1
|
Manzoor N, Samad N, Bhatti SA, Irfan A, Ahmad S, Shazly GA, Bin Jardan YA. Neuroprotective effect of niacin in a rat model of obesity induced by high-fat-rich diet. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6801-6820. [PMID: 39680102 DOI: 10.1007/s00210-024-03687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
This study investigates the impact of a high-fat-rich diet (HFRD) on behavioral, biochemical, neurochemical, and histopathological studies using the hypothalamus of rats following niacin (NCN) administration. The rats were divided into HFRD and normal diet (ND)-fed groups and administered selected doses of NCN, i.e., 25 mg/mL/kg (low dose) and 50 mg/mL/kg (high dose), for 8 weeks. The grouping of male rats (n = 8) was as follows: (i) Vehicle (Veh) + ND; (ii) ND + NCN (low dose); (iii) ND + NCN (high dose); (iv) Veh + HFRD; (v) HFRD + NCN (low dose); and (vi) HFRD + NCN (high dose). Behavioral tests assessed depression-like symptoms and spatial memory; after that, the hypothalamus was isolated for various analyses of sacrificed animals. NCN at both doses decreased food intake and growth rate in both diet groups and demonstrated antidepressant and memory-enhancing effects. HFRD-induced oxido-neuroinflammation decreased with both doses of NCN. HFRD-induced decreases in serotonergic neurotransmission, 5-HT1A receptor expression, and morphological alterations in the rat's hypothalamus were normalized by both doses of NCN. In conclusion, NCN, as a potential antioxidant and neuromodulator, can normalize feeding behavior and produce antidepressant and memory-improving effects in a rat model of obesity following HFRD intake.
Collapse
Affiliation(s)
- Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sadaf Ahmad
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Ye Z, Gao Y, Yuan J, Chen F, Xu P, Liu W. The role of gut microbiota in modulating brain structure and psychiatric disorders: A Mendelian randomization study. Neuroimage 2025; 315:121292. [PMID: 40425098 DOI: 10.1016/j.neuroimage.2025.121292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/16/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025] Open
Abstract
The influence of the gut microbiome on the human brain, especially its associations with psychiatric disorders, has emerged as a focal area in contemporary neuroscience and psychiatry research. In this study, we employed a mediation Mendelian randomization approach to delve into the potential causal relationships between gut microbiota and psychiatric disorders, with a focus on the mediating role of brain structural changes. We harnessed genetic data from large - scale genome - wide association studies to analyze how 196 gut microbiota taxa affect ten psychiatric disorders via alterations in 3143 brain structures. Our key findings revealed significant bidirectional causal relationships. In the gut microbiota - brain structure relationship, certain gut microbiota taxa, such as Bacteroides and Marvinbryantia, were associated with changes in brain activity and white matter integrity respectively. Conversely, brain structures like the right hippocampus and left superior cerebellar peduncle influenced gut microbiota composition. Regarding gut microbiota and psychiatric disorders, we identified numerous associations. For example, the genus Prevotellaceae was significantly associated with an increased risk of Autism Spectrum Disorder, while Ruminococcaceae UCG005 showed a protective effect. In Panic Disorder, Alistipes was positively associated, and for Schizophrenia, both protective (Barnesiella) and risk - associated (Phascolarctobacterium) genera were found. Moreover, through mediation analysis, we found that brain structures mediated the effects of gut microbiota on five psychiatric disorders, including bipolar disorder and anorexia nervosa. In these cases, the influence of gut microbiota on the disorders was fully transmitted through changes in brain structure. Overall, our research clarifies the role of the microbiota - gut - brain axis in mental health. It offers a new perspective on how intestinal microbes impact brain physiology and psychiatric pathology. These findings not only deepen our understanding of the biological interactions between the gut and brain but also suggest that targeted gut microbiota modifications could be novel therapeutic strategies for mental health disorders.
Collapse
Affiliation(s)
- Zheng Ye
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China; School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China.
| | - Yingying Gao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, China
| | - Jiaqi Yuan
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Feng Chen
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Peng Xu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China; School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China.
| | - Wenbin Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
| |
Collapse
|
3
|
Liu J, Zhang Y, Wu X, Li X, Hou Z, Wang B, Chen L, Lin F, Chen M. Dietary inflammatory potential and its impact on gut microbiota in patients with mild cognitive impairment. Food Funct 2025. [PMID: 40366107 DOI: 10.1039/d5fo01094b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Diet can regulate systemic inflammation and the composition of the gut microbiota, which may play a significant role in the development of cognitive impairment. This study aims to explore the impact of inflammatory diets on gut microbes in patients with mild cognitive impairment (MCI) and to investigate the relationship between these microbes and cognitive function. Dietary inflammatory properties and gut microorganisms were analyzed using the energy-adjusted dietary inflammatory index (E-DII) and 16S rRNA in MCI patients. No significant differences in the diversity of the gut microbiota were observed among different E-DII groups. In the anti-inflammatory diet group, the gut microbiomes exhibited higher abundances of Christensenella and Oribacterium, while Streptococcus, Ruthenibacterium, Enterobacter, and Conservatibacter were significantly more prevalent in the pro-inflammatory diet group (P < 0.05). Specific oral and gut genera were found to be associated with MoCA, AVLT-LR, and STT-A scores (P < 0.05). A higher dietary inflammatory index was linked to lower overall cognitive function, as well as deficits in language, attention, and executive function. Additionally, specific gut microbial compositions were associated with cognitive performance.
Collapse
Affiliation(s)
- Jinxiu Liu
- The School of Nursing, Fujian Medical University, Fuzhou, China.
| | - Yuping Zhang
- The School of Nursing, Fujian Medical University, Fuzhou, China.
| | - Xiaoqi Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiuli Li
- The School of Nursing, Fujian Medical University, Fuzhou, China.
| | - Zhaoyi Hou
- The School of Nursing, Fujian Medical University, Fuzhou, China.
| | - Bixia Wang
- The School of Nursing, Fujian Medical University, Fuzhou, China.
| | - Lili Chen
- The School of Nursing, Fujian Medical University, Fuzhou, China.
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nursing, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Fan Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Mingfeng Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
4
|
Camarda L, Mattioli LB, Corazza I, Marzetti C, Budriesi R. Targeting the Gut-Brain Axis with Plant-Derived Essential Oils: Phytocannabinoids and Beyond. Nutrients 2025; 17:1578. [PMID: 40362887 PMCID: PMC12074236 DOI: 10.3390/nu17091578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Background: The gut-brain axis (GBA) is a complex bidirectional communication system that links the gastrointestinal tract and the central nervous system. Essential oils (EOs) have emerged as promising natural compounds capable of modulating this axis. Methods: A comprehensive analysis of the recent literature was conducted, focusing on studies investigating the effects of EOs on the GBA. Particular attention was given to the endocannabinoid system, the role of cannabis-derived EOs, and other plant-based EOs with potential neuroprotective and gut microbiota-modulating effects. Results: Among the EOs analyzed, cannabis essential oil (CEO) gained attention for its interaction with cannabinoid receptors (CBR1 and CBR2), modulating gut motility, immune responses, and neurotransmission. While acute administration of the CEO reduces inflammation and gut permeability, chronic use has been associated with alterations in gut microbiota composition, potentially impairing cognitive function. Other EOs, such as those from rosemary, lavender, eucalyptus, and oregano, demonstrated effects on neurotransmitter modulation, gut microbiota balance, and neuroinflammation, supporting their potential therapeutic applications in GBA-related disorders. Conclusions: EOs demonstrate promising potential in modulating the GBA through mechanisms including neurotransmitter regulation, gut microbiota modulation, and anti-inflammatory activity. At the same time, phytocannabinoids offer therapeutic value; their long-term use warrants caution due to potential impacts on microbiota. Future research should aim to identify EO-based interventions that can synergistically restore GBA homeostasis and mitigate neurodegenerative and gastrointestinal disorders.
Collapse
Affiliation(s)
- Luca Camarda
- Department of Pharmacy and Biotechnology (FaBiT), Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (L.B.M.); (R.B.)
| | - Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology (FaBiT), Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (L.B.M.); (R.B.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy;
| | - Ivan Corazza
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
| | | | - Roberta Budriesi
- Department of Pharmacy and Biotechnology (FaBiT), Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (L.B.M.); (R.B.)
| |
Collapse
|
5
|
Qin H, Chen J, Niu J, Huo J, Wei X, Yan J, Han G. Dietary habit helps improve people's adaptability to hot climates: a case study of hotpot in Chongqing, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025:10.1007/s00484-025-02893-9. [PMID: 40105968 DOI: 10.1007/s00484-025-02893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Global warming has raised significant concerns about mitigation and adaptation strategies in recent years. This study investigated if consuming spicy food can help improve people's adaptability to hot environment. Onsite measurement and thermal questionnaires were conducted at Chongqing university in summer and winter aged 18 ∼ 30 years old. Participants were categorized into two groups, including frequently eating hotpot (Group-yes) and not (Group-no), and there were respectively 590 and 570 surveys. The results indicated that: (1) Eating hotpot could lower expectations of meteorological conditions. (2) It can decrease thermal sensitivity and expand neutral physiologically equivalent temperature (PET) range (14.89 ∼ 24.74 ℃ in Group-yes and 16.66 ∼ 23.98 ℃ in Group-no). (3) The acceptable PET range in Group-yes was 5.46 ℃ wider than Group-no with a higher preferred PET in Group-yes (24.04 ℃) compared to Group-no (22.63 ℃). (4) Respondents' thermal perception in Group-yes demonstrated a less susceptibility to meteorological variations compared to Group-no, and respondents in Group-no were more influenced by RH in summer. These findings suggest that consuming hotpot can improve thermal adaptation, thereby underscoring the significant influence of dietary habits on thermal adaptability.
Collapse
Affiliation(s)
- Hongqiao Qin
- College of Architecture and Urban Planning, Key Laboratory of New Technology for Construction of Cities in Mountain Area of Education Ministry, Chongqing University, Chongqing, 400045, China
| | - Jianghua Chen
- College of Architecture and Urban Planning, Key Laboratory of New Technology for Construction of Cities in Mountain Area of Education Ministry, Chongqing University, Chongqing, 400045, China
| | - Jiaqi Niu
- College of Architecture and Urban Planning, Key Laboratory of New Technology for Construction of Cities in Mountain Area of Education Ministry, Chongqing University, Chongqing, 400045, China
| | - Jingeng Huo
- College of Architecture and Urban Planning, Key Laboratory of New Technology for Construction of Cities in Mountain Area of Education Ministry, Chongqing University, Chongqing, 400045, China
| | - Xuelin Wei
- College of Architecture and Urban Planning, Key Laboratory of New Technology for Construction of Cities in Mountain Area of Education Ministry, Chongqing University, Chongqing, 400045, China
| | - Jie Yan
- School of Civil Engineering and Architecture, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Guifeng Han
- College of Architecture and Urban Planning, Key Laboratory of New Technology for Construction of Cities in Mountain Area of Education Ministry, Chongqing University, Chongqing, 400045, China.
- Key Laboratory of Monitoring, Evaluation and Early Warning of Territorial Spatial Planning Implementation, Ministry of Natural Resources, Chongqing, 401147, China.
| |
Collapse
|
6
|
Higgs S, Aarts K, Adan RAH, Buitelaar JK, Cirulli F, Cryan JF, Dickson SL, Korosi A, van der Beek EM, Dye L. Policy Actions Required to Improve Nutrition for Brain Health. Nutr Rev 2025; 83:586-592. [PMID: 39471498 DOI: 10.1093/nutrit/nuae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024] Open
Abstract
Brain health is a pressing global concern. Poor diet quality is a recognized major environmental risk factor for brain disorders and one of the few that is modifiable. There is substantial evidence that nutrition impacts brain development and brain health across the life course. So why then is the full potential of nutrition not utilized to improve brain function? This commentary, which is based on discussions of the European Brain Research Area BRAINFOOD cluster, aims to highlight the most urgent research priorities concerning the evidence base in the area of nutrition and brain health and identifies 3 major issues that need to be addressed: (1) increase causal and mechanistic evidence on the link between nutrition and brain health, (2) produce effective messages/education concerning the role of food for brain health, and (3) provide funding to support collaborative working across diverse stakeholders.
Collapse
Affiliation(s)
- Suzanne Higgs
- School of Psychology, University of Birmingham, Birmingham B152TT, United Kingdom
| | | | - Roger A H Adan
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen 6500HB, The Netherlands
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - John F Cryan
- Department of Anatomy & Neuroscience and APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland
| | - Suzanne L Dickson
- European Brain Council, Brussels 1000, Belgium
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41135, Sweden
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam 1090, The Netherlands
| | - Eline M van der Beek
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Groningen 9700, The Netherlands
| | - Louise Dye
- Institute for Sustainable Food, School of Psychology, University of Sheffield, Sheffield S1 4DP, United Kingdom
| |
Collapse
|
7
|
Mehta I, Juneja K, Nimmakayala T, Bansal L, Pulekar S, Duggineni D, Ghori HK, Modi N, Younas S. Gut Microbiota and Mental Health: A Comprehensive Review of Gut-Brain Interactions in Mood Disorders. Cureus 2025; 17:e81447. [PMID: 40303511 PMCID: PMC12038870 DOI: 10.7759/cureus.81447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2025] [Indexed: 05/02/2025] Open
Abstract
The human gut flora of trillions of bacteria is vital for general health and greatly influences digestion, immune system function, and brain development. Through neuronal, hormonal, and immunological channels, the gut-brain axis (GBA), a bidirectional communication network, links the gut microbiota to the central nervous system (CNS). This relationship has been linked to affective diseases, including depression and anxiety, as well as mental health issues. This review explores the intricate relationship between gut bacteria and mood disorders, focusing on how gut microbiota-host interactions, immune system modulation, and neurotransmitter control support mental health. The function of important microbial metabolites, including short-chain fatty acids (SCFAs), in preserving blood-brain barrier integrity and modulating neuroinflammation is covered in this review. It also examines the bidirectional impact between gut health and mental health, including how dysbiosis could aggravate mood disorders and how depressed states might change the composition of gut bacteria. Furthermore, we discuss how psychotropic drugs affect gut flora and consider other elements such as nutrition and lifestyle that affect gut microbiome composition. Potential paths for treating mood disorders through gut microbiota modification are presented as emerging treatment techniques, including probiotics, nutritional therapies, and precision medicine. The development of new therapeutic approaches for mood disorders depends on the awareness of the GBA. Gut bacteria significantly affect mental health through immune modulation, neurotransmitter generation, and other intricate processes. Future studies should concentrate on large, varied populations to better understand these interactions and to create customized treatments that combine gut microbiota modulation with conventional mental health therapies.
Collapse
Affiliation(s)
- Ishani Mehta
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hisar, IND
| | | | - Tharun Nimmakayala
- Medicine and Surgery, Apollo Institute of Medical Sciences and Research, Chittoor, IND
| | - Lajpat Bansal
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hisar, IND
| | - Shivani Pulekar
- General Practice, Davao Medical School Foundation, Davao, PHL
| | | | | | - Nishi Modi
- Medicine, Government Medical College, Surat, Surat, IND
| | - Salma Younas
- Pharmacy, Punjab University College of Pharmacy, Lahore, PAK
| |
Collapse
|
8
|
Zhang Y, Wan B, Wang M, Hong Y, Lu J. Associations between takeaway food consumption, physical activity levels, and their joint effect with comorbid depression and anxiety symptoms among Chinese university students. BMC Public Health 2025; 25:644. [PMID: 39962449 PMCID: PMC11834260 DOI: 10.1186/s12889-025-21605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/23/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The prevalence of depression and anxiety symptoms, and their comorbid among Chinese university students is rising. Psychological symptoms are strongly associated with lifestyle choices, such as takeaway food consumption and physical activity. While the association between takeaway food consumption, physical activity level, and their joint effect on the psychological symptoms of university students are still unclear. In this study, we explore the associations between them. METHODS Using stratified cluster sampling, 14,340 students aged 18-22 from four provinces in China were selected as participants. A self-survey takeaway food consumption behavior questionnaire; the International Physical Activity Questionnaire Chinese Short Form; and the Depression, Anxiety, and Stress Scales-21 Short Version were used in this survey. Chi-square tests and binary logistic regression analyses were used to analyze the association. RESULTS The incidence rates of depression symptoms, anxiety symptoms, and CDAS were 26.26%, 34.58%, and 23.75%, respectively. Higher takeaway food consumption was positively associated with CDAS rates. Furthermore, compared with female students, the CDAS rates of male students were more likely to be influenced by different takeaway food consumption and physical activity. As for joint effect of takeaway food consumption and physical activity, overall, participants who engaged in light physical activity had a higher risk of CDAS with the increase in takeaway food consumption (OR = 1.279-2.661, 95% CI = 1.119-3.194, all p < 0.001). Moreover, participants with combination of moderate or vigorous physical activity and frequent takeaway food consumption (4-6 or ≥ 7 times/week) were more likely to suffer from CDAS (moderate: 4-6 times/week OR = 1.568, 95% CI: 1.206-2.039; ≥7 times/weeks: OR = 1.802, 95% CI: 1.202-2.700; vigorous: 4-6 times/week OR = 2.075, 95% CI: 1.623-2.653; ≥7 times/weeks: OR = 2.272, 95% CI: 1.567-3.295; all p < 0.05). In general, light to moderate physical activity levels and higher frequency of takeaway food consumption were associated with a higher risk of CDAS in male students than in female students. CONCLUSION High consumption of takeaway food and lower physical activity levels may be risk factors for depression and anxiety in university students. In general, the psychological symptoms of male students are more likely to be influenced by these factors than those of female students.
Collapse
Affiliation(s)
- Yanhong Zhang
- School of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Bingjun Wan
- School of Physical Education, Shaanxi Normal University, Xi'an, China.
| | - Min Wang
- School of Physical Education, Nanchang Institute of Science Technology, Nanchang, China
| | - Yuxin Hong
- School of Physical Education, Shangrao Normal University, Shangrao, China
| | - Jinkui Lu
- School of Physical Education, Shangrao Normal University, Shangrao, China
| |
Collapse
|
9
|
Mafe AN, Büsselberg D. Modulation of the Neuro-Cancer Connection by Metabolites of Gut Microbiota. Biomolecules 2025; 15:270. [PMID: 40001573 PMCID: PMC11853082 DOI: 10.3390/biom15020270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The gut-brain-cancer axis represents a novel and intricate connection between the gut microbiota, neurobiology, and cancer progression. Recent advances have accentuated the significant role of gut microbiota metabolites in modulating systemic processes that influence both brain health and tumorigenesis. This paper explores the emerging concept of metabolite-mediated modulation within the gut-brain-cancer connection, focusing on key metabolites such as short-chain fatty acids (SCFAs), tryptophan derivatives, secondary bile acids, and lipopolysaccharides (LPS). While the gut microbiota's impact on immune regulation, neuroinflammation, and tumor development is well established, gaps remain in grasping how specific metabolites contribute to neuro-cancer interactions. We discuss novel metabolites with potential implications for neurobiology and cancer, such as indoles and polyamines, which have yet to be extensively studied. Furthermore, we review preclinical and clinical evidence linking gut dysbiosis, altered metabolite profiles, and brain tumors, showcasing limitations and research gaps, particularly in human longitudinal studies. Case studies investigating microbiota-based interventions, including dietary changes, fecal microbiota transplantation, and probiotics, demonstrate promise but also indicate hurdles in translating these findings to clinical cancer therapies. This paper concludes with a call for standardized multi-omics approaches and bi-directional research frameworks integrating microbiome, neuroscience, and oncology to develop personalized therapeutic strategies for neuro-cancer patients.
Collapse
Affiliation(s)
- Alice N. Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area, Doha P.O. Box 22104, Qatar
| |
Collapse
|
10
|
Li Y, Feng J, Ding G, Deng L, He Y, Zhang Q, Wang J, Chen X. The possible effects of chili peppers on ADHD in relation to the gut microbiota. Front Nutr 2025; 12:1551650. [PMID: 39968396 PMCID: PMC11832391 DOI: 10.3389/fnut.2025.1551650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder, which is characterized by inattention, impulsivity and hyperactivity. Although the etiology and pathogenesis of ADHD are not fully understood, existing studies have shown that it may be related to genetic factors, environmental factors, abnormal brain development, and psychosocial factors. In recent years, with the concept of microbioa-gut-brain axis (MGBA), more and more studies have begun to pay attention to the effect of gut microbiota on ADHD. Dietary structure can significantly change the diversity and abundance of gut microbiota. Therefore, dietary supplements or food additives to regulate gut microbiota have become one of the potential ways to treat ADHD. Peppers, as an important dietary component, have potential value in regulating gut microbiota. Among them, capsaicin (8-methyl N-vanillyl-6-noneamide, CAP), as a key active component of peppers, has been shown to have potential therapeutic effects on central nervous system (CNS) diseases such as Parkinson's disease, epilepsy, and depression. In addition, much attention has been paid to the beneficial effects of CAP on gut microbiota. Chili peppers contain not only CAP, but also rich in vitamin C and fatty acids, all of which may ameliorate ADHD by modulating the gut microbiota. This finding not only provides a potential treatment for ADHD, but also provides a new perspective to expand the research and clinical treatment of ADHD pathogenesis. Although current research on the potential therapeutic effects of chili peppers on ADHD is still at an early stage and requires further verification through larger-scale and more rigorous controlled studies, its potential clinical value cannot be ignored.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xia Chen
- Department of Pediatrics, Child and Adolescent Psychiatric Center of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (Army 958th Hospital), Chongqing, China
| |
Collapse
|
11
|
Corbett GA, Corcoran S, Feehily C, Soldati B, Rafferty A, MacIntyre DA, Cotter PD, McAuliffe FM. Preterm-birth-prevention with Lactobacillus crispatus oral probiotics: Protocol for a double blinded randomised placebo-controlled trial (the PrePOP study). Contemp Clin Trials 2025; 149:107776. [PMID: 39701375 DOI: 10.1016/j.cct.2024.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION Effective spontaneous preterm birth (sPTB) prevention is an urgent unmet clinical need. Vaginal depletion of Lactobacillus crispatus is linked to sPTB. This trial will investigate impact of an oral Lactobacillus spp. probiotic product containing an L. crispatus strain with other Lactobacilli spp., on the maternal vaginal and gut microbiome in pregnancies high-risk for sPTB. METHODS A double-blind, placebo-controlled, randomised trial will be performed at the National Maternity Hospital Dublin, Ireland. Inclusion criteria are women with history of sPTB or mid-trimester loss, cervical surgery (cone biopsy or two previous large-loop-excision-of-transformation-zone) or uterine anomaly. The intervention is oral supplementation for twelve weeks with probiotic or identical placebo. The probiotic will contains: ◦ 4 billion CFU Lactobacillus crispatus Lbv 88(2x109CFU/Capsule) ◦ 4 billion CFU Lactobacillus rhamnosus Lbv 96(2x109CFU/Capsule) ◦ 0.8 billion CFU Lactobacillus jensenii Lbv 116(0.4x109CFU/Capsule) ◦ 1.2 billion CFU Lactobacillus gasseri Lbv 150(0.6x109CFU/Capsule). Investigators and participants will be blinded to assignment. RESULTS The primary outcome is detectable L. crispatus in the vaginal microbiome after twelve weeks of treatment, measured using high-throughput DNA sequencing. A total of 126 women are required to detect a 25 % increase in detectable L. crispatus. Secondary outcomes include impact of intervention on the gut microbiome and metabolome, rate of sPTB and mid-trimester loss, neonatal outcomes and maternal morbidity. CONCLUSIONS This randomised trial will investigate ability of an oral probiotic containing L. crispatus to increase its abundance in the vaginal microbiome, both directly by horizontal transfer and indirectly via microbiome and metabolome of the gut.
Collapse
Affiliation(s)
- Gillian A Corbett
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland; National Maternity Hospital, Dublin 2, Ireland
| | - Siobhan Corcoran
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland; National Maternity Hospital, Dublin 2, Ireland
| | - Conor Feehily
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | - Anthony Rafferty
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland; Intuitive Health, 6 Main Street, Raheny, Dublin D05 Y9T2, Ireland
| | - David A MacIntyre
- March of Dimes Prematurity Research Centre, Division of the Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom; Robinson Research Institute, University of Adelaide, South Australia 5005, Australia
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co.Cork, Ireland; APC Microbiome, University College Cork, Ireland
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland; National Maternity Hospital, Dublin 2, Ireland.
| |
Collapse
|
12
|
Zhao J, Peng Y, Lin Z, Gong Y. Association between Mediterranean diet adherence and Parkinson's disease: a systematic review and meta-analysis. J Nutr Health Aging 2025; 29:100451. [PMID: 39693849 DOI: 10.1016/j.jnha.2024.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND AND AIMS Parkinson's disease (PD) is a chronic neurodegenerative disorder, and past research suggests that adherence to the Mediterranean diet (MD) may influence the risk of PD. However, there are varying conclusions among different studies regarding the correlation between long-term adherence to the MD and the occurrence of PD. This meta-analysis aimed to investigate the association between MD adherence and PD incidence. METHODS This meta-analysis was registered on PROSPERO (CRD42024520410). We searched PubMed, Embase, Web of Science, and Cochrane databases to identify observational studies, including prospective cohorts, case-control, and cross-sectional studies, up to February 2024. Studies reported on MD adherence were included, with MD adherence categorized through a quantifying score or index. The pool odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for the highest versus the lowest categories of MD score in relation to PD risk, using random-effects models. Additionally, bias assessment, heterogeneity assessment, sensitivity analysis, and subgroup analysis were performed. A total of 12 studies were included in the meta-analysis. RESULTS The overall effect size of PD risk was as follows: compared to the lowest adherence to the MD, the highest adherence to MD showed a significant negative correlation with the incidence of PD, with an overall OR of 0.75 (95% CI: 0.66, 0.84). Specifically, in studies diagnosing PD, the overall OR was 0.83 (95% CI: 0.74, 0.94), while in studies diagnosing prodromal Parkinson's disease (pPD), the overall OR was 0.67 (95%CI: 0.59, 0.76). For individuals aged <60 years, the overall OR was 0.70 (95%CI: 0.62, 0.78), whereas, for those aged ≥60 years, the overall OR was 0.86 (95%CI: 0.74, 0.99). CONCLUSIONS The evidence from this meta-analysis demonstrates a significant negative correlation between adherence to MD patterns and the risk of PD, suggesting that the MD may serve as a protective factor for PD. This dietary pattern may be particularly beneficial in reducing the risk of pPD.
Collapse
Affiliation(s)
- Jiarui Zhao
- College of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue West, Chengdu, Sichuan Province, China
| | - Yuan Peng
- Guangzhou First People's Hospital, Second Affiliated Hospital of South China University of Technology, No. 1 Panfu Road, Guangzhou, Guangdong Province, China
| | - Zhenfang Lin
- Affiliated Sichuan Provincial Rehabilitation Hospital of the Chengdu University of Traditional Chinese Medicine, No. 81, Bayi Road, Yongning Street, Chengdu, Sichuan Province, China
| | - Yulai Gong
- Affiliated Sichuan Provincial Rehabilitation Hospital of the Chengdu University of Traditional Chinese Medicine, No. 81, Bayi Road, Yongning Street, Chengdu, Sichuan Province, China.
| |
Collapse
|
13
|
Zarei P, Sedeh PA, Vaez A, Keshteli AH. Using metabolomics to investigate the relationship between the metabolomic profile of the intestinal microbiota derivatives and mental disorders in inflammatory bowel diseases: a narrative review. Res Pharm Sci 2025; 20:1-24. [PMID: 40190827 PMCID: PMC11972020 DOI: 10.4103/rps.rps_273_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 04/09/2025] Open
Abstract
Individuals with inflammatory bowel disease (IBD) are at a higher risk of developing mental disorders, such as anxiety and depression. The imbalance between the intestinal microbiota and its host, known as dysbiosis, is one of the factors, disrupting the balance of metabolite production and their signaling pathways, leading to disease progression. A metabolomics approach can help identify the role of gut microbiota in mental disorders associated with IBD by evaluating metabolites and their signaling comprehensively. This narrative review focuses on metabolomics studies that have comprehensively elucidated the altered gut microbial metabolites and their signaling pathways underlying mental disorders in IBD patients. The information was compiled by searching PubMed, Web of Science, Scopus, and Google Scholar from 2005 to 2023. The findings indicated that intestinal microbial dysbiosis in IBD patients leads to mental disorders such as anxiety and depression through disturbances in the metabolism of carbohydrates, sphingolipids, bile acids, neurotransmitters, neuroprotective, inflammatory factors, and amino acids. Furthermore, the reduction in the production of neuroprotective factors and the increase in inflammation observed in these patients can also contribute to the worsening of psychological symptoms. Analyzing the metabolite profile of the patients and comparing it with that of healthy individuals using advanced technologies like metabolomics, aids in the early diagnosis and prevention of mental disorders. This approach allows for the more precise identification of the microbes responsible for metabolite production, enabling the development of tailored dietary and pharmaceutical interventions or targeted manipulation of microbiota.
Collapse
Affiliation(s)
- Parvin Zarei
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi Sedeh
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Vaez
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
14
|
Abavisani M, Faraji N, Ebadpour N, Kesharwani P, Sahebkar A. Beyond digestion: Exploring how the gut microbiota modulates human social behaviors. Neuroscience 2025; 565:52-62. [PMID: 39615647 DOI: 10.1016/j.neuroscience.2024.11.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025]
Abstract
For a long time, traditional medicine has acknowledged the gut's impact on general health. Contemporary science substantiates this association through investigations of the gut microbiota, the extensive community of microorganisms inhabiting our gastrointestinal system. These microscopic residents considerably improve digestive processes, nutritional absorption, immunological function, and pathogen defense. Nevertheless, a variety of gastrointestinal and extra-intestinal disorders can result from dysbiosis, an imbalance of the microbial composition of the gut microbiota. A groundbreaking discovery is the gut-brain axis, a complex communication network that links the enteric and central nervous system (CNS). This bidirectional communication allows the brain to influence gut activities and vice versa, impacting mental health and mood disorders like anxiety and depression. The gut microbiota can influence this communication by creating neurotransmitters and short-chain fatty acids, among other biochemical processes. These factors may affect our mental state, our ability to regulate our emotions, and the hypothalamic-pituitary-adrenal (HPA) axis. This study aimed to explore the complex interrelationships between the brain and the gut microbiota. We also conducted a thorough examination of the existing understanding in the area of how microbiota affects social behaviors, including emotions, stress responses, and cognitive functions. We also explored the potential of interventions that focus on the connection between the gut and the brain, such as using probiotics to treat diseases of the CNS. This research opens up new possibilities for addressing mental health and neurological conditions in an innovative manner.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Faraji
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran.
| |
Collapse
|
15
|
Randeni N, Xu B. Critical Review of the Cross-Links Between Dietary Components, the Gut Microbiome, and Depression. Int J Mol Sci 2025; 26:614. [PMID: 39859327 PMCID: PMC11765984 DOI: 10.3390/ijms26020614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The complex relationship between diet, the gut microbiota, and mental health, particularly depression, has become a focal point of contemporary research. This critical review examines how specific dietary components, such as fiber, proteins, fats, vitamins, minerals, and bioactive compounds, shape the gut microbiome and influence microbial metabolism in order to regulate depressive outcomes. These dietary-induced changes in the gut microbiota can modulate the production of microbial metabolites, which play vital roles in gut-brain communication. The gut-brain axis facilitates this communication through neural, immune, and endocrine pathways. Alterations in microbial metabolites can influence central nervous system (CNS) functions by impacting neuroplasticity, inflammatory responses, and neurotransmitter levels-all of which are linked to the onset and course of depression. This review highlights recent findings linking dietary components with beneficial changes in gut microbiota composition and reduced depressive symptoms. We also explore the challenges of individual variability in responses to dietary interventions and the long-term sustainability of these strategies. The review underscores the necessity for further longitudinal and mechanistic studies to elucidate the precise mechanisms through which diet and gut microbiota interactions can be leveraged to mitigate depression, paving the way for personalized nutritional therapies.
Collapse
Affiliation(s)
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China;
| |
Collapse
|
16
|
Bazaz MR, Padhy HP, Dandekar MP. Chitosan lactate improves repeated closed head injury-generated motor and neurological dysfunctions in mice by impacting microbiota gut-brain axis. Metab Brain Dis 2025; 40:81. [PMID: 39751900 DOI: 10.1007/s11011-024-01517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis. Adult C57BL/6 mice were exposed to circadian disruption (CD) prior to rmTBI insults. The neurobehavioral changes were assessed by rotarod, open-field test (OFT), elevated zero maze (EZM), forced-swim test (FST), Y-maze, and novel object recognition test (NORT). The inflammatory, neuronal, and synaptic markers in the frontal cortex and hippocampus, and cecal gut microbiota phylum were examined using RT-PCR and western blotting. The goblet cells, tight junction proteins (occludin and zona occludens-1), and short-chain fatty acids (SCFAs) were analyzed using immunohistochemistry, alcian-blue PAS staining, and 1H-NMR methods. Mice exposed to CD + rmTBI (CDR) displayed robust neurological dysfunctions in rotarod, anxiety- and depressive-like behavior in EZM and FST, and cognition deficits in Y-maze and NORT. Administration of CL (1 and 3 mg/kg) mitigated the above neurobehavioral abnormalities. CL treatment also normalized the levels of inflammatory markers (NF-κB, IL-6, IL-18, and TNF-α), brain-derived neurotrophic factor, and neuronal/synaptic proteins (doublecortin, synaptophysin, and postsynaptic density protein-95). Increased goblet cells and tight junction proteins in the colon and SCFAs in the cecal samples indicated improved gut integrity following CL treatment. The results indicate that CL mitigated CDR-inflicted neurological abnormalities in mice by modulating neuroinflammation and gut-brain interactions.
Collapse
Affiliation(s)
- Mohd Rabi Bazaz
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
17
|
Borrego-Ruiz A, Borrego JJ. Human gut microbiome, diet, and mental disorders. Int Microbiol 2025; 28:1-15. [PMID: 38561477 PMCID: PMC11775079 DOI: 10.1007/s10123-024-00518-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Diet is one of the most important external factor shaping the composition and metabolic activities of the gut microbiome. The gut microbiome plays a crucial role in host health, including immune system development, nutrients metabolism, and the synthesis of bioactive molecules. In addition, the gut microbiome has been described as critical for the development of several mental disorders. Nutritional psychiatry is an emerging field of research that may provide a link between diet, microbial function, and brain health. In this study, we have reviewed the influence of different diet types, such as Western, Mediterranean, vegetarian, and ketogenic, on the gut microbiota composition and function, and their implication in various neuropsychiatric and psychological disorders.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga. Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina BIONAND, Málaga, Spain.
| |
Collapse
|
18
|
Patel RA, Panche AN, Harke SN. Gut microbiome-gut brain axis-depression: interconnection. World J Biol Psychiatry 2025; 26:1-36. [PMID: 39713871 DOI: 10.1080/15622975.2024.2436854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system. METHODS Dysbiosis, an imbalance in the gut microbiome, disrupts this axis and worsens depressive symptoms. Factors like diet, antibiotics, and lifestyle can cause this imbalance, leading to changes in microbial composition, metabolism, and immune responses. This imbalance can induce inflammation, disrupt neurotransmitter regulation, and affect hormonal and epigenetic processes, all linked to depression. RESULTS Microbial metabolites, such as short-chain fatty acids and neurotransmitters, are key to gut-brain communication, influencing immune regulation and mood. The altered production of these metabolites is associated with depression. While progress has been made in understanding the gut-brain axis, more research is needed to clarify causative relationships and develop new treatments. The emerging field of psychobiotics and microbiome-targeted therapies shows promise for innovative depression treatments by harnessing the gut microbiome's potential. CONCLUSIONS Epigenetic mechanisms, including DNA methylation and histone modifications, are crucial in how the gut microbiota impacts mental health. Understanding these mechanisms offers new prospects for preventing and treating depression through the gut-brain axis.
Collapse
Affiliation(s)
- Ruhina Afroz Patel
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Archana N Panche
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| |
Collapse
|
19
|
Che Mohd Nassir CMN, Che Ramli MD, Mohamad Ghazali M, Jaffer U, Abdul Hamid H, Mehat MZ, Hein ZM. The Microbiota-Gut-Brain Axis: Key Mechanisms Driving Glymphopathy and Cerebral Small Vessel Disease. Life (Basel) 2024; 15:3. [PMID: 39859943 PMCID: PMC11766513 DOI: 10.3390/life15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
The human microbiota constitute a very complex ecosystem of microorganisms inhabiting both the inside and outside of our bodies, in which health maintenance and disease modification are the main regulatory features. The recent explosion of microbiome research has begun to detail its important role in neurological health, particularly concerning cerebral small vessel disease (CSVD), a disorder associated with cognitive decline and vascular dementia. This narrative review represents state-of-the-art knowledge of the intimate, complex interplay between microbiota and brain health through the gut-brain axis (GBA) and the emerging role of glymphatic system dysfunction (glymphopathy) and circulating cell-derived microparticles (MPs) as mediators of these interactions. We discuss how microbial dysbiosis promotes neuroinflammation, vascular dysfunction, and impaired waste clearance in the brain, which are critical factors in the pathogenesis of CSVD. Further, we discuss lifestyle factors that shape the composition and functionality of the microbiota, focusing on sleep as a modifiable risk factor in neurological disorders. This narrative review presents recent microbiome research from a neuroscientific and vascular perspective to establish future therapeutic avenues in targeting the microbiota to improve brain health and reduce the burden of CSVD.
Collapse
Affiliation(s)
- Che Mohd Nasril Che Mohd Nassir
- Department of Anatomy and Physiology, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia; (C.M.N.C.M.N.); (M.M.G.)
| | - Muhammad Danial Che Ramli
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam 40150, Selangor, Malaysia;
| | - Mazira Mohamad Ghazali
- Department of Anatomy and Physiology, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia; (C.M.N.C.M.N.); (M.M.G.)
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Usman Jaffer
- Kulliyyah of Islamic Revealed Knowledge and Human Sciences, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia;
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.A.H.); (M.Z.M.)
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.A.H.); (M.Z.M.)
| | - Zaw Myo Hein
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
20
|
Al-Beltagi M. Nutritional management and autism spectrum disorder: A systematic review. World J Clin Pediatr 2024; 13:99649. [PMID: 39654662 PMCID: PMC11572612 DOI: 10.5409/wjcp.v13.i4.99649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) presents unique challenges related to feeding and nutritional management. Children with ASD often experience feeding difficulties, including food selectivity, refusal, and gastrointestinal issues. Various interventions have been explored to address these challenges, including dietary modifications, vitamin supplementation, feeding therapy, and behavioral interventions. AIM To provide a comprehensive overview of the current evidence on nutritional management in ASD. We examine the effectiveness of dietary interventions, vitamin supplements, feeding therapy, behavioral interventions, and mealtime practices in addressing the feeding challenges and nutritional needs of children with ASD. METHODS We systematically searched relevant literature up to June 2024, using databases such as PubMed, PsycINFO, and Scopus. Studies were included if they investigated dietary interventions, nutritional supplements, or behavioral strategies to improve feeding behaviors in children with ASD. We assessed the quality of the studies and synthesized findings on the impact of various interventions on feeding difficulties and nutritional outcomes. Data extraction focused on intervention types, study designs, participant characteristics, outcomes measured, and intervention effectiveness. RESULTS The review identified 316 studies that met the inclusion criteria. The evidence indicates that while dietary interventions and nutritional supplements may offer benefits in managing specific symptoms or deficiencies, the effectiveness of these approaches varies. Feeding therapy and behavioral interventions, including gradual exposure and positive reinforcement, promise to improve food acceptance and mealtime behaviors. The findings also highlight the importance of creating supportive mealtime environments tailored to the sensory and behavioral needs of children with ASD. CONCLUSION Nutritional management for children with ASD requires a multifaceted approach that includes dietary modifications, supplementation, feeding therapy, and behavioral strategies. The review underscores the need for personalized interventions and further research to refine treatment protocols and improve outcomes. Collaborative efforts among healthcare providers, educators, and families are essential to optimize this population's nutritional health and feeding practices. Enhancing our understanding of intervention sustainability and long-term outcomes is essential for optimizing care and improving the quality of life for children with ASD and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
21
|
Sugden SG, Merlo G. Using lifestyle interventions and the gut microbiota to improve PTSD symptoms. Front Neurosci 2024; 18:1488841. [PMID: 39691626 PMCID: PMC11649671 DOI: 10.3389/fnins.2024.1488841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 12/19/2024] Open
Abstract
Posttraumatic stress disorder is part of a spectrum of psychological symptoms that are frequently linked with a single defining traumatic experience. Symptoms can vary over the lifespan in intensity based on additional life stressors, individual stability, and connectedness to purpose. Historically, treatment has centered on psychotropic agents and individual and group therapy to increase the individual's window of tolerance, improve emotional dysregulation, and strengthen relationships. Unfortunately, there is a growing segment of individuals with posttraumatic stress disorder who do not respond to these traditional treatments, perhaps because they do not address the multidirectional relationships between chronic cortisol, changes in the brain gut microbiota system, neuroinflammation, and posttraumatic symptoms. We will review the literature and explain how trauma impacts the neuroendocrine and neuroimmunology within the brain, how these processes influence the brain gut microbiota system, and provide a mechanism for the development of posttraumatic stress disorder symptoms. Finally, we will show how the lifestyle psychiatry model provides symptom amelioration.
Collapse
Affiliation(s)
- Steven G. Sugden
- Department of Psychiatry, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Gia Merlo
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
22
|
Burns ME, Contini FM, Michaud JM, Waring CT, Price JC, McFarland AT, Burke SG, Murphy CA, Guindon GE, Krevosky MK, Seggio JA. Obesity alters circadian and behavioral responses to constant light in male mice. Physiol Behav 2024; 287:114711. [PMID: 39395627 DOI: 10.1016/j.physbeh.2024.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Exposure to artificial light during the night is known to promote disruption to the biological clock, which can lead to impaired mood and metabolism. Metabolic hormone secretion is modulated by the circadian pacemaker and recent research has shown that hormones such as insulin and leptin can also directly affect behavioral outcomes and the circadian clock. In turn, obesity itself is known to modulate the circadian rhythm and alter emotionality. This study investigated the behavioral and metabolic effects of constant light exposure in two models of obesity - a leptin null mutant (OB) and diet-induced obesity via high-fat diet. For both experiments, mice were placed into either a standard Light:Dark cycle (LD) or constant light (LL) and their circadian locomotor rhythms were continuously monitored. After 10 weeks of exposure to their respective lighting conditions, all mice were subjected to an open field assay to assess their explorative behaviors. Their metabolic hormone levels and inflammation levels were also measured. Behaviorally, exposure to constant light led to increased period lengthening and open field activity in the lean mice compared to both obesity models. Metabolically, LL led to increased cytokine levels and poorer metabolic outcomes in both lean and obese mice, sometimes exacerbating the metabolic issues in the obese mice, independent of weight gain. This study illustrates that LL can produce altered behavioral and physiological outcomes, even in lean mice. These results also indicate that obesity induced by different reasons can lead to shortened circadian rhythmicity and exploratory activity when exposed to chronic light.
Collapse
Affiliation(s)
- Meredith E Burns
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Fernanda Medeiros Contini
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Harvard University Medical School, Neurobiology Department
| | - Julie M Michaud
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Caitlin T Waring
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Colorado State University, College of Veterinary Medicine & Biomedical Sciences
| | - John C Price
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Alexander T McFarland
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Georgia Southern University, Department of Biology
| | - Samantha G Burke
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Cummings School of Veterinary Medicine at Tufts University
| | - Cloey A Murphy
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Grace E Guindon
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Merideth K Krevosky
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Joseph A Seggio
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA.
| |
Collapse
|
23
|
Boldyreva LV, Evtushenko AA, Lvova MN, Morozova KN, Kiseleva EV. Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int J Mol Sci 2024; 25:12125. [PMID: 39596193 PMCID: PMC11594934 DOI: 10.3390/ijms252212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The gut-brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating complex bidirectional regulation and influencing numerous critical processes within the body. Over the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel disease (IBD). Beyond its well-documented effects on the GBA-enteric nervous system and vagus nerve dysregulation, and gut microbiota misbalance-IBD also leads to impairments in the metabolic and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the GBA; however, they are crucial for the nervous system cells' functioning. This review summarizes the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these processes in the GBA may help find new therapeutic targets and develop systemic approaches to improve the quality of life in IBD patients.
Collapse
Affiliation(s)
- Lidiya V. Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Anna A. Evtushenko
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Maria N. Lvova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Ksenia N. Morozova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| |
Collapse
|
24
|
Corbett GA, Moore R, Feehily C, Killeen SL, O'Brien E, Van Sinderen D, Matthews E, O'Flaherty R, Rudd PM, Saldova R, Walsh CJ, Lawton EM, MacIntyre DA, Corcoran S, Cotter PD, McAuliffe FM. Dietary amino acids, macronutrients, vaginal birth, and breastfeeding are associated with the vaginal microbiome in early pregnancy. Microbiol Spectr 2024; 12:e0113024. [PMID: 39365058 PMCID: PMC11537119 DOI: 10.1128/spectrum.01130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/29/2024] [Indexed: 10/05/2024] Open
Abstract
The vaginal microbiome is a key player in the etiology of spontaneous preterm birth. This study aimed to illustrate maternal environmental factors associated with vaginal microbiota composition and function in pregnancy. Women in healthy pregnancy had vaginal microbial sampling from the posterior vaginal fornix performed at 16 weeks gestation. After shotgun metagenomic sequencing, heatmaps of relative abundance data were generated. Community state type (CST) was assigned, and alpha diversity was calculated. Demography, obstetric history, well-being, exercise, and diet using food frequency questionnaires were collected and compared against microbial parameters. A total of 119 pregnant participants had vaginal metagenomic sequencing performed. Factors with strongest association with beta diversity were dietary lysine (adj-R2 0.113, P = 0.002), valine (adj-R2 0.096, P = 0.004), leucine (adj-R2 0.086, P = 0.003), and phenylalanine (adj-R2 0.085, P = 0.005, Fig. 2D). Previous vaginal delivery and breastfeeding were associated with vaginal beta diversity (adj-R2 0.048, P = 0.003; adj-R2 0.045, P = 0.004), accounting for 8.5% of taxonomy variation on redundancy analysis. Dietary fat, starch, and maltose were positively correlated with alpha diversity (fat +0.002 SD/g, P = 0.025; starch +0.002 SD/g, P = 0.043; maltose +0.440 SD/g, P = 0.013), particularly in secretor-positive women. Functional signature was associated with CST, maternal smoking, and dietary phenylalanine, accounting for 8.9%-11% of the variation in vaginal microbiome functional signature. Dietary amino acids, previous vaginal delivery, and breastfeeding history were associated with vaginal beta diversity. Functional signature of the vaginal microbiome differed with community state type, smoking, dietary phenylalanine, and vitamin K. Increased alpha diversity correlated with dietary fat and starch. These data provide a novel snapshot into the associations between maternal environment, nutrition, and the vaginal microbiome. IMPORTANCE This secondary analysis of the MicrobeMom randomized controlled trial reveals that dietary amino acids, macronutrients, previous vaginal birth, and breastfeeding have the strongest associations with vaginal taxonomy in early pregnancy. Function of the vaginal niche is associated mainly by species composition, but smoking, vitamin K, and phenylalanine also play a role. These associations provide an intriguing and novel insight into the association between host factors and diet on the vaginal microbiome in pregnancy and highlight the need for further investigation into the complex interactions between the diet, human gut, and vaginal microbiome.
Collapse
Affiliation(s)
- Gillian A. Corbett
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, Dublin, Ireland
- National Maternity Hospital, Dublin 2, Ireland
| | - Rebecca Moore
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Conor Feehily
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Louise Killeen
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Eileen O'Brien
- School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin, Ireland
| | - Douwe Van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elizabeth Matthews
- GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland
| | - Roisin O'Flaherty
- GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Pauline M. Rudd
- GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland
- Bioprocessing Technology Institute, AStar, Singapore, Singapore
| | - Radka Saldova
- GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland
- College of Health and Agricultural Science (CHAS), UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Calum J. Walsh
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- The Centre for Pathogen Genomics, Department of Microbiology & Immunology, Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | | | - David A. MacIntyre
- Division of the Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion, and Reproduction, March of Dimes Prematurity Research Centre, Imperial College London, London, United Kingdom
| | - Siobhan Corcoran
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, Dublin, Ireland
- National Maternity Hospital, Dublin 2, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, Dublin, Ireland
- National Maternity Hospital, Dublin 2, Ireland
| |
Collapse
|
25
|
Coppola S, Nocerino R, Oglio F, Golia P, Falco MC, Riccio MP, Carucci L, Rea T, Simeone S, Garotti R, Marani N, Bravaccio C, Canani RB. Adverse food reactions and alterations in nutritional status in children with autism spectrum disorders: results of the NAFRA project. Ital J Pediatr 2024; 50:228. [PMID: 39497088 PMCID: PMC11533279 DOI: 10.1186/s13052-024-01794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND To assess the adverse food reactions (AFR) prevalence in children with autism spectrum disorder (ASD) and in non-ASD healthy controls (NASD). Nutritional status alterations, food selectivity and adherence to Mediterranean Diet (MD) were also evaluated. METHODS The NAFRA (Nutritional status and Adverse Food Reactions in children with Autism Spectrum Disorder) project was an observational, case-control, comparative study conducted at a tertriary center for pediatrics involving Caucasian patients of both sexes, aged 18 months-7 years, with a diagnosis of ASD, and matched NASD controls. RESULTS From October 2017 to December 2023, 100 ASD patients [79 male, mean (± SD) age 49.9 months (± 15.4)] and 100 NASD controls [75 male, mean (± SD) age 49.8 months (± 17.7)] were enrolled at the Pediatric Section of the Department of Translational Medical Science of the University of Naples Federico II. A significantly higher prevalence of AFR was observed in ASD patients if compared with NASD (16% vs. 2%, p = 0.001), mainly due to a higher prevalence of food allergy (7% vs. 1%, p = 0.03). A significantly higher prevalence of food intolerance and celiac disease was also observed in ASD children. The rate of obesity was significantly higher in ASD patients compared to NASD. Food selectivity and low MD-adherence were more frequent in ASD children (26% vs. 2%, p < 0.0001 and 28% vs. 16%, p = 0.041, respectively). CONCLUSIONS The high rate of AFR, obesity and unhealthy dietary habits observed in ASD children strongly suggest the importance of a multidisciplinary approach, providing early diagnosis of AFR and appropriate nutritional management to improve core and associated ASD-related conditions. TRIAL REGISTRATION The NAFRA Project was registered on https://clinicaltrials.gov/ with the identifier NCT04719923. Registered 18 January 2021. https://clinicaltrials.gov/study/NCT04719923 .
Collapse
Affiliation(s)
- Serena Coppola
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini 5, Naples, 80131, Italy
- CEINGE-Advanced Biotechnologies, ImmunoNutritionLab, University of Naples "Federico II", Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini 5, Naples, 80131, Italy.
- CEINGE-Advanced Biotechnologies, ImmunoNutritionLab, University of Naples "Federico II", Naples, Italy.
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini 5, Naples, 80131, Italy
- CEINGE-Advanced Biotechnologies, ImmunoNutritionLab, University of Naples "Federico II", Naples, Italy
| | - Paola Golia
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini 5, Naples, 80131, Italy
| | - Maria Candida Falco
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini 5, Naples, 80131, Italy
| | - Maria Pia Riccio
- Department of Maternal and Child Health, Child and Adolescent Psychiatry, AOU "Federico II", Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini 5, Naples, 80131, Italy
- CEINGE-Advanced Biotechnologies, ImmunoNutritionLab, University of Naples "Federico II", Naples, Italy
| | - Teresa Rea
- Department of Public Health, University of Federico II, Naples, Italy
| | - Silvio Simeone
- Department of Clinical and Experimental Medicine, University of Catanzaro Magna Graecia, Catanzaro, Italy
| | - Raffaele Garotti
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini 5, Naples, 80131, Italy
| | - Nadia Marani
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini 5, Naples, 80131, Italy
| | - Carmela Bravaccio
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini 5, Naples, 80131, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples "Federico II", Via S. Pansini 5, Naples, 80131, Italy
- CEINGE-Advanced Biotechnologies, ImmunoNutritionLab, University of Naples "Federico II", Naples, Italy
- Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
26
|
Stevens AJ, Heiwari TM, Rich FJ, Bradley HA, Gur TL, Galley JD, Kennedy MA, Dixon LA, Mulder RT, Rucklidge JJ. Randomised control trial indicates micronutrient supplementation may support a more robust maternal microbiome for women with antenatal depression during pregnancy. Clin Nutr 2024; 43:120-132. [PMID: 39361984 DOI: 10.1016/j.clnu.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND AND AIMS We investigated the effects of high dose dietary micronutrient supplementation or placebo on the human gut microbiome in pregnant women who had moderate symptoms of antenatal depression. There is a significant absence of well-controlled clinical studies that have investigated the dynamic changes of the microbiome during pregnancy and the relationship among diet, microbiome and antenatal depression. This research is among the first to provide an insight into this area of research. METHODS This 12 - week study followed a standard double blinded randomised placebo-controlled trial (RCT) design with either high dose micronutrients or active placebo. Matching stool microbiome samples and mood data were obtained at baseline and post-treatment, from participants between 12 and 24 weeks gestation. Stool microbiome samples from 33 participants (17 in the placebo and 16 in the treatment group) were assessed using 16s rRNA sequencing. Data preparation and statistical analysis was predominantly performed using the QIIME2 bioinformatic software tools for 16s rRNA analysis. RESULTS Microbiome community structure became increasingly heterogenous with decreased diversity during the course of the study, which was represented by significant changes in alpha and beta diversity. This effect appeared to be mitigated by micronutrient administration. There were less substantial changes at the genus level, where Coprococcus decreased in relative abundance in response to micronutrient administration. We also observed that a higher abundance of Coprococcus and higher alpha diversity correlated with higher antenatal depression scores. CONCLUSIONS Micronutrient treatment appeared to support a more diverse (alpha diversity) and stable (beta diversity) microbiome during pregnancy. This may aid in maintaining a more resilient or adaptable microbial community, which would help protect against decreases or fluctuations that are observed during pregnancy.
Collapse
Affiliation(s)
- Aaron J Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand.
| | - Thalia M Heiwari
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand
| | - Fenella J Rich
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand
| | - Hayley A Bradley
- School of Psychology, Speech and Hearing, University of Canterbury, New Zealand
| | - Tamar L Gur
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jeffrey D Galley
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, 8011, New Zealand
| | - Lesley A Dixon
- New Zealand College of Midwives, Christchurch, New Zealand
| | - Roger T Mulder
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand; Canterbury District Health Board, Christchurch, New Zealand
| | - Julia J Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, New Zealand
| |
Collapse
|
27
|
Ross FC, Patangia D, Grimaud G, Lavelle A, Dempsey EM, Ross RP, Stanton C. The interplay between diet and the gut microbiome: implications for health and disease. Nat Rev Microbiol 2024; 22:671-686. [PMID: 39009882 DOI: 10.1038/s41579-024-01068-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Diet has a pivotal role in shaping the composition, function and diversity of the gut microbiome, with various diets having a profound impact on the stability, functionality and diversity of the microbial community within our gut. Understanding the profound impact of varied diets on the microbiome is crucial, as it will enable us not only to make well-informed dietary decisions for better metabolic and intestinal health, but also to prevent and slow the onset of specific diet-related diseases that stem from suboptimal diets. In this Review, we explore how geographical location affects the gut microbiome and how different diets shape its composition and function. We examine the mechanisms by which whole dietary regimes, such as the Mediterranean diet, high-fibre diet, plant-based diet, high-protein diet, ketogenic diet and Western diet, influence the gut microbiome. Furthermore, we underscore the need for exhaustive studies to better understand the causal relationship between diet, host and microorganisms for the development of precision nutrition and microbiome-based therapies.
Collapse
Affiliation(s)
- Fiona C Ross
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Dhrati Patangia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Ghjuvan Grimaud
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
28
|
Raudenská M, Bugajová M, Kalfeřt D, Plzák J, Šubrt A, Tesařová P, Masařík M. The interplay between microbiome and host factors in pathogenesis and therapy of head and neck cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189216. [PMID: 39542383 DOI: 10.1016/j.bbcan.2024.189216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Heterogeneous cancers that lack strong driver mutations with high penetrance, such as head and neck squamous cell carcinoma (HNSCC), present unique challenges to understanding their aetiology due to the complex interactions between genetics and environmental factors. The interplay between lifestyle factors (such as poor oral hygiene, smoking, or alcohol consumption), the oral and gut microbiome, and host genetics appears particularly important in the context of HNSCC. The complex interplay between the gut microbiota and cancer treatment outcomes has also received increasing attention in recent years. This review article describes the bidirectional communication between the host and the oral/gut microbiome, focusing on microbiome-derived metabolites and their impact on systemic immune responses and the modulation of the tumour microenvironment. In addition, we review the role of host lifestyle factors in shaping the composition of the oral/gut microbiota and its impact on cancer progression and therapy. Overall, this review highlights the rationality of considering the oral/gut microbiota as a critical determinant of cancer therapy outcomes and points to therapeutic opportunities offered by targeting the oral/gut microbiota in the management of HNSCC.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, 62500 Brno, Czech Republic
| | - Maria Bugajová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - David Kalfeřt
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, First Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Jan Plzák
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, First Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Adam Šubrt
- Department of Oncology, Institute of Radiation Oncology, First Faculty of Medicine, Charles University and Bulovka University Hospital, Prague, Czech Republic
| | - Petra Tesařová
- Department of Oncology, Institute of Radiation Oncology, First Faculty of Medicine, Charles University and Bulovka University Hospital, Prague, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Institute of Pathophysiology, First Faculty of Medicine, Charles University, U Nemocnice 5, CZ-128 53 Prague, Czech Republic.
| |
Collapse
|
29
|
Rosales TKO, da Silva FFA, Bernardes ES, Paulo Fabi J. Plant-derived polyphenolic compounds: nanodelivery through polysaccharide-based systems to improve the biological properties. Crit Rev Food Sci Nutr 2024; 64:11894-11918. [PMID: 37585699 DOI: 10.1080/10408398.2023.2245038] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Plant-derived polyphenols are naturally occurring compounds widely distributed in plants. They have received greater attention in the food and pharmaceutical industries due to their potential health benefits, reducing the risk of some chronic diseases due to their antioxidant, anti-inflammatory, anticancer, cardioprotective, and neuro-action properties. Polyphenolic compounds orally administered can be used as adjuvants in several treatments but with restricted uses due to chemical instability. The review discusses the different structural compositions of polyphenols and their influence on chemical stability. Despite the potential and wide applications, there is a need to improve the delivery of polyphenolics to target the human intestine without massive chemical modifications. Oral administration of polyphenols is unfeasible due to instability, low bioaccessibility, and limited bioavailability. Nano-delivery systems based on polysaccharides (starch, pectin, chitosan, and cellulose) have been identified as a viable option for oral ingestion, potentiate biological effects, and direct-controlled delivery in specific tissues. The time and dose can be individualized for specific diseases, such as intestinal cancer. This review will address the mechanisms by which polysaccharides-based nanostructured systems can protect against degradation and enhance intestinal permeation, oral bioavailability, and the potential application of polysaccharides as nanocarriers for the controlled and targeted delivery of polyphenolic compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Instituto de Pesquisa Energéticas e Nucleares - IPEN, São Paulo, SP, Brazil
| | | | | | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
30
|
Ribichini E, Scalese G, Mocci C, Severi C. Gut-Brain Axis and Psychopathology: Exploring the Impact of Diet with a Focus on the Low-FODMAP Approach. Nutrients 2024; 16:3515. [PMID: 39458509 PMCID: PMC11510627 DOI: 10.3390/nu16203515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The gut-brain axis (GBA) is a bidirectional communication network connecting the central nervous system with the gastrointestinal (GI) tract, influencing both mental and physical health. Recent research has underscored the significant role of diet in modulating this axis, with attention to how specific dietary patterns can impact anxiety and depression, particularly when linked to disorders of gut-brain interaction (DGBIs), like intestinal bowel syndrome (IBS). AIMS AND METHODS This narrative review examines the effects of specific diet regimens on the GBA and its potential role in managing psychopathology, focusing on anxiety and depression, IBS, and the low-FODMAP diet. We conducted a search on PubMed and MEDLINE by combining the following key terms: "Gut-Brain Axis", "Irritable Bowel Syndrome", "Low FODMAP diet", "Mediterranean Diet", "Psychopathology", "Anxiety and Depression", and "Gut Microbiota". We applied the following filters: "Clinical Trials", "Randomized Controlled Trials", "Reviews", "Meta-Analyses", and "Systematic Reviews". In total, 59 papers were included. RESULTS Low-FODMAP diet, originally developed to alleviate GI symptoms in IBS, may also positively influence mental health by modulating the GBA and improving the gut microbiota (GM) composition. New insights suggest that combining the low-FODMAP diet with the Mediterranean diet could offer a synergistic effect, enhancing both GI and psychological therapeutic outcomes. CONCLUSIONS Understanding the complex interactions between diet, the GM, and mental health opens new avenues for holistic approaches to managing psychopathology, particularly when linked to GI symptoms.
Collapse
Affiliation(s)
- Emanuela Ribichini
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.S.); (C.M.); (C.S.)
| | | | | | | |
Collapse
|
31
|
Keshavarzian A, Sisodia SS. Gut microbiota dysbiosis and neurologic diseases: New Horizon with potential diagnostic and therapeutic impact. Neurotherapeutics 2024; 21:e00478. [PMID: 39488472 PMCID: PMC11585866 DOI: 10.1016/j.neurot.2024.e00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024] Open
|
32
|
Sugden SG, Merlo G. What do Climate Change, Nutrition, and the Environment Have to do With Mental Health? Am J Lifestyle Med 2024:15598276241280245. [PMID: 39554939 PMCID: PMC11562465 DOI: 10.1177/15598276241280245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 11/19/2024] Open
Abstract
Climate change is becoming the most significant global challenge and must be addressed on a global scale. At the time that this article is being written, the planetary heat in 2023 was the hottest on record. Similarly, the World Health Organization reports that 99% of the world's population lives in regions of unhealthy air pollution. Similarly, depression has become one of the leading causes of global mental and physical disabilities, and the impact of depression is predicted to only worsen over the next 25 years. It is interesting to note that climate experts often overlook the adoption of nutrition via a whole plant-based diet as a solution to both mental illness and climate change. In this review, we will touch upon the role of nutrition in gut microbiota and mental health, the impact diet has on greenhouse gases, the role of ultra-processed food, and environmental factors such as air pollution and increasing planetary heat and their growing impacts on mental health. In the end, the promotion of plant-based foods has the potential to improve personal mental and physical health while improving planetary health.
Collapse
Affiliation(s)
- Steven G. Sugden
- Department of Psychiatry, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT, USA (SGS)
| | - Gia Merlo
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA (GM)
| |
Collapse
|
33
|
Ross FC, Mayer DE, Horn J, Cryan JF, Del Rio D, Randolph E, Gill CIR, Gupta A, Ross RP, Stanton C, Mayer EA. Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: a role for gut microbiota? Nutr Neurosci 2024; 27:1058-1076. [PMID: 38287652 DOI: 10.1080/1028415x.2023.2298098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Many epidemiological studies have shown the beneficial effects of a largely plant-based diet, and the strong association between the consumption of a Mediterranean-type diet with healthy aging including a lower risk of cognitive decline. The Mediterranean diet is characterized by a high intake of olive oil, fruits and vegetables and is rich in dietary fiber and polyphenols - both of which have been postulated to act as important mediators of these benefits. Polyphenols are large molecules produced by plants to protect them from environmental threats and injury. When ingested by humans, as little as 5% of these molecules are absorbed in the small intestine with the majority metabolized by the gut microbiota into absorbable simple phenolic compounds. Flavan-3-ols, a type of flavonoid, contained in grapes, berries, pome fruits, tea, and cocoa have been associated with many beneficial effects on several risk factors for cardiovascular disease, cognitive function and brain regions involved in memory formation. Both preclinical and clinical studies suggest that these brain and heart benefits can be attributed to endothelial vascular effects and anti-inflammatory properties among others. More recently the gut microbiota has emerged as a potential modulator of the aging brain and intriguingly polyphenols have been shown to alter microbiota composition and be metabolized by different microbial species. However, there is a need for well controlled studies in large populations to identify predictors of response, particularly given the vast inter-individual variation of human gut microbiota.
Collapse
Affiliation(s)
- F C Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - D E Mayer
- Institute of Human Nutrition, Columbia University, New York, USA
| | - J Horn
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - J F Cryan
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Department Anatomy & Neuroscience, University College Cork, Co. Cork, Ireland
| | - D Del Rio
- Department of Food and Drugs, University of Parma, Parma, Italy
| | - E Randolph
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - C I R Gill
- Nutrition Innovation Centre for Food and Health, Northern Ireland, UK
| | - A Gupta
- Division of Digestive Diseases, UCLA, Los Angeles, USA
- Goodman Luskin Microbiome Center at UCLA, Los Angeles, CA, USA
| | - R P Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - C Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - E A Mayer
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
- Goodman Luskin Microbiome Center at UCLA, Los Angeles, CA, USA
| |
Collapse
|
34
|
Sugden SG, Merlo G, Manger S. Strengthening Neuroplasticity in Substance Use Recovery Through Lifestyle Intervention. Am J Lifestyle Med 2024; 18:648-656. [PMID: 39309323 PMCID: PMC11412380 DOI: 10.1177/15598276241242016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
The incidence of substance use and behavioral addictions continues to increase throughout the world. The Global Burden of Disease Study shows a growing impact in disability-adjusted life years due to substance use. Substance use impacts families, communities, health care, and legal systems; yet, the vast majority of individuals with substance use disorders do not seek treatment. Within the United States, new legislation has attempted to increase the availability of buprenorphine, but the impact of substance use continues. Although medications and group support therapy have been the mainstay of treatment for substance use, lifestyle medicine offers a valuable adjunct therapy that may help strengthen substance use recovery through healthy neuroplastic changes.
Collapse
Affiliation(s)
- Steven G Sugden
- Huntsman Mental Health Institute, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT, USA (SS)
| | - Gia Merlo
- Grossman School of Medicine, New York University, Garwood, NJ, USA (GM)
| | - Sam Manger
- Academic Lead, Lifestyle Medicine, James Cook University, Australia
| |
Collapse
|
35
|
Molska M, Mruczyk K, Cisek-Woźniak A, Prokopowicz W, Szydełko P, Jakuszewska Z, Marzec K, Trocholepsza M. The Influence of Intestinal Microbiota on BDNF Levels. Nutrients 2024; 16:2891. [PMID: 39275207 PMCID: PMC11397622 DOI: 10.3390/nu16172891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The regulation of neurogenesis, the complex process of producing and differentiating new brain tissue cells, is influenced by a complex interaction of internal and external factors. Over the past decade, extensive research has been conducted on neurotrophins and their key role in adult neurogenesis, as well as their impact on diseases such as depression. Among neurotrophins, the brain-derived neurotrophic factor (BDNF) has been the subject of comprehensive studies on adult neurogenesis, and scientific evidence supports its necessity for neurogenesis in the subventricular zone of the hippocampus. A novel area of research is the emerging role of gut microbiota as a significant contributor to neurogenesis and neurotrophin production. Studies have shown that reduced BDNF levels can lead to mood disorders, which are observed in intestinal dysbiosis, characterized by an imbalance in the composition and quantity of the intestinal microbiota. There is evidence in the literature that there is a link between brain function and gut microbiota. Physical activity, and especially the regularity and intensity of exercise, is important in relation to the level of BDNF and the intestinal microbiota. Probiotics, prebiotics and physical activity may have a positive effect on the intestinal microbiota, and therefore also on the level of the brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Marta Molska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Kinga Mruczyk
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Angelika Cisek-Woźniak
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Wojciech Prokopowicz
- GSP Clinic Limited Liability Company, Kostrzyńska Street 12, 66-400 Gorzow Wielkopolski, Poland;
| | - Patrycja Szydełko
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Zuzanna Jakuszewska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Karolina Marzec
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Martyna Trocholepsza
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| |
Collapse
|
36
|
Gouriou E, Schneider C. Brain and muscles magnetic stimulation in a drug-free case of Parkinson's disease: Motor improvements concomitant to neuroplasticty. Heliyon 2024; 10:e35563. [PMID: 39170374 PMCID: PMC11336729 DOI: 10.1016/j.heliyon.2024.e35563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Noninvasive stimulation of the nervous system is of growing interest in Parkinson's disease (PD) to slow-down motor decline and decrease medication and its side-effects. Repetitive transcranial magnetic stimulation (rTMS) used in PD to modulate the excitability of the primary motor cortex (M1) provided controversial results, in part because of interactions with medication. This warrants to administer rTMS in drug-free patients. Repetitive peripheral magnetic stimulation (rPMS of muscles) has not yet been tested in PD. Its influence on M1 plasticity (as tested by TMS, transcranial magnetic stimulation) and sensorimotor disorders in other health conditions makes it worth be explored in PD. Thus, rTMS and rPMS were tested in a drug-free woman (52 years old, PD-diagnosed 10 years ago) in four different rTMS + rPMS combinations (one week apart): sham-sham, real-real, real-sham, sham-real. rTMS was applied over M1 contralateral to the most impaired bodyside, and rPMS on muscles of the legs, trunk, and arms, bilaterally. M1 plasticity (TMS measures) and motor symptoms and function (clinical outcomes) were measured at different timepoints. The real-real session induced the largest motor improvements, with possible summation of effects between sessions, and maintenance at follow-up (80 days later). This was paralleled by changes of M1 facilitation and inhibition. This sheds a new light on the link between TMS measures of M1 plasticity and motor changes in PD and informs on the remaining potential for neuroplasticity and functional improvement after 10 years of PD with no antiparkinsonian drug. De novo patients with PD (drug-free) should be motivated to participate in future randomized clinical trials to further test the slow-down or delay of motor decline under noninvasive neurostimulation regimens, whatever the stage of the disease.
Collapse
Affiliation(s)
- Estelle Gouriou
- Noninvasive neurostimulation laboratory, Research center of CHU de Québec–Université Laval, Neuroscience Division, Quebec, Canada
- Faculty of Medicine, Université Laval, Quebec, Canada
| | - Cyril Schneider
- Noninvasive neurostimulation laboratory, Research center of CHU de Québec–Université Laval, Neuroscience Division, Quebec, Canada
- Faculty of Medicine, Université Laval, Quebec, Canada
- School of Rehabilitation Sciences, Faculty of Medicine, Université Laval, Quebec, Canada
| |
Collapse
|
37
|
Momen YS, Mishra J, Kumar N. Brain-Gut and Microbiota-Gut-Brain Communication in Type-2 Diabetes Linked Alzheimer's Disease. Nutrients 2024; 16:2558. [PMID: 39125436 PMCID: PMC11313915 DOI: 10.3390/nu16152558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
The gastrointestinal (GI) tract, home to the largest microbial population in the human body, plays a crucial role in overall health through various mechanisms. Recent advancements in research have revealed the potential implications of gut-brain and vice-versa communication mediated by gut-microbiota and their microbial products in various diseases including type-2 diabetes and Alzheimer's disease (AD). AD is the most common type of dementia where most of cases are sporadic with no clearly identified cause. However, multiple factors are implicated in the progression of sporadic AD which can be classified as non-modifiable (e.g., genetic) and modifiable (e.g. Type-2 diabetes, diet etc.). Present review focusses on key players particularly the modifiable factors such as Type-2 diabetes (T2D) and diet and their implications in microbiota-gut-brain (MGB) and brain-gut (BG) communication and cognitive functions of healthy brain and their dysfunction in Alzheimer's Disease. Special emphasis has been given on elucidation of the mechanistic aspects of the impact of diet on gut-microbiota and the implications of some of the gut-microbial products in T2D and AD pathology. For example, mechanistically, HFD induces gut dysbiosis with driven metabolites that in turn cause loss of integrity of intestinal barrier with concomitant colonic and systemic chronic low-grade inflammation, associated with obesity and T2D. HFD-induced obesity and T2D parallel neuroinflammation, deposition of Amyloid β (Aβ), and ultimately cognitive impairment. The review also provides a new perspective of the impact of diet on brain-gut and microbiota-gut-brain communication in terms of transcription factors as a commonly spoken language that may facilitates the interaction between gut and brain of obese diabetic patients who are at a higher risk of developing cognitive impairment and AD. Other commonality such as tyrosine kinase expression and functions maintaining intestinal integrity on one hand and the phagocytic clarence by migratory microglial functions in brain are also discussed. Lastly, the characterization of the key players future research that might shed lights on novel potential pharmacological target to impede AD progression are also discussed.
Collapse
Affiliation(s)
| | | | - Narendra Kumar
- Department of Pharmaceutical Sciences, ILR College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| |
Collapse
|
38
|
Talib M, Rachdi M, Papazova A, Nicolis H. The Role of Dietary Patterns and Nutritional Supplements in the Management of Mental Disorders in Children and Adolescents: An Umbrella Review of Meta-Analyses: Le rôle des habitudes alimentaires et des suppléments nutritionnels dans la prise en charge des troubles mentaux chez les enfants et les adolescents : une méta-revue de méta-analyses. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2024; 69:567-589. [PMID: 38689430 PMCID: PMC11298093 DOI: 10.1177/07067437241248070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
OBJECTIVE In recent years, the relationship between nutrition and mental health has gained considerable interest. We identified, synthesized, and appraised all meta--analyses of randomized controlled trials (RCTs) and observational studies reporting on the efficacy of dietary patterns and nutrient supplements in the prevention and treatment of mental disorders in children and adolescents. METHODS Systematic research in MEDLINE, PsycINFO, Scopus, and Cochrane Database of Systematic Reviews was completed on 8 January 2024. RESULTS Our research found 24 meta-analyses: 14 on RCTs, 8 on observational studies, and 2 combining both. Emerging evidence suggests that omega-3, in particular eicosapentaenoic acid, and Vitamin D may have adjunctive benefits in the treatment of attention deficit hyperactivity disorder (ADHD), while no evidence was found for autism spectrum disorder (ASD). Observational data also indicated that prenatal folic acid supplementation (>400 μg daily) was associated with a reduced risk of ASD in offspring. In terms of dietary habits, several meta-analyses of observational data revealed that healthy dietary patterns (rich in fruits, vegetables, and fibre, low in saturated fats) during the prenatal period, childhood, and adolescence were linked to a significantly reduced risk of internalizing disorders and externalizing disorders. Conversely, unhealthy dietary habits (high in sugars, saturated animal fats, and industrial foods, low in fruits, vegetables, and fibre) are associated with an elevated risk of these mental health issues. However, the number of available studies on dietary interventions for the treatment of depression, ASD, and ADHD was limited, and the results obtained were either nonsignificant or contradictory. CONCLUSION Our findings emphasize the need to establish clear causal relationships between dietary habits and the risk of mental illness in children and adolescents. Moreover, further investigation of the benefits observed with some nutrient supplements (such as omega-3 and vitamin D for ADHD) through larger-scale RCTs is imperative to establish more robust conclusions.
Collapse
Affiliation(s)
- Maria Talib
- Child and Adolescent Psychiatry Department, Erasme Hospital, Brussels, Belgium
- Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Majda Rachdi
- Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anna Papazova
- Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Hélène Nicolis
- Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Mental Health Service, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
39
|
Pieczyńska-Zając JM, Malinowska AM, Pruszyńska-Oszmałek E, Kołodziejski PA, Drzymała-Czyż S, Bajerska J. Effect of a high-fat high-fructose diet on the composition of the intestinal microbiota and its association with metabolic and anthropometric parameters in a letrozole-induced mouse model of polycystic ovary syndrome. Nutrition 2024; 124:112450. [PMID: 38669829 DOI: 10.1016/j.nut.2024.112450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE It has been suggested that dysbiosis of the gut microbiota is associated with the pathogenesis of Polycystic Ovary Syndrome (PCOS), and that improper diet can aggravate these changes. This study thus aimed to investigate the effects of a high-fat/high-fructose (HF/HFr) diet on the gut microbial community and their metabolites in prepubertal female mice with letrozole (LET)-induced PCOS. We also tested the correlations between the relative abundance of microbial taxa and selected PCOS parameters. RESEARCH METHODS & PROCEDURES Thirty-two C57BL/6 mice were randomly divided into four groups (n = 8) and implanted with LET or a placebo, with simultaneous administration of a HF/HFr diet or standard diet (StD) for 5 wk. The blood and intestinal contents were collected after the sacrifice. RESULTS Placebo + HF/HFr and LET + HF/HFr had significantly higher microbial alpha diversity than either group fed StD. The LET-implanted mice fed StD had a significantly higher abundance of Prevotellaceae_UCG-001 than the placebo mice fed StD. Both groups fed the HF/HFr diet had significantly lower fecal levels of short-chain fatty acids than the placebo mice fed StD, while the LET + HF/HFr animals had significantly higher concentrations of lipopolysaccharides in blood serum than either the placebo or LET mice fed StD. Opposite correlations were observed between Turicibacter and Lactobacillus and the lipid profile, CONCLUSION: HF/HFr diet had a much stronger effect on the composition of the intestinal microbiota of prepubertal mice than LET itself.
Collapse
Affiliation(s)
| | - Anna Maria Malinowska
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Poznań, Poland
| | - Paweł Antoni Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Poznań, Poland
| | | | - Joanna Bajerska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
40
|
Yao Q, Chen L, Cai Y, Li C, Wen S, Yang C, Zhang Q, Zeng Y, Zheng S, Zou J, Huang G, Zeng Q. Exploring Causal Links Between Gut Microbiota and Geriatric Syndromes: A Two-Sample Mendelian Randomization Analysis. Int J Med Sci 2024; 21:1945-1963. [PMID: 39113894 PMCID: PMC11302557 DOI: 10.7150/ijms.94335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/21/2024] [Indexed: 08/10/2024] Open
Abstract
Background: Both observational studies and clinical trials have demonstrated a link between the gut microbiota and the geriatric syndrome. Nevertheless, the exact nature of this relationship, particularly concerning causality, remains elusive. Mendelian randomization (MR) is a method of inference based on genetic variation to assess the causal relationship between an exposure and an outcome. In this study, we conducted a two-sample Mendelian randomization (TSMR) study to fully reveal the potential genetic causal effects of gut microbiota on geriatric syndromes. Methods: This study used data from genome wide association studies (GWAS) to investigate causal relationships between the gut microbiota and geriatric syndromes, including frailty, Parkinson's disease (PD), delirium, insomnia, and depression. The primary causal relationships were evaluated using the inverse-variance weighted method, MR Egger, simple mode, weighted mode and weighted median. To assess the robustness of the results, horizontal pleiotropy was examined through MR-Egger intercept and MR-presso methods. Heterogeneity was assessed using Cochran's Q test, and sensitivity was evaluated via the leave-one-out method. Results: We identified 41 probable causal relationships between gut microbiota and five geriatric syndrome-associated illnesses using the inverse-variance weighted method. Frailty showed five positive and two negative causal relationships, while PD revealed three positive and four negative causal connections. Delirium showed three positive and two negative causal relationships. Similarly, insomnia demonstrated nine positive and two negative causal connections, while depression presented nine positive and two negative causal relationships. Conclusions: Using the TSMR method and data from the public GWAS database and, we observed associations between specific microbiota groups and geriatric syndromes. These findings suggest a potential role of gut microbiota in the development of geriatric syndromes, providing valuable insights for further research into the causal relationship between gut microbiota and these syndromes.
Collapse
Affiliation(s)
- Qiuru Yao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Ling Chen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxin Cai
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Changxi Li
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuyang Wen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qi Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Yuting Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqi Zheng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
- Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Sikaroudi MK, Ebrahimi Z, Darzi M, Shateri Z, Nouri M, Masoodi M, Hejazi M, Shidfar F. Does a High Ratio of Dietary Omega-6/Omega-3 Fatty Acids Increase the Risk of Helicobacter pylori Infection? A Case-Control Study. Clin Nutr Res 2024; 13:176-185. [PMID: 39165292 PMCID: PMC11333148 DOI: 10.7762/cnr.2024.13.3.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 08/22/2024] Open
Abstract
Helicobacter pylori infection is the cause of 90% of non-cardia gastric cancer. Several dietary elements have been identified as possible contributors to H. pylori infection and its advancement through various pathways. Based on the anti-inflammatory and anti-microbial effects of a diet low in omega-6 and high in omega-3 polyunsaturated fatty acids (PUFAs), this study aimed to assess the ratio of dietary omega-6 to omega-3 PUFAs and the risk of developing H. pylori. The present case-control study was conducted on 150 cases with H. pylori infection and 302 controls. The omega-6 to omega-3 ratio was calculated using food intake information sourced from a validated food frequency questionnaire. Physical activity and demographic data were collected through a related questionnaire. The association between the odds of H. pylori infection and the omega-6 to omega-3 ratio was evaluated using logistic regression models. A p value < 0.05 was considered statistically significant. The findings revealed that individuals in the third tertile had significantly higher odds of H. pylori (odds ratio [OR], 2.10; 95% confidence interval [CI], 1.30-3.40) in the crude model. Furthermore, even after adjusting the potential confounders including sex, age, body mass index, physical activity, energy intake, alcohol, and smoking status, this association remained significant (fully adjusted model: OR, 2.00; 95% CI, 1.17-3.34). Our study revealed a higher ratio of omega-6 to omega-3 was related to a higher likelihood of H. pylori infection. Therefore, it is advisable to maintain a balanced intake of PUFAs in the diet.
Collapse
Affiliation(s)
- Masoumeh Khalighi Sikaroudi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 141556117, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Zohreh Ebrahimi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Melika Darzi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Zainab Shateri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Mehran Nouri
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Mohsen Masoodi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Mahdi Hejazi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Nutritional Sciences Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
42
|
Ramkumar D, Marty A, Ramkumar J, Rosencranz H, Vedantham R, Goldman M, Meyer E, Steinmetz J, Weckle A, Bloedorn K, Rosier C. Food for thought: Making the case for food produced via regenerative agriculture in the battle against non-communicable chronic diseases (NCDs). One Health 2024; 18:100734. [PMID: 38711478 PMCID: PMC11070632 DOI: 10.1016/j.onehlt.2024.100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Non-communicable diseases (NCDs) pose a global health challenge, leading to substantial morbidity, mortality, and economic strain. Our review underscores the escalating incidence of NCDs worldwide and highlights the potential of regenerative agriculture (RA) products in mitigating these diseases. We also explore the efficacy of dietary interventions in NCD management and prevention, emphasizing the superiority of plant-based diets over those high in processed foods and red meat. Examining the role of the gut microbiome in various diseases, including liver disorders, allergies, metabolic syndrome, inflammatory bowel disease, and colon cancer, we find compelling evidence implicating its influence on disease development. Notably, dietary modifications can positively affect the gut microbiome, fostering a symbiotic relationship with the host and making this a critical strategy in disease prevention and treatment. Investigating agricultural practices, we identify parallels between soil/plant and human microbiome studies, suggesting a crucial link between soil health, plant- and animal-derived food quality, and human well-being. Conventional/Industrial agriculture (IA) practices, characterized in part by use of chemical inputs, have adverse effects on soil microbiome diversity, food quality, and ecosystems. In contrast, RA prioritizes soil health through natural processes, and includes avoiding synthetic inputs, crop rotation, and integrating livestock. Emerging evidence suggests that food from RA systems surpasses IA-produced food in quality and nutritional value. Recognizing the interconnection between human, plant, and soil microbiomes, promoting RA-produced foods emerges as a strategy to improve human health and environmental sustainability. By mitigating climate change impacts through carbon sequestration and water cycling, RA offers dual benefits for human and planetary health and well-being. Emphasizing the pivotal role of diet and agricultural practices in combating NCDs and addressing environmental concerns, the adoption of regional RA systems becomes imperative. Increasing RA integration into local food systems can enhance food quality, availability, and affordability while safeguarding human health and the planet's future.
Collapse
Affiliation(s)
- Davendra Ramkumar
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Aileen Marty
- Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Japhia Ramkumar
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Holly Rosencranz
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Radhika Vedantham
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Modan Goldman
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Erin Meyer
- Basil's Harvest, 227 W Monroe St, Suite 2100, Chicago, IL 60606, USA
| | - Jasia Steinmetz
- University of Wisconsin – Stevens Point 202 College of Professional Studies, Stevens Point, WI 54481-3897, USA
| | - Amy Weckle
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Kelly Bloedorn
- Basil's Harvest, 227 W Monroe St, Suite 2100, Chicago, IL 60606, USA
| | - Carl Rosier
- Basil's Harvest, 227 W Monroe St, Suite 2100, Chicago, IL 60606, USA
| |
Collapse
|
43
|
Tamura H, Miyazaki A, Kawamura T, Gotoh H, Yamamoto N, Narita M. Chronic ingestion of soy peptide supplementation reduces aggressive behavior and abnormal fear memory caused by juvenile social isolation. Sci Rep 2024; 14:11557. [PMID: 38773352 PMCID: PMC11109177 DOI: 10.1038/s41598-024-62534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Juvenile loneliness is a risk factor for psychopathology in later life. Deprivation of early social experience due to peer rejection has a detrimental impact on emotional and cognitive brain function in adulthood. Accumulating evidence indicates that soy peptides have many positive effects on higher brain function in rodents and humans. However, the effects of soy peptide use on juvenile social isolation are unknown. Here, we demonstrated that soy peptides reduced the deterioration of behavioral and cellular functions resulting from juvenile socially-isolated rearing. We found that prolonged social isolation post-weaning in male C57BL/6J mice resulted in higher aggression and impulsivity and fear memory deficits at 7 weeks of age, and that these behavioral abnormalities, except impulsivity, were mitigated by ingestion of soy peptides. Furthermore, we found that daily intake of soy peptides caused upregulation of postsynaptic density 95 in the medial prefrontal cortex and phosphorylation of the cyclic adenosine monophosphate response element binding protein in the hippocampus of socially isolated mice, increased phosphorylation of the adenosine monophosphate-activated protein kinase in the hippocampus, and altered the microbiota composition. These results suggest that soy peptides have protective effects against juvenile social isolation-induced behavioral deficits via synaptic maturation and cellular functionalization.
Collapse
Affiliation(s)
- Hideki Tamura
- Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan.
- Institute for Advanced Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan.
| | - Akiko Miyazaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Takashi Kawamura
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Hikaru Gotoh
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Naoki Yamamoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Minoru Narita
- Institute for Advanced Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
- Department of Pharmacy, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
44
|
Londoño-Osorio S, Leon-Carreño L, Cala MP, Sierra-Zapata L. The gut metabolome in a cohort of pregnant and lactating women from Antioquia-Colombia. Front Mol Biosci 2024; 11:1250413. [PMID: 38803424 PMCID: PMC11128665 DOI: 10.3389/fmolb.2024.1250413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
Nutrition during the perinatal period is an essential component of health and one that can severely impact the correct development of a human being and its overall condition, in all the subsequent stages of life. The availability of several compounds, mainly macronutrients and micronutrients, plays a key role in the balanced nutrition of both mother and baby and is a process with direct relation to the gut microbiome. Thus, we hereby refer to the set of small molecules derived from gut microbiome metabolism as the gut metabolome. These continuous processes occurring in the gut of a gestating or lactating mother related to microbial communities and nutrients, can be revealed by metabolomics. In this study, we explore for the first time the gut metabolome of pregnant and lactating women, from our region of Antioquia-Colombia, applying untargeted metabolomics by LC-QTOF-MS, and molecular networking. Regarding the gut metabolome composition of the cohort, we found, key metabolites that can be used as biomarkers of microbiome function, overall metabolic health, dietary intake, pharmacology, and lifestyle. In our cohort, pregnant women evidenced a significantly higher abundance of prostaglandins, alkaloids, corticosteroids, organosilicons, and natural toxins, while in lactating women, lipids stand out. Our results suggest that unveiling the metabolic phenotype of the gut microbiome of an individual, by untargeted metabolomics, allows a broad visualization of the chemical space present in this important niche and enables the recognition of influential indicators of the host's health status and habits, especially of women during this significant perinatal period. This study constitutes the first evidence of the use of untargeted LC-QTOF-MS coupled with molecular networking analysis, of the gut microbiome in a Colombian cohort and establishes a methodology for finding relative abundances of key metabolites, with potential use in nutritional and physiological state assessments, for future personalized health and nutrition practices.
Collapse
Affiliation(s)
- Sara Londoño-Osorio
- CIBIOP Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Colombia
| | - Lizeth Leon-Carreño
- MetCore–Metabolomics Core Facility, Vice-Presidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Mónica P. Cala
- MetCore–Metabolomics Core Facility, Vice-Presidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Laura Sierra-Zapata
- CIBIOP Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Colombia
| |
Collapse
|
45
|
El Baassiri MG, Raouf Z, Badin S, Escobosa A, Sodhi CP, Nasr IW. Dysregulated brain-gut axis in the setting of traumatic brain injury: review of mechanisms and anti-inflammatory pharmacotherapies. J Neuroinflammation 2024; 21:124. [PMID: 38730498 PMCID: PMC11083845 DOI: 10.1186/s12974-024-03118-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zachariah Raouf
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sarah Badin
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alejandro Escobosa
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chhinder P Sodhi
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Isam W Nasr
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
46
|
Warren A, Nyavor Y, Beguelin A, Frame LA. Dangers of the chronic stress response in the context of the microbiota-gut-immune-brain axis and mental health: a narrative review. Front Immunol 2024; 15:1365871. [PMID: 38756771 PMCID: PMC11096445 DOI: 10.3389/fimmu.2024.1365871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
More than 20% of American adults live with a mental disorder, many of whom are treatment resistant or continue to experience symptoms. Other approaches are needed to improve mental health care, including prevention. The role of the microbiome has emerged as a central tenet in mental and physical health and their interconnectedness (well-being). Under normal conditions, a healthy microbiome promotes homeostasis within the host by maintaining intestinal and brain barrier integrity, thereby facilitating host well-being. Owing to the multidirectional crosstalk between the microbiome and neuro-endocrine-immune systems, dysbiosis within the microbiome is a main driver of immune-mediated systemic and neural inflammation that can promote disease progression and is detrimental to well-being broadly and mental health in particular. In predisposed individuals, immune dysregulation can shift to autoimmunity, especially in the presence of physical or psychological triggers. The chronic stress response involves the immune system, which is intimately involved with the gut microbiome, particularly in the process of immune education. This interconnection forms the microbiota-gut-immune-brain axis and promotes mental health or disorders. In this brief review, we aim to highlight the relationships between stress, mental health, and the gut microbiome, along with the ways in which dysbiosis and a dysregulated immune system can shift to an autoimmune response with concomitant neuropsychological consequences in the context of the microbiota-gut-immune-brain axis. Finally, we aim to review evidenced-based prevention strategies and potential therapeutic targets.
Collapse
Affiliation(s)
- Alison Warren
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Yvonne Nyavor
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Aaron Beguelin
- The Department of Biotechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Leigh A. Frame
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
47
|
Chen Y, Lin J, Tao M. Association between cheese and fish consumption and the occurrence of depression based on European population: mediating role of metabolites. Front Nutr 2024; 11:1322254. [PMID: 38694223 PMCID: PMC11061354 DOI: 10.3389/fnut.2024.1322254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Background The consumption of cheese and fish has been linked to the onset of depression. However, the connection between consuming cheese, consuming fish, experiencing depression, and the pathways that mediate this relationship remains unclear. The purpose of this research was to investigate the potential association between the consumption of cheese and fish and the occurrence of depression. Moreover, it is important to identify any metabolites that might be involved and understand their respective roles and functions. Methods A two-step, two-sample Mendelian randomization (MR) study was conducted using genome-wide association study (GWAS) data on cheese, non-oily fish, and oily fish consumption and depression, along with 12 alternate mediators. The study included a total of 451,486 participants in the cheese consumption group, 460,880 in the non-oily fish consumption group, 460,443 in the oily fish consumption group, and 322,580 with a diagnosis of depression. The single nucleotide polymorphism (SNP) estimates were pooled using inverse-variance weighted, weighted median, MR-Egger, simple mode, and weighted mode. Results The data we collected suggested that consuming more cheese correlated with a lower likelihood of experiencing depression (OR: 0.95; 95% CI: 0.92 to 0.98). Neither non-oily fish nor oily fish consumption was directly linked to depression onset (p = 0.08, p = 0.78, respectively). Although there was a direct causal relationship with depression, the mediating relationship of triglycerides (TG), total cholesterol in large HDL, cholesterol to total lipids ratio in large HDL, free cholesterol to total lipids ratio in large HDL, glycine, and phospholipids to total lipids ratio in very large HDL of cheese intake on depression risk were - 0.002 (95% CI: -0.023 - 0.020), -0.002 (95% CI: -0.049 - 0.045), -0.001 (95% CI: -0.033 - 0.031), -0.001 (95% CI: -0.018 - 0.015), 0.001 (95% CI: -0.035 - 0.037), and - 0.001 (95% CI: -0.024 - 0.021), respectively. The mediating relationship of uridine, free cholesterol to total lipids ratio in large HDL, total cholesterol in large HDL, acetoacetate, and 3-hydroxybutyrate (3-HB) between non-oily fish consumption and depression risk were 0.016 (95% CI: -0.008 - 0.040), 0.011 (95% CI: -1.269 - 1.290), 0.010 (95% CI: -1.316 - 1.335), 0.011 (95% CI: -0.089 - 0.110), and 0.008 (95% CI: -0.051 - 0.068), respectively. The mediation effect of uridine and free cholesterol to total lipids ratio in large HDL between intake of oily fish and the risk of depression was found to be 0.006 (95% CI: -0.015 - 0.028) and - 0.002 (95% CI: -0.020 - 0.017), respectively. The correlation between eating cheese and experiencing depression persisted even when adjusting for other variables like Indian snacks, mango consumption, sushi consumption, and unsalted peanuts using multivariable MR. Conclusion The consumption of cheese and fish influenced the likelihood of experiencing depression, and this may be mediated by certain metabolites in the body. Our study provided a new perspective on the clinical treatment of depression.
Collapse
Affiliation(s)
- Yan Chen
- Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jixin Lin
- Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Tao
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
48
|
Dziedzic A, Maciak K, Bliźniewska-Kowalska K, Gałecka M, Kobierecka W, Saluk J. The Power of Psychobiotics in Depression: A Modern Approach through the Microbiota-Gut-Brain Axis: A Literature Review. Nutrients 2024; 16:1054. [PMID: 38613087 PMCID: PMC11013390 DOI: 10.3390/nu16071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The microbiota-gut-brain (MGB) axis is a complex communication network linking the gut, microbiota, and brain, influencing various aspects of health and disease. Dysbiosis, a disturbance in the gut microbiome equilibrium, can significantly impact the MGB axis, leading to alterations in microbial composition and function. Emerging evidence highlights the connection between microbiota alterations and neurological and psychiatric disorders, including depression. This review explores the potential of psychobiotics in managing depressive disorders, emphasizing their role in restoring microbial balance and influencing the MGB axis. Psychobiotics exhibit positive effects on the intestinal barrier, immune response, cortisol levels, and the hypothalamic-pituitary-adrenal (HPA) axis. Studies suggest that probiotics may serve as an adjunct therapy for depression, especially in treatment-resistant cases. This review discusses key findings from studies on psychobiotics interventions, emphasizing their impact on the gut-brain axis and mental health. The increasing acceptance of the expanded concept of the MGB axis underscores the importance of microorganisms in mental well-being. As our understanding of the microbiome's role in health and disease grows, probiotics emerge as promising agents for addressing mental health issues, providing new avenues for therapeutic interventions in depressive disorders.
Collapse
Affiliation(s)
- Angela Dziedzic
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| | - Karina Maciak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| | | | - Małgorzata Gałecka
- Department of Psychotherapy, Medical University of Lodz, Aleksandrowska 159, 91-229 Lodz, Poland;
| | - Weronika Kobierecka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| | - Joanna Saluk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| |
Collapse
|
49
|
Manrique P, Montero I, Fernandez-Gosende M, Martinez N, Cantabrana CH, Rios-Covian D. Past, present, and future of microbiome-based therapies. MICROBIOME RESEARCH REPORTS 2024; 3:23. [PMID: 38841413 PMCID: PMC11149097 DOI: 10.20517/mrr.2023.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 06/07/2024]
Abstract
Technological advances in studying the human microbiome in depth have enabled the identification of microbial signatures associated with health and disease. This confirms the crucial role of microbiota in maintaining homeostasis and the host health status. Nowadays, there are several ways to modulate the microbiota composition to effectively improve host health; therefore, the development of therapeutic treatments based on the gut microbiota is experiencing rapid growth. In this review, we summarize the influence of the gut microbiota on the development of infectious disease and cancer, which are two of the main targets of microbiome-based therapies currently being developed. We analyze the two-way interaction between the gut microbiota and traditional drugs in order to emphasize the influence of gut microbial composition on drug effectivity and treatment response. We explore the different strategies currently available for modulating this ecosystem to our benefit, ranging from 1st generation intervention strategies to more complex 2nd generation microbiome-based therapies and their regulatory framework. Lastly, we finish with a quick overview of what we believe is the future of these strategies, that is 3rd generation microbiome-based therapies developed with the use of artificial intelligence (AI) algorithms.
Collapse
|
50
|
Wei K, Lin S, Yang J, Li C. Dietary Habits and Depression in Community-Dwelling Chinese Older Adults: Cross-Sectional Analysis of the Moderating Role of Physical Exercise. Nutrients 2024; 16:740. [PMID: 38474868 PMCID: PMC10935221 DOI: 10.3390/nu16050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Healthy diets and physical exercise, two modifiable lifestyle factors, are protective against depression in older adults. This study aimed to investigate whether physical exercise may influence the associations of dietary habits with depression in Chinese community-dwelling older adults. METHODS In the 2018 wave of the Chinese Longitudinal Healthy Longevity Survey, 12,708 community-dwelling older adults aged ≥65 years were included for analyses. Older adults' dietary habits (including daily intake of food components such as fruits, vegetables, animal oil, and so on) and physical exercise were assessed. Depression was evaluated via the 10 item Center for Epidemiologic Studies Depression (CES-D-10) scale. The influences of physical exercise on the associations of dietary habits with depression were estimated using logistic regression models adjusted for confounders. RESULTS Older adults who took physical exercise had a significantly decreased probability of depression (adjusted OR = 0.73, p < 0.001). As for dietary habits, the intake of fruits, vegetables, eggs, nut products, mushrooms or algae, and vitamins were inversely associated with the prevalence of depression (adjusted ORs = 0.61-0.81; p-values: from <0.001 to 0.025), while animal oil was positively associated with it (adjusted OR = 1.52, p < 0.001). When stratified by physical exercise, older adults who ate fruits or vegetables had consistent decreased risk of depression, no matter whether they took physical exercise or not (adjusted ORs = 0.52-0.70), while the intake of eggs, nut products, and vitamins were inversely associated, and animal oil was consistently positively associated with depression only in older adults who did not take physical exercise (adjusted ORs = 0.79, 0.68, 0.63, and 1.67, respectively). CONCLUSIONS Physical exercise may conceal the potential protective effects of some healthy dietary habits in terms of depression and counteract the detrimental effects of the unhealthy habits. Some dietary habits may be considered as alternative protective measures for depression in community-dwelling older adults when physical exercise cannot be performed.
Collapse
Affiliation(s)
- Kai Wei
- Department of Traditional Chinese Medicine, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China;
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai 201108, China
| | - Shaohui Lin
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (S.L.); (J.Y.)
| | - Junjie Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (S.L.); (J.Y.)
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (S.L.); (J.Y.)
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|