1
|
Mohamed AA, Alanazi AT, Ahmed HH, Elfiky S, Abdel Ghafar MT, Maher I, Taha SA, AbuRahma MZA, Elagawy W, Mohareb DA, Rawy AM, Abostate HM, Youssef AA, Elsayed DS, Abdel-Hamid RM. FokI polymorphism of the vitamin D receptor gene: Linking COVID-19 risk to genetic susceptibility in children. Cytokine 2025; 191:156958. [PMID: 40367829 DOI: 10.1016/j.cyto.2025.156958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Vitamin D receptor (VDR), influenced by gene polymorphisms like FokI, may affect susceptibility to infections, including coronavirus disease 2019 (COVID-19). Since studies in children are limited, we aimed to analyze the correlation between the VDR FokI variant and both the incidence and severity of COVID-19 in Egyptian children. METHODS Seventy-seven COVID-19-positive and 107 COVID-19-negative pediatric patients were included. Participants' serum 25(OH)D levels, inflammatory biomarkers, and demographics were evaluated. Real-time polymerase chain reaction (PCR) was used for genotyping the VDR FokI (rs2228570) polymorphism. RESULTS Absolute lymphocyte count (ALC) was significantly lower in COVID-19 patients than in controls, while interleukin-6 (IL-6), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), procalcitonin, and D-dimer were significantly higher (all p < 0.001). Vitamin D insufficiency was significantly more common in COVID-19 cases (18.2 % versus 3.7 %, p = 0.002). Male sex, increased tumor necrosis factor-alpha (TNF-α), and CRP were significantly associated with severe COVID-19 (p = 0.032, 0.029, < 0.001, respectively). The FokI TT genotype in codominant and recessive models and the T allele in the multiplicative model were significantly correlated with 2.4, 3.0, and 1.8 folds increased COVID-19 risk (p = 0.043, < 0.001, and 0.004, respectively). However, VDR FokI variants did not significantly associate with severe COVID-19. CONCLUSION The T allele and TT genotype of the FokI variant in the VDR gene increase susceptibility to COVID-19 but not its severity in Egyptian children. Additional research is required to validate the potential role of vitamin D and its receptor polymorphism in COVID-19.
Collapse
Affiliation(s)
- Amal Ahmed Mohamed
- Biochemistry Department, National Hepatology and Tropical Medicine Research Institute, GOTHI, Cairo 11511, Egypt,.
| | - Abdullah Taher Alanazi
- Immunology Laboratory, College of Medical Sciences, MOH-Eradah and Mental Health Complex, Madinah 42311, Saudi Arabia,.
| | - Hoda H Ahmed
- Pediatric Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo 11511, Egypt.
| | - Samar Elfiky
- Pediatric and Neonatology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | | | - Ingy Maher
- Biotechnology Department, Modern Sciences and Arts University, Giza 12451, Egypt.
| | - Sherin A Taha
- Pediatric Department, Faculty of Medicine, Suez University, Suez, 43221, Egypt.
| | | | - Waleed Elagawy
- Department of Tropical Medicine, Faculty of Medicine, Port Said University, Port Fouad, 42526, Egypt.
| | - Dina A Mohareb
- Clinical Pathology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Abeer M Rawy
- Chest Diseases Department, Faculty of Medicine, Benha University, Benha 13511, Egypt.
| | - Heba M Abostate
- Microbiology and Immunology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo 11511, Egypt.
| | - Amira AlSayed Youssef
- Microbiology Lab Department, Egyptian (CDC) Center of Disease Control at the National Institute of Liver, Digestive and Infectious Diseases, Giza, 12311, Egypt.
| | | | - Rasha M Abdel-Hamid
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Dos Santos BRC, Dos Santos LKC, Ferreira JM, Dos Santos ACM, Sortica VA, de Souza Figueiredo EVM. Toll-like receptors polymorphisms and COVID-19: a systematic review. Mol Cell Biochem 2025; 480:2677-2688. [PMID: 39520513 DOI: 10.1007/s11010-024-05137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024]
Abstract
COVID-19 is a disease caused by SARS-CoV-2. It became a health problem affecting the lives of millions of people. Toll-like receptors are responsible for recognizing viral particles and activating the innate immune system. The genetic factors associated with COVID-19 remain unclear. Thus, this study aims to assess the association between the polymorphism in Toll-like receptors and susceptibility to COVID-19. We searched the electronic databases (Science Direct, PUBMED, Web of Science, and Scopus) for studies assessing the association between Toll-like receptor polymorphisms and susceptibility to COVID-19. The quality of the studies was assessed using the Q-Genie tool. Thirteen studies were included in this systematic review. The studies analyzed polymorphisms in TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9. We used SNP2TFBS bioinformatic analysis to identify the variants influencing transcription factor binding sites. The Ensembl Genome Browser was used to assess the allele and genotype frequencies in different populations. The bioinformatic analysis revealed that the variant rs5743836 of TLR9 affects the transcription factor binding sites NFKB1 and RELA. The genotype frequency of the variants rs3775291, rs3853839, rs3764880 were higher in East Asian population compared to the other populations. The frequency of the rs3775290 variant was higher in East and South Asian populations. The rs179008 variant was higher in the European population, and the rs5743836 was higher in the African population. Toll-like receptors play an important role in COVID-19 susceptibility. Further studies in different populations are necessary to elucidate the role of Toll-like receptors polymorphisms in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Barbara Rayssa Correia Dos Santos
- Laboratory of Molecular Biology and Gene Expression, Federal University of Alagoas, Arapiraca, Brazil
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
| | | | - Jean Moises Ferreira
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Cidade Universitaria, Recife, Pernambuco, Brazil
| | | | | | - Elaine Virginia Martins de Souza Figueiredo
- Laboratory of Molecular Biology and Gene Expression, Federal University of Alagoas, Arapiraca, Brazil.
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil.
- Federal University of Alagoas (UFAL), Campus Arapiraca AL 115, Km 65, Bom Sucesso, Arapiraca, Alagoas, 57300-970, Brazil.
| |
Collapse
|
3
|
Petry J, Shoykhet M, Weiser T, Griesbaum L, Bashiri Dezfouli A, Verschoor A, Wollenberg B. SARS-CoV-2 S1 protein induces IgG-mediated platelet activation and is prevented by 1.8-cineole. Biomed Pharmacother 2025; 187:118100. [PMID: 40306177 DOI: 10.1016/j.biopha.2025.118100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/12/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025] Open
Abstract
COVID-19 patients face an increased risk of thromboembolic complications, yet the exact pathophysiological role of platelets in the disease remains unclear. Considering the multifaceted nature of COVID-19 symptoms, including platelet hyperactivation and inflammation, the development of compounds that simultaneously target both represents a promising therapeutic strategy. The monoterpene 1.8-cineole (CNL-1976) is known for its anti-inflammatory and anti-aggregatory effects. Thus, understanding the mechanism behind platelet hyperactivation and the effect of 1.8-cineole during COVID-19 is crucial when aiming for a reduction of disease severity. In this study, we investigated the mechanism of platelet activation triggered by the SARS-CoV-2 S1 spike protein (S1). Utilizing S1-coupled beads, we discovered that platelet activation and aggregation were dependent on plasma components, particularly S1-specific IgG antibodies. The formation of immune complexes through IgG binding to S1 facilitated the crosslinking of the platelet expressed FcγRIIa receptor, initiating platelet activation and aggregation, as well as formation of platelet-leukocyte aggregates (PLAs). Importantly, treatment with 1.8-cineole significantly inhibited S1-bead-induced platelet activity and PLA formation. These findings strongly suggest that antibody-mediated platelet activation via FcγRIIa directly contributes to the well-recognized prothrombotic environment during COVID-19. Moreover, our data indicate that 1.8-cineole can serve as a potential therapeutic compound, alleviating platelet-driven thromboinflammatory complications associated with COVID-19 and post-acute sequelae of SARS-CoV-2 (PASC).
Collapse
Affiliation(s)
- Julie Petry
- Technical University of Munich, School of Medicine and Health, Department of Otorhinolaryngology, Head and Neck Surgery, TUM University Hospital, Germany
| | - Maria Shoykhet
- Technical University of Munich, School of Medicine and Health, Department of Otorhinolaryngology, Head and Neck Surgery, TUM University Hospital, Germany
| | - Tobias Weiser
- Technical University of Munich, School of Medicine and Health, Department of Otorhinolaryngology, Head and Neck Surgery, TUM University Hospital, Germany
| | - Lena Griesbaum
- Technical University of Munich, School of Medicine and Health, Department of Otorhinolaryngology, Head and Neck Surgery, TUM University Hospital, Germany
| | - Ali Bashiri Dezfouli
- Technical University of Munich, School of Medicine and Health, Department of Otorhinolaryngology, Head and Neck Surgery, TUM University Hospital, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, TUM University Hospital, Germany
| | - Admar Verschoor
- Technical University of Munich, School of Medicine and Health, Department of Otorhinolaryngology, Head and Neck Surgery, TUM University Hospital, Germany; University of Lübeck, Department of Dermatology, University Clinic Schleswig-Holstein (UKSH), Germany
| | - Barbara Wollenberg
- Technical University of Munich, School of Medicine and Health, Department of Otorhinolaryngology, Head and Neck Surgery, TUM University Hospital, Germany.
| |
Collapse
|
4
|
Wang S, Yang Y, Yue X, Liu Z, Yuan F, Yang K, Zhu J, Liu W, Tian Y, Wu Q, Gao T, Li C, Song H, Zhou D, Bei W. Preparation and Evaluation of Novel Epitope-Based ETEC K88-K99 Bivalent Vaccine. Vet Sci 2025; 12:381. [PMID: 40284883 PMCID: PMC12030781 DOI: 10.3390/vetsci12040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the primary pathogens causing diarrhea in piglets, causing significant economic losses in the swine farming industry. Due to the numerous serotypes of ETEC, traditional vaccines fail to provide sufficient cross-protection, and subunit vaccines based on epitope design have emerged as a safer and more effective approach for prevention and control. Unlike vaccine development strategies that involve the tandem arrangement of multiple antigenic epitopes, this study used the K88-FaeG protein as a backbone and incorporated the antigenic epitopes of K99-FanC to achieve a better immunogenicity. By using bioinformatics software to predict B-cell linear epitopes (score of over 0.6), B-cell epitopes from three-dimensional structures (50% amino acid score of ≥0.2), and B-cell epitope IgG antibody subtypes, as well as docking analysis with Sus scrofa aminopeptidase N (APN) receptors, six antigenic epitopes of K99-FanC were selected. Through Western blotting and competitive ELISA, we confirmed that all six recombinant proteins exhibited binding capabilities to K88- and K99-positive serum. The ELISA results showed that the serum levels of specific IgG and IgA antibodies increased after immunization, with FaeG-Ep3 and FaeG-Ep5 inducing the highest antibody titers against FanC-IgG (Log2 = 14.96) and FaeG-IgG (Log2 = 17.96), respectively. Bacterial adhesion assays revealed that only FaeG-Ep3 effectively blocked the adhesion of both K99 and K88 to IPEC-J2 cells. Immunization challenge experiments showed that, in the unimmunized group, mice infected with K88 and K99 experienced weight loss (p < 0.05) with intestinal villus shedding and intestinal wall structural damage. However, in the FaeG-Ep3-immunized group, no significant weight loss occurred after infection, and the villus protection rate (83%) was the same as that in the FaeG and FanC immunized groups. Overall, the FaeG-Ep3 recombinant protein identified in this study shows potential vaccine application value and provides new insights for developing multivalent vaccines against ETEC.
Collapse
Affiliation(s)
- Shuangshuang Wang
- National Key Laboratory of Agricultural Microbial Resources Discovery and Utilization, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (X.Y.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Yuxin Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Xinru Yue
- National Key Laboratory of Agricultural Microbial Resources Discovery and Utilization, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (X.Y.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Jiajia Zhu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Qiong Wu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Haofei Song
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Weicheng Bei
- National Key Laboratory of Agricultural Microbial Resources Discovery and Utilization, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (X.Y.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Galindo-Méndez M, Galindo-Ruiz M, Concheso-Venegas MF, Mendoza-Molina SU, Orozco-Cruz D, Weintraub-Benzion E. The Impact of Vitamin D in the Prevention of Influenza, COVID-19, and Dengue: A Review. Biomedicines 2025; 13:927. [PMID: 40299497 PMCID: PMC12024591 DOI: 10.3390/biomedicines13040927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
Since its discovery, vitamin D (VD) has been known for its implications in maintaining bone homeostasis. However, in recent years it has been discovered that the vitamin D receptor is expressed on different cells of the immune system and that these cells can locally produce the active form of this molecule, calcitriol, strongly suggesting that this vitamin might play a key role in both branches of the immune system, innate and adaptive. Recent evidence has demonstrated that VD participates in the different protective phases of the immune system against invading microorganisms, including in the activation and production of antimicrobial peptides, in the inactivation of replication of infectious agents, in the prevention of the exposure of cellular receptors to microbial adhesion, and, more importantly, in the modulation of the inflammatory response. In recent years, the world has witnessed major outbreaks of an ancient infectious disease, dengue fever; the emergence of a pandemic caused by an unknown virus, SARS-CoV-2; and the resurgence of a common respiratory infection, influenza. Despite belonging to different viral families, the etiological agents of these infections present a common trait: their capacity to cause complications not only through their cytopathic effect on target tissues but also through the excessive inflammatory response produced by the human host against an infection. This review outlines the current understanding of the role that vitamin D plays in the prevention of the aforementioned diseases and in the development of their complications through its active participation as a major modulator of the immune response.
Collapse
Affiliation(s)
- Mario Galindo-Méndez
- Laboratorios Galindo SC, Av Juárez 501-A, Oaxaca, Oaxaca CP 68000, Mexico;
- Escuela de Medicina, Universidad Anáhuac Oaxaca, Blvd. Guadalupe Hinojosa de Murat 1100, San Raymundo Jalpan, Oaxaca CP 71248, Mexico; (S.U.M.-M.); (D.O.-C.)
| | - Mario Galindo-Ruiz
- Laboratorios Galindo SC, Av Juárez 501-A, Oaxaca, Oaxaca CP 68000, Mexico;
- Escuela de Medicina, Universidad Anáhuac Campus Norte, Av. Universidad Anáhuac 46, Huixquilucan, Estado de Mexico CP 52786, Mexico; (M.F.C.-V.); (E.W.-B.)
| | - María Florencia Concheso-Venegas
- Escuela de Medicina, Universidad Anáhuac Campus Norte, Av. Universidad Anáhuac 46, Huixquilucan, Estado de Mexico CP 52786, Mexico; (M.F.C.-V.); (E.W.-B.)
| | - Sebastián Uriel Mendoza-Molina
- Escuela de Medicina, Universidad Anáhuac Oaxaca, Blvd. Guadalupe Hinojosa de Murat 1100, San Raymundo Jalpan, Oaxaca CP 71248, Mexico; (S.U.M.-M.); (D.O.-C.)
| | - David Orozco-Cruz
- Escuela de Medicina, Universidad Anáhuac Oaxaca, Blvd. Guadalupe Hinojosa de Murat 1100, San Raymundo Jalpan, Oaxaca CP 71248, Mexico; (S.U.M.-M.); (D.O.-C.)
| | - Efraín Weintraub-Benzion
- Escuela de Medicina, Universidad Anáhuac Campus Norte, Av. Universidad Anáhuac 46, Huixquilucan, Estado de Mexico CP 52786, Mexico; (M.F.C.-V.); (E.W.-B.)
| |
Collapse
|
6
|
Murakami T, Yamaguchi Y, Amiya S, Yoshimine Y, Nameki S, Okita Y, Kato Y, Hirata H, Takeda Y, Kumanogoh A, Morita T. CD147-high classical monocytes: a cellular biomarker for COVID-19 disease severity and treatment response. Inflamm Regen 2025; 45:8. [PMID: 40189583 PMCID: PMC11974131 DOI: 10.1186/s41232-025-00371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to severe coronavirus disease 2019 (COVID-19), which is characterized by cytokine storm and organ dysfunction. The spike S1 subunit induces inflammatory cytokine production, but the immune cell subsets that respond to S1 stimulation and contribute to disease severity remain unclear. METHODS We analyzed serum samples and peripheral blood mononuclear cells (PBMCs) from patients with COVID-19 (moderate: n = 7; severe: n = 25) and healthy controls (n = 38). Using mass cytometry (cytometry by time-of-flight; CyTOF), we analyzed immune cell responses to S1 subunit stimulation in PBMCs from healthy donors and patients with COVID-19. We examined correlations among identified cell populations, serum cytokine levels, and clinical parameters. RESULTS Serum S1 subunit levels correlated with disease severity and inflammatory cytokine concentrations. S1 subunit stimulation induced dose-dependent cytokine production from PBMCs, predominantly from myeloid cells. CyTOF analysis identified classical monocytes with high CD147 expression (CD147hi cMono) as the primary source of S1-induced cytokines. The proportion of CD147hi cMono increased significantly in severe COVID-19 and decreased with clinical improvement. The frequency of CD147hi cMono showed a stronger positive correlation with clinical severity markers in younger patients compared to older patients. CONCLUSIONS CD147hi cMono are the primary cellular source of S1-induced inflammatory cytokines and may serve as potential biomarkers for monitoring COVID-19 severity and treatment response.
Collapse
Affiliation(s)
- Teruaki Murakami
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
| | - Yuta Yamaguchi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Saori Amiya
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
| | - Yuko Yoshimine
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
| | - Shinichiro Nameki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
| | - Yasutaka Okita
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Medical Center for Translational Research, Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, 565-0871, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan.
- Strategic Global Partnership & X(Cross)-Innovation Initiative, Graduate School of Medicine, Osaka University and Osaka University Hospital, Osaka, Japan.
| |
Collapse
|
7
|
Gambari R, Papi C, Gasparello J, Agostinelli E, Finotti A. Preliminary results and a theoretical perspective of co‑treatment using a miR‑93‑5p mimic and aged garlic extract to inhibit the expression of the pro‑inflammatory interleukin‑8 gene. Exp Ther Med 2025; 29:85. [PMID: 40084194 PMCID: PMC11904878 DOI: 10.3892/etm.2025.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 03/16/2025] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic has been a very significant health issue in the period between 2020 and 2023, forcing research to characterize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences and to develop novel therapeutic approaches. Interleukin-6 (IL-6) and IL-8 are considered significant therapeutic targets for COVID-19 and emerging evidence has suggested that microRNAs (miRNAs/miRs) serve a key role in regulating these genes. MiRNAs are short, 19-25 nucleotides in length, non-coding RNAs that regulate gene expression at the post-transcriptional level through the sequence-selective recognition of the 3'-untranslated region (3'-UTR) of the regulated mRNAs, eventually repressing translation, commonly, via mRNA degradation. For example, among several miRNAs involved in the regulation of the COVID-19 'cytokine storm', miR-93-5p can inhibit IL-8 gene expression by directly targeting the 3'-UTR of IL-8 mRNA. In addition, miR-93-5p can regulate Toll-like receptor-4 (TLR4) and interleukin-1 receptor-associated kinase 4 (IRAK4) expression, thus affecting the nuclear factor-κB (NF-κB) pathway and the expression of NF-κB-regulated genes, such as IL-6, IL-1β and other hyper-expressed genes during the COVID-19 'cytokine storm'. In the present study, the results provided preliminary evidence suggesting that the miR-93-5p-based miRNA therapeutics could be combined with the anti-inflammatory aged garlic extract (AGE) to more effectively inhibit IL-8 gene expression. The human bronchial epithelial IB3-1 cell line was employed as experimental model system. IB3-1 cells were stimulated with the BNT162b2 COVID-19 vaccine and transfected with pre-miR-93-5p in the absence or in the presence of AGE, to verify the inhibitory effects on the BNT162b2-induced expression of the IL-8 gene. The accumulation of IL-8 mRNA was assessed by RT-qPCR; the release of IL-8 protein was determined by Bio-Plex assay. In addition, the possible applications of TLR4/NF-κB inhibitory agents (such as miR-93-5p and AGE) for treating human pathologies at a hyperinflammatory state, such as COVID-19, cystic fibrosis and other respiratory diseases, were summarized.
Collapse
Affiliation(s)
- Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Enzo Agostinelli
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, I-00161 Rome, Italy
- International Polyamines Foundation ‘ETS-ONLUS’, I-00159 Rome, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
8
|
Mukherjee S, Bayry J. The Yin and Yang of TLR4 in COVID-19. Cytokine Growth Factor Rev 2025; 82:70-85. [PMID: 39490235 DOI: 10.1016/j.cytogfr.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024]
Abstract
Various pattern recognition receptors (PRRs), including toll-like receptors (TLRs), play a crucial role in recognizing invading pathogens as well as damage-associated molecular patterns (DAMPs) released in response to infection. The resulting signaling cascades initiate appropriate immune responses to eliminate these pathogens. Current evidence suggests that SARS-CoV-2-driven activation of TLR4, whether through direct recognition of the spike glycoprotein (alone or in combination with endotoxin) or by sensing various TLR4-activating DAMPs or alarmins released during viral infection, acts as a critical mediator of antiviral immunity. However, TLR4 exerts a dual role in COVID-19, demonstrating both beneficial and deleterious effects. Dysregulated TLR4 signaling is implicated in the proinflammatory consequences linked to the immunopathogenesis of COVID-19. Additionally, TLR4 polymorphisms contribute to severity of the disease. Given its significant immunoregulatory impact on COVID-19 immunopathology and host immunity, TLR4 has emerged as a key target for developing inhibitors and immunotherapeutic strategies to mitigate the adverse effects associated with SARS-CoV-2 and related infections. Furthermore, TLR4 agonists are also being explored as adjuvants to enhance immune responses to SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal 713 340, India.
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris 75006, France; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678 623, India.
| |
Collapse
|
9
|
Lai C, Lu S, Yang Y, You X, Xu F, Deng X, Lan L, Guo Y, Kuang Z, Luo Y, Yuan L, Meng L, Wu X, Song Z, Jiang N. Myeloid-Driven Immune Suppression Subverts Neutralizing Antibodies and T Cell Immunity in Severe COVID-19. J Med Virol 2025; 97:e70335. [PMID: 40183283 PMCID: PMC11969634 DOI: 10.1002/jmv.70335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
The objective of this study was to better understand immune failure mechanisms during severe acute respiratory syndrome coronavirus 2, SARS-CoV-2 infection, which are critical for developing targeted vaccines and effective treatments. We collected 34 cases representing different disease severities and performed high-quality single-cell TCR/BCR sequencing to analyze the peripheral immune cell profiles. Additionally, we assessed antibody-neutralizing activity through in vitro experiments. Our integrated multiomics analysis uncovers a profound immune paradox in severe COVID-19: hyperinflammation coexists with immunosuppression, driven by distinct yet interconnected dysregulatory mechanisms. Severe patients develop robust humoral immunity, evidenced by clonally expanded plasma cells producing neutralizing antibodies (e.g., IGHG1-dominated responses) and antigen-specific T cell activation. However, these protective responses are counteracted by myeloid-driven immunosuppression, particularly CD14+ HMGB2+ monocytes exhibiting metabolic reprogramming and HLA-DR downregulation, coupled with progressive T cell exhaustion characterized by IFN-γ/TNF-α hyperactivation and impaired antigen presentation. Importantly, prolonged viral persistence in severe cases arises from a failure to coordinate humoral and cellular immunity-antibody-mediated neutralization cannot compensate for defective cytotoxic T cell function and monocyte-mediated immune suppression. These findings highlight the necessity for therapeutic strategies that simultaneously enhance antibody effector functions (e.g., Fc optimization), restore exhausted T cells, and reverse myeloid suppression. They also highlight the importance of vaccines designed to elicit balanced B cell memory and durable T cell responses, which are critical to preventing severe disease progression. By addressing the dual challenges of hyperinflammation and immunosuppression, such approaches could restore immune coordination and improve outcomes in severe COVID-19.
Collapse
Grants
- This work was supported by the National Key Research and Development Program of China (2021YFC2501800, 2022YFA0806200, 2023YFC0872500, and 2024YFC3044600), the National Natural Science Foundation of China (82072214, 82272198, and 82202373), the Science and Technology of Shanghai Committee (21MC1930400, 22Y11900100, and 23Y31900100), and the Shanghai Municipal Health Commission (2023ZDFC0101).
Collapse
Affiliation(s)
- Cong Lai
- Department of Emergency MedicineSchool of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
- Institute of Infection and HealthFudan UniversityShanghaiChina
| | - Su Lu
- Department of Emergency MedicineSchool of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
- Institute of Emergency Rescue and Critical CareFudan UniversityShanghaiChina
| | - Yilin Yang
- Department of Emergency MedicineSchool of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
- Institute of Emergency Rescue and Critical CareFudan UniversityShanghaiChina
| | - Xiaoyu You
- Department of Emergency MedicineSchool of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
- Institute of Infection and HealthFudan UniversityShanghaiChina
| | - Feixiang Xu
- Department of Emergency MedicineSchool of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
- Institute of Emergency Rescue and Critical CareFudan UniversityShanghaiChina
| | - Xinran Deng
- Department of Emergency MedicineSchool of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
- Institute of Infection and HealthFudan UniversityShanghaiChina
| | - Lulu Lan
- Department of Emergency MedicineSchool of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
- Institute of Emergency Rescue and Critical CareFudan UniversityShanghaiChina
| | - Yuesheng Guo
- Department of Emergency MedicineSchool of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
- Institute of Infection and HealthFudan UniversityShanghaiChina
| | - Zhongshu Kuang
- Department of Emergency MedicineSchool of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
- Institute of Emergency Rescue and Critical CareFudan UniversityShanghaiChina
| | - Yue Luo
- Department of Emergency MedicineSchool of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
- Institute of Emergency Rescue and Critical CareFudan UniversityShanghaiChina
| | - Li Yuan
- Department of Emergency MedicineSchool of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
- Institute of Emergency Rescue and Critical CareFudan UniversityShanghaiChina
| | - Lu Meng
- Department of Emergency MedicineSchool of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
- Institute of Infection and HealthFudan UniversityShanghaiChina
| | - Xueling Wu
- Department of Respiratory MedicineShanghai Jiaotong University School of Medicine, Renji HospitalShanghaiChina
| | - Zhenju Song
- Department of Emergency MedicineSchool of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
- Institute of Emergency Rescue and Critical CareFudan UniversityShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
| | - Ning Jiang
- Department of Emergency MedicineSchool of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
- Institute of Infection and HealthFudan UniversityShanghaiChina
| |
Collapse
|
10
|
Hiti L, Markovič T, Lainscak M, Farkaš Lainščak J, Pal E, Mlinarič-Raščan I. The immunopathogenesis of a cytokine storm: The key mechanisms underlying severe COVID-19. Cytokine Growth Factor Rev 2025; 82:1-17. [PMID: 39884914 DOI: 10.1016/j.cytogfr.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025]
Abstract
A cytokine storm is marked by excessive pro-inflammatory cytokine release, and has emerged as a key factor in severe COVID-19 cases - making it a critical therapeutic target. However, its pathophysiology was poorly understood, which hindered effective treatment. SARS-CoV-2 initially disrupts angiotensin signalling, promoting inflammation through ACE-2 downregulation. Some patients' immune systems then fail to shift from innate to adaptive immunity, suppressing interferon responses and leading to excessive pyroptosis and neutrophil activation. This amplifies tissue damage and inflammation, creating a pro-inflammatory loop. The result is the disruption of Th1/Th2 and Th17/Treg balances, lymphocyte exhaustion, and extensive blood clotting. Cytokine storm treatments include glucocorticoids to suppress the immune system, monoclonal antibodies to neutralize specific cytokines, and JAK inhibitors to block cytokine receptor signalling. However, the most effective treatment options for mitigating SARS-CoV-2 infection remain vaccines as a preventive measure and antiviral drugs for the early stages of infection. This article synthesizes insights into immune dysregulation in COVID-19, offering a framework to better understand cytokine storms and to improve monitoring, biomarker discovery, and treatment strategies for COVID-19 and other conditions involving cytokine storms.
Collapse
Affiliation(s)
- Luka Hiti
- Faculty of Pharmacy, University of Ljubljana, Slovenia
| | | | - Mitja Lainscak
- General Hospital Murska Sobota, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | | | - Emil Pal
- General Hospital Murska Sobota, Slovenia
| | | |
Collapse
|
11
|
Rong N, Wu J, Zhao B, Peng W, Yang H, Zhang G, Ruan D, Wei X, Liu J. Comparison of the pathogenicity and neutrophil and monocyte response between SARS-CoV-2 prototype and Omicron BA.1 in a lethal mouse model. Animal Model Exp Med 2025; 8:707-717. [PMID: 38760905 PMCID: PMC12008447 DOI: 10.1002/ame2.12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/02/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND SARS-CoV-2, first identified in late 2019, has given rise to numerous variants of concern (VOCs), posing a significant threat to human health. The emergence of Omicron BA.1.1 towards the end of 2021 led to a pandemic in early 2022. At present, the lethal mouse model for the study of SARS-CoV-2 needs supplementation, and the alterations in neutrophils and monocytes caused by different strains remain to be elucidated. METHODS Human ACE2 transgenic mice were inoculated with the SARS-CoV-2 prototype and Omicron BA.1, respectively. The pathogenicity of the two strains was evaluated by observing clinical symptoms, viral load and pathology. Complete blood count, immunohistochemistry and flow cytometry were performed to detect the alterations of neutrophils and monocytes caused by the two strains. RESULTS Our findings revealed that Omicron BA.1 exhibited significantly lower virulence compared to the SARS-CoV-2 prototype in the mouse model. Additionally, we observed a significant increase in the proportion of neutrophils late in infection with the SARS-CoV-2 prototype and Omicron BA.1. We found that the proportion of monocytes increased at first and then decreased. The trends in the changes in the proportions of neutrophils and monocytes induced by the two strains were similar. CONCLUSION Our study provides valuable insights into the utility of mouse models for simulating the severe disease of SARS-CoV-2 prototype infection and the milder manifestation associated with Omicron BA.1. SARS-CoV-2 prototype and Omicron BA.1 resulted in similar trends in the changes in neutrophils and monocytes.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijingChina
| | - Jing Wu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijingChina
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijingChina
| | - Wanjun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijingChina
| | - Hekai Yang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijingChina
| | - Gengxin Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijingChina
| | | | - Xiaohui Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijingChina
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijingChina
| |
Collapse
|
12
|
Deepthi V, Sasikumar A, Mohanakumar KP, Rajamma U. Computationally designed multi-epitope vaccine construct targeting the SARS-CoV-2 spike protein elicits robust immune responses in silico. Sci Rep 2025; 15:9562. [PMID: 40108271 PMCID: PMC11923050 DOI: 10.1038/s41598-025-92956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Our research is driven by the need to design an advanced multi-epitope vaccine construct (MEVC) using the S-protein of SARS-CoV-2 to combat the emergence of new variants. Through rigorous computational screening, we have identified linear and discontinuous B-cell epitopes, CD8 + and CD4 + T-cell epitopes, ensuring extensive MEVC coverage across 90.03% of the global population. The MEVC, featuring four CD4 + and four CD8 + T-cell epitopes connected linearly with two adjuvant proteins on both ends, has been carefully designed to elicit robust immune response. Our in-silico analysis has confirmed the construct's antigenicity, non-allergenicity, and non-toxicity with optimized codon sequences for enhanced expression in E. coli K12. Furthermore, molecular docking and dynamics analyses have demonstrated its strong binding affinity with TLR-3 and TLR 4, and in-silico immune simulation yielded promising results on heightened B-cell and T-cell-mediated immunity. However, wet lab experiments are essential to validate computational findings to revolutionize the development of vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Varughese Deepthi
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
| | - Aswathy Sasikumar
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
- Virus Research and Diagnostic Centre, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
| | - Kochupurackal P Mohanakumar
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
- Virus Research and Diagnostic Centre, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
| | - Usha Rajamma
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India.
| |
Collapse
|
13
|
Alshamrani S, Mashraqi MM, Alzamami A, Alturki NA, Almasoudi HH, Ahmed I, Basharat Z. Leveraging core proteome data of Kingella kingae for multi-epitope vaccine design against TonB dependent receptor (TDR): an in silico approach. J Biomol Struct Dyn 2025:1-18. [PMID: 40105736 DOI: 10.1080/07391102.2025.2480263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/29/2024] [Indexed: 03/20/2025]
Abstract
Kingella kingae is a Gram-negative bacterium that causes invasive infections in children and older or immunocompromised individuals, making it a significant public health concern. In this study, a pan-proteomic mediated vaccine target mining was attempted to identify potential vaccine targets in K. kingae. Currently, there is no vaccine available against this pathobiont. Therefore, we designed and validated an in silico vaccine construct by targeting the lactoferrin/transferrin-binding TonB-dependent receptor. Antigenic regions of the TonB receptor were mapped, and the predicted epitopes were anticipated to be effective in a broad range of the world population. Using their combinations with linkers and various adjuvants, 12 vaccine constructs were prepared. The best construct (C7) with no allergenicity and high antigenicity was subjected to molecular modeling, docking with important immune receptors of humans, and then molecular dynamics (MD) simulation. After binding validation and stability assessment, it was cloned into a pet-28a + plasmid vector. Immune response was also simulated, and the vaccine was observed to invoke B- and T-cell induction. These findings can help accelerate the development of a new vaccine against K. kingae or other pathogens targeting the homolog of TonB. Nevertheless, we propose additional testing of C7 construct for efficacy and safety in vitro and in vivo.
Collapse
Affiliation(s)
- Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, Pakistan
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | | |
Collapse
|
14
|
Chakraborty A, Das NC, Gupta PSS, Panda SK, Rana MK, Bonam SR, Bayry J, Mukherjee S. In silico evidence of monkeypox F14 as a ligand for the human TLR1/2 dimer. Front Immunol 2025; 16:1544443. [PMID: 40165949 PMCID: PMC11955672 DOI: 10.3389/fimmu.2025.1544443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 04/02/2025] Open
Abstract
Recent emergence of zoonotic monkeypox virus (Mpox) in human has triggered the virologists to develop plausible preventive measures. Hitherto, our understanding on the mechanism of immunopathogenesis of Mpox infection is elusive. However, available experimental evidences suggest induction of inflammation as the main cause of pathogenesis. Toll-like receptors (TLRs) are critical in initiating and modulating the host immune response to pathogens. Inflammatory responses observed in various poxvirus infections have, in fact, been shown to be mediated through TLR activation. Therefore, by in silico approaches, this study seeks to identify the Mpox antigen(s) (MAg) that are most likely to interact with human cell-surface TLRs. The Mpox proteomics data available in UniProt database contain 174 protein sequences, among which 105 immunoreactive proteins were modeled for 3D structure and examined for comparative protein-protein interactions with the TLRs through molecular docking and molecular dynamics simulation. F14, an 8.28 kDa infective protein of Mpox, was found to exhibit strong binding affinity (ΔG=-12.5 Kcal mol-1) to TLR1/2 dimer to form a compact thermodynamically stable protein complex. Interestingly, a significant level of conformational change was also observed in both F14 and TLR6 while forming F14-TLR1/2 complex. Based on these data we propose F14 as a putative ligand of human TLR1/2 to initiate proinflammatory signaling in the Mpox-infected host.
Collapse
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry and Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Nabarun Chandra Das
- Integrative Biochemistry and Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Bioscience and Bioengineering, D.Y. Patil International University, Pune, India
| | - Saroj Kumar Panda
- Department of Chemistry, Indian Institute of Science Education and Research, Berhampur, Odisha, India
| | - Malay Kumar Rana
- Department of Chemistry, Indian Institute of Science Education and Research, Berhampur, Odisha, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
15
|
de Oliveira Silva Pinto M, de Paula Pereira L, de Mendonça Angelo ALP, Xavier MAP, de Magalhães Vieira Machado A, Russo RC. Dissecting the COVID-19 Immune Response: Unraveling the Pathways of Innate Sensing and Response to SARS-CoV-2 Structural Proteins. J Mol Recognit 2025; 38:e70002. [PMID: 39905998 DOI: 10.1002/jmr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV), the virus responsible for COVID-19, interacts with the host immune system through complex mechanisms that significantly influence disease outcomes, affecting both innate and adaptive immunity. These interactions are crucial in determining the disease's severity and the host's ability to clear the virus. Given the virus's substantial socioeconomic impact, high morbidity and mortality rates, and public health importance, understanding these mechanisms is essential. This article examines the diverse innate immune responses triggered by SARS-CoV-2's structural proteins, including the spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins, along with nonstructural proteins (NSPs) and open reading frames. These proteins play pivotal roles in immune modulation, facilitating viral replication, evading immune detection, and contributing to severe inflammatory responses such as cytokine storms and acute respiratory distress syndrome (ARDS). The virus employs strategies like suppressing type I interferon production and disrupting key antiviral pathways, including MAVS, OAS-RNase-L, and PKR. This study also explores the immune pathways that govern the activation and suppression of immune responses throughout COVID-19. By analyzing immune sensing receptors and the responses initiated upon recognizing SARS-CoV-2 structural proteins, this review elucidates the complex pathways associated with the innate immune response in COVID-19. Understanding these mechanisms offers valuable insights for therapeutic interventions and informs public health strategies, contributing to a deeper understanding of COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Matheus de Oliveira Silva Pinto
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo de Paula Pereira
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
16
|
Javanshir N, Ebrahimi V, Mazhary Z, Saadaie Jahromi B, Zuo T, Fard NA. The antiviral effects and underlying mechanisms of probiotics on viral infections. Microb Pathog 2025; 200:107377. [PMID: 39952625 DOI: 10.1016/j.micpath.2025.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
In public health emergencies, viral diseases like influenza and COVID-19 have become a major concern. One of the proposed responses to this concern is the use of probiotics. Probiotics have a potent role in arming our bodies to combat viral infections. They affect the innate and adaptive immune systems in various ways. Accumulating studies has shown that probiotics can reduce the possibility of infection or the duration of respiratory symptoms by modulating the functions of the immune system. This review aims to summarize the impacts of probiotics on respiratory viral infections and their potential antiviral mechanisms. Therefore, we herein discussed probiotics in relation to lung immunity, distinct types of respiratory viral infections (VRIs), including influenza, rhinoviruses, respiratory syncytial virus, and upper respiratory viral infections, and lastly, probiotics and their effects on COVID-19. However, more studies are needed to explore the antiviral mechanisms of probiotics.
Collapse
Affiliation(s)
- Nahid Javanshir
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Valimohammad Ebrahimi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Zakie Mazhary
- Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | | | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, China; Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.
| | - Najaf Allahyari Fard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
17
|
Yousefbeigi S, Marsusi F. Structural insights into ACE2 interactions and immune activation of SARS-CoV-2 and its variants: an in-silico study. J Biomol Struct Dyn 2025; 43:665-678. [PMID: 37982275 DOI: 10.1080/07391102.2023.2283158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
The initial interaction between COVID-19 and the human body involves the receptor-binding domain (RBD) of the viral spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor. Likewise, the spike protein can engage with immune-related proteins, such as toll-like receptors (TLRs) and pulmonary surfactant proteins A (SP-A) and D (SP-D), thereby triggering immune responses. In this study, we utilize computational methods to investigate the interactions between the spike protein and TLRs (specifically TLR2 and TLR4), as well as (SP-A) and (SP-D). The study is conducted on four variants of concern (VOC) to differentiate and identify common virus behaviours. An assessment of the structural stability of various variants indicates slight changes attributed to mutations, yet overall structural integrity remains preserved. Our findings reveal the spike protein's ability to bind with TLR4 and TLR2, prompting immune activation. In addition, our in-silico results reveal almost similar docking scores and therefore affinity for both ACE2-spike and TLR4-spike complexes. We demonstrate that even minor changes due to mutations in all variants, surfactant A and D proteins can function as inhibitors against the spike in all variants, hindering the ACE2-RBD interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sarina Yousefbeigi
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farah Marsusi
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
18
|
Stegeman SK, Kourko O, Amsden H, Pellizzari Delano IE, Mamatis JE, Roth M, Colpitts CC, Gee K. RNA Viruses, Toll-Like Receptors, and Cytokines: The Perfect Storm? J Innate Immun 2025; 17:126-153. [PMID: 39820070 PMCID: PMC11845175 DOI: 10.1159/000543608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs. BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs.
Collapse
Affiliation(s)
- Sophia K Stegeman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Heather Amsden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - John E Mamatis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madison Roth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
19
|
Gerber-Tichet E, Blanchet FP, Majzoub K, Kremer EJ. Toll-like receptor 4 - a multifunctional virus recognition receptor. Trends Microbiol 2025; 33:34-47. [PMID: 39179422 DOI: 10.1016/j.tim.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/30/2024] [Accepted: 07/02/2024] [Indexed: 08/26/2024]
Abstract
Since the initial description of Toll receptors in Drosophila and their mammalian counterparts Toll-like receptors (TLRs), numerous fundamental and applied studies have explored their crucial role as sensors of pathogen-associated molecular patterns (PAMPs). Among the ten human TLRs, TLR4 is particularly well known for its ability to detect lipopolysaccharides (LPS), a component of the Gram-negative bacterial cell wall. In addition to its archetypal functions, TLR4 is also a versatile virus sensor. This review provides a background on the discovery of TLR4 and how this knowledge laid a foundation for characterization of its diverse roles in antiviral responses, examined through genetic, biochemical, structural, and immunological approaches. These advances have led to a deeper understanding of the molecular functions that enable TLR4 to orchestrate multi-nodal control by professional antigen-presenting cells (APCs) to initiate appropriate and regulated antiviral immune responses.
Collapse
Affiliation(s)
- Elina Gerber-Tichet
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS UMR 5535, 34090 Montpellier, France
| | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, 34090 Montpellier, France
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS UMR 5535, 34090 Montpellier, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS UMR 5535, 34090 Montpellier, France.
| |
Collapse
|
20
|
Behzadi P, Chandran D, Chakraborty C, Bhattacharya M, Saikumar G, Dhama K, Chakraborty A, Mukherjee S, Sarshar M. The dual role of toll-like receptors in COVID-19: Balancing protective immunity and immunopathogenesis. Int J Biol Macromol 2025; 284:137836. [PMID: 39613064 DOI: 10.1016/j.ijbiomac.2024.137836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Toll-like receptors (TLRs) of human are considered as the most critical immunological mediators of inflammatory pathogenesis of COVID-19. These immunoregulatory glycoproteins are located on the surface and/or intracellular compartment act as innate immune sensors. Upon binding with distinct SARS-CoV-2 ligand(s), TLRs signal activation of different transcription factors that induce expression of the proinflammatory mediators that collectively induce 'cytokine storm'. Similarly, TLR activation is also pivotal in conferring protection to infection and invasion as well as upregulating the tissue repair pathways. This dual role of the human TLRs in deciding the fate of SARS-CoV-2 has made these receptor proteins as the critical mediators of immunoprotective and immunopathogenic consequences associated with COVID-19. Herein, pathbreaking discoveries exploring the immunobiological importance of the TLRs in COVID-19 and developing TLR-directed therapeutic intervention have been reviewed by accessing the up-to-date literatures available in the public domain/databases. In accordance with our knowledge in association with the importance of TLRs' role against viruses and identification of viral particles, they have been recognized as suitable candidates with high potential as vaccine adjuvants. In this regard, the agonists of TLR4 and TLR9 have effective potential in vaccine technology while the others need further investigations. This comprehensive review suggests that basal level expression of TLRs can act as friends to keep our body safe from strangers but act as a foe via overexpression. Therefore, selective inhibition of the overexpressed TLRs appears to be a solution to counteract the cytokine storm while TLR-agonists as vaccine adjuvants could lessen the risk of infection in the naïve population.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran.
| | | | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, 756020, Odisha, India
| | - Guttula Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India.
| | - Ankita Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India.
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, 00146, Rome, Italy
| |
Collapse
|
21
|
Chaopreecha J, Phueakphud N, Suksatu A, Krobthong S, Manopwisedjaroen S, Panyain N, Hongeng S, Thitithanyanont A, Wongtrakoongate P. Andrographolide attenuates SARS-CoV-2 infection via an up-regulation of glutamate-cysteine ligase catalytic subunit (GCLC). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156279. [PMID: 39631298 DOI: 10.1016/j.phymed.2024.156279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Andrographolide is a medicinal compound which possesses anti-SARS-CoV-2 activity. A number of cellular targets of andrographolide have been identified by target predictions and computational studies. PURPOSE However, a potential cellular target of andrographolide has never been explored in SARS-CoV-2 infected lung epithelial cells. We aimed to identify cellular pathways involved in andrographolide-mediated anti-SARS-CoV-2 activity. METHODS The viral infection was determined by immunofluorescence staining, enzyme-linked immunosorbent assay and focus-forming assay. Proteomic analysis was employed to identify cellular pathways and key proteins controlled by andrographolide in the human lung epithelial cells Calu-3 infected by SARS-CoV-2. Immunofluorescence staining was used to test protein expression and localization. Western blot and realtime PCR were utilized to elucidate gene expression. Cellular glutathione level was examined by a reduced/oxidized glutathione assay. An ectopic gene expression was delivered by plasmid transfection. RESULTS Gene ontology analysis indicates that proteins involved in nuclear factor erythroid 2-related factor 2 (NRF2)-regulated pathways were differentially expressed by andrographolide. Notably, andrographolide increased expression and nuclear localization of the transcription factor NRF2. In addition, transcriptional expression of GCLC and glutamate-cysteine ligase modifier subunit (GCLM), which are NRF2 target genes, were induced by andrographolide. We further find that infection of SARS-CoV-2 resulted in a reduction of glutathione level in Calu-3; the effect that was rescued by andrographolide. Moreover, andrographolide also induced expression of the glutathione producing enzyme GCLC in SARS-CoV-2 infected lung epithelial cells. Importantly, an ectopic over-expression of GCLC or treatment of N-acetyl-L-cysteine in Calu-3 cells led to a decrease in SARS-CoV-2 infection. CONCLUSION Collectively, our findings suggest the interplay between GCLC-mediated glutathione biogenesis induced by andrographolide and the anti-SARS-CoV-2 activity. The glutathione biogenesis and recycling pathways should be further exploited as a targeted therapy against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jarinya Chaopreecha
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nut Phueakphud
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ampa Suksatu
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Nattawadee Panyain
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
22
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
23
|
Jiang Q, Li G, Wang H, Chen W, Liang F, Kong H, Chen TSR, Lin L, Hong H, Pei Z. SARS-CoV-2 spike S1 protein induces microglial NLRP3-dependent neuroinflammation and cognitive impairment in mice. Exp Neurol 2024; 383:115020. [PMID: 39428044 DOI: 10.1016/j.expneurol.2024.115020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Cognitive impairment is often found at the acute stages and sequelae of coronavirus disease 2019 (COVID-19), and the underlying mechanisms remain unclear. The S1 protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be a cause of cognitive impairment associated with COVID-19. The nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome and neuroinflammation play important roles in Alzheimer's disease (AD) with cognitive impairment. However, their roles remain unknown in COVID-19 with cognitive impairment. We stimulated BV2 cells with S1 protein in vitro and injected the hippocampi of wild-type (WT) mice, NLRP3 knockout (KO), and microglia NLRP3 KO mice in vivo with S1 protein to induce cognitive impairment. We assessed exploratory behavior as associative memory using novel object recognition and Morris water maze tests. Neuroinflammation was analyzed using immunofluorescence and western blotting to detect inflammatory markers. Co-localized NLRP3 and S1 proteins were investigated using confocal microscopy. We found that S1 protein injection led to cognitive impairment, neuronal loss, and neuroinflammation by activating NLRP3 inflammation, and this was reduced by global NLRP3 KO and microglia NLRP3 KO. Furthermore, TAK 242, a specific inhibitor of Toll-like receptor-4, resulted in a significant reduction in NLRP3 and pro-IL-1β in BV2 cells with S1 protein stimulation. These results reveal a distinct mechanism through which the SARS-CoV-2 spike S1 protein promotes NLRP3 inflammasome activation and induces excessive inflammatory responses.
Collapse
Affiliation(s)
- Qiuhong Jiang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Huacheng Wang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, No 628 Zhenyuan Road Guangming District, Shenzhen 518107, China
| | - Weineng Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Fengyin Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Haifan Kong
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Tara S R Chen
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The Seventh Affiliated Hospital, Sun Yat-Sen University, WHO Collaborating Centre for Rehabilitation CHN-50, Shenzhen, Guangdong, China
| | - Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Hua Hong
- Health Management Center, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China..
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
24
|
Jaishwal P, Jha K, Singh SP. Revisiting the dimensions of universal vaccine with special focus on COVID-19: Efficacy versus methods of designing. Int J Biol Macromol 2024; 277:134012. [PMID: 39048013 DOI: 10.1016/j.ijbiomac.2024.134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Even though the use of SARS-CoV-2 vaccines during the COVID-19 pandemic showed unprecedented success in a short time, it also exposed a flaw in the current vaccine design strategy to offer broad protection against emerging variants of concern. However, developing broad-spectrum vaccines is still a challenge for immunologists. The development of universal vaccines against emerging pathogens and their variants appears to be a practical solution to mitigate the economic and physical effects of the pandemic on society. Very few reports are available to explain the basic concept of universal vaccine design and development. This review provides an overview of the innate and adaptive immune responses generated against vaccination and essential insight into immune mechanisms helpful in designing universal vaccines targeting influenza viruses and coronaviruses. In addition, the characteristics, safety, and factors affecting the efficacy of universal vaccines have been discussed. Furthermore, several advancements in methods worthy of designing universal vaccines are described, including chimeric immunogens, heterologous prime-boost vaccines, reverse vaccinology, structure-based antigen design, pan-reactive antibody vaccines, conserved neutralizing epitope-based vaccines, mosaic nanoparticle-based vaccines, etc. In addition to the several advantages, significant potential constraints, such as defocusing the immune response and subdominance, are also discussed.
Collapse
Affiliation(s)
- Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | - Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | | |
Collapse
|
25
|
Utay NS, Güerri-Fernández R, Gharakhanian S, Asmuth DM, Contreras M, Kunkler C, Detzel CJ, Warner CD. Serum-derived bovine immunoglobulin treatment in COVID-19 is associated with faster resolution of symptoms: A randomized pilot clinical trial. J Med Virol 2024; 96:e70005. [PMID: 39390688 DOI: 10.1002/jmv.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Effective treatment to prevent hospitalization and death in people with COVID-19 exists, but people still need interventions that alleviate symptoms without drug interactions. Oral serum-derived bovine immunoglobulins (SBI) may reduce symptoms and time-to-improvement in people with mild-to-moderate COVID-19. In this randomized, open-label, single-site study, participants with mild-to-moderate COVID-19 received SBI 5.0 g bis in die (BID) + Standard of Care (SOC) or SOC alone (2:1) for 2 weeks. After 2 weeks, 78.8% of hospitalized participants on SBI + SOC improved by World Health Organization (WHO) scale of ≥3 compared to 61.1% on SOC alone (odds ratio: OR = 2.4; p = 0.0663), with older participants (>57 years) showing more significant differences between the arms (OR = 6.1; p = 0.0109). Further, more participants on SBI + SOC reported absence of COVID-19 symptoms at Week 2 (74.2%) compared to SOC alone (43.6%; OR = 3.7; p = 0.0031), most notably the absence of dyspnea on exertion (OR = 4.4; p = 0.0047), with women exhibiting the most significant eradication of all symptoms (OR = 5.8; p = 0.0080). No difference in change of IL-6 between arms was observed. Overall, participants with mild-to-moderate COVID-19 on SBI + SOC had a shorter time-to-recovery than on SOC alone, with a significantly higher rate of complete resolution of symptoms. Dyspnea on exertion was the symptom most significantly impacted. For people with mild-to-moderate COVID-19, oral SBI could be a safe and effective intervention, devoid of drug interactions.
Collapse
Affiliation(s)
- Netanya S Utay
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Shahin Gharakhanian
- CIC: Cambridge Innovation Center, Pharmaceutical Medicine & Infectious Diseases, Shahin Gharakhanian MD Consulting LLC, One Broadway, Cambridge, Massachusetts, USA
| | - David M Asmuth
- Department of Internal Medicine, University of California, Davis, Sacramento, California, USA
| | | | | | | | | |
Collapse
|
26
|
Mangoura SA, Ahmed MA, Zaka AZ. New Insights into the Pleiotropic Actions of Dipeptidyl Peptidase-4 Inhibitors Beyond Glycaemic Control. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:19-29. [PMID: 39526061 PMCID: PMC11548370 DOI: 10.17925/ee.2024.20.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/23/2024] [Indexed: 11/16/2024]
Abstract
Dipeptidyl peptidase-4 (DPP-4) is a multifunctional serine ectopeptidase that cleaves and modifies a plethora of substrates, including regulatory peptides, cytokines and chemokines. DPP-4 is implicated in the regulation of immune response, viral entry, cellular adhesion, metastasis and chemotaxis. Regarding its numerous substrates and extensive expression inside the body, multitasking DPP-4 has been assumed to participate in different pathophysiological mechanisms. DPP-4 inhibitors or gliptins are increasingly used for the treatment of type 2 diabetes mellitus. Several reports from experimental and clinical studies have clarified that DPP-4 inhibitors exert many beneficial pleiotropic effects beyond glycaemic control, which are mediated by anti-inflammatory, anti-oxidant, anti-fibrotic and anti-apoptotic actions. The present review will highlight the most recent findings in the literature about these pleiotropic effects and the potential mechanisms underlying these benefits, with a specific focus on the potential effectiveness of DPP-4 inhibitors in coronavirus disease-19 and diabetic kidney disease.
Collapse
Affiliation(s)
- Safwat A Mangoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Andrew Z Zaka
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
27
|
Rajesh R U, Sangeetha D. Therapeutic potentials and targeting strategies of quercetin on cancer cells: Challenges and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155902. [PMID: 39059266 DOI: 10.1016/j.phymed.2024.155902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Every cell in the human body is vital because it maintains equilibrium and carries out a variety of tasks, including growth and development. These activities are carried out by a set of instructions carried by many different genes and organized into DNA. It is well recognized that some lifestyle decisions, like using tobacco, alcohol, UV, or multiple sexual partners, might increase one's risk of developing cancer. The advantages of natural products for any health issue are well known, and researchers are making attempts to separate flavonoid-containing substances from plants. Various parts of plants contain a phenolic compound called flavonoid. Quercetin, which belongs to the class of compounds known as flavones with chromone skeletal structure, has anti-cancer activity. PURPOSE The study was aimed at investigating the therapeutic action of the flavonoid quercetin on various cancer cells. METHODS The phrases quercetin, anti-cancer, nanoparticles, and cell line were used to search the data using online resources such as PubMed, and Google Scholar. Several critical previous studies have been included. RESULTS Quercetin inhibits various dysregulated signaling pathways that cause cancer cells to undergo apoptosis to exercise its anticancer effects. Numerous signaling pathways are impacted by quercetin, such as the Hedgehog system, Akt, NF-κB pathway, downregulated mutant p53, JAK/STAT, G1 phase arrest, Wnt/β-Catenin, and MAPK. There are downsides to quercetin, like hydrophobicity, first-pass effect, instability in the gastrointestinal tract, etc., because of which it is not well-established in the pharmaceutical industry. The solution to these drawbacks in the future is using bio-nanomaterials like chitosan, PLGA, liposomes, and silk fibroin as carriers, which can enhance the target specificity of quercetin. The first section of this review covers the specifics of flavonoids and quercetin; the second section covers the anti-cancer activity of quercetin; and the third section explains the drawbacks and conjugation of quercetin with nanoparticles for drug delivery by overcoming quercetin's drawback. CONCLUSIONS Overall, this review presented details about quercetin, which is a plant derivative with a promising molecular mechanism of action. They inhibit cancer by various mechanisms with little or no side effects. It is anticipated that plant-based materials will become increasingly relevant in the treatment of cancer.
Collapse
Affiliation(s)
- Udaya Rajesh R
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India
| | - Dhanaraj Sangeetha
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India.
| |
Collapse
|
28
|
Nafian F, Soleymani G, Pourmanouchehri Z, Kiyanjam M, Nafian S, Mohammadi SM, Jeyroudi H, Berenji Jalaei S, Sabzpoushan F. In Silico Design of a Trans-Amplifying RNA-Based Vaccine against SARS-CoV-2 Structural Proteins. Adv Virol 2024; 2024:3418062. [PMID: 39380944 PMCID: PMC11459942 DOI: 10.1155/2024/3418062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024] Open
Abstract
Nucleic acid-based vaccines allow scalable, rapid, and cell-free vaccine production in response to an emerging disease such as the current COVID-19 pandemic. Here, we objected to the design of a multiepitope mRNA vaccine against the structural proteins of SARS-CoV-2. Through an immunoinformatic approach, promising epitopes were predicted for the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. Fragments rich in overlapping epitopes were selected based on binding affinities with HLA classes I and II for the specific presentation to B and T lymphocytes. Two constructs were designed by fusing the fragments in different arrangements via GG linkers. Construct 1 showed better structural properties and interactions with toll-like receptor 2 (TLR-2), TLR-3, and TLR-4 during molecular docking and dynamic simulation. A 50S ribosomal L7/L12 adjuvant was added to its N-terminus to improve stability and immunogenicity. The final RNA sequence was used to design a trans-amplifying RNA (taRNA) vaccine in a split-vector system. It consists of two molecules: a nonreplicating RNA encoding a trans-acting replicase to amplify the second one, a trans-replicon (TR) RNA encoding the vaccine protein. Overall, the immune response simulation detected that activated B and T lymphocytes and increased memory cell formation. Macrophages and dendritic cells proliferated continuously, and IFN-γ and cytokines like IL-2 were released highly.
Collapse
Affiliation(s)
- Fatemeh Nafian
- Department of Medical Laboratory SciencesFaculty of ParamedicsTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Ghazal Soleymani
- Department of Biological SciencesVirginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Zahra Pourmanouchehri
- Department of BiologyTechnical University of Kaiserslautern, Kaiserslautern Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mahnaz Kiyanjam
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Simin Nafian
- Department of Stem Cell and Regenerative MedicineNational Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sayed Mohammad Mohammadi
- Department of BiotechnologyFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Hanie Jeyroudi
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Sharareh Berenji Jalaei
- Department of BiochemistryFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Fatemeh Sabzpoushan
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| |
Collapse
|
29
|
Lee JH, Sergi C, Kast RE, Kanwar BA, Bourbeau J, Oh S, Sohn MG, Lee CJ, Coleman MD. Aggravating mechanisms from COVID-19. Virol J 2024; 21:228. [PMID: 39334442 PMCID: PMC11430051 DOI: 10.1186/s12985-024-02506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated diseases. The pathophysiology of COVID-19 uses the following three mechanisms: (1) inflammasome activation mechanism; (2) cGAS-STING signaling mechanism; and (3) SAMHD1 tetramerization mechanism, which leads to IFN-I production. Interactions between the host and virus govern induction, resulting in multiorgan impacts. The NLRP3 with cGAS-STING constitutes the primary immune response. The expression of SARS-CoV-2 ORF3a, NSP6, NSP7, and NSP8 blocks innate immune activation and facilitates virus replication by targeting the RIG-I/MDA5, TRIF, and cGAS-STING signaling. SAMHD1 has a target motif for CDK1 to protect virion assembly, threonine 592 to modulate a catalytically active tetramer, and antiviral IFN responses to block retroviral infection. Plastic and allosteric nucleic acid binding of SAMHD1 modulates the antiretroviral activity of SAMHD1. Therefore, inflammasome activation, cGAS-STING signaling, and SAMHD1 tetramerization explain acute kidney injury, hepatic, cardiac, neurological, and gastrointestinal injury of COVID-19. It might be necessary to effectively block the pathological courses of diverse diseases.
Collapse
Affiliation(s)
- Jong Hoon Lee
- Science and Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Geriatrics, Gyeonggi Medical Center Pocheon Hospital, 1648 Pocheon-ro Sin-eup-dong, Pocheon-si, Gyeonggi-do, 11142, Republic of Korea.
| | - Consolato Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Richard E Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, 05408 VT, USA
| | - Badar A Kanwar
- Haider Associates, 1999 Forest Ridge Dr, Bedford, TX, 76021, USA
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montréal, QC, Canada
| | - Sangsuk Oh
- Department of Food Engineering, Food Safety Laboratory, Memory Unit, Ewha Womans University, Seoul, 03670, Korea
| | - Mun-Gi Sohn
- Department of Food Science, KyungHee University College of Life Science, Seoul, 17104, Republic of Korea
| | - Chul Joong Lee
- Department of Anesthesiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Michael D Coleman
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
30
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
31
|
Gai X, Sun X, Liu B, Yan W, Sheng Z, Zhou Q, Sun Y. Efficacy of Combination of Antiviral Therapy With Neutralizing Monoclonal Antibodies for Recurrent Persistent SARS-CoV-2 Pneumonia in Patients With Lymphoma. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8182887. [PMID: 39140001 PMCID: PMC11321881 DOI: 10.1155/2024/8182887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
Despite the potential of neutralizing antibodies in the management of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), clinical research on its efficacy in Chinese patients remains limited. This study is aimed at investigating the therapeutic effect of combination of antiviral therapy with neutralizing monoclonal antibodies for recurrent persistent SARS-CoV-2 pneumonia in patients with lymphoma complicated by B cell depletion. A prospective study was conducted on Chinese patients who were treated with antiviral nirmatrelvir/ritonavir therapy and the neutralizing antibody tixagevimab-cilgavimab (tix-cil). The primary outcome was the rate of recurrent SARS-CoV-2 infection. Five patients with lymphoma experienced recurrent SARS-CoV-2 pneumonia and received tix-cil treatment. All patients had a history of CD20 monoclonal antibody use within the year preceding SARS-CoV-2 infection, and two patients also had a history of Bruton's tyrosine kinase (BTK) inhibitor use. These patients had notably low lymphocyte counts and exhibited near depletion of B cells. All five patients tested negative for serum SARS-CoV-2 IgG and IgM antibodies. None of the patients developed reinfection with SARS-CoV-2 pneumonia after antiviral and tix-cil treatment during the 6-month follow-up period. In conclusion, the administration of antiviral and SARS-CoV-2-neutralizing antibodies showed encouraging therapeutic efficacy against SARS-CoV-2 pneumonia in patients with lymphoma complicated by B cell depletion, along with the potential preventive effect of neutralizing antibodies for up to 6 months.
Collapse
Affiliation(s)
- Xiaoyan Gai
- Department of Pulmonary and Critical Care Medicine Peking University Third Hospital, Beijing 100083, China
| | - Xiaoyan Sun
- Department of Pulmonary and Critical Care Medicine Peking University Third Hospital, Beijing 100083, China
| | - Beibei Liu
- Department of Pulmonary and Critical Care Medicine Peking University Third Hospital, Beijing 100083, China
| | - Wei Yan
- Department of Pulmonary and Critical Care Medicine Peking University Third Hospital, Beijing 100083, China
| | - Zikang Sheng
- Department of Pulmonary and Critical Care Medicine Peking University Third Hospital, Beijing 100083, China
| | - Qingtao Zhou
- Department of Pulmonary and Critical Care Medicine Peking University Third Hospital, Beijing 100083, China
| | - Yongchang Sun
- Department of Pulmonary and Critical Care Medicine Peking University Third Hospital, Beijing 100083, China
| |
Collapse
|
32
|
Chidambaram V, Kumar A, Sadaf MI, Lu E, Al’Aref SJ, Tarun T, Galiatsatos P, Gulati M, Blumenthal RS, Leucker TM, Karakousis PC, Mehta JL. COVID-19 in the Initiation and Progression of Atherosclerosis: Pathophysiology During and Beyond the Acute Phase. JACC. ADVANCES 2024; 3:101107. [PMID: 39113913 PMCID: PMC11304887 DOI: 10.1016/j.jacadv.2024.101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 08/10/2024]
Abstract
The incidence of atherosclerotic cardiovascular disease is increasing globally, especially in low- and middle-income countries, despite significant efforts to reduce traditional risk factors. Premature subclinical atherosclerosis has been documented in association with several viral infections. The magnitude of the recent COVID-19 pandemic has highlighted the need to understand the association between SARS-CoV-2 and atherosclerosis. This review examines various pathophysiological mechanisms, including endothelial dysfunction, platelet activation, and inflammatory and immune hyperactivation triggered by SARS-CoV-2 infection, with specific attention on their roles in initiating and promoting the progression of atherosclerotic lesions. Additionally, it addresses the various pathogenic mechanisms by which COVID-19 in the post-acute phase may contribute to the development of vascular disease. Understanding the overlap of these syndromes may enable novel therapeutic strategies. We further explore the need for guidelines for closer follow-up for the often-overlooked evidence of atherosclerotic cardiovascular disease among patients with recent COVID-19, particularly those with cardiometabolic risk factors.
Collapse
Affiliation(s)
- Vignesh Chidambaram
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amudha Kumar
- Division of Cardiology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Murrium I. Sadaf
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Emily Lu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Subhi J. Al’Aref
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Tushar Tarun
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Panagis Galiatsatos
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Martha Gulati
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Roger S. Blumenthal
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thorsten M. Leucker
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Petros C. Karakousis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jawahar L. Mehta
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Division of Cardiovascular Medicine, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
33
|
Asaba CN, Ekabe CJ, Ayuk HS, Gwanyama BN, Bitazar R, Bukong TN. Interplay of TLR4 and SARS-CoV-2: Unveiling the Complex Mechanisms of Inflammation and Severity in COVID-19 Infections. J Inflamm Res 2024; 17:5077-5091. [PMID: 39081874 PMCID: PMC11288317 DOI: 10.2147/jir.s474707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
The late 2019 emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, caused profound and unprecedented disruption to the global socio-economic structure, negatively affecting millions of lives worldwide. A typical hallmark of severe COVID-19 is hyper inflammation due to aberrant cytokine release (cytokine storm) by innate immune cells. Recent studies have revealed that SARS-CoV-2, through its spike (S) protein, can activate the body's innate immune cells via Toll-Like Receptors (TLRs), particularly TLR4. In silico studies have demonstrated that the S protein binds with high affinity to TLR4, triggering downstream signaling processes that result in pro-inflammatory cytokine release. Compared to other TLRs, such as TLR2, TLR4 plays a more significant role in initiating and sustaining the inflammatory response associated with severe COVID-19. Furthermore, interactions between the virus and target cells can enhance the cellular expression of TLR4, making cells more susceptible to viral interactions and subsequent inflammation. This increased expression of TLR4 upon viral entry creates a feedback loop, where heightened TLR4 levels lead to amplified inflammatory responses, contributing to the severity of the disease. Additionally, TLR4's potent activation of inflammatory pathways sets it apart from other TLRs, underscoring its pivotal role in the pathogenesis of COVID-19. In this review, we thoroughly explore the multitude of regulatory signaling pathways that SARS-CoV-2 employs to incite inflammation. We specifically focus on the critical impact of TLR4 activation compared to other TLRs, highlighting how TLR4's interactions with the viral S protein can exacerbate the severity of COVID-19. By delving into the mechanisms of TLR4-mediated inflammation, we aim to shed light on potential therapeutic targets that could mitigate the inflammatory damage caused by severe COVID-19. Understanding the unique role of TLR4 in the context of SARS-CoV-2 infection could pave the way for novel treatment strategies that specifically inhibit this receptor's activity, thereby reducing the overall disease burden and improving patient outcomes.
Collapse
Affiliation(s)
- Clinton Njinju Asaba
- Armand-Frappier Sante Biotechnologie Research Center, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Cyril Jabea Ekabe
- Department of Translational Biomedical Sciences, University of Rochester, Rochester, NY, USA
| | - Humblenoble Stembridge Ayuk
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, 04318, Germany
| | | | - Razieh Bitazar
- Armand-Frappier Sante Biotechnologie Research Center, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Terence Ndonyi Bukong
- Armand-Frappier Sante Biotechnologie Research Center, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| |
Collapse
|
34
|
Karahmet Sher E, Alebić M, Marković Boras M, Boškailo E, Karahmet Farhat E, Karahmet A, Pavlović B, Sher F, Lekić L. Nanotechnology in medicine revolutionizing drug delivery for cancer and viral infection treatments. Int J Pharm 2024; 660:124345. [PMID: 38885775 DOI: 10.1016/j.ijpharm.2024.124345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Advancements in nanotechnology were vastly applied in medicine and pharmacy, especially in the field of nano-delivery systems. It took a long time for these systems to ensure precise delivery of very delicate molecules, such as RNA, to cells at concentrations that yield remarkable efficiency, with success rates reaching 95.0% and 94.5%. These days, there are several advantages of using nanotechnological solutions in the prevention and treatment of cancer and viral infections. Its interventions improve treatment outcomes both due to increased effectiveness of the drug at target location and by reducing adverse reactions, thereby increasing patient adherence to the therapy. Based on the current knowledge an updated review was made, and perspective, opportunities and challenges in nanomedicine were discussed. The methods employed include comprehensive examination of existing literature and studies on nanoparticles and nano-delivery systems including both in vitro tests performed on cell cultures and in vivo assessments carried out on appropriate animal models, with a specific emphasis on their applications in oncology and virology. This brings together various aspects including both structure and formation as well as its association with characteristic behaviour in organisms, providing a novel perspective. Furthermore, the practical application of these systems in medicine and pharmacy with a focus on viral diseases and malignancies was explored. This review can serve as a valuable guide for fellow researchers, helping them navigate the abundance of findings in this field. The results indicate that applications of nanotechnological solutions for the delivery of medicinal products improving therapeutic outcomes will continue to expand.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Mirna Alebić
- Department of Pharmacy, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Marijana Marković Boras
- Department of Laboratory Diagnostic, University Clinical Hospital Mostar, Mostar 88000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Boškailo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Esma Karahmet Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Food and Nutrition, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Alma Karahmet
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Bojan Pavlović
- Faculty of Physical Education and Sports, University of East Sarajevo, Lukavica, Republika Srpska 75327, Bosnia and Herzegovina
| | - Farooq Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Lana Lekić
- Faculty of Health Studies, University of Sarajevo, Sarajevo 71000, Bosnia and Herzegovina
| |
Collapse
|
35
|
Lee JH, Sergi C, Kast RE, Kanwar BA, Bourbeau J, Oh S, Sohn MG, Lee CJ, Coleman MD. Basic implications on three pathways associated with SARS-CoV-2. Biomed J 2024:100766. [PMID: 39004185 DOI: 10.1016/j.bj.2024.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts between the host and virus and govern induction, resulting in multiorgan impacts. Its pathophysiology involves the followings: 1) the angiotensin-converting enzyme (ACE2) and Toll-like receptor (TLR) pathways: 2) the neuropilin (NRP) pathway: 3) the spike protein pathway. Therefore, it is necessary to block the pathological course with modulating innate lymphoid cells against diverse corona variants in the future.
Collapse
Affiliation(s)
- Jong Hoon Lee
- Science and Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Consolato Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Richard E Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, 05408, VT, USA
| | - Badar A Kanwar
- Haider Associates, 1999 Forest Ridge Dr, Bedford, TX, 76021, USA
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montréal, QC, Canada
| | - Sangsuk Oh
- Department of Food Engineering, Food Safety Laboratory, Memory Unit, Ewha Womans University, Seoul, 03670, Republic of Korea
| | - Mun-Gi Sohn
- Department of Food Science, KyungHee University College of Life Science, Seoul, 17104, Republic of Korea
| | - Chul Joong Lee
- Department of Anesthesiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Michael D Coleman
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
36
|
Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal 2024; 22:349. [PMID: 38965547 PMCID: PMC11223399 DOI: 10.1186/s12964-024-01718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.
Collapse
Affiliation(s)
- Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Nada El-Kholy
- Department of Drug Discovery, H. Lee Moffit Cancer Center& Research Institute, Tampa, FL, 33612, USA
- Cancer Chemical Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa E Hussien
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | | | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Mohamed Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt.
| |
Collapse
|
37
|
Khameneh HJ, Bolis M, Ventura PMO, Cassanmagnago GA, Fischer BA, Zenobi A, Guerra J, Buzzago I, Bernasconi M, Zaman GJR, Rinaldi A, Moro SG, Sallusto F, Baulier E, Pasquali C, Guarda G. The bacterial lysate OM-85 engages Toll-like receptors 2 and 4 triggering an immunomodulatory gene signature in human myeloid cells. Mucosal Immunol 2024; 17:346-358. [PMID: 38447907 DOI: 10.1016/j.mucimm.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
OM-85 is a bacterial lysate used in clinical practice to reduce duration and frequency of recurrent respiratory tract infections. Whereas knowledge of its regulatory effects in vivo has substantially advanced, the mechanisms of OM-85 sensing remain inadequately addressed. Here, we show that the immune response to OM-85 in the mouse is largely mediated by myeloid immune cells through Toll-like receptor (TLR) 4 in vitro and in vivo. Instead, in human immune cells, TLR2 and TLR4 orchestrate the response to OM-85, which binds to both receptors as shown by surface plasmon resonance assay. Ribonucleic acid-sequencing analyses of human monocyte-derived dendritic cells reveal that OM-85 triggers a pro-inflammatory signature and a unique gene set, which is not induced by canonical agonists of TLR2 or TLR4 and comprises tolerogenic genes. A largely overlapping TLR2/4-dependent gene signature was observed in individual subsets of primary human airway myeloid cells, highlighting the robust effects of OM-85. Collectively, our results suggest caution should be taken when relating murine studies on bacterial lysates to humans. Furthermore, our data shed light on how a standardized bacterial lysate shapes the response through TLR2 and TLR4, which are crucial for immune response, trained immunity, and tolerance.
Collapse
Affiliation(s)
- Hanif J Khameneh
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland.
| | - Marco Bolis
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland; Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, Milano, Italy; Bioinformatics Core Unit, Swiss Institute of Bioinformatics, Bellinzona, Switzerland
| | - Pedro M O Ventura
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Giada A Cassanmagnago
- Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, Milano, Italy
| | - Berenice A Fischer
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Alessandro Zenobi
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Jessica Guerra
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Irene Buzzago
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Maurizio Bernasconi
- Pulmonology Division, Ente Ospedaliero Cantonale (EOC), Ospedale Regionale di Bellinzona e Valli (ORBV), Bellinzona, Switzerland
| | | | - Andrea Rinaldi
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
| | - Simone G Moro
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Federica Sallusto
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland; Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Edouard Baulier
- OM Pharma SA, Department of Preclinical Research, Meyrin, Switzerland
| | | | - Greta Guarda
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland.
| |
Collapse
|
38
|
Wang YC, Tsai CH, Wang YC, Yen LC, Chang YW, Sun JR, Lin TY, Chiu CH, Chao YC, Chang FY. SARS-CoV-2 nucleocapsid protein, rather than spike protein, triggers a cytokine storm originating from lung epithelial cells in patients with COVID-19. Infection 2024; 52:955-983. [PMID: 38133713 PMCID: PMC11143065 DOI: 10.1007/s15010-023-02142-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE The aim of this study was to elucidate the factors associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that may initiate cytokine cascades and correlate the clinical characteristics of patients with coronavirus disease 2019 (COVID-19) with their serum cytokine profiles. METHODS Recombinant baculoviruses displaying SARS-CoV-2 spike or nucleocapsid protein were constructed and transfected into A549 cells and THP-1-derived macrophages, to determine which protein initiate cytokine release. SARS-CoV-2-specific antibody titers and cytokine profiles of patients with COVID-19 were determined, and the results were associated with their clinical characteristics, such as development of pneumonia or length of hospital stay. RESULTS The SARS-CoV-2 nucleocapsid protein, rather than the spike protein, triggers lung epithelial A549 cells to express IP-10, RANTES, IL-16, MIP-1α, basic FGF, eotaxin, IL-15, PDGF-BB, TRAIL, VEGF-A, and IL-5. Additionally, serum CTACK, basic FGF, GRO-α, IL-1α, IL-1RA, IL-2Rα, IL-9, IL-15, IL-16, IL-18, IP-10, M-CSF, MIF, MIG, RANTES, SCGF-β, SDF-1α, TNF-α, TNF-β, VEGF, PDGF-BB, TRAIL, β-NGF, eotaxin, GM-CSF, IFN-α2, INF-γ, and MCP-1 levels were considerably increased in patients with COVID-19. Among them, patients with pneumonia had higher serum IP-10 and M-CSF levels than patients without. Patients requiring less than 3 weeks to show negative COVID-19 tests after contracting COVID-19 had higher serum IP-10 levels than the remaining patients. CONCLUSION Our study revealed that nucleocapsid protein, lung epithelial cells, and IP-10 may be potential targets for the development of new strategies to prevent, or control, severe COVID-19.
Collapse
Affiliation(s)
- Ying-Chuan Wang
- Department of Family Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11499, Taiwan, ROC
| | - Chih-Hsuan Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Yung-Chih Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11499, Taiwan, ROC
| | - Li-Chen Yen
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11499, Taiwan, ROC
| | - Yao-Wen Chang
- Taoyuan Armed Forces General Hospital, Taoyuan, 32551, Taiwan, ROC
| | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11499, Taiwan, ROC
| | - Te-Yu Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11499, Taiwan, ROC
| | - Chun-Hsiang Chiu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11499, Taiwan, ROC.
| | - Yu-Chan Chao
- Department of Entomology, College of Agriculture and Nature Resources, National Chung Hsing University, Taichung, 40227, Taiwan, ROC
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11499, Taiwan, ROC
| |
Collapse
|
39
|
Silva-Aguiar RP, Teixeira DE, Peruchetti DB, Peres RAS, Alves SAS, Calil PT, Arruda LB, Costa LJ, Silva PL, Schmaier AH, Rocco PRM, Pinheiro AAS, Caruso-Neves C. Toll like receptor 4 mediates the inhibitory effect of SARS-CoV-2 spike protein on proximal tubule albumin endocytosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167155. [PMID: 38579939 DOI: 10.1016/j.bbadis.2024.167155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Tubular proteinuria is a common feature in COVID-19 patients, even in the absence of established acute kidney injury. SARS-CoV-2 spike protein (S protein) was shown to inhibit megalin-mediated albumin endocytosis in proximal tubule epithelial cells (PTECs). Angiotensin-converting enzyme type 2 (ACE2) was not directly involved. Since Toll-like receptor 4 (TLR4) mediates S protein effects in various cell types, we hypothesized that TLR4 could be participating in the inhibition of PTECs albumin endocytosis elicited by S protein. Two different models of PTECs were used: porcine proximal tubule cells (LLC-PK1) and human embryonic kidney cells (HEK-293). S protein reduced Akt activity by specifically inhibiting of threonine 308 (Thr308) phosphorylation, a process mediated by phosphoinositide-dependent kinase 1 (PDK1). GSK2334470, a PDK1 inhibitor, decreased albumin endocytosis and megalin expression mimicking S protein effect. S protein did not change total TLR4 expression but decreased its surface expression. LPS-RS, a TLR4 antagonist, also counteracted the effects of the S protein on Akt phosphorylation at Thr308, albumin endocytosis, and megalin expression. Conversely, these effects of the S protein were replicated by LPS, an agonist of TLR4. Incubation of PTECs with a pseudovirus containing S protein inhibited albumin endocytosis. Null or VSV-G pseudovirus, used as control, had no effect. LPS-RS prevented the inhibitory impact of pseudovirus containing the S protein on albumin endocytosis but had no influence on virus internalization. Our findings demonstrate that the inhibitory effect of the S protein on albumin endocytosis in PTECs is mediated through TLR4, resulting from a reduction in megalin expression.
Collapse
Affiliation(s)
- Rodrigo P Silva-Aguiar
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo A S Peres
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sarah A S Alves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro T Calil
- Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana B Arruda
- Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana J Costa
- Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Alvin H Schmaier
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Patricia R M Rocco
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
40
|
Popotas A, Casimir GJ, Corazza F, Lefèvre N. Sex-related immunity: could Toll-like receptors be the answer in acute inflammatory response? Front Immunol 2024; 15:1379754. [PMID: 38835761 PMCID: PMC11148260 DOI: 10.3389/fimmu.2024.1379754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
An increasing number of studies have highlighted the existence of a sex-specific immune response, wherein men experience a worse prognosis in cases of acute inflammatory diseases. Initially, this sex-dependent inflammatory response was attributed to the influence of sex hormones. However, a growing body of evidence has shifted the focus toward the influence of chromosomes rather than sex hormones in shaping these inflammatory sex disparities. Notably, certain pattern recognition receptors, such as Toll-like receptors (TLRs), and their associated immune pathways have been implicated in driving the sex-specific immune response. These receptors are encoded by genes located on the X chromosome. TLRs are pivotal components of the innate immune system, playing crucial roles in responding to infectious diseases, including bacterial and viral pathogens, as well as trauma-related conditions. Importantly, the TLR-mediated inflammatory responses, as indicated by the production of specific proteins and cytokines, exhibit discernible sex-dependent patterns. In this review, we delve into the subject of sex bias in TLR activation and explore its clinical implications relatively to both the X chromosome and the hormonal environment. The overarching objective is to enhance our understanding of the fundamental mechanisms underlying these sex differences.
Collapse
Affiliation(s)
- Alexandros Popotas
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Translational Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Georges Jacques Casimir
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pulmonology, Allergology and Cystic Fibrosis, Queen Fabiola Childrens University Hospital (Hôpital Universitaire des Enfants Reine Fabiola) – University Hospital of Brussels (Hôpital Universitaire de Bruxelles), Brussels, Belgium
| | - Francis Corazza
- Laboratory of Translational Research, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Immunology, Centre Hospitalier Universitaire (CHU) Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Lefèvre
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pulmonology, Allergology and Cystic Fibrosis, Queen Fabiola Childrens University Hospital (Hôpital Universitaire des Enfants Reine Fabiola) – University Hospital of Brussels (Hôpital Universitaire de Bruxelles), Brussels, Belgium
| |
Collapse
|
41
|
Kircheis R. In Silico Analyses Indicate a Lower Potency for Dimerization of TLR4/MD-2 as the Reason for the Lower Pathogenicity of Omicron Compared to Wild-Type Virus and Earlier SARS-CoV-2 Variants. Int J Mol Sci 2024; 25:5451. [PMID: 38791489 PMCID: PMC11121871 DOI: 10.3390/ijms25105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The SARS-CoV-2 Omicron variants have replaced all earlier variants, due to increased infectivity and effective evasion from infection- and vaccination-induced neutralizing antibodies. Compared to earlier variants of concern (VoCs), the Omicron variants show high TMPRSS2-independent replication in the upper airway organs, but lower replication in the lungs and lower mortality rates. The shift in cellular tropism and towards lower pathogenicity of Omicron was hypothesized to correlate with a lower toll-like receptor (TLR) activation, although the underlying molecular mechanisms remained undefined. In silico analyses presented here indicate that the Omicron spike protein has a lower potency to induce dimerization of TLR4/MD-2 compared to wild type virus despite a comparable binding activity to TLR4. A model illustrating the molecular consequences of the different potencies of the Omicron spike protein vs. wild-type spike protein for TLR4 activation is presented. Further analyses indicate a clear tendency for decreasing TLR4 dimerization potential during SARS-CoV-2 evolution via Alpha to Gamma to Delta to Omicron variants.
Collapse
|
42
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and COVID-19-therapeutic opportunities at the host/virus interface during cell entry. Life Sci Alliance 2024; 7:e202302453. [PMID: 38388172 PMCID: PMC10883773 DOI: 10.26508/lsa.202302453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
The rapid development of vaccines to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has been critical to reduce the severity of COVID-19. However, the continuous emergence of new SARS-CoV-2 subtypes highlights the need to develop additional approaches that oppose viral infections. Targeting host factors that support virus entry, replication, and propagation provide opportunities to lower SARS-CoV-2 infection rates and improve COVID-19 outcome. This includes cellular cholesterol, which is critical for viral spike proteins to capture the host machinery for SARS-CoV-2 cell entry. Once endocytosed, exit of SARS-CoV-2 from the late endosomal/lysosomal compartment occurs in a cholesterol-sensitive manner. In addition, effective release of new viral particles also requires cholesterol. Hence, cholesterol-lowering statins, proprotein convertase subtilisin/kexin type 9 antibodies, and ezetimibe have revealed potential to protect against COVID-19. In addition, pharmacological inhibition of cholesterol exiting late endosomes/lysosomes identified drug candidates, including antifungals, to block SARS-CoV-2 infection. This review describes the multiple roles of cholesterol at the cell surface and endolysosomes for SARS-CoV-2 entry and the potential of drugs targeting cholesterol homeostasis to reduce SARS-CoV-2 infectivity and COVID-19 disease severity.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
43
|
Gong S, Ma C, Ma R, Zhu T, Ge X, Xie R, Tao Q, Ouyang G, Shi C. Elevated pretreatment serum apolipoprotein E level associated with poor prognosis of patients with COVID-19 during the omicron BA.5 and BF.7 wave. J Med Virol 2024; 96:e29673. [PMID: 38767184 DOI: 10.1002/jmv.29673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
The SARS-CoV-2 virus is responsible for the human disease known as COVID-19. This virus is capable of generating a spectrum of infections ranging from moderate to severe. Serum apolipoprotein E (ApoE) inhibits inflammation by preserving immune regulatory function. Nonetheless, the relationship between serum ApoE and clinical prognosis in omicron remains elusive. A cohort of 231 patients was observed for 65 days, with death as the primary outcome. Based on their ApoE levels, the patients were categorized into patients with elevated ApoE levels and those with lower ApoE levels. To do statistical comparisons, the log-rank test was utilized, and the Kaplan-Meier method was utilized to estimate survival rates. Cox hazard models, both univariate and multivariate, were employed to examine the prognostic relevance. According to our research, omicron had significantly greater ApoE levels. In mild-to-moderate and severe cases, the study identified a statistically significant variation in ApoE levels. Additionally, there was a drop in overall survival that is statistically significant (OS, p < 0.0001) for patients with greater ApoE levels. Multiple Cox proportional hazards regression analysis indicates that an elevated ApoE level was determined to be an adverse and independent prognostic factor of OS in patients with omicron. Taken together, our study found that the level of serum ApoE at the time of initial diagnosis was substantially connected to the severity and prognosis of omicron. Consequently, we propose that ApoE might be a poor prognostic factor in individuals afflicted with the omicron variant.
Collapse
Affiliation(s)
- Shengping Gong
- Cancer Radiotherapy and Chemotherapy Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Chao Ma
- Laboratory of Stem Cell Transplantation, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Ruishuang Ma
- Cancer Radiotherapy and Chemotherapy Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Ting Zhu
- Cancer Radiotherapy and Chemotherapy Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Xiaoqin Ge
- Cancer Radiotherapy and Chemotherapy Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Rongrong Xie
- Cancer Radiotherapy and Chemotherapy Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Qingsong Tao
- Cancer Radiotherapy and Chemotherapy Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Guifang Ouyang
- Department of Hematology, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Cong Shi
- Laboratory of Stem Cell Transplantation, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
44
|
Chau CW, To A, Au-Yeung RKH, Tang K, Xiang Y, Ruan D, Zhang L, Wong H, Zhang S, Au MT, Chung S, Song E, Choi DH, Liu P, Yuan S, Wen C, Sugimura R. SARS-CoV-2 infection activates inflammatory macrophages in vascular immune organoids. Sci Rep 2024; 14:8781. [PMID: 38627497 PMCID: PMC11021416 DOI: 10.1038/s41598-024-59405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
SARS-CoV-2 provokes devastating tissue damage by cytokine release syndrome and leads to multi-organ failure. Modeling the process of immune cell activation and subsequent tissue damage is a significant task. Organoids from human tissues advanced our understanding of SARS-CoV-2 infection mechanisms though, they are missing crucial components: immune cells and endothelial cells. This study aims to generate organoids with these components. We established vascular immune organoids from human pluripotent stem cells and examined the effect of SARS-CoV-2 infection. We demonstrated that infections activated inflammatory macrophages. Notably, the upregulation of interferon signaling supports macrophages' role in cytokine release syndrome. We propose vascular immune organoids are a useful platform to model and discover factors that ameliorate SARS-CoV-2-mediated cytokine release syndrome.
Collapse
Affiliation(s)
- Chiu Wang Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Alex To
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Rex K H Au-Yeung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kaiming Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yang Xiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Degong Ruan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lanlan Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Hera Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Shihui Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Man Ting Au
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | | | | | | | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Centre for Translational Stem Cell Biology, Sha Tin, Hong Kong
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Centre for Translational Stem Cell Biology, Sha Tin, Hong Kong.
| |
Collapse
|
45
|
Steiner S, Kratzel A, Barut GT, Lang RM, Aguiar Moreira E, Thomann L, Kelly JN, Thiel V. SARS-CoV-2 biology and host interactions. Nat Rev Microbiol 2024; 22:206-225. [PMID: 38225365 DOI: 10.1038/s41579-023-01003-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
The zoonotic emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing coronavirus disease 2019 (COVID-19) pandemic have profoundly affected our society. The rapid spread and continuous evolution of new SARS-CoV-2 variants continue to threaten global public health. Recent scientific advances have dissected many of the molecular and cellular mechanisms involved in coronavirus infections, and large-scale screens have uncovered novel host-cell factors that are vitally important for the virus life cycle. In this Review, we provide an updated summary of the SARS-CoV-2 life cycle, gene function and virus-host interactions, including recent landmark findings on general aspects of coronavirus biology and newly discovered host factors necessary for virus replication.
Collapse
Affiliation(s)
- Silvio Steiner
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Annika Kratzel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto M Lang
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Etori Aguiar Moreira
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lisa Thomann
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jenna N Kelly
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
- European Virus Bioinformatics Center, Jena, Germany.
| |
Collapse
|
46
|
Violi F, Harenberg J, Pignatelli P, Cammisotto V. COVID-19 and Long-COVID Thrombosis: From Clinical and Basic Science to Therapeutics. Thromb Haemost 2024; 124:286-296. [PMID: 37967846 DOI: 10.1055/s-0043-1776713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Coronavirus infectious disease-19 (COVID-19) is a pandemic characterized by serious lung disease and thrombotic events in the venous and circulation trees, which represent a harmful clinical sign of poor outcome. Thrombotic events are more frequent in patients with severe disease requiring intensive care units and are associated with platelet and clotting activation. However, after resolution of acute infection, patients may still have clinical sequelae, the so-called long-COVID-19, including thrombotic events again in the venous and arterial circulation. The mechanisms accounting for thrombosis in acute and long COVID-19 have not been fully clarified; interactions of COVID-19 with angiotensin converting enzyme 2 or toll-like receptor family or infection-induced cytokine storm have been suggested to be implicated in endothelial cells, leucocytes, and platelets to elicit clotting activation in acute as well in chronic phase of the disease. In acute COVID-19, prophylactic or full doses of anticoagulants exert beneficial effects even if the dosage choice is still under investigation; however, a residual risk still remains suggesting a need for a more appropriate therapeutic approach. In long COVID-19 preliminary data provided useful information in terms of antiplatelet treatment but definition of candidates for thrombotic prophylaxis is still undefined.
Collapse
Affiliation(s)
- Francesco Violi
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Via Orazio, Naples, Italy
| | - Job Harenberg
- Medical Faculty Mannheim, Ruprecht-karls University Heidelberg, Heidelberg, Germany
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Via Orazio, Naples, Italy
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
47
|
Jia F, Han J. COVID-19 related neurological manifestations in Parkinson's disease: has ferroptosis been a suspect? Cell Death Discov 2024; 10:146. [PMID: 38503730 PMCID: PMC10951317 DOI: 10.1038/s41420-024-01915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
A rising number of patient cases point to a probable link between SARS-CoV-2 infection and Parkinson's disease (PD), yet the mechanisms by which SARS-CoV-2 affects the brain and generates neuropsychiatric symptoms in COVID-19 patients remain unknown. Ferroptosis, a distinct iron-dependent non-apoptotic type of cell death characterized by lipid peroxidation and glutathione depletion, a key factor in neurological disorders. Ferroptosis may have a pathogenic role in COVID-19, according to recent findings, however its potential contributions to COVID-19-related PD have not yet been investigated. This review covers potential paths for SARS-CoV-2 infection of the brain. Among these putative processes, ferroptosis may contribute to the etiology of COVID-19-associated PD, potentially providing therapeutic methods.
Collapse
Affiliation(s)
- Fengju Jia
- School of Nursing, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, China.
| | - Jing Han
- School of Nursing, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, China
| |
Collapse
|
48
|
Yaghoobizadeh F, Roayaei Ardakani M, Ranjbar MM, Khosravi M, Galehdari H. Development of a potent recombinant scFv antibody against the SARS-CoV-2 by in-depth bioinformatics study: Paving the way for vaccine/diagnostics development. Comput Biol Med 2024; 170:108091. [PMID: 38295473 DOI: 10.1016/j.compbiomed.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND The SARS-CoV-2 has led to a worldwide disaster. Thus, developing prophylactics/therapeutics is required to overcome this public health issue. Among these, producing the anti-SARS-CoV-2 single-chain variable fragment (scFv) antibodies has attracted a significant attention. Accordingly, this study aims to address this question: Is it possible to bioinformatics-based design of a potent anti-SARS-CoV-2 scFv as an alternative to current production approaches? METHOD Using the complexed SARS-CoV-2 spike-antibodies, two sets analyses were performed: (1) B-cell epitopes (BCEs) prediction in the spike receptor-binding domain (RBD) region as a parameter for antibody screening; (2) the computational analysis of antibodies variable domains (VH/VL). Based on these primary screenings, and docking/binding affinity rating, one antibody was selected. The protein-protein interactions (PPIs) among the selected antibody-epitope complex were predicted and its epitope conservancy was also evaluated. Thereafter, some elements were added to the final scFv: (1) the PelB signal peptide; (2) a GSGGGGS linker to connect the VH-VL. Finally, this scFv was analyzed/optimized using various web servers. RESULTS Among the antibody library, only one met the various criteria for being an efficient scFv candidate. Moreover, no interaction was predicted between its paratope and RBD hot-spot residues of SARS-CoV-2 variants-of-Concern (VOCs). CONCLUSIONS Herein, a step-by-step bioinformatics platform has been introduced to bypass some barriers of traditional antibody production approaches. Based on existing literature, the current study is one of the pioneer works in the field of bioinformatics-based scFv production. This scFv may be a good candidate for diagnostics/therapeutics design against the SARS-CoV-2 as an emerging aggressive pathogen.
Collapse
Affiliation(s)
- Fatemeh Yaghoobizadeh
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, 6135783151, Iran.
| | - Mohammad Roayaei Ardakani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, 6135783151, Iran.
| | | | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, 6135783151, Iran.
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, 6135783151, Iran.
| |
Collapse
|
49
|
Xiao J, Luo Y, Li Y, Yao X. The characteristics of BCR-CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccinated volunteers. J Med Virol 2024; 96:e29488. [PMID: 38415507 DOI: 10.1002/jmv.29488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
The global COVID-19 pandemic has caused more than 1 billion infections, and numerous SARS-CoV-2 vaccines developed rapidly have been administered over 10 billion doses. The world is continuously concerned about the cytokine storms induced by the interaction between SARS-CoV-2 and host, long COVID, breakthrough infections postvaccination, and the impact of SARS-CoV-2 variants. BCR-CDR3 repertoire serves as a molecular target for monitoring the antiviral response "trace" of B cells, evaluating the effects, mechanisms, and memory abilities of individual responses to B cells, and has been successfully applied in analyzing the infection mechanisms, vaccine improvement, and neutralizing antibodies preparation of influenza virus, HIV, MERS, and Ebola virus. Based on research on BCR-CDR3 repertoire of COVID-19 patients and volunteers who received different SARS-CoV-2 vaccines in multiple laboratories worldwide, we focus on analyzing the characteristics and changes of BCR-CDR3 repertoire, such as diversity, clonality, V&J genes usage and pairing, SHM, CSR, shared CDR3 clones, as well as the summary on BCR sequences targeting virus-specific epitopes in the preparation and application research of SARS-CoV-2 potential therapeutic monoclonal antibodies. This review provides comparative data and new research schemes for studying the possible mechanisms of differences in B cell response between SARS-CoV-2 infection or vaccination, and supplies a foundation for improving vaccines after SARS-CoV-2 mutations and potential antibody therapy for infected individuals.
Collapse
Affiliation(s)
- Jiaping Xiao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
- Fushun People's Hospital, Zigong, Sichuan, China
| | - Yan Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yangyang Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
50
|
Chen IW, Lin HJ, Lin YT, Hung KC. Comment on "The association of sickle cell disorder with adverse outcomes in COVID-19 patients: A meta-analysis". J Med Virol 2024; 96:e29495. [PMID: 38445781 DOI: 10.1002/jmv.29495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Affiliation(s)
- I-Wen Chen
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan City, Taiwan
| | - Hsiu-Jung Lin
- Department of Anesthesiology, E-Da Cancer Hospital, I-Shou University, Kaohsiung City, Taiwan
| | - Yao-Tsung Lin
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| |
Collapse
|