not been a commonplace consideration in day-to-day practice for many nonacademic specialists, a shift toward adopting this into our standard toolkit should be taking place. Most of the commercial genetic testing is aiming for a panel of genes ranging anywhere from just a few to several hundred, so the specialist can feel comfortable clearly interpreting the data. As the panels are analyzing data from next-generation sequencing and deletion/duplication assays, this evaluation may need to be repeated when panels expand and include new relevant genes. Ultimately, for undiagnosed cases, whole-exome and whole-genome sequencing can be the next step; however, involvement of genetic counselors may be needed to interpret the data. The value of genetic testing is that it may bring the clinician closer to an accurate diagnosis; therefore, we can keep treating our patients more accurately and effectively, which may result in less frequent follow-ups for unresolved or recurrent problems. In addition, we can then provide patients and their families with important information about the root cause of their disease state, risks to other family members, and offer genetic counseling services. Genetic testing results may also aid in recognizing when a referral to expert colleagues for more advanced and specialized treatments is indicated.
Collapse
Affiliation(s)
- Kathryn D Convers
- Lakeland Allergy, Asthma & Immunology, Lakeland, Fla; University of South Florida, Tampa, Fla.
| | - Maria Slack
- Allergy and Immunology Specialists of Northwest Ohio, Blanchard Valley Hospital, Findlay, Ohio
| | | |
Collapse
|
29
|
Fernandez G, Yubero D, Palau F, Armstrong J. Molecular Modelling Hurdle in the Next-Generation Sequencing Era. Int J Mol Sci 2022; 23:7176. [PMID: 35806177 PMCID: PMC9266691 DOI: 10.3390/ijms23137176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
There are challenges in the genetic diagnosis of rare diseases, and pursuing an optimal strategy to identify the cause of the disease is one of the main objectives of any clinical genomics unit. A range of techniques are currently used to characterize the genomic variability within the human genome to detect causative variants of specific disorders. With the introduction of next-generation sequencing (NGS) in the clinical setting, geneticists can study single-nucleotide variants (SNVs) throughout the entire exome/genome. In turn, the number of variants to be evaluated per patient has increased significantly, and more information has to be processed and analyzed to determine a proper diagnosis. Roughly 50% of patients with a Mendelian genetic disorder are diagnosed using NGS, but a fair number of patients still suffer a diagnostic odyssey. Due to the inherent diversity of the human population, as more exomes or genomes are sequenced, variants of uncertain significance (VUSs) will increase exponentially. Thus, assigning relevance to a VUS (non-synonymous as well as synonymous) in an undiagnosed patient becomes crucial to assess the proper diagnosis. Multiple algorithms have been used to predict how a specific mutation might affect the protein's function, but they are far from accurate enough to be conclusive. In this work, we highlight the difficulties of genomic variability determined by NGS that have arisen in diagnosing rare genetic diseases, and how molecular modelling has to be a key component to elucidate the relevance of a specific mutation in the protein's loss of function or malfunction. We suggest that the creation of a multi-omics data model should improve the classification of pathogenicity for a significant amount of the detected genomic variability. Moreover, we argue how it should be incorporated systematically in the process of variant evaluation to be useful in the clinical setting and the diagnostic pipeline.
Collapse
Affiliation(s)
- Guerau Fernandez
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (G.F.); (F.P.); (J.A.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain
| | - Dèlia Yubero
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (G.F.); (F.P.); (J.A.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain
| | - Francesc Palau
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (G.F.); (F.P.); (J.A.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain
- Division of Pediatrics, University of Barcelona School of Medicine and Health Sciences, 08007 Barcelona, Spain
| | - Judith Armstrong
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (G.F.); (F.P.); (J.A.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain
| |
Collapse
|
30
|
Jafarinejad-Farsangi S, Moazzam-Jazi M, Naderi Ghale-Noie Z, Askari N, Miri Karam Z, Mollazadeh S, Hadizadeh M. Investigation of genes and pathways involved in breast cancer subtypes through gene expression meta-analysis. Gene X 2022; 821:146328. [PMID: 35181505 DOI: 10.1016/j.gene.2022.146328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/16/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Molecular-based studies have revealed heterogeneity in Breast cancer BC while also improving classification and treatment. However, efforts are underway to distinguish between distinct subtypes of breast cancer. In this study, the results of several microarray studies were combined to identify genes and pathways specific to each BC subtype. METHODS Meta-analysis of multiple gene expression profile datasets was screened to find differentially expressed genes (DEGs) across subtypes of BC and normal breast tissue samples. Protein-protein interaction network and gene set enrichment analysis were used to identify critical genes and pathways associated with BC subtypes. The differentially expressed genes from meta-analysis was validated using an independent comprehensive breast cancer RNA-sequencing dataset obtained from the Cancer Genome Atlas (TCGA). RESULTS We identified 110 DEGs (13 DEGs in all and 97 DEGs in each subtype) across subtypes of BC. All subtypes had a small set of shared DEGs enriched in the Chemokine receptor bind chemokine pathway. Luminal A specific were enriched in the translational elongation process in mitochondria, and the enhanced process in luminal B subtypes was interferon-alpha/beta signaling. Cell cycle and mitotic DEGs were enriched in the basal-like group. All subtype-specific DEG genes (100%) were successfully validated for Luminal A, Luminal B, ERBB2, and Normal-like. However, the validation percentage for Basal-like group was 77.8%. CONCLUSION Integrating researches such as a meta-analysis of gene expression might be more effective in uncovering subtype-specific DEGs and pathways than a single-study analysis. It would be more beneficial to increase the number of studies that use matched BC subtypes along with GEO profiling approaches to reach a better result regarding DEGs and reduce probable biases. However, achieving 77.8% overlap in basal-specific genes and complete concordance in specific genes related to other subtypes can implicate the strength of our analysis for discovering the subtype-specific genes.
Collapse
Affiliation(s)
- Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Maryam Moazzam-Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Nahid Askari
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Zahra Miri Karam
- Student Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Morteza Hadizadeh
- Student Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
31
|
Samanta D. DEPDC5-related epilepsy: A comprehensive review. Epilepsy Behav 2022; 130:108678. [PMID: 35429726 DOI: 10.1016/j.yebeh.2022.108678] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
DEPDC5-related epilepsy, caused by pathogenic germline variants(with or without additional somatic variants in the brain) of DEPDC5 (Dishevelled, Egl-10 and Pleckstrin domain-containing protein 5) gene, is a newly discovered predominantly focal epilepsy linked to enhanced mTORC1 pathway. DEPDC5-related epilepsy includes several familial epilepsy syndromes, including familial focal epilepsy with variable foci (FFEVF) and rare sporadic nonlesional focal epilepsy. DEPDC5 has been identified as one of the more common epilepsy genes linked to infantile spasms and sudden unexpected death (SUDEP). Although intelligence usually is unaffected in DEPDC5-related epilepsy, some people have been diagnosed with intellectual disabilities, autism spectrum disorder, and other psychiatric problems. DEPDC5 variants have also been found in 20% of individuals with various brain abnormalities, challenging the traditional distinction between lesional and nonlesional epilepsies. The most exciting development of DEPDC5 variants is the possibility of precision therapeutics using mTOR inhibitors, as evidenced with phenotypic rescue in many animal models. However, more research is needed to better understand the functional impact of diverse (particularly missense or splice-region) variants, the specific involvement of DEPDC5 in epileptogenesis, and the creation and utilization of precision therapies in humans. Precision treatments for DEPDC5-related epilepsy will benefit not only a small number of people with the condition, but they will also pave the way for new therapeutic approaches in epilepsy (including acquired epilepsies in which mTORC1 activation occurs, for example, post-traumatic epilepsy) and other neurological disorders involving a dysfunctional mTOR pathway.
Collapse
Affiliation(s)
- Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
32
|
Beltrán-Corbellini Á, Aledo-Serrano Á, Møller RS, Pérez-Palma E, García-Morales I, Toledano R, Gil-Nagel A. Epilepsy Genetics and Precision Medicine in Adults: A New Landscape for Developmental and Epileptic Encephalopathies. Front Neurol 2022; 13:777115. [PMID: 35250806 PMCID: PMC8891166 DOI: 10.3389/fneur.2022.777115] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
This review aims to provide an updated perspective of epilepsy genetics and precision medicine in adult patients, with special focus on developmental and epileptic encephalopathies (DEEs), covering relevant and controversial issues, such as defining candidates for genetic testing, which genetic tests to request and how to interpret them. A literature review was conducted, including findings in the discussion and recommendations. DEEs are wide and phenotypically heterogeneous electroclinical syndromes. They generally have a pediatric presentation, but patients frequently reach adulthood still undiagnosed. Identifying the etiology is essential, because there lies the key for precision medicine. Phenotypes modify according to age, and although deep phenotyping has allowed to outline certain entities, genotype-phenotype correlations are still poor, commonly leading to long-lasting diagnostic odysseys and ineffective therapies. Recent adult series show that the target patients to be identified for genetic testing are those with epilepsy and different risk factors. The clinician should take active part in the assessment of the pathogenicity of the variants detected, especially concerning variants of uncertain significance. An accurate diagnosis implies precision medicine, meaning genetic counseling, prognosis, possible future therapies, and a reduction of iatrogeny. Up to date, there are a few tens of gene mutations with additional concrete treatments, including those with restrictive/substitutive therapies, those with therapies modifying signaling pathways, and channelopathies, that are worth to be assessed in adults. Further research is needed regarding phenotyping of adult syndromes, early diagnosis, and the development of targeted therapies.
Collapse
Affiliation(s)
| | - Ángel Aledo-Serrano
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
- *Correspondence: Ángel Aledo-Serrano
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre, Dianalund, Denmark
| | - Eduardo Pérez-Palma
- Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Santiago, Chile
| | - Irene García-Morales
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
- Epilepsy Unit, Neurology Department, Clínico San Carlos University Hospital, Madrid, Spain
| | - Rafael Toledano
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
- Epilepsy Unit, Neurology Department, Ramón y Cajal University Hospital, Madrid, Spain
| | - Antonio Gil-Nagel
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| |
Collapse
|
33
|
Abstract
DiGeorge syndrome (DGS) is caused by a chromosomal microdeletion at 22q11.2 that results in impaired development of the pharyngeal pouch system. Patients with DGS may have developmental abnormalities of craniofacial structures, parathyroid glands, thymus and cardiac outflow tract. Doctors have been routinely testing for DGS in newborns with conotruncal cardiac anomalies since the late 1990s; before then, however, they relied on complex diagnostic criteria and the disease was often missed. Adults born with conotruncal defects before the late 1990s may have undiagnosed DGS. We present one such case: a 35-year-old woman with a cardiac diagnosis of tetralogy of Fallot and unilateral absence of a pulmonary arter who was found to have DGS. Identifying DGS in adults is important both for disease management and genetic counselling. Our case emphasises the importance of screening for DGS in adults who were born with conotruncal cardiac abnormalities before widespread neonatal testing became common.
Collapse
Affiliation(s)
- Ellery Altshuler
- Internal Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Arwa Saidi
- Pediatrics, Internal Medicine, Pediatric Cardiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jeffrey Budd
- Internal Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
34
|
Sønderby IE, Ching CRK, Thomopoulos SI, van der Meer D, Sun D, Villalon‐Reina JE, Agartz I, Amunts K, Arango C, Armstrong NJ, Ayesa‐Arriola R, Bakker G, Bassett AS, Boomsma DI, Bülow R, Butcher NJ, Calhoun VD, Caspers S, Chow EWC, Cichon S, Ciufolini S, Craig MC, Crespo‐Facorro B, Cunningham AC, Dale AM, Dazzan P, de Zubicaray GI, Djurovic S, Doherty JL, Donohoe G, Draganski B, Durdle CA, Ehrlich S, Emanuel BS, Espeseth T, Fisher SE, Ge T, Glahn DC, Grabe HJ, Gur RE, Gutman BA, Haavik J, Håberg AK, Hansen LA, Hashimoto R, Hibar DP, Holmes AJ, Hottenga J, Hulshoff Pol HE, Jalbrzikowski M, Knowles EEM, Kushan L, Linden DEJ, Liu J, Lundervold AJ, Martin‐Brevet S, Martínez K, Mather KA, Mathias SR, McDonald‐McGinn DM, McRae AF, Medland SE, Moberget T, Modenato C, Monereo Sánchez J, Moreau CA, Mühleisen TW, Paus T, Pausova Z, Prieto C, Ragothaman A, Reinbold CS, Reis Marques T, Repetto GM, Reymond A, Roalf DR, Rodriguez‐Herreros B, Rucker JJ, Sachdev PS, Schmitt JE, Schofield PR, Silva AI, Stefansson H, Stein DJ, Tamnes CK, Tordesillas‐Gutiérrez D, Ulfarsson MO, Vajdi A, van 't Ent D, van den Bree MBM, Vassos E, Vázquez‐Bourgon J, Vila‐Rodriguez F, Walters GB, Wen W, Westlye LT, Wittfeld K, Zackai EH, Stefánsson K, Jacquemont S, Thompson PM, Bearden CE, Andreassen OA. Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs. Hum Brain Mapp 2022; 43:300-328. [PMID: 33615640 PMCID: PMC8675420 DOI: 10.1002/hbm.25354] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 01/21/2023] Open
Abstract
The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.
Collapse
Affiliation(s)
- Ida E. Sønderby
- Department of Medical GeneticsOslo University HospitalOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Christopher R. K. Ching
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Daqiang Sun
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and PsychologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Mental HealthVeterans Affairs Greater Los Angeles Healthcare System, Los AngelesCaliforniaUSA
| | - Julio E. Villalon‐Reina
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Ingrid Agartz
- NORMENT, Institute of Clinical PsychiatryUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Cecile and Oskar Vogt Institute for Brain Research, Medical FacultyUniversity Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Celso Arango
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, IsSGM, Universidad Complutense, School of MedicineMadridSpain
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | | | - Rosa Ayesa‐Arriola
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of PsychiatryMarqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL)SantanderSpain
| | - Geor Bakker
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands
- Department of Radiology and Nuclear MedicineVU University Medical CenterAmsterdamThe Netherlands
| | - Anne S. Bassett
- Clinical Genetics Research ProgramCentre for Addiction and Mental HealthTorontoOntarioCanada
- Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, Toronto General HospitalUniversity Health NetworkTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Dorret I. Boomsma
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Public Health (APH) Research InstituteAmsterdam UMCAmsterdamThe Netherlands
| | - Robin Bülow
- Institute of Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Nancy J. Butcher
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
- Child Health Evaluative SciencesThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Institute for Anatomy IMedical Faculty & University Hospital Düsseldorf, University of DüsseldorfDüsseldorfGermany
| | - Eva W. C. Chow
- Clinical Genetics Research ProgramCentre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Simone Ciufolini
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Michael C. Craig
- Department of Forensic and Neurodevelopmental SciencesThe Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's CollegeLondonUnited Kingdom
| | | | - Adam C. Cunningham
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Anders M. Dale
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
- Department RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Paola Dazzan
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Greig I. de Zubicaray
- Faculty of HealthQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Srdjan Djurovic
- Department of Medical GeneticsOslo University HospitalOsloNorway
- NORMENT, Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Joanne L. Doherty
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
- Cardiff University Brain Research Imaging Centre (CUBRIC)CardiffUnited Kingdom
| | - Gary Donohoe
- Center for Neuroimaging, Genetics and GenomicsSchool of Psychology, NUI GalwayGalwayIreland
| | - Bogdan Draganski
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
- Neurology DepartmentMax‐Planck Institute for Human Brain and Cognitive SciencesLeipzigGermany
| | - Courtney A. Durdle
- MIND Institute and Department of Psychiatry and Behavioral SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental NeurosciencesFaculty of Medicine, TU DresdenDresdenGermany
| | - Beverly S. Emanuel
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thomas Espeseth
- Department of PsychologyUniversity of OsloOsloNorway
- Department of PsychologyBjørknes CollegeOsloNorway
| | - Simon E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics UnitCenter for Genomic Medicine, Massachusetts General HospitalBostonMassachusettsUSA
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - David C. Glahn
- Tommy Fuss Center for Neuropsychiatric Disease ResearchBoston Children's HospitalBostonMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Hans J. Grabe
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
| | - Raquel E. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Youth Suicide Prevention, Intervention and Research CenterChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Boris A. Gutman
- Medical Imaging Research Center, Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
| | - Jan Haavik
- Department of BiomedicineUniversity of BergenBergenNorway
- Division of PsychiatryHaukeland University HospitalBergenNorway
| | - Asta K. Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
- Department of Radiology and Nuclear MedicineSt. Olavs HospitalTrondheimNorway
| | - Laura A. Hansen
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ryota Hashimoto
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryTokyoJapan
- Department of PsychiatryOsaka University Graduate School of MedicineOsakaJapan
| | - Derrek P. Hibar
- Personalized Healthcare AnalyticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Avram J. Holmes
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Jouke‐Jan Hottenga
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | | | - Emma E. M. Knowles
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBoston Children's HospitalBostonMassachusettsUSA
| | - Leila Kushan
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - David E. J. Linden
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUnited Kingdom
| | - Jingyu Liu
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
- Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Astri J. Lundervold
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
| | - Sandra Martin‐Brevet
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
| | - Kenia Martínez
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, IsSGM, Universidad Complutense, School of MedicineMadridSpain
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Facultad de PsicologíaUniversidad Autónoma de MadridMadridSpain
| | - Karen A. Mather
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
| | - Samuel R. Mathias
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBoston Children's HospitalBostonMassachusettsUSA
| | - Donna M. McDonald‐McGinn
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Division of Human Genetics and 22q and You CenterChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Allan F. McRae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Sarah E. Medland
- Psychiatric GeneticsQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Torgeir Moberget
- Department of Psychology, Faculty of Social SciencesUniversity of OsloOsloNorway
| | - Claudia Modenato
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
- University of LausanneLausanneSwitzerland
| | - Jennifer Monereo Sánchez
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Clara A. Moreau
- Sainte Justine Hospital Research CenterUniversity of Montreal, MontrealQCCanada
| | - Thomas W. Mühleisen
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Cecile and Oskar Vogt Institute for Brain Research, Medical FacultyUniversity Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Tomas Paus
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Departments of Psychology and PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Zdenka Pausova
- Translational Medicine, The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Carlos Prieto
- Bioinformatics Service, NucleusUniversity of SalamancaSalamancaSpain
| | | | - Céline S. Reinbold
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Centre for Lifespan Changes in Brain and Cognition, Department of PsychologyUniversity of OsloOsloNorway
| | - Tiago Reis Marques
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith HospitalImperial College LondonLondonUnited Kingdom
| | - Gabriela M. Repetto
- Center for Genetics and GenomicsFacultad de Medicina, Clinica Alemana Universidad del DesarrolloSantiagoChile
| | - Alexandre Reymond
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - David R. Roalf
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - James J. Rucker
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Neuropsychiatric InstituteThe Prince of Wales HospitalSydneyNew South WalesAustralia
| | - James E. Schmitt
- Department of Radiology and PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Medical SciencesUNSW SydneySydneyNew South WalesAustralia
| | - Ana I. Silva
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUnited Kingdom
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | | | - Dan J. Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| | - Diana Tordesillas‐Gutiérrez
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Neuroimaging Unit, Technological FacilitiesValdecilla Biomedical Research Institute (IDIVAL), SantanderSpain
| | - Magnus O. Ulfarsson
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of Electrical and Computer EngineeringUniversity of Iceland, ReykjavikIceland
| | - Ariana Vajdi
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Dennis van 't Ent
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Marianne B. M. van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Javier Vázquez‐Bourgon
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of PsychiatryMarqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL)SantanderSpain
- School of MedicineUniversity of CantabriaSantanderSpain
| | - Fidel Vila‐Rodriguez
- Department of PsychiatryThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - G. Bragi Walters
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Lars T. Westlye
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- NORMENT, Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Katharina Wittfeld
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
| | - Elaine H. Zackai
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Kári Stefánsson
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| | - Sebastien Jacquemont
- Sainte Justine Hospital Research CenterUniversity of Montreal, MontrealQCCanada
- Department of PediatricsUniversity of Montreal, MontrealQCCanada
| | - Paul M. Thompson
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Carrie E. Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and PsychologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Center for Neurobehavioral GeneticsUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
| |
Collapse
|
35
|
Abstract
This review summarizes the available data about genetic factors which can link ischemic stroke and sleep. Sleep patterns (subjective and objective measures) are characterized by heritability and comprise up to 38-46%. According to Mendelian randomization analysis, genetic liability for short sleep duration and frequent insomnia symptoms is associated with ischemic stroke (predominantly of large artery subtype). The potential genetic links include variants of circadian genes, genes encoding components of neurotransmitter systems, common cardiovascular risk factors, as well as specific genetic factors related to certain sleep disorders.
Collapse
Affiliation(s)
- Lyudmila Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Department for Cardiology, Almazov National Medical Research Centre, 2 Akkuratov Str., Saint Petersburg, 197341, Russia.
| |
Collapse
|
36
|
Silva TYT, Pedroso JL, França Junior MC, Barsottini OGP. A journey through the history of Neurogenetics. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:929-932. [PMID: 34550174 DOI: 10.1590/0004-282x-anp-2020-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Since the late 19th century, when several inherited neurological disorders were described, the close relationship between Neurology and heredity were well documented by several authors in a pre-genetic era. The term Neurogenetics came to integrate two large sciences and clinical practices: Neurology and Genetics. Neurogenetics is the emerging field that studies the correlation between genetic code and the development and function of the nervous system, including behavioral traits, personality and neurological diseases. In this historical note, a timeline shows the main events and contributors since the first reports of neurogenetic diseases until the current days. In the recent years, neurologists are experiencing much broader use of new genetic diagnosis techniques in clinical practice. Thus, new challenges are arising in diagnostic approach, ethical considerations, and therapeutic options. This article aims to summarize the main historical hallmarks of Neurogenetics, from the pre-DNA era to the present, and the future directions of the field.
Collapse
Affiliation(s)
| | - José Luiz Pedroso
- Universidade Federal de São Paulo, Departamento de Neurologia, São Paulo SP, Brazil
| | | | | |
Collapse
|
37
|
Cottingham E, Johnstone T, Hartley CA, Devlin JM. Use of feline herpesvirus as a vaccine vector offers alternative applications for feline health. Vet Microbiol 2021; 261:109210. [PMID: 34416538 DOI: 10.1016/j.vetmic.2021.109210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/15/2021] [Indexed: 12/26/2022]
Abstract
Herpesviruses are attractive vaccine vector candidates due to their large double stranded DNA genome and latency characteristics. Within the scope of veterinary vaccines, herpesvirus-vectored vaccines have been well studied and commercially available vectored vaccines are used to help prevent diseases in different animal species. Felid alphaherpesvirus 1 (FHV-1) has been characterised as a vector candidate to protect against a range of feline pathogens. In this review we highlight the methods used to construct FHV-1 based vaccines and their outcomes, while also proposing alternative uses for FHV-1 as a viral vector.
Collapse
Affiliation(s)
- Ellen Cottingham
- The Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Thurid Johnstone
- U-Vet Animal Hospital, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Carol A Hartley
- The Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joanne M Devlin
- The Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
38
|
Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep 2021; 11:16743. [PMID: 34408198 PMCID: PMC8373985 DOI: 10.1038/s41598-021-96174-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
Gallic acid is a natural phenolic compound that displays anti-cancer properties in clinically relevant cell culture and rodent models. To date, the molecular mechanism governing the gallic acid-induced cancer cell death process is largely unclear, thus hindering development of novel therapeutics. Therefore, we performed time-course RNA-sequencing to reveal the gene expression profiles at the early (2nd hour), middle (4th and 6th hour), and late (9th hour) stages of the gallic acid-induced cell death process in HeLa cells. By Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, we found significant changes in transcription of the genes in different types of cell death pathways. This involved the ferroptotic cell death pathway at the early stage, apoptotic pathway at the middle stage, and necroptotic pathway at the late stage. Metabolic pathways were identified at all the stages, indicating that this is an active cell death process. Interestingly, the initiation and execution of gallic acid-induced cell death were mediated by multiple biological processes, including iron and amino acid metabolism, and the biosynthesis of glutathione, as targeting on these pathways suppressed cell death. In summary, our work provides a dataset with differentially expressed genes across different stages of cell death process during the gallic acid induction, which is important for further study on the control of this cell death mechanism.
Collapse
|
39
|
Ahmed Z, Renart EG, Zeeshan S. Genomics pipelines to investigate susceptibility in whole genome and exome sequenced data for variant discovery, annotation, prediction and genotyping. PeerJ 2021; 9:e11724. [PMID: 34395068 PMCID: PMC8320519 DOI: 10.7717/peerj.11724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the last few decades, genomics is leading toward audacious future, and has been changing our views about conducting biomedical research, studying diseases, and understanding diversity in our society across the human species. The whole genome and exome sequencing (WGS/WES) are two of the most popular next-generation sequencing (NGS) methodologies that are currently being used to detect genetic variations of clinical significance. Investigating WGS/WES data for the variant discovery and genotyping is based on the nexus of different data analytic applications. Although several bioinformatics applications have been developed, and many of those are freely available and published. Timely finding and interpreting genetic variants are still challenging tasks among diagnostic laboratories and clinicians. In this study, we are interested in understanding, evaluating, and reporting the current state of solutions available to process the NGS data of variable lengths and types for the identification of variants, alleles, and haplotypes. Residing within the scope, we consulted high quality peer reviewed literature published in last 10 years. We were focused on the standalone and networked bioinformatics applications proposed to efficiently process WGS and WES data, and support downstream analysis for gene-variant discovery, annotation, prediction, and interpretation. We have discussed our findings in this manuscript, which include but not are limited to the set of operations, workflow, data handling, involved tools, technologies and algorithms and limitations of the assessed applications.
Collapse
Affiliation(s)
- Zeeshan Ahmed
- Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Eduard Gibert Renart
- Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Saman Zeeshan
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
40
|
Eid OM, Abdel Kader RMA, Fathalla LA, Abdelrahman AH, Rabea A, Mahrous R, Eid MM. Evaluation of MLPA as a comprehensive molecular cytogenetic tool to detect cytogenetic markers of chronic lymphocytic leukemia in Egyptian patients. J Genet Eng Biotechnol 2021; 19:98. [PMID: 34181122 PMCID: PMC8239093 DOI: 10.1186/s43141-021-00198-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022]
Abstract
Background Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia. This disease is genetically heterogeneous, and approximately 85% of patients with CLL harbor chromosomal aberrations that are considered effective prognostic biomarkers. The most frequent aberrations include deletions in 13q14, followed by trisomy 12, and deletions in 11q22.3 and 17p13 (TP53). Currently, fluorescence in situ hybridization (FISH) is the most widely used molecular cytogenetic technique to detect these aberrations. However, FISH is laborious, time-consuming, expensive, and has a low throughput. In contrast, multiplex ligation-dependent probe amplification (MLPA) is a reliable, cost-effective, and relatively rapid technique that can be used as a first-line screening tool and complement with FISH analysis. This study aimed to evaluate the contributions of MLPA as a routine standalone screening platform for recurrent chromosomal aberrations in CLL in comparison to other procedures. Thirty patients with CLL were screened for the most common genomic aberrations using MLPA with SALSA MLPA probemix P038-B1 CLL and FISH. Results In 24 of the 30 cases (80%), the MLPA and FISH results were concordant. Discordant results were attributed to a low percentage of mosaicism. Moreover, the MLPA probemix contains probes that target other genomic areas known to be linked to CLL in addition to those targeting common recurrent CLL aberrations. Conclusions The usage of MLPA as the first screening platform followed by FISH technique for only the negative cases is the most appropriate approach for CLL diagnosis and prognosis.
Collapse
Affiliation(s)
- Ola M Eid
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Bohouth Street, 12311 Dokki, Cairo, Egypt
| | - Rania M A Abdel Kader
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Bohouth Street, 12311 Dokki, Cairo, Egypt.
| | - Lamiaa A Fathalla
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Ahmed Rabea
- Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rana Mahrous
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Bohouth Street, 12311 Dokki, Cairo, Egypt
| | - Maha M Eid
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Bohouth Street, 12311 Dokki, Cairo, Egypt
| |
Collapse
|
41
|
Boot E, Linders CC, Tromp SH, van den Boogaard MJ, van Eeghen AM. Possible underreporting of pathogenic variants in RAI1 causing Smith-Magenis syndrome. Am J Med Genet A 2021; 185:3167-3169. [PMID: 34089220 PMCID: PMC8519085 DOI: 10.1002/ajmg.a.62380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Erik Boot
- Advisium, 's Heeren Loo, Amersfoort, The Netherlands.,The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada.,Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Cathelijne C Linders
- Advisium, 's Heeren Loo, Amersfoort, The Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sterre H Tromp
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Agnies M van Eeghen
- Advisium, 's Heeren Loo, Amersfoort, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Beiranvand N, Freindorf M, Kraka E. Hydrogen Bonding in Natural and Unnatural Base Pairs-A Local Vibrational Mode Study. Molecules 2021; 26:2268. [PMID: 33919989 PMCID: PMC8071019 DOI: 10.3390/molecules26082268] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
In this work hydrogen bonding in a diverse set of 36 unnatural and the three natural Watson Crick base pairs adenine (A)-thymine (T), adenine (A)-uracil (U) and guanine (G)-cytosine (C) was assessed utilizing local vibrational force constants derived from the local mode analysis, originally introduced by Konkoli and Cremer as a unique bond strength measure based on vibrational spectroscopy. The local mode analysis was complemented by the topological analysis of the electronic density and the natural bond orbital analysis. The most interesting findings of our study are that (i) hydrogen bonding in Watson Crick base pairs is not exceptionally strong and (ii) the N-H⋯N is the most favorable hydrogen bond in both unnatural and natural base pairs while O-H⋯N/O bonds are the less favorable in unnatural base pairs and not found at all in natural base pairs. In addition, the important role of non-classical C-H⋯N/O bonds for the stabilization of base pairs was revealed, especially the role of C-H⋯O bonds in Watson Crick base pairs. Hydrogen bonding in Watson Crick base pairs modeled in the DNA via a QM/MM approach showed that the DNA environment increases the strength of the central N-H⋯N bond and the C-H⋯O bonds, and at the same time decreases the strength of the N-H⋯O bond. However, the general trends observed in the gas phase calculations remain unchanged. The new methodology presented and tested in this work provides the bioengineering community with an efficient design tool to assess and predict the type and strength of hydrogen bonding in artificial base pairs.
Collapse
Affiliation(s)
| | | | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA; (N.B.); (M.F.)
| |
Collapse
|
43
|
Barp A, Mosca L, Sansone VA. Facilitations and Hurdles of Genetic Testing in Neuromuscular Disorders. Diagnostics (Basel) 2021; 11:diagnostics11040701. [PMID: 33919863 PMCID: PMC8070835 DOI: 10.3390/diagnostics11040701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Neuromuscular disorders (NMDs) comprise a heterogeneous group of disorders that affect about one in every thousand individuals worldwide. The vast majority of NMDs has a genetic cause, with about 600 genes already identified. Application of genetic testing in NMDs can be useful for several reasons: correct diagnostic definition of a proband, extensive familial counselling to identify subjects at risk, and prenatal diagnosis to prevent the recurrence of the disease; furthermore, identification of specific genetic mutations still remains mandatory in some cases for clinical trial enrollment where new gene therapies are now approaching. Even though genetic analysis is catching on in the neuromuscular field, pitfalls and hurdles still remain and they should be taken into account by clinicians, as for example the use of next generation sequencing (NGS) where many single nucleotide variants of “unknown significance” can emerge, complicating the correct interpretation of genotype-phenotype relationship. Finally, when all efforts in terms of molecular analysis have been carried on, a portion of patients affected by NMDs still remain “not genetically defined”. In the present review we analyze the evolution of genetic techniques, from Sanger sequencing to NGS, and we discuss “facilitations and hurdles” of genetic testing which must always be balanced by clinicians, in order to ensure a correct diagnostic definition, but taking always into account the benefit that the patient could obtain especially in terms of “therapeutic offer”.
Collapse
Affiliation(s)
- Andrea Barp
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy;
- Correspondence:
| | - Lorena Mosca
- Medical Genetics Unit, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milano, Italy;
| | - Valeria Ada Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy;
| |
Collapse
|
44
|
Abstract
Neuromuscular disorders (NMDs) comprise a heterogeneous group of disorders that affect about one in every thousand individuals worldwide. The vast majority of NMDs has a genetic cause, with about 600 genes already identified. Application of genetic testing in NMDs can be useful for several reasons: correct diagnostic definition of a proband, extensive familial counselling to identify subjects at risk, and prenatal diagnosis to prevent the recurrence of the disease; furthermore, identification of specific genetic mutations still remains mandatory in some cases for clinical trial enrollment where new gene therapies are now approaching. Even though genetic analysis is catching on in the neuromuscular field, pitfalls and hurdles still remain and they should be taken into account by clinicians, as for example the use of next generation sequencing (NGS) where many single nucleotide variants of "unknown significance" can emerge, complicating the correct interpretation of genotype-phenotype relationship. Finally, when all efforts in terms of molecular analysis have been carried on, a portion of patients affected by NMDs still remain "not genetically defined". In the present review we analyze the evolution of genetic techniques, from Sanger sequencing to NGS, and we discuss "facilitations and hurdles" of genetic testing which must always be balanced by clinicians, in order to ensure a correct diagnostic definition, but taking always into account the benefit that the patient could obtain especially in terms of "therapeutic offer".
Collapse
Affiliation(s)
- Andrea Barp
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | - Lorena Mosca
- Medical Genetics Unit, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | - Valeria Ada Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| |
Collapse
|
45
|
Hosen MJ, Anwar S, Taslem Mourosi J, Chakraborty S, Miah MF, Vanakker OM. Genetic counseling in the context of Bangladesh: current scenario, challenges, and a framework for genetic service implementation. Orphanet J Rare Dis 2021; 16:168. [PMID: 33836792 PMCID: PMC8034097 DOI: 10.1186/s13023-021-01804-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/30/2021] [Indexed: 11/26/2022] Open
Abstract
With the advancements in genetics and genomics in the twenty-first century, genetic services have become an integral part of medical practices in high-income and upper-middle-income countries. However, people living in low and lower-middle-income countries (LICs and LIMCs), including Bangladesh, are rather underprivileged in receiving genetic services. Consequently, genetic disorders are emerging as a significant public health concern in these countries. Lack of expertise, high expense, the dearth of epidemiological data, insufficiently updated medical education system, poor infrastructure, and the absence of comprehensive health policies are the main factors causing people living in these countries not having access to genetic services. In this article, the authors took benefit from their professional experience of practicing medical genetics in the area and reviewed existing literature to provide their opinions. Particularly, it reviews the current knowledge of genetic disorders' burden and their causative factors in Bangladesh. It focuses on why providing genetic services is challenging in the context of the country's cultural and religious sentiment. Finally, it proposes a physician-academician collaborative framework within the existing facility that aims to tackle the challenges. Such a framework could also be useful for other LICs and LMICs to address the challenges associated with providing genetic services.
Collapse
Affiliation(s)
- Mohammad Jakir Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Saeed Anwar
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8440 112 St. NW, Edmonton, AB T6G 2R7 Canada
| | - Jarin Taslem Mourosi
- Department of Biology, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 USA
| | - Sourav Chakraborty
- Research and Development Laboratory, Globe Biotech Limited, Tejgaon, Dhaka, 1208 Bangladesh
| | - Md. Faruque Miah
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
46
|
Vinkšel M, Writzl K, Maver A, Peterlin B. Improving diagnostics of rare genetic diseases with NGS approaches. J Community Genet 2021; 12:247-256. [PMID: 33452619 PMCID: PMC8141085 DOI: 10.1007/s12687-020-00500-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
According to a rough estimate, one in fifteen people worldwide is affected by a rare disease. Rare diseases are therefore common in clinical practice; however, timely diagnosis of rare diseases is still challenging. Introduction of novel methods based on next-generation sequencing (NGS) technology offers a successful diagnosis of genetically heterogeneous disorders, even in case of unclear clinical diagnostic hypothesis. However, the application of novel technology differs among the centres and health systems significantly. Our goal is to discuss the impact of the implementation of NGS in the diagnosis of rare diseases and present advantages along with challenges of diagnostic approach. Systematic implementation of NGS in health systems can significantly improve the access of patients with rare diseases to diagnosis and reduce the dependence of national health systems for cross-border collaboration.
Collapse
Affiliation(s)
- Mateja Vinkšel
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
47
|
Hu G, Do DN, Gray J, Miar Y. Selection for Favorable Health Traits: A Potential Approach to Cope with Diseases in Farm Animals. Animals (Basel) 2020; 10:E1717. [PMID: 32971980 PMCID: PMC7552752 DOI: 10.3390/ani10091717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Disease is a global problem for animal farming industries causing tremendous economic losses (>USD 220 billion over the last decade) and serious animal welfare issues. The limitations and deficiencies of current non-selection disease control methods (e.g., vaccination, treatment, eradication strategy, genome editing, and probiotics) make it difficult to effectively, economically, and permanently eliminate the adverse influences of disease in the farm animals. These limitations and deficiencies drive animal breeders to be more concerned and committed to dealing with health problems in farm animals by selecting animals with favorable health traits. Both genetic selection and genomic selection contribute to improving the health of farm animals by selecting certain health traits (e.g., disease tolerance, disease resistance, and immune response), although both of them face some challenges. The objective of this review was to comprehensively review the potential of selecting health traits in coping with issues caused by diseases in farm animals. Within this review, we highlighted that selecting health traits can be applied as a method of disease control to help animal agriculture industries to cope with the adverse influences caused by diseases in farm animals. Certainly, the genetic/genomic selection solution cannot solve all the disease problems in farm animals. Therefore, management, vaccination, culling, medical treatment, and other measures must accompany selection solution to reduce the adverse impact of farm animal diseases on profitability and animal welfare.
Collapse
Affiliation(s)
| | | | | | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (G.H.); (D.N.D.); (J.G.)
| |
Collapse
|
48
|
Goetz KE, Reeves MJ, Gagadam S, Blain D, Bender C, Lwin C, Naik A, Tumminia SJ, Hufnagel RB. Genetic testing for inherited eye conditions in over 6,000 individuals through the eyeGENE network. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:828-837. [PMID: 32893963 DOI: 10.1002/ajmg.c.31843] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 11/06/2022]
Abstract
Genetic testing in a multisite clinical trial network for inherited eye conditions is described in this retrospective review of data collected through eyeGENE®, the National Ophthalmic Disease Genotyping and Phenotyping Network. Participants in eyeGENE were enrolled through a network of clinical providers throughout the United States and Canada. Blood samples and clinical data were collected to establish a phenotype:genotype database, biorepository, and patient registry. Data and samples are available for research use, and participants are provided results of clinical genetic testing. eyeGENE utilized a unique, distributed clinical trial design to enroll 6,403 participants from 5,385 families diagnosed with over 30 different inherited eye conditions. The most common diagnoses given for participants were retinitis pigmentosa (RP), Stargardt disease, and choroideremia. Pathogenic variants were most frequently reported in ABCA4 (37%), USH2A (7%), RPGR (6%), CHM (5%), and PRPH2 (3%). Among the 5,552 participants with genetic testing, at least one pathogenic or likely pathogenic variant was observed in 3,448 participants (62.1%), and variants of uncertain significance in 1,712 participants (30.8%). Ten genes represent 68% of all pathogenic and likely pathogenic variants in eyeGENE. Cross-referencing current gene therapy clinical trials, over a thousand participants may be eligible, based on pathogenic variants in genes targeted by those therapies. This article is the first summary of genetic testing from thousands of participants tested through eyeGENE, including reports from 5,552 individuals. eyeGENE provides a launching point for inherited eye research, connects researchers with potential future study participants, and provides a valuable resource to the vision community.
Collapse
Affiliation(s)
- Kerry E Goetz
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Melissa J Reeves
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shaina Gagadam
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Delphine Blain
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chelsea Bender
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cara Lwin
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Amelia Naik
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Santa J Tumminia
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert B Hufnagel
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Taunk K, Kalita B, Kale V, Chanukuppa V, Naiya T, Zingde SM, Rapole S. The development and clinical applications of proteomics: an Indian perspective. Expert Rev Proteomics 2020; 17:433-451. [PMID: 32576061 DOI: 10.1080/14789450.2020.1787157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Proteomic research has been extensively used to identify potential biomarkers or targets for various diseases. Advances in mass spectrometry along with data analytics have led proteomics to become a powerful tool for exploring the critical molecular players associated with diseases, thereby, playing a significant role in the development of proteomic applications for the clinic. AREAS COVERED This review presents recent advances in the development and clinical applications of proteomics in India toward understanding various diseases including cancer, metabolic diseases, and reproductive diseases. Keywords combined with 'clinical proteomics in India' 'proteomic research in India' and 'mass spectrometry' were used to search PubMed. EXPERT OPINION The past decade has seen a significant increase in research in clinical proteomics in India. This approach has resulted in the development of proteomics-based marker technologies for disease management in the country. The majority of these investigations are still in the discovery phase and efforts have to be made to address the intended clinical use so that the identified potential biomarkers reach the clinic. To move toward this necessity, there is a pressing need to establish some key infrastructure requirements and meaningful collaborations between the clinicians and scientists which will enable more effective solutions to address health issues specific to India.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India.,Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | - Vaikhari Kale
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | | | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Surekha M Zingde
- CH3-53, Kendriya Vihar, Sector 11, Kharghar , Navi Mumbai, Maharashtra, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| |
Collapse
|
50
|
Chiș AF, Cătană A, Sorițău O, Chiș BA, Cutaș A, Pop CM. Interleukin-6 serum level and -597 A/G gene polymorphism in moderate and severe chronic obstructive pulmonary disease. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220966469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inflammation is a major pathogenic pathway in pulmonary chronic obstructive disease (COPD). Interleukin-6 (IL-6) mediates the local and systemic immune response. The aim consisted in investigating the relationship between IL-6 serum levels and IL-6 -597A/G gene polymorphism (rs1800797) with COPD. Serum levels of IL-6 were determined using an enzyme-linked immune-sorbent assay, in 120 participants (60 COPD patients and 60 healthy subjects), from Transylvanian region. The IL-6 -597A/G gene polymorphism was investigated by high molecular weight genomic DNA extracted from the peripheral blood leukocytes, and subsequently analyzed by the Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCR-RFLP) technique. Smoking history, the severity of the disease, expressed by the GOLD stages, and arterial blood partial pressure of oxygen (PaO2) levels were also investigated. COPD patients had significantly elevated blood levels of IL-6 when compared to the control group ( p < 0.05). The frequencies of AA, AG, and GG genotypes were 61.6%, 26.6%, and 11.6% in the COPD cases and 70%, 23.3%, and 6.7% in healthy subjects, respectively. There were no statistically significant differences in IL-6 rs1800797 genotypes and allele frequencies between cases and controls ( χ2 = 0.54, OR = 1.29 and χ2 = 0.21, OR = 1.48, respectively). Higher serum levels of IL-6 were found in the GG genotype subgroup in COPD patients. IL 6 levels are higher in COPD patients, where positively correlate with pack-year index, but not with clinical features. Although COPD patients did not have statistically different rs1800797 allele distribution compared to healthy subjects, the GG genotype is associated with higher IL6 serum levels.
Collapse
Affiliation(s)
- Ana Florica Chiș
- Department of Pneumology, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
- “Leon Daniello” Clinical Hospital of Pneumology, Cluj-Napoca, Romania
| | - Andreea Cătană
- Department of Molecular Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Olga Sorițău
- “Ion Chiricuţă” Oncological Institute Cluj-Napoca, Cluj-Napoca, Romania
| | - Bogdan Augustin Chiș
- 2nd Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuța Cutaș
- Department of Medical Informatics, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Carmen Monica Pop
- Department of Pneumology, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
- “Leon Daniello” Clinical Hospital of Pneumology, Cluj-Napoca, Romania
| |
Collapse
|