1
|
Garnsey MR, Wang Y, Edmonds DJ, Sammons MF, Reidich B, Ahn Y, Ashkenazi Y, Carlo A, Cerny MA, Coffman KJ, Culver JA, Dechert Schmitt AM, Eng H, Fisher EL, Gutierrez JA, James L, Jordan S, Kohrt JT, Kramer M, LaChapelle EA, Lee JC, Lee J, Li D, Li Z, Liu S, Liu J, Magee TV, Miller MR, Moran M, Nason DM, Nedoma NL, O'Neil SV, Piotrowski MA, Racich J, Sommese RF, Stevens LM, Wright AS, Xiao J, Zhang L, Zhou D, Barrandon O, Clasquin MF. Design and application of synthetic 17B-HSD13 substrates reveals preserved catalytic activity of protective human variants. Nat Commun 2025; 16:297. [PMID: 39746932 PMCID: PMC11697577 DOI: 10.1038/s41467-024-54487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025] Open
Abstract
Several hydroxysteroid dehydrogenase 17-beta 13 variants have previously been identified as protective against metabolic dysfunction-associated steatohepatitis (MASH) fibrosis, ballooning and inflammation, and as such this target holds significant therapeutic potential. However, over 5 years later, the function of 17B-HSD13 remains unknown. Structure-aided design enables the development of potent and selective sulfonamide-based 17B-HSD13 inhibitors. In order to probe their inhibitory potency in endogenous expression systems like primary human hepatocytes, inhibitors are transformed into synthetic surrogate substrates with distinct selectivity advantages over substrates previously published. Their application to cells endogenously expressing 17B-HSD13 enables quantitative measures of enzymatic inhibition in primary human hepatocytes which has never been reported to date. Application to multiple cellular systems expressing the protective human variants reveals that the most prevalent IsoD variant maintains NAD-dependent catalytic activity towards some but not all substrates, contradicting reports that the truncation results in loss-of-function.
Collapse
Affiliation(s)
| | - Yang Wang
- Pfizer, Inc., Cambridge, MA, 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jisun Lee
- Pfizer, Inc., Groton, CT, 06340, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jun Xiao
- Pfizer, Inc., Groton, CT, 06340, USA
| | | | | | | | | |
Collapse
|
2
|
Demirtas CO, Yilmaz Y. Decoding 17-Beta-hydroxysteroid Dehydrogenase 13: A Multifaceted Perspective on Its Role in Hepatic Steatosis and Associated Disorders. J Clin Transl Hepatol 2024; 12:857-864. [PMID: 39440221 PMCID: PMC11491501 DOI: 10.14218/jcth.2024.00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Chronic liver disease (CLD) represents a significant global health burden, with hepatic steatosis-associated disorders-such as metabolic dysfunction-associated steatohepatitis (MASH), alcoholic liver disease, and hepatitis C virus infection-being major contributors. Recent genome-wide association studies have identified the rs72613567:TA variant in the 17-beta-hydroxysteroid dehydrogenase 13 (HSD17B13) gene as a protective factor against the development and progression of these conditions. In this review, we summarized the current evidence surrounding the HSD17B13 rs72613567 variant, aiming to elucidate its impact on CLD risk and outcomes, and to explore the potential mechanisms behind its hepatoprotective effects. The rs72613567:TA variant induces a splice donor site mutation, resulting in a truncated, non-functional HSD17B13 protein. Numerous studies have demonstrated that this loss-of-function mutation confers protection against the development of cirrhosis and hepatocellular carcinoma (HCC) in patients with MASH, alcoholic liver disease, and hepatitis C virus infection. Moreover, the rs72613567:TA variant has been associated with reduced liver enzyme levels and improved survival in HCC patients. Integrating this variant into genetic risk scores has shown promise in predicting the progression of fatty liver disease to cirrhosis and HCC. Furthermore, inhibiting HSD17B13 expression through RNA interference and small molecule inhibitors has emerged as a potential therapeutic strategy for MASH. However, the precise molecular mechanisms underlying the hepatoprotective effects of the HSD17B13 rs72613567 variant remain to be fully elucidated. Future research should focus on clarifying the structure-function relationship of HSD17B13 and its role in liver pathophysiology to facilitate the development of targeted therapies for CLD associated with hepatic steatosis.
Collapse
Affiliation(s)
- Coskun Ozer Demirtas
- Department of Gastroenterology, School of Medicine, Marmara University, İstanbul, Türkiye
- Institute of Gastroenterology, Marmara University, İstanbul, Türkiye
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, İstanbul, Türkiye
- Institute of Gastroenterology, Marmara University, İstanbul, Türkiye
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
- The Global NASH Council, Washington, DC, USA
| |
Collapse
|
3
|
Crane JD, Barrandon O, Faherty B, Gorgoglione M, Crowley C, Morin J, Ross TT, Shimkonis J, Li D, Hirenallur-Shanthappa D, Boucher M, Ahn Y, Clasquin MF. Murine HSD17β13 does not control liver steatosis and modestly impacts fibrosis in a sex- and diet-specific manner. J Lipid Res 2024; 65:100634. [PMID: 39182609 PMCID: PMC11440797 DOI: 10.1016/j.jlr.2024.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Human genetic studies show that loss of function mutations in 17-Beta hydroxysteroid dehydrogenase (HSD17β13) are associated with protection from non-alcoholic steatohepatitis (NASH). As a result, therapies that reduce HSD17β13 are being pursued for the treatment of NASH. However, inconsistent effects on steatosis, inflammation, and fibrosis pathogenesis have been reported in murine Hsd17b13 knockdown or knockout models. To clarify whether murine Hsd17b13 loss regulates liver damage and fibrosis, we characterized Hsd17b13 knockout mice subjected to pro-NASH diets or pro-inflammatory chemical-induced liver injury. There were no effects of Hsd17b13 loss on liver injury, inflammation, fibrosis, or lipids after 28 weeks on the Gubra-Amylin NASH (GAN) diet or 12 weeks on a 45% choline-deficient high-fat diet (CDAHFD). However, AAV-mediated re-expression of murine Hsd17b13 in KO mice increased liver macrophage abundance in both sexes fed the 45% CDAHFD. In contrast, there was a modest reduction in liver fibrosis, but not lipids or inflammation within Hsd17b13 null female, but not male, mice after 12 weeks of a 60% CDAHFD compared to WT littermates. Fibrosis and the abundance of liver macrophages were increased in Hsd17b13 KO females upon adenoviral re-expression of mouse HSD17β13, but this was not reflected in inflammatory markers. Additionally, we found minimal differences in liver injury, lipids, or inflammatory and fibrotic markers 48 h after acute CCl4 exposure. In summary, murine Hsd17b13 loss has modest diet- and sex-specific effects on liver fibrosis which contrasts with human genetic studies. This suggests a disconnect between the biological function of HSD17β13 in mice and humans.
Collapse
Affiliation(s)
- Justin D Crane
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA.
| | - Ornella Barrandon
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Bryan Faherty
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Matt Gorgoglione
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Collin Crowley
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Jeff Morin
- Global Discovery Investigative and Translational Sciences CM-DSRD, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Trenton T Ross
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Jackson Shimkonis
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Dongmei Li
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA
| | | | - Magalie Boucher
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Youngwook Ahn
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA
| | | |
Collapse
|
4
|
Wattacheril J, Kleinstein SE, Shea PR, Wilson LA, Subramanian GM, Myers RP, Lefkowitch J, Behling C, Xanthakos SA, Goldstein DB. Investigating the Relationship Between Rare Genetic Variants and Fibrosis in Pediatric Nonalcoholic Fatty Liver Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.02.24303632. [PMID: 38496563 PMCID: PMC10942529 DOI: 10.1101/2024.03.02.24303632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background and Aims Nonalcoholic Fatty Liver Disease (NAFLD) is a complex human disease. Common genetic variation in the patatin-like phospholipase domain containing 3 (PNPLA3) and transmembrane 6 superfamily member 2 (TM6SF2) genes have been associated with an increased risk of developing NAFLD, nonalcoholic steatohepatitis (NASH), and fibrosis in adults. The role of rare genetic variants in the development and progression of NAFLD in children is not well known. We aimed to explore the role of rare genetic variants in pediatric patients with advanced fibrosis. Methods Whole exome sequencing data was generated for 229 pediatric patients diagnosed with NAFLD recruited from the NASH Clinical Research Network (NASH CRN). Case-control single variant and gene-based collapsing analyses were used to test for rare variants that were enriched or depleted within the pediatric NAFLD cohort specifically for advanced fibrosis (cases) versus those without fibrosis (controls) or six other histologic characteristics. Exome data from non-NAFLD population controls were also used for additional analyses. All results were adjusted for multiple testing using a Bonferroni correction. Results No genome-wide significant associations were found between rare variation and presence of advanced fibrosis or NASH, nor the severity of steatosis, inflammation, or hepatocellular ballooning. Significantly, no enrichment of rare variants in PNPLA3 or TM6SF2 was observed across phenotypes. Conclusion In a cohort of children with histologically proven NAFLD, no genome-wide significant associations were found between rare genetic variation and advanced fibrosis or six other histologic features. Of particular interest was the lack of association with genes of interest in adults: PNPLA3 and TM6SF2, though limitations in sample size may reduce the ability to detect associations, particularly with rare variation.
Collapse
Affiliation(s)
- Julia Wattacheril
- Columbia University Vagelos College of Physicians and Surgeons, Department of Medicine, Center for Liver Disease and Transplantation, New York Presbyterian Hospital
| | - Sarah E. Kleinstein
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine
| | - Patrick R. Shea
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine
| | | | | | | | - Jay Lefkowitch
- Columbia University Vagelos College of Physicians and Surgeons, Department of Pathology
| | | | - Stavra A. Xanthakos
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center
| | - David B. Goldstein
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine
| | | |
Collapse
|
5
|
Smagris E, Shihanian LM, Mintah IJ, Bigdelou P, Livson Y, Brown H, Verweij N, Hunt C, Johnson RO, Greer TJ, Hartford SA, Hindy G, Sun L, Nielsen JB, Halasz G, Lotta LA, Murphy AJ, Sleeman MW, Gusarova V. Divergent role of Mitochondrial Amidoxime Reducing Component 1 (MARC1) in human and mouse. PLoS Genet 2024; 20:e1011179. [PMID: 38437227 PMCID: PMC10939284 DOI: 10.1371/journal.pgen.1011179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/14/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Recent human genome-wide association studies have identified common missense variants in MARC1, p.Ala165Thr and p.Met187Lys, associated with lower hepatic fat, reduction in liver enzymes and protection from most causes of cirrhosis. Using an exome-wide association study we recapitulated earlier MARC1 p.Ala165Thr and p.Met187Lys findings in 540,000 individuals from five ancestry groups. We also discovered novel rare putative loss of function variants in MARC1 with a phenotype similar to MARC1 p.Ala165Thr/p.Met187Lys variants. In vitro studies of recombinant human MARC1 protein revealed Ala165Thr substitution causes protein instability and aberrant localization in hepatic cells, suggesting MARC1 inhibition or deletion may lead to hepatoprotection. Following this hypothesis, we generated Marc1 knockout mice and evaluated the effect of Marc1 deletion on liver phenotype. Unexpectedly, our study found that whole-body Marc1 deficiency in mouse is not protective against hepatic triglyceride accumulation, liver inflammation or fibrosis. In attempts to explain the lack of the observed phenotype, we discovered that Marc1 plays only a minor role in mouse liver while its paralogue Marc2 is the main Marc family enzyme in mice. Our findings highlight the major difference in MARC1 physiological function between human and mouse.
Collapse
Affiliation(s)
- Eriks Smagris
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Lisa M. Shihanian
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Ivory J. Mintah
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Parnian Bigdelou
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Yuliya Livson
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Heather Brown
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Niek Verweij
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Charleen Hunt
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | | | - Tyler J. Greer
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | | | - George Hindy
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Luanluan Sun
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Jonas B. Nielsen
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Gabor Halasz
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Luca A. Lotta
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Andrew J. Murphy
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Mark W. Sleeman
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Viktoria Gusarova
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| |
Collapse
|
6
|
Ma Y, Cai H, Smith J, Chu CH, Mercer SE, Boehm S, Mcdonald I, Zinker B, Cheng D. Evaluation of antisense oligonucleotide therapy targeting Hsd17b13 in a fibrosis mice model. J Lipid Res 2024; 65:100514. [PMID: 38309418 PMCID: PMC10911849 DOI: 10.1016/j.jlr.2024.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Human genetic evidence suggests a protective role of loss-of-function variants in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) for liver fibrotic diseases. Although there is limited preclinical experimental data on Hsd17b13 antisense oligonucleotide (ASO) or siRNA in a fibrosis model, several ASO and siRNA approaches are being tested clinically as potential therapies for nonalcoholic steatohepatitis (NASH). The aim of this study was to assess the therapeutic potential of Hsd17b13 ASO in a preclinical advanced NASH-like hepatic fibrosis in vivo model. In vitro testing on primary hepatocytes demonstrated that Hsd17b13 ASO exhibited strong efficacy and specificity for knockdown of the Hsd17b13 gene. In choline-deficient, L-amino acid-defined, HFD (CDAHFD)-induced steatotic and fibrotic mice, therapeutic administration of Hsd17b13 ASO resulted in a significant and dose-dependent reduction of hepatic Hsd17b13 gene expression. The CDAHFD group exhibited considerably elevated liver enzyme levels, hepatic steatosis score, hepatic fibrosis, and increased fibrotic and inflammatory gene expression, indicating an advanced NASH-like hepatic fibrosis phenotype. Although Hsd17b13 ASO therapy significantly affected hepatic steatosis, it had no effect on hepatic fibrosis. Our findings demonstrate, for the first time, that Hsd17b13 ASO effectively suppressed Hsd17b13 gene expression both in vitro and in vivo, and had a modulatory effect on hepatic steatosis in mice, but did not affect fibrosis in the CDAHFD mouse model of NASH.
Collapse
Affiliation(s)
- Yanling Ma
- Bristol-Myers Squibb Company, Lawrence Township, NJ, USA.
| | - Hong Cai
- Bristol-Myers Squibb Company, Lawrence Township, NJ, USA
| | - Julia Smith
- Bristol-Myers Squibb Company, Lawrence Township, NJ, USA
| | | | | | | | - Ivar Mcdonald
- Bristol-Myers Squibb Company, Lawrence Township, NJ, USA
| | - Bradley Zinker
- Bristol-Myers Squibb Company, Lawrence Township, NJ, USA
| | - Dong Cheng
- Bristol-Myers Squibb Company, Lawrence Township, NJ, USA.
| |
Collapse
|
7
|
Kozlitina J, Cohen NM, Sturtevant D, Cohen JC, Murphey-Half C, Saltarrelli JG, Jindra P, Askar M, Hwang CS, Vagefi PA, Lacelle C, Hobbs HH, MacConmara MP. Effect of donor HSD17B13 genotype on patient survival after liver transplant: a retrospective cohort study. EClinicalMedicine 2024; 67:102350. [PMID: 38169797 PMCID: PMC10758751 DOI: 10.1016/j.eclinm.2023.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Background Several genetic variants are associated with chronic liver disease. The role of these variants in outcomes after liver transplantation (LT) is uncertain. The aim of this study was to determine if donor genotype at risk-associated variants in PNPLA3 (rs738409 C>G, p.I148M) and HSD17B13 (rs72613567 T>TA; rs80182459, p.A192Lfs∗8) influences post-LT survival. Methods In this retrospective cohort study, data on 2346 adults who underwent first-time LT between January 1, 1999 and June 30, 2020 and who had donor DNA samples available at five large Transplant Immunology Laboratories in Texas, USA, were obtained from the United Network for Organ Sharing (UNOS). Duplicates, patients with insufficient donor DNA for genotyping, those who were <18 years of age at the time of transplant, had had a previous transplant or had missing genotype data were excluded. The primary outcomes were patient and graft survival after LT. The association between donor genotype and post-LT survival was examined using Kaplan-Meier method and multivariable-adjusted Cox proportional hazards models. Findings Median age of LT recipients was 57 [interquartile range (IQR), 50-62] years; 837 (35.7%) were women; 1362 (58.1%) White, 713 (30.4%) Hispanic, 182 (7.8%) Black/African-American. Median follow-up time was 3.95 years. Post-LT survival was not affected by donor PNPLA3 genotype but was significantly reduced among recipients of livers with two HSD17B13 loss-of-function (LoF) variants compared to those receiving livers with no HSD17B13 LoF alleles (unadjusted one-year survival: 82.6% vs 93.9%, P < 0.0001; five-year survival: 73.1% vs 82.9%, P = 0.0017; adjusted hazard ratio [HR], 2.25; 95% CI, 1.61-3.15 after adjustment for recipient age, sex, and self-reported ethnicity). Excess mortality was restricted to those receiving steroid induction immunosuppression (crude 90-day post-LT mortality, 9.3% [95% CI, 1.9%-16.1%] vs 1.9% [95% CI, 0.9%-2.9%] in recipients of livers with two vs no HSD17B13 LoF alleles, P = 0.0012; age, sex, and ethnicity-adjusted HR, 2.85; 95% CI, 1.72-4.71, P < 0.0001). No reduction was seen among patients who did not receive steroid induction (90-day mortality 3.1% [95% CI, 0%-7.3%] vs 2% [95% CI, 0.9%-3.1%], P = 0.65; adjusted HR, 1.17; 95% CI, 0.66-2.08, P = 0.60). Interpretation Donor HSD17B13 genotype adversely affects post-LT survival in patients receiving steroid induction. Additional studies are required to confirm this association. Funding The National Institutes of Health and American Society of Transplant Surgeons Collaborative Scientist Grant.
Collapse
Affiliation(s)
- Julia Kozlitina
- The Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Naomi M. Cohen
- The Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Drew Sturtevant
- The Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan C. Cohen
- The Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- The Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Cathi Murphey-Half
- Histocompatibility and Immunogenetics Laboratory, Southwest Immunodiagnostics, Inc, San Antonio, TX, USA
| | - Jerome G. Saltarrelli
- Histocompatibility and Immune Evaluation Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Peter Jindra
- Immune Evaluation Laboratory, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Medhat Askar
- Transplant Immunology, Baylor University Medical Center, Dallas, TX, USA
| | - Christine S. Hwang
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Parsia A. Vagefi
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chantale Lacelle
- Transplant Immunology and Histocompatibility, Department of Pathology, University of Texas Southwestern Medical Center Dallas, TX, 75390, USA
| | - Helen H. Hobbs
- The Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Malcolm P. MacConmara
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
8
|
Lindén D, Romeo S. Therapeutic opportunities for the treatment of NASH with genetically validated targets. J Hepatol 2023; 79:1056-1064. [PMID: 37207913 DOI: 10.1016/j.jhep.2023.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
The identification of genetic variants associated with fatty liver disease (FLD) from genome-wide association studies started in 2008 when single nucleotide polymorphisms in PNPLA3, the gene encoding patatin-like phospholipase domain-containing 3, were found to be associated with altered hepatic fat content. Since then, several genetic variants associated with protection from, or an increased risk of, FLD have been identified. The identification of these variants has provided insight into the metabolic pathways that cause FLD and enabled the identification of potential therapeutic targets. In this mini-review, we will examine the therapeutic opportunities derived from genetically validated targets in FLD, including oligonucleotide-based therapies targeting PNPLA3 and HSD17B13 that are currently being evaluated in clinical trials for the treatment of NASH (non-alcoholic steatohepatitis).
Collapse
Affiliation(s)
- Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
9
|
Rutledge SM, Soper ER, Ma N, Pejaver V, Friedman SL, Branch AD, Kenny EE, Belbin GM, Abul-Husn NS. Association of HSD17B13 and PNPLA3 With Liver Enzymes and Fibrosis in Hispanic/Latino Individuals of Diverse Genetic Ancestries. Clin Gastroenterol Hepatol 2023; 21:2578-2587.e11. [PMID: 36610497 DOI: 10.1016/j.cgh.2022.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Genetic variants affecting liver disease risk vary among racial and ethnic groups. Hispanics/Latinos in the United States have a high prevalence of PNPLA3 I148M, which increases liver disease risk, and a low prevalence of HSD17B13 predicted loss-of-function (pLoF) variants, which reduce risk. Less is known about the prevalence of liver disease-associated variants among Hispanic/Latino subpopulations defined by country of origin and genetic ancestry. We evaluated the prevalence of HSD17B13 pLoF variants and PNPLA3 I148M, and their associations with quantitative liver phenotypes in Hispanic/Latino participants from an electronic health record-linked biobank in New York City. METHODS This study included 8739 adult Hispanic/Latino participants of the BioMe biobank with genotyping and exome sequencing data. We estimated the prevalence of Hispanic/Latino individuals harboring HSD17B13 and PNPLA3 variants, stratified by genetic ancestry, and performed association analyses between variants and liver enzymes and Fibrosis-4 (FIB-4) scores. RESULTS Individuals with ancestry from Ecuador and Mexico had the lowest frequency of HSD17B13 pLoF variants (10%/7%) and the highest frequency of PNPLA3 I148M (54%/65%). These ancestry groups had the highest outpatient alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and the largest proportion of individuals with a FIB-4 score greater than 2.67. HSD17B13 pLoF variants were associated with reduced ALT level (P = .002), AST level (P < .001), and FIB-4 score (P = .045). PNPLA3 I148M was associated with increased ALT level, AST level, and FIB-4 score (P < .001 for all). HSD17B13 pLoF variants mitigated the increase in ALT conferred by PNPLA3 I148M (P = .006). CONCLUSIONS Variation in HSD17B13 and PNPLA3 variants across genetic ancestry groups may contribute to differential risk for liver fibrosis among Hispanic/Latino individuals.
Collapse
Affiliation(s)
- Stephanie M Rutledge
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily R Soper
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ning Ma
- Division of Liver Medicine, Icahn School of Medicine Mount Sinai, New York, New York
| | - Vikas Pejaver
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott L Friedman
- Division of Liver Medicine, Icahn School of Medicine Mount Sinai, New York, New York
| | - Andrea D Branch
- Division of Liver Medicine, Icahn School of Medicine Mount Sinai, New York, New York
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gillian M Belbin
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York; Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Noura S Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
10
|
Liu S, Sommese RF, Nedoma NL, Stevens LM, Dutra JK, Zhang L, Edmonds DJ, Wang Y, Garnsey M, Clasquin MF. Structural basis of lipid-droplet localization of 17-beta-hydroxysteroid dehydrogenase 13. Nat Commun 2023; 14:5158. [PMID: 37620305 PMCID: PMC10449848 DOI: 10.1038/s41467-023-40766-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Hydroxysteroid 17-beta-dehydrogenase 13 (HSD17B13) is a hepatic lipid droplet-associated enzyme that is upregulated in patients with non-alcoholic fatty liver disease. Recently, there have been several reports that predicted loss of function variants in HSD17B13 protect against the progression of steatosis to non-alcoholic steatohepatitis with fibrosis and hepatocellular carcinoma. Here we report crystal structures of full length HSD17B13 in complex with its NAD+ cofactor, and with lipid/detergent molecules and small molecule inhibitors from two distinct series in the ligand binding pocket. These structures provide insights into a mechanism for lipid droplet-associated proteins anchoring to membranes as well as a basis for HSD17B13 variants disrupting function. Two series of inhibitors interact with the active site residues and the bound cofactor similarly, yet they occupy different paths leading to the active site. These structures provide ideas for structure-based design of inhibitors that may be used in the treatment of liver disease.
Collapse
Affiliation(s)
- Shenping Liu
- Medicine Design, Pfizer Inc, Groton, CT, 06340, USA.
| | | | | | | | - Jason K Dutra
- Medicine Design, Pfizer Inc, Cambridge, MA, 02139, USA
| | - Liying Zhang
- Medicine Design, Pfizer Inc, Cambridge, MA, 02139, USA
- Discovery Chemistry, Merck Research Laboratories, Cambridge, MA, USA
| | - David J Edmonds
- Medicine Design, Pfizer Inc, Cambridge, MA, 02139, USA
- Medicinal Chemistry, Roche, Basel, Switzerland
| | - Yang Wang
- Medicine Design, Pfizer Inc, Cambridge, MA, 02139, USA
| | | | | |
Collapse
|
11
|
Yenilmez B, Harney S, DiMarzio C, Kelly M, Min K, Echeverria D, Bramato BM, Jackson SO, Reddig K, Kim JK, Khvorova A, Czech MP. Dual targeting of hepatocyte DGAT2 and stellate cell FASN alleviates nonalcoholic steatohepatitis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547848. [PMID: 37461560 PMCID: PMC10350091 DOI: 10.1101/2023.07.05.547848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a malady of multiple cell types associated with hepatocyte triglyceride (TG) accumulation, macrophage inflammation, and stellate cell-induced fibrosis, with no approved therapeutics yet available. Here, we report that stellate cell fatty acid synthase (FASN) in de novo lipogenesis drives the autophagic flux that is required for stellate cell activation and fibrotic collagen production. Further, we employ a dual targeting approach to NASH that selectively depletes collagen through selective stellate cell knockout of FASN (using AAV9-LRAT Cre in FASNfl/fl mice), while lowering hepatocyte triglyceride by depleting DGAT2 with a GalNac-conjugated, fully chemically modified siRNA. DGAT2 silencing in hepatocytes alone or in combination with stellate cell FASNKO reduced liver TG accumulation in a choline-deficient NASH mouse model, while FASNKO in hepatocytes alone (using AAV8-TBG Cre in FASNfl/fl mice) did not. Neither hepatocyte DGAT2 silencing alone nor FASNKO in stellate cells alone decreased fibrosis (total collagen), while loss of both DGAT2 plus FASN caused a highly significant attenuation of NASH. These data establish proof of concept that dual targeting of DGAT2 plus FASN alleviates NASH progression in mice far greater than targeting either gene product alone.
Collapse
Affiliation(s)
- Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shauna Harney
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chloe DiMarzio
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kyounghee Min
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dimas Echeverria
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Brianna M. Bramato
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samuel O. Jackson
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Keith Reddig
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael P. Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
12
|
Wang MX, Peng ZG. 17β-hydroxysteroid dehydrogenases in the progression of nonalcoholic fatty liver disease. Pharmacol Ther 2023; 246:108428. [PMID: 37116587 DOI: 10.1016/j.pharmthera.2023.108428] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a worldwide epidemic and a major public health problem, with a prevalence of approximately 25%. The pathogenesis of NAFLD is complex and may be affected by the environment and susceptible genetic factors, resulting in a highly variable disease course and no approved drugs in the clinic. Notably, 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13), which belongs to the 17β-hydroxysteroid dehydrogenase superfamily (HSD17Bs), is closely related to the clinical outcome of liver disease. HSD17Bs consists of fifteen members, most related to steroid and lipid metabolism, and may have the same biological function as HSD17B13. In this review, we highlight recent advances in basic research on the functional activities, major substrates, and key roles of HSD17Bs in the progression of NAFLD to develop innovative anti-NAFLD drugs targeting HSD17Bs.
Collapse
Affiliation(s)
- Mei-Xi Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
13
|
Amangurbanova M, Huang DQ, Loomba R. Review article: the role of HSD17B13 on global epidemiology, natural history, pathogenesis and treatment of NAFLD. Aliment Pharmacol Ther 2023; 57:37-51. [PMID: 36349732 PMCID: PMC10047549 DOI: 10.1111/apt.17292] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) occurs in around a quarter of the global population and is one of the leading causes of chronic liver disease. The phenotypic manifestation and the severity of NAFLD are influenced by an interplay of environmental and genetic factors. Recently, several inactivating variants in the novel 17-Beta hydroxysteroid dehydrogenase 13 (HSD17B13) gene have been found to be associated with a reduced risk of chronic liver diseases, including NAFLD. AIMS To review the existing literature on the epidemiology of HSD17B13 and discuss its role in the natural history, disease pathogenesis and treatment of NAFLD. METHODS We extensively searched relevant literature in PubMed, Google Scholar, clinicaltrials.gov and the reference list of articles included in the review. RESULTS HSD17B13 is a liver-specific, lipid droplet (LD)-associated protein that has enzymatic pathways involving steroids, pro-inflammatory lipid mediators and retinol. The estimated prevalence of the best characterised HSD17B13 variant (rs72613567) ranges from 5% in Africa to 34% in East Asia. Loss-of-function variants in HSD17B13 are protective against the progression of NAFLD from simple steatosis to non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis and hepatocellular carcinoma. Emerging data from mechanistic and preclinical studies with RNA interference (RNAi) and small molecule agents indicate that inhibiting HSD17B13 activity may prevent NAFLD progression. CONCLUSIONS The loss-of-function polymorphisms of the newly identified HSD17B13 gene mitigate the progression of NAFLD. It is important to understand the exact mechanism by which these variants exert a protective effect and implement the gathered knowledge in the treatment of NAFLD.
Collapse
Affiliation(s)
- Maral Amangurbanova
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, United States
| | - Daniel Q. Huang
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, United States
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, United States
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, United States
| |
Collapse
|
14
|
Sharma D, Mandal P. NAFLD: genetics and its clinical implications. Clin Res Hepatol Gastroenterol 2022; 46:102003. [PMID: 35963605 DOI: 10.1016/j.clinre.2022.102003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Worldwide non-alcoholic fatty liver disease (NAFLD) is recognized as the most common type of liver disease and its burden increasing at an alarming rate. NAFLD entails steatosis, fibrosis, cirrhosis, and, finally, hepatocellular carcinoma (HCC). The substantial inter-patient variation during disease progression is the hallmark of individuals with NAFLD. The variability of NAFLD development and related complications among individuals is determined by genetic and environmental factors. Genome-wide association studies (GWAS) have discovered reproducible and robust associations between gene variants such as PNPLA3, TM6SF2, HSD17B13, MBOAT7, GCKR and NAFLD. Evidences have provided the new insights into the NAFLD biology and underlined potential pharmaceutical targets. Ideally, the candidate genes associated with the hereditability of NAFLD are mainly involved in assembly of lipid droplets, lipid remodeling, lipoprotein packing and secretion, redox status mitochondria, and de novo lipogenesis. In recent years, the ability to translate genetics into a clinical context has emerged substantially by combining genetic variants primarily associated with NAFLD into polygenic risk scores (PRS). These score in combination with metabolic factors could be utilized to identify the severe liver diseases in patients with the gene regulatory networks (GRNs). Hereby, we even have highlighted the current understanding related to the schedule therapeutic approach of an individual based on microbial colonization and dysbiosis reversal as a therapy for NAFLD. The premise of this review is to concentrate on the potential of genetic factors and their translation into the design of novel therapeutics, as well as their implications for future research into personalized medications using microbiota.
Collapse
Affiliation(s)
- Dixa Sharma
- P.D. Patel Institute of Applied Science, Charusat University of Science and Technology, Changa Dist, Anand, Gujarat, 388421, India
| | - Palash Mandal
- P.D. Patel Institute of Applied Science, Charusat University of Science and Technology, Changa Dist, Anand, Gujarat, 388421, India.
| |
Collapse
|
15
|
Riazi K, Swain MG, Congly SE, Kaplan GG, Shaheen AA. Race and Ethnicity in Non-Alcoholic Fatty Liver Disease (NAFLD): A Narrative Review. Nutrients 2022; 14:4556. [PMID: 36364818 PMCID: PMC9658200 DOI: 10.3390/nu14214556] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant public health concern worldwide with a complex etiology attributed to behavioural, environmental, and genetic causes. The worldwide prevalence of NAFLD is estimated to be 32.4% and constantly rising. Global data, however, indicate considerable heterogeneity among studies for both NAFLD prevalence and incidence. Identifying variables that affect the estimated epidemiological measures is essential to all stakeholders, including patients, researchers, healthcare providers, and policymakers. Besides helping with the research on disease etiology, it helps to identify individuals at risk of the disease, which in turn will outline the focus of the preventive measures and help to fittingly tailor individualized treatments, targeted prevention, screening, or treatment programs. Several studies suggest differences in the prevalence and severity of NAFLD by race or ethnicity, which may be linked to differences in lifestyle, diet, metabolic comorbidity profile, and genetic background, among others. Race/ethnicity research is essential as it can provide valuable information regarding biological and genetic differences among people with similar cultural, dietary, and geographical backgrounds. In this review, we examined the existing literature on race/ethnicity differences in susceptibility to NAFLD and discussed the contributing variables to such differences, including diet and physical activity, the comorbidity profile, and genetic susceptibility. We also reviewed the limitations of race/ethnicity studies in NAFLD.
Collapse
Affiliation(s)
- Kiarash Riazi
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Mark G. Swain
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Stephen E. Congly
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Gilaad G. Kaplan
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Abdel-Aziz Shaheen
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
16
|
Kubiliun MJ, Cohen JC, Hobbs HH, Kozlitina J. Contribution of a genetic risk score to ethnic differences in fatty liver disease. Liver Int 2022; 42:2227-2236. [PMID: 35620859 PMCID: PMC9427702 DOI: 10.1111/liv.15322] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Susceptibility to fatty liver disease (FLD) varies among individuals and between racial/ethnic groups. Several genetic variants influence FLD risk, but whether these variants explain racial/ethnic differences in FLD prevalence is unclear. We examined the contribution of genetic risk factors to racial/ethnic-specific differences in FLD. METHODS A case-control study comparing FLD patients (n = 1194) and population-based controls (n = 3120) was performed. Patient characteristics, FLD risk variants (PNPLA3-rs738409 + rs6006460, TM6SF2-rs58542926, HSD17B13-rs80182459 + rs72613567, MBOAT7/TMC4-rs641738, and GCKR-rs1260326) and a multi-locus genetic risk score (GRS) were examined. The odds of FLD for individuals with different risk factor burdens were determined. RESULTS Hispanics and Whites were over-represented (56% vs. 38% and 36% vs. 29% respectively) and Blacks under-represented (5% vs. 23%) among FLD patients, compared to the population from which controls were selected (p < .001). Among cases and controls, Blacks had a lower and Hispanics a greater, net number of risk alleles than Whites (p < .001). GRS was associated with increased odds of FLD (ORQ5vsQ1 = 8.72 [95% CI = 5.97-13.0], p = 9.8 × 10-28 ), with the association being stronger in Hispanics (ORQ5vsQ1 = 14.8 [8.3-27.1]) than Blacks (ORQ5vsQ1 = 3.7 [1.5-11.5], P-interaction = 0.002). After accounting for GRS, the odds of FLD between Hispanics and Whites did not differ significantly (OR = 1.06 [0.87-1.28], p = .58), whereas Blacks retained much lower odds of FLD (OR = 0.21, [0.15-0.30], p < .001). CONCLUSIONS Blacks had a lower and Hispanics a greater FLD risk allele burden than Whites. These differences contributed to, but did not fully explain, racial/ethnic differences in FLD prevalence. Identification of additional factors protecting Blacks from FLD may provide new targets for prevention and treatment of FLD.
Collapse
Affiliation(s)
- Maddie J. Kubiliun
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jonathan C. Cohen
- The Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas, USA,The Eugene McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Helen H. Hobbs
- The Eugene McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julia Kozlitina
- The Eugene McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
17
|
Zhang Z, Xun Y, Rong S, Yan L, SoRelle JA, Li X, Tang M, Keller K, Ludwig S, Moresco EMY, Beutler B. Loss of immunity-related GTPase GM4951 leads to nonalcoholic fatty liver disease without obesity. Nat Commun 2022; 13:4136. [PMID: 35842425 PMCID: PMC9288484 DOI: 10.1038/s41467-022-31812-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity and diabetes are well known risk factors for nonalcoholic fatty liver disease (NAFLD), but the genetic factors contributing to the development of NAFLD remain poorly understood. Here we describe two semi-dominant allelic missense mutations (Oily and Carboniferous) of Predicted gene 4951 (Gm4951) identified from a forward genetic screen in mice. GM4951 deficient mice developed NAFLD on high fat diet (HFD) with no changes in body weight or glucose metabolism. Moreover, HFD caused a reduction in the level of Gm4951, which in turn promoted the development of NAFLD. Predominantly expressed in hepatocytes, GM4951 was verified as an interferon inducible GTPase. The NAFLD in Gm4951 knockout mice was associated with decreased lipid oxidation in the liver and no defect in hepatic lipid secretion. After lipid loading, hepatocyte GM4951 translocated to lipid droplets (LDs), bringing with it hydroxysteroid 17β-dehydrogenase 13 (HSD17B13), which in the absence of GM4951 did not undergo this translocation. We identified a rare non-obese mouse model of NAFLD caused by GM4951 deficiency and define a critical role for GTPase-mediated translocation in hepatic lipid metabolism.
Collapse
Affiliation(s)
- Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Yu Xun
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA ,grid.267313.20000 0000 9482 7121Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Shunxing Rong
- grid.267313.20000 0000 9482 7121Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA ,grid.267313.20000 0000 9482 7121Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Lijuan Yan
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jeffrey A. SoRelle
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Xiaohong Li
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Miao Tang
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Katie Keller
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Sara Ludwig
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Eva Marie Y. Moresco
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
18
|
Down-Regulating the High Level of 17-Beta-Hydroxysteroid Dehydrogenase 13 Plays a Therapeutic Role for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23105544. [PMID: 35628360 PMCID: PMC9146021 DOI: 10.3390/ijms23105544] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and there is no specific drug to treat it. Recent results showed that 17-beta-hydroxysteroid dehydrogenase type 13 (HSD17B13) is associated with liver diseases, but these conclusions are controversial. Here, we showed that HSD17B13 was more highly expressed in the livers of NAFLD patients, and high expression was induced in the livers of murine NAFLD models and cultural hepatocytes treated using various etiologies. The high HSD17B13 expression in the hepatocytes facilitated the progression of NAFLD by directly stabilizing the intracellular lipid drops and by indirectly activating hepatic stellate cells. When HSD17B13 was overexpressed in the liver, it aggravated liver steatosis and fibrosis in mice fed with a high-fat diet, while down-regulated the high expression of HSD17B13 by short hairpin RNAs produced a therapeutic effect in the NAFLD mice. We concluded that high HSD17B13 expression is a good target for the development of drugs to treat NAFLD.
Collapse
|
19
|
Riccio S, Melone R, Vitulano C, Guida P, Maddaluno I, Guarino S, Marzuillo P, Miraglia del Giudice E, Di Sessa A. Advances in pediatric non-alcoholic fatty liver disease: From genetics to lipidomics. World J Clin Pediatr 2022; 11:221-238. [PMID: 35663007 PMCID: PMC9134151 DOI: 10.5409/wjcp.v11.i3.221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 04/02/2022] [Indexed: 02/06/2023] Open
Abstract
As a result of the obesity epidemic, non-alcoholic fatty liver disease (NAFLD) represents a global medical concern in childhood with a closely related increased cardiometabolic risk. Knowledge on NAFLD pathophysiology has been largely expanded over the last decades. Besides the well-known key NAFLD genes (including the I148M variant of the PNPLA3 gene, the E167K allele of the TM6SF2, the GCKR gene, the MBOAT7-TMC4 rs641738 variant, and the rs72613567:TA variant in the HSD17B13 gene), an intriguing pathogenic role has also been demonstrated for the gut microbiota. More interestingly, evidence has added new factors involved in the "multiple hits" theory. In particular, omics determinants have been highlighted as potential innovative markers for NAFLD diagnosis and treatment. In fact, different branches of omics including metabolomics, lipidomics (in particular sphingolipids and ceramides), transcriptomics (including micro RNAs), epigenomics (such as DNA methylation), proteomics, and glycomics represent the most attractive pathogenic elements in NAFLD development, by providing insightful perspectives in this field. In this perspective, we aimed to provide a comprehensive overview of NAFLD pathophysiology in children, from the oldest pathogenic elements (including genetics) to the newest intriguing perspectives (such as omics branches).
Collapse
Affiliation(s)
- Simona Riccio
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Rosa Melone
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Caterina Vitulano
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Pierfrancesco Guida
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Ivan Maddaluno
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Stefano Guarino
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Emanuele Miraglia del Giudice
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Anna Di Sessa
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| |
Collapse
|
20
|
Zhang HB, Su W, Xu H, Zhang XY, Guan YF. HSD17B13: A Potential Therapeutic Target for NAFLD. Front Mol Biosci 2022; 8:824776. [PMID: 35071330 PMCID: PMC8776652 DOI: 10.3389/fmolb.2021.824776] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), especially in its inflammatory form (steatohepatitis, NASH), is closely related to the pathogenesis of chronic liver disease. Despite substantial advances in the management of NAFLD/NASH in recent years, there are currently no efficacious therapies for its treatment. The biogenesis and expansion of lipid droplets (LDs) are critical pathophysiological processes in the development of NAFLD/NASH. In the past decade, increasing evidence has demonstrated that lipid droplet-associated proteins may represent potential therapeutic targets for the treatment of NAFLD/NASH given the critical role they play in regulating the biogenesis and metabolism of lipid droplets. Recently, HSD17B13, a newly identified liver-enriched, hepatocyte-specific, lipid droplet-associated protein, has been reported to be strongly associated with the development and progression of NAFLD/NASH in both mice and humans. Notably, human genetic studies have repeatedly reported a robust association of HSD17B13 single nucleotide polymorphisms (SNPs) with the occurrence and severity of NAFLD/NASH and other chronic liver diseases (CLDs). Here we briefly overview the discovery, tissue distribution, and subcellular localization of HSD17B13 and highlight its important role in promoting the pathogenesis of NAFLD/NASH in both experimental animal models and patients. We also discuss the potential of HSD17B13 as a promising target for the development of novel therapeutic agents for NAFLD/NASH.
Collapse
Affiliation(s)
- Hai-Bo Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Wen Su
- Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiao-Yan Zhang
- Health Science Center, East China Normal University, Shanghai, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
21
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
22
|
Di Sessa A, Guarino S, Passaro AP, Liguori L, Umano GR, Cirillo G, Miraglia Del Giudice E, Marzuillo P. NAFLD and renal function in children: is there a genetic link? Expert Rev Gastroenterol Hepatol 2021; 15:975-984. [PMID: 33851883 DOI: 10.1080/17474124.2021.1906649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Introduction: Over the past decades, a large amount of both adult and pediatric data has shown relationship between Nonalcoholic Fatty Liver Disease (NAFLD) and chronic kidney disease (CKD), resulting in an overall increased cardiometabolic burden. In view of the remarkable role of the genetic background in the NAFLD pathophysiology, a potential influence of the major NAFLD polymorphisms (e.g. the I148M variant of the Patatin-like phospholipase containing domain 3 (PNPLA3) gene, the E167K allele of the Transmembrane 6 superfamily member 2 (TM6SF2), the hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13), and the Membrane bound O-acyltransferase domain containing 7-transmembrane channel-like 4 (MBOAT7-TMC4) genes) on renal function has been supposed. A shared metabolic and proinflammatory pathogenesis has been hypothesized, but the exact mechanism is still unknown.Areas covered: We provide a comprehensive review of the potential genetic link between NAFLD and CKD in children. Convincing both adult and pediatric evidence supports this association, but there is some dispute especially in childhood.Expert opinion: Evidence supporting a potential genetic link between NAFLD and CKD represents an intriguing aspect with a major clinical implication because of its putative role in improving strategy programs to counteract the higher cardiometabolic risk of these patients.
Collapse
Affiliation(s)
- Anna Di Sessa
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Stefano Guarino
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonio Paride Passaro
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Laura Liguori
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Giuseppina Rosaria Umano
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Grazia Cirillo
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Pierluigi Marzuillo
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
23
|
Bence KK, Birnbaum MJ. Metabolic drivers of non-alcoholic fatty liver disease. Mol Metab 2021; 50:101143. [PMID: 33346069 PMCID: PMC8324696 DOI: 10.1016/j.molmet.2020.101143] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The incidence of non-alcoholic fatty liver disease (NAFLD) is rapidly increasing worldwide parallel to the global obesity epidemic. NAFLD encompasses a range of liver pathologies and most often originates from metabolically driven accumulation of fat in the liver, or non-alcoholic fatty liver (NAFL). In a subset of NAFL patients, the disease can progress to non-alcoholic steatohepatitis (NASH), which is a more severe form of liver disease characterized by hepatocyte injury, inflammation, and fibrosis. Significant progress has been made over the past decade in our understanding of NASH pathogenesis, but gaps remain in our mechanistic knowledge of the precise metabolic triggers for disease worsening. SCOPE OF REVIEW The transition from NAFL to NASH likely involves a complex constellation of multiple factors intrinsic and extrinsic to the liver. This review focuses on early metabolic events in the establishment of NAFL and initial stages of NASH. We discuss the association of NAFL with obesity as well as the role of adipose tissue in disease progression and highlight early metabolic drivers implicated in the pathological transition from hepatic fat accumulation to steatohepatitis. MAJOR CONCLUSIONS The close association of NAFL with features of metabolic syndrome highlight plausible mechanistic roles for adipose tissue health and the release of lipotoxic lipids, hepatic de novo lipogenesis (DNL), and disruption of the intestinal barrier in not only the initial establishment of hepatic steatosis, but also in mediating disease progression. Human genetic variants linked to NASH risk to date are heavily biased toward genes involved in the regulation of lipid metabolism, providing compelling support for the hypothesis that NASH is fundamentally a metabolic disease.
Collapse
Affiliation(s)
- Kendra K Bence
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA, USA.
| | - Morris J Birnbaum
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA, USA
| |
Collapse
|
24
|
The clinical and economic burden of non-alcoholic steatohepatitis in the Middle East: behind the scene. Hepatol Int 2021; 15:860-862. [PMID: 34143330 DOI: 10.1007/s12072-021-10215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
|
25
|
Ma Y, Brown PM, Lin DD, Ma J, Feng D, Belyaeva OV, Podszun MC, Roszik J, Allen J, Umarova R, Kleiner DE, Kedishvili NY, Gavrilova O, Gao B, Rotman Y. 17-Beta Hydroxysteroid Dehydrogenase 13 Deficiency Does Not Protect Mice From Obesogenic Diet Injury. Hepatology 2021; 73:1701-1716. [PMID: 32779242 PMCID: PMC8627256 DOI: 10.1002/hep.31517] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/07/2020] [Accepted: 07/19/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS 17-Beta hydroxysteroid dehydrogenase 13 (HSD17B13) is genetically associated with human nonalcoholic fatty liver disease (NAFLD). Inactivating mutations in HSD17B13 protect humans from NAFLD-associated and alcohol-associated liver injury, fibrosis, cirrhosis, and hepatocellular carcinoma, leading to clinical trials of anti-HSD17B13 therapeutic agents in humans. We aimed to study the in vivo function of HSD17B13 using a mouse model. APPROACH AND RESULTS Single-cell RNA-sequencing and quantitative RT-PCR data revealed that hepatocytes are the main HSD17B13-expressing cells in mice and humans. We compared Hsd17b13 whole-body knockout (KO) mice and wild-type (WT) littermate controls fed regular chow (RC), a high-fat diet (HFD), a Western diet (WD), or the National Institute on Alcohol Abuse and Alcoholism model of alcohol exposure. HFD and WD induced significant weight gain, hepatic steatosis, and inflammation. However, there was no difference between genotypes with regard to body weight, liver weight, hepatic triglycerides (TG), histological inflammatory scores, expression of inflammation-related and fibrosis-related genes, and hepatic retinoid levels. Compared to WT, KO mice on the HFD had hepatic enrichment of most cholesterol esters, monoglycerides, and certain sphingolipid species. Extended feeding with the WD for 10 months led to extensive liver injury, fibrosis, and hepatocellular carcinoma, with no difference between genotypes. Under alcohol exposure, KO and WT mice showed similar hepatic TG and liver enzyme levels. Interestingly, chow-fed KO mice showed significantly higher body and liver weights compared to WT mice, while KO mice on obesogenic diets had a shift toward larger lipid droplets. CONCLUSIONS Extensive evaluation of Hsd17b13 deficiency in mice under several fatty liver-inducing dietary conditions did not reproduce the protective role of HSD17B13 loss-of-function mutants in human NAFLD. Moreover, mouse Hsd17b13 deficiency induces weight gain under RC. It is crucial to understand interspecies differences prior to leveraging HSD17B13 therapies.
Collapse
Affiliation(s)
- Yanling Ma
- Liver & Energy Metabolism Section,,Liver Diseases Branch, NIDDK, NIH, Bethesda, MD
| | - Philip M. Brown
- Liver & Energy Metabolism Section,,Liver Diseases Branch, NIDDK, NIH, Bethesda, MD
| | - Dennis D. Lin
- Liver & Energy Metabolism Section,,Liver Diseases Branch, NIDDK, NIH, Bethesda, MD
| | - Jing Ma
- Laboratory of Liver Diseases, NIAAA, NIH, Bethesda, MD
| | - Dechun Feng
- Laboratory of Liver Diseases, NIAAA, NIH, Bethesda, MD
| | - Olga V. Belyaeva
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama – Birmingham, Birmingham, AL
| | - Maren C. Podszun
- Liver & Energy Metabolism Section,,Liver Diseases Branch, NIDDK, NIH, Bethesda, MD
| | - Jason Roszik
- Department of Melanoma Medical Oncology - Research, Division of Cancer Medicine,,Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - David E. Kleiner
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD
| | - Natalia Y. Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama – Birmingham, Birmingham, AL
| | | | - Bin Gao
- Laboratory of Liver Diseases, NIAAA, NIH, Bethesda, MD
| | - Yaron Rotman
- Liver & Energy Metabolism Section,,Liver Diseases Branch, NIDDK, NIH, Bethesda, MD
| |
Collapse
|
26
|
Affiliation(s)
- X Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
27
|
Ma Y, Karki S, Brown PM, Lin DD, Podszun MC, Zhou W, Belyaeva OV, Kedishvili NY, Rotman Y. Characterization of essential domains in HSD17B13 for cellular localization and enzymatic activity. J Lipid Res 2020; 61:1400-1409. [PMID: 32973038 DOI: 10.1194/jlr.ra120000907] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human genetic studies recently identified an association of SNPs in the 17-β hydroxysteroid dehydrogenase 13 (HSD17B13) gene with alcoholic and nonalcoholic fatty liver disease development. Mutant HSD17B13 variants devoid of enzymatic function have been demonstrated to be protective from cirrhosis and liver cancer, supporting the development of HSD17B13 as a promising therapeutic target. Previous studies have demonstrated that HSD17B13 is a lipid droplet (LD)-associated protein. However, the critical domains that drive LD targeting or determine the enzymatic activity have yet to be defined. Here we used mutagenesis to generate multiple truncated and point-mutated proteins and were able to demonstrate in vitro that the N-terminal hydrophobic domain, PAT-like domain, and a putative α-helix/β-sheet/α-helix domain in HSD17B13 are all critical for LD targeting. Similarly, we characterized the predicted catalytic, substrate-binding, and homodimer interaction sites and found them to be essential for the enzymatic activity of HSD17B13, in addition to our previous identification of amino acid P260 and cofactor binding site. In conclusion, we identified critical domains and amino acid sites that are essential for the LD localization and protein function of HSD17B13, which may facilitate understanding of its function and targeting of this protein to treat chronic liver diseases.
Collapse
Affiliation(s)
- Yanling Ma
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA.,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| | - Suman Karki
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Philip M Brown
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA.,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| | - Dennis D Lin
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA.,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| | - Maren C Podszun
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA.,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| | - Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, MD, USA
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Yaron Rotman
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA .,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Serper M, Vujkovic M, Kaplan DE, Carr RM, Lee KM, Shao Q, Miller DR, Reaven PD, Phillips LS, O’Donnell CJ, Meigs JB, Wilson PWF, Vickers-Smith R, Kranzler HR, Justice AC, Gaziano JM, Muralidhar S, Pyarajan S, DuVall SL, Assimes TL, Lee JS, Tsao PS, Rader DJ, Damrauer SM, Lynch JA, Saleheen D, Voight BF, Chang KM. Validating a non-invasive, ALT-based non-alcoholic fatty liver phenotype in the million veteran program. PLoS One 2020; 15:e0237430. [PMID: 32841307 PMCID: PMC7447043 DOI: 10.1371/journal.pone.0237430] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND & AIMS Given ongoing challenges in non-invasive non-alcoholic liver disease (NAFLD) diagnosis, we sought to validate an ALT-based NAFLD phenotype using measures readily available in electronic health records (EHRs) and population-based studies by leveraging the clinical and genetic data in the Million Veteran Program (MVP), a multi-ethnic mega-biobank of US Veterans. METHODS MVP participants with alanine aminotransferases (ALT) >40 units/L for men and >30 units/L for women without other causes of liver disease were compared to controls with normal ALT. Genetic variants spanning eight NAFLD risk or ALT-associated loci (LYPLAL1, GCKR, HSD17B13, TRIB1, PPP1R3B, ERLIN1, TM6SF2, PNPLA3) were tested for NAFLD associations with sensitivity analyses adjusting for metabolic risk factors and alcohol consumption. A manual EHR review assessed performance characteristics of the NAFLD phenotype with imaging and biopsy data as gold standards. Genetic associations with advanced fibrosis were explored using FIB4, NAFLD Fibrosis Score and platelet counts. RESULTS Among 322,259 MVP participants, 19% met non-invasive criteria for NAFLD. Trans-ethnic meta-analysis replicated associations with previously reported genetic variants in all but LYPLAL1 and GCKR loci (P<6x10-3), without attenuation when adjusted for metabolic risk factors and alcohol consumption. At the previously reported LYPLAL1 locus, the established genetic variant did not appear to be associated with NAFLD, however the regional association plot showed a significant association with NAFLD 279kb downstream. In the EHR validation, the ALT-based NAFLD phenotype yielded a positive predictive value 0.89 and 0.84 for liver biopsy and abdominal imaging, respectively (inter-rater reliability (Cohen's kappa = 0.98)). HSD17B13 and PNPLA3 loci were associated with advanced fibrosis. CONCLUSIONS We validate a simple, non-invasive ALT-based NAFLD phenotype using EHR data by leveraging previously established NAFLD risk-associated genetic polymorphisms.
Collapse
Affiliation(s)
- Marina Serper
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
| | - David E. Kaplan
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rotonya M. Carr
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kyung Min Lee
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, Massachusetts, United States of America
- Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, Massachusetts, United States of America
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, Utah, United States of America
| | - Qing Shao
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, Massachusetts, United States of America
| | - Donald R. Miller
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, Massachusetts, United States of America
| | - Peter D. Reaven
- Phoenix VA Health Care System, Phoenix, Arizona, United States of America
| | - Lawrence S. Phillips
- Department of Veterans Affairs, Atlanta Health Care System, Decatur, Georgia, United States of America
- Division of Endocrinology and Metabolism, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Christopher J. O’Donnell
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James B. Meigs
- Massachusetts General Hospital, Harvard Medical School and the Broad Institute, Boston, Massachusetts, United States of America
| | - Peter W. F. Wilson
- Department of Veterans Affairs, Atlanta Health Care System, Decatur, Georgia, United States of America
- Division of Endocrinology and Metabolism, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | | | - Henry R. Kranzler
- University of Louisville, Louisville, Kentucky, United States of America
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amy C. Justice
- Yale School of Medicine, New Haven, Connecticut, United States of America
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States of America
- Yale School of Public Health, New Haven, Connecticut, United States of America
| | - John M. Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts, United States of America
- Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Sumitra Muralidhar
- Office of Research and Development, Veterans Health Administration, Washington, DC, United States of America
| | - Saiju Pyarajan
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott L. DuVall
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, Utah, United States of America
- Department of Internal Medicine Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Themistocles L. Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Jennifer S. Lee
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Philip S. Tsao
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Daniel J. Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Scott M. Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julie A. Lynch
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, Utah, United States of America
- College of Nursing and Health Sciences, University of Massachusetts, Boston, Massachusetts, United States of America
| | - Danish Saleheen
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Benjamin F. Voight
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Systems Pharmacology and Translational Therapeutics and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | |
Collapse
|
29
|
Meroni M, Longo M, Dongiovanni P. Genetic and metabolic factors: the perfect combination to treat metabolic associated fatty liver disease. EXPLORATION OF MEDICINE 2020; 1:218-243. [DOI: 10.37349/emed.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 01/04/2025] Open
Abstract
The prevalence of nonalcoholic or more recently re-defined metabolic associated fatty liver disease (MAFLD) is rapidly growing worldwide. It is characterized by hepatic fat accumulation exceeding 5% of liver weight not attributable to alcohol consumption. MAFLD refers to an umbrella of conditions ranging from simple steatosis to nonalcoholic steatohepatitis which may finally progress to cirrhosis and hepatocellular carcinoma. MAFLD is closely related to components of the metabolic syndrome and to environmental factors. In addition to the latter, genetic predisposition plays a key role in MAFLD pathogenesis and strictly contributes to its progressive forms. The candidate genes which have been related to MAFLD hereditability are mainly involved in lipids remodeling, lipid droplets assembly, lipoprotein packaging and secretion, de novo lipogenesis, and mitochondrial redox status. In the recent years, it has emerged the opportunity to translate the genetics into clinics by aggregating the genetic variants mostly associated with MAFLD in polygenic risk scores. These scores might be used in combination with metabolic factors to identify those patients at higher risk to develop more severe liver disease and to schedule an individual therapeutic approach.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| |
Collapse
|
30
|
Trépo E, Valenti L. Update on NAFLD genetics: From new variants to the clinic. J Hepatol 2020; 72:1196-1209. [PMID: 32145256 DOI: 10.1016/j.jhep.2020.02.020] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver diseases in high-income countries and the burden of NAFLD is increasing at an alarming rate. The risk of developing NAFLD and related complications is highly variable among individuals and is determined by environmental and genetic factors. Genome-wide association studies have uncovered robust and reproducible associations between variations in genes such as PNPLA3, TM6SF2, MBOAT7, GCKR, HSD17B13 and the natural history of NAFLD. These findings have provided compelling new insights into the biology of NAFLD and highlighted potentially attractive pharmaceutical targets. More recently the development of polygenic risk scores, which have shown promising results for the clinical risk prediction of other complex traits (such as cardiovascular disease and breast cancer), have provided new impetus for the clinical validation of genetic variants in NAFLD risk stratification. Herein, we review current knowledge on the genetic architecture of NAFLD, including gene-environment interactions, and discuss the implications for disease pathobiology, drug discovery and risk prediction. We particularly focus on the potential clinical translation of recent genetic advances, discussing methodological hurdles that must be overcome before these discoveries can be implemented in everyday practice.
Collapse
Affiliation(s)
- Eric Trépo
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Translational Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
31
|
Carlsson B, Lindén D, Brolén G, Liljeblad M, Bjursell M, Romeo S, Loomba R. Review article: the emerging role of genetics in precision medicine for patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2020; 51:1305-1320. [PMID: 32383295 PMCID: PMC7318322 DOI: 10.1111/apt.15738] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) characterised by liver fat accumulation, inflammation and progressive fibrosis. Emerging data indicate that genetic susceptibility increases risks of NAFLD, NASH and NASH-related cirrhosis. AIMS To review NASH genetics and discuss the potential for precision medicine approaches to treatment. METHOD PubMed search and inclusion of relevant literature. RESULTS Single-nucleotide polymorphisms in PNPLA3, TM6SF2, GCKR, MBOAT7 and HSD17B13 are clearly associated with NASH development or progression. These genetic variants are common and have moderate-to-large effect sizes for development of NAFLD, NASH and hepatocellular carcinoma (HCC). The genes play roles in lipid remodelling in lipid droplets, hepatic very low-density lipoprotein (VLDL) secretion and de novo lipogenesis. The PNPLA3 I148M variant (rs738409) has large effects, with approximately twofold increased odds of NAFLD and threefold increased odds of NASH and HCC per allele. Obesity interacts with PNPLA3 I148M to elevate liver fat content and increase rates of NASH. Although the isoleucine-to-methionine substitution at amino acid position 148 of the PNPLA3 enzyme inactivates its lipid remodelling activity, the effect of PNPLA3 I148M results from trans-repression of another lipase (ATGL/PNPLA2) by sequestration of a shared cofactor (CGI-58/ABHD5), leading to decreased hepatic lipolysis and VLDL secretion. In homozygous Pnpla3 I148M knock-in rodent models of NAFLD, targeted PNPLA3 mRNA knockdown reduces hepatic steatosis, inflammation and fibrosis. CONCLUSION The emerging genetic and molecular understanding of NASH paves the way for novel interventions, including precision medicines that can modulate the activity of specific genes associated with NASH.
Collapse
Affiliation(s)
- Björn Carlsson
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Daniel Lindén
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden,Division of EndocrinologyDepartment of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Gabriella Brolén
- Precision MedicineCardiovascular, Renal and MetabolismR&DAstraZenecaGothenburgSweden
| | - Mathias Liljeblad
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Mikael Bjursell
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Stefano Romeo
- Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden,Clinical Nutrition UnitDepartment of Medical and Surgical SciencesMagna Graecia UniversityCatanzaroItaly,Cardiology DepartmentSahlgrenska University HospitalGothenburgSweden
| | - Rohit Loomba
- NAFLD Research CenterDivision of GastroenterologyUniversity of California San DiegoSan DiegoCAUSA
| |
Collapse
|
32
|
Raja AM, Ciociola E, Ahmad IN, Dar FS, Naqvi SMS, Moaeen-ud-Din M, Raja GK, Romeo S, Mancina RM. Genetic Susceptibility to Chronic Liver Disease in Individuals from Pakistan. Int J Mol Sci 2020; 21:ijms21103558. [PMID: 32443539 PMCID: PMC7278956 DOI: 10.3390/ijms21103558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease, with viral or non-viral etiology, is endemic in many countries and is a growing burden in Asia. Among the Asian countries, Pakistan has the highest prevalence of chronic liver disease. Despite this, the genetic susceptibility to chronic liver disease in this country has not been investigated. We performed a comprehensive analysis of the most robustly associated common genetic variants influencing chronic liver disease in a cohort of individuals from Pakistan. A total of 587 subjects with chronic liver disease and 68 healthy control individuals were genotyped for the HSD17B13 rs7261356, MBOAT7 rs641738, GCKR rs1260326, PNPLA3 rs738409, TM6SF2 rs58542926 and PPP1R3B rs4841132 variants. The variants distribution between case and control group and their association with chronic liver disease were tested by chi-square and binary logistic analysis, respectively. We report for the first time that HSD17B13 variant results in a 50% reduced risk for chronic liver disease; while MBOAT7; GCKR and PNPLA3 variants increase this risk by more than 35% in Pakistani individuals. Our genetic analysis extends the protective role of the HSD17B13 variant against chronic liver disease and disease risk conferred by the MBOAT7; GCKR and PNPLA3 variants in the Pakistani population.
Collapse
Affiliation(s)
- Asad Mehmood Raja
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.M.R.); (S.M.S.N.); (G.K.R.)
| | - Ester Ciociola
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, Wallenberg Laboratory, 413 45 Gothenburg, Sweden;
| | - Imran Nazir Ahmad
- Department of Pathology and Laboratory Medicine, Shifa International Hospitals Ltd., Islamabad 44790, Pakistan;
| | - Faisal Saud Dar
- Liver Transplantation, Hepatobiliary and Pancreatic Services Unit, Shifa International Hospitals Ltd., Islamabad 44790, Pakistan;
| | - Syed Muhammad Saqlan Naqvi
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.M.R.); (S.M.S.N.); (G.K.R.)
| | - Muhammad Moaeen-ud-Din
- Department of Animal Breeding and Genetics/National Center for Livestock Breeding, Genetics & Genomics, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan;
| | - Ghazala Kaukab Raja
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.M.R.); (S.M.S.N.); (G.K.R.)
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, Wallenberg Laboratory, 413 45 Gothenburg, Sweden;
- Department of Cardiology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
- Correspondence: (S.R.); (R.M.M.); Tel.: +46-(0)313-426-735 (S.R.); +46-(0)31342186 (R.M.M.)
| | - Rosellina Margherita Mancina
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, Wallenberg Laboratory, 413 45 Gothenburg, Sweden;
- Correspondence: (S.R.); (R.M.M.); Tel.: +46-(0)313-426-735 (S.R.); +46-(0)31342186 (R.M.M.)
| |
Collapse
|
33
|
Abstract
Nonalcoholic fatty liver disease is strongly associated with obesity and the metabolic syndrome, but genetic factors also contribute to disease susceptibility. Human genetic studies have identified several common genetic variants contributing to nonalcoholic fatty liver disease initiation and progression. These findings have provided new insights into the pathogenesis of nonalcoholic fatty liver disease and opened up new avenues for the development of therapeutic interventions. In this review, we summarize the current state of knowledge about the genetic determinants of nonalcoholic fatty liver disease, focusing on the most robustly validated genetic risk factors and on recently discovered modifiers of disease progression.
Collapse
Affiliation(s)
- Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8591, USA.
| |
Collapse
|
34
|
Romeo S, Sanyal A, Valenti L. Leveraging Human Genetics to Identify Potential New Treatments for Fatty Liver Disease. Cell Metab 2020; 31:35-45. [PMID: 31914377 DOI: 10.1016/j.cmet.2019.12.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/07/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023]
Abstract
Fatty liver disease (FLD), including its more severe pathologies, namely steatohepatitis, hepatocarcinoma, and cirrhosis, is the most common cause of chronic liver disease worldwide and is projected to become the leading cause of hepatocellular carcinoma and end-stage liver disease. FLD is heterogeneous with multiple etiologies and diverse histological phenotypes, so therapies will ultimately need to be individualized for relevant targets. Inherited factors contribute to FLD, and most of the genetic variation influencing liver disease development and progression is derived from genes involved in lipid biology, including PNPLA3, TM6SF2, GCKR, MBOAT7, and HSD17B13. From this point of view, we focus in this perspective on how human molecular genetics of FLD have highlighted defects in hepatic lipid handling as a major common mechanism of its pathology and how this insight could be leveraged to treat and prevent its more serious complications.
Collapse
Affiliation(s)
- Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Arun Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda, Pad Marangoni, Milan, Italy.
| |
Collapse
|
35
|
Gellert-Kristensen H, Nordestgaard BG, Tybjaerg-Hansen A, Stender S. High Risk of Fatty Liver Disease Amplifies the Alanine Transaminase-Lowering Effect of a HSD17B13 Variant. Hepatology 2020; 71:56-66. [PMID: 31155741 DOI: 10.1002/hep.30799] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
A common loss-of-function variant in HSD17B13 (rs72613567:TA) was recently found to protect from chronic liver disease. Whether the variant confers protection from specific risk factors for liver disease is unclear. We tested the association of rs72613567 with plasma levels of alanine transaminase (ALT) and clinical liver disease and mortality in 111,612 individuals from the Danish general population, including 497 with cirrhosis and 113 with hepatocellular carcinoma. HSD17B13 rs72613567:TA was associated with stepwise lower levels of plasma ALT of up to 1.3 U/L in TA/TA homozygotes versus T/T homozygotes. For each TA-allele, the risk of cirrhosis and hepatocellular carcinoma was reduced by 15% and 28%, respectively. In prospective analyses, the TA-allele was associated with up to 33% lower rates of liver-related mortality in the general population, and with up to 49% reduced liver-related mortality in patients with cirrhosis. The ALT-lowering effect of rs72613567:TA was amplified by increasing adiposity, alcohol consumption, and genetic risk of fatty liver disease. The TA-allele was associated with only marginally lower ALT in lean nondrinkers with low genetic risk of hepatic steatosis. In contrast, compared with T/T homozygotes, TA/TA homozygotes had 12% to 18% lower plasma ALT among the most obese, in heavy drinkers, and in individuals carrying three or four steatogenic alleles in patatin-like phospholipase domain-containing protein 3 (PNPLA3) and transmembrane 6 superfamily 2 (TM6SF2). Conclusion: High risk of fatty liver disease amplifies the ALT-lowering effect of HSD17B13 rs72613567:TA in the Danish general population.
Collapse
Affiliation(s)
- Helene Gellert-Kristensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark.,The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospitals, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark.,The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospitals, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
36
|
Dong XC. PNPLA3-A Potential Therapeutic Target for Personalized Treatment of Chronic Liver Disease. Front Med (Lausanne) 2019; 6:304. [PMID: 31921875 PMCID: PMC6927947 DOI: 10.3389/fmed.2019.00304] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/02/2019] [Indexed: 01/10/2023] Open
Abstract
Patatin-like phospholipase domain-containing protein 3 (PNPLA3) is a lipid droplet-associated protein that has been shown to have hydrolase activity toward triglycerides and retinyl esters. The first evidence of PNPLA3 being associated with fatty liver disease was revealed by a genome-wide association study (GWAS) of Hispanic, African American, and European American individuals in the Dallas Heart Study back in 2008. Since then, numerous GWAS reports have shown that PNPLA3 rs738409[G] (148M) variant is associated with hepatic triglyceride accumulation (steatosis), inflammation, fibrosis, cirrhosis, and even hepatocellular carcinoma regardless of etiologies including alcohol- or obesity-related and others. The frequency of PNPLA3(148M) variant ranges from 17% in African Americans, 23% in European Americans, to 49% in Hispanics in the Dallas Heart Study. Due to high prevalence of obesity and alcohol consumption in modern societies, the PNPLA3(148M) gene variant and environment interaction poses a serious concern for public health, especially chronic liver diseases including alcohol-related liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). Therefore, PNPLA3(148M) variant is a potential therapeutic target for chronic liver disease in the rs738409 allele carriers. Currently, there is no approved drug specifically targeting the PNPLA3(148M) variant yet. With additional mechanistic studies, novel therapeutic strategies are expected to be developed for the treatment of the PNPLA3(148M) variant-associated chronic liver diseases in the near future.
Collapse
Affiliation(s)
- Xiaocheng Charlie Dong
- Center for Diabetes and Metabolic Diseases, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
37
|
Vilarinho S, Mistry PK. Exome Sequencing in Clinical Hepatology. Hepatology 2019; 70:2185-2192. [PMID: 31222768 PMCID: PMC6885087 DOI: 10.1002/hep.30826] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
Abstract
The clinical relevance of the Human Genome Project and next-generation sequencing technology was demonstrated for the first time in 2009, when whole-exome sequencing (WES) provided the definitive diagnosis of congenital chloride diarrhea in an infant with presumed renal salt-wasting disease. Over the past decade, numerous studies have shown the utility of WES for clinical diagnosis as well as for discovery of novel genetic disorders through analysis of a single or a handful of informative pedigrees. Hence, advances in improving the speed, accuracy, and computational analysis combined with exponential decrease in the cost of sequencing the human genome is transforming the practice of medicine. The impact of WES has been most noticeable in pediatric disorders and oncology, but its utility in the liver clinic is recently emerging. Here, we assess the current status of WES for clinical diagnosis and acceleration of translation research to enhance care of patients with liver disease.
Collapse
Affiliation(s)
- Sílvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale School of Medicine, New Haven, CT.,Correspondence should be address to Silvia Vilarinho, M.D., Ph.D., Departments of Internal Medicine (Digestive Diseases) and of Pathology, Yale University School of Medicine, 333 Cedar Street, LMP1080, New Haven, CT 06510, USA. Telephone: +1-203-737-6063, Fax: +1-203-737-1755,
| | - Pramod K. Mistry
- Department of Internal Medicine, Section of Digestive Diseases, of Pediatrics and of Molecular and Cellular Physiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
38
|
Eslam M, George J. Genetic Insights for Drug Development in NAFLD. Trends Pharmacol Sci 2019; 40:506-516. [PMID: 31160124 DOI: 10.1016/j.tips.2019.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022]
Abstract
Drug development is a costly, time-consuming, and challenging endeavour, with only a few agents reaching the threshold of approval for clinical use. Therefore, approaches to more efficiently identify targets that are likely to translate to clinical benefit are required. Interrogation of the human genome in large patient cohorts has rapidly advanced our knowledge of the genetic architecture and underlying mechanisms of many diseases, including nonalcoholic fatty liver disease (NAFLD). There are no approved pharmacotherapies for NAFLD currently. Genetic insights provide a powerful and new approach to infer and prioritise candidate drugs, with such selection avoiding myriad pitfalls, while defining likely benefits. In this review, we discuss the prospects and challenges for the optimal utilisation of genetic findings for improving and accelerating the NAFLD drug discovery pipeline.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|