1
|
Bhanothu V. Investigation of the morphological, cellular, biochemical, and molecular modifications in the BG01V human embryonic stem cell-derived neuronal cells. Tissue Cell 2025; 96:102965. [PMID: 40373613 DOI: 10.1016/j.tice.2025.102965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Changes in the morphology, metabolic activity, intracellular calcium (Ca2 +) transients, expression of topoisomerase-2β (Topo-2β), and senescence of human embryonic stem cells (hESCs)-derived neuronal cells on basic hESC culture media and neuronal differentiation medium at different time intervals is not clear. Hence, we aimed to investigate the morphological, cellular, biochemical, and molecular alterations in the BG01V hESC-derived neuronal cells on basic hESC culture media and neuronal differentiation media at different time intervals. MATERIALS AND METHODS BG01V hESC-derived neuronal cells grown on basic hESC culture media and neuronal differentiation media were evaluated for morphological changes by microscopy, metabolic activity by MTT assay, cell viability by Trypan Blue exclusion assay, cellular activity by estimating the Ca2+ deposits, cellular senescence by senescence-associated beta-galactosidase (SA-β-gal) activity, and level of Topo-2β using Western blotting at different time intervals. RESULTS Contrasting to the BG01V hESCs grown on basic hESC culture media, a notable increase in the neuronal cell-like structures, neuritic outgrowth, and expression of nestin protein on neural induction was observed. Higher levels of Ca2+ deposits, metabolic activity, SA-β-gal activity, and Topo-2β expression in BG01V hESC-derived neuronal cells grown on neuronal differentiation media on day 12 compared to hESCs grown on basic hESC culture media including other days were noted. CONCLUSION This study suggests the increase of calcium salts reflecting the calcium activity at distinct phases of neuronal differentiation, ranging from neural induction to neurite extension. The metabolic and SA-β-gal activity of BG01V hESC-derived neuronal cells may suggest the ongoing biological aging process. Upregulation and activation of Topo-2β upon differentiation induction at the mid-phase suggest the activation of inducible gene loci and downregulation of Topo-2β at a later stage.
Collapse
Affiliation(s)
- Venkanna Bhanothu
- Department of Cell Biology, ICMR-National Institute of Nutrition, Tarnaka, Hyderabad, India; Department of Biotechnology & Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
2
|
Shamsnia HS, Peyrovinasab A, Amirlou D, Sirouskabiri S, Rostamian F, Basiri N, Shalmani LM, Hashemi M, Hushmandi K, Abdolghaffari AH. BDNF-TrkB Signaling Pathway in Spinal Cord Injury: Insights and Implications. Mol Neurobiol 2025; 62:1904-1944. [PMID: 39046702 DOI: 10.1007/s12035-024-04381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Spinal cord injury (SCI) is a neurodegenerative disorder that has critical impact on patient's life expectance and life span, and this disorder also leads to negative socioeconomic features. SCI is defined as a firm collision to the spinal cord which leads to the fracture and the dislocation of vertebrae. The current available treatment is surgery. However, it cannot fully treat SCI, and many consequences remain after the surgery. Accordingly, finding new therapeutics is critical. BDNF-TrkB signaling is a vital signaling in neuronal differentiation, survival, overgrowth, synaptic plasticity, etc. Hence, many studies evaluate its impact on various neurodegenerative disorders. There are several studies evaluating this signaling in SCI, and they show promising outcomes. It was shown that various exercises, chemical interventions, etc. had significant positive impact on SCI by affecting BDNF-TrkB signaling pathway. This study aims to accumulate and evaluate these data and inspect whether this signaling is effective or not.
Collapse
Affiliation(s)
- Hedieh Sadat Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirreza Peyrovinasab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Dorsa Amirlou
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shirin Sirouskabiri
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Rostamian
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasim Basiri
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Madhubala D, Mahato R, Khan MR, Bala A, Mukherjee AK. Neurotrophin peptidomimetics for the treatment of neurodegenerative diseases. Drug Discov Today 2024; 29:104156. [PMID: 39233307 DOI: 10.1016/j.drudis.2024.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Neurotrophins, such as nerve growth factor and brain-derived neurotrophic factor, play an essential role in the survival of neurons. However, incorporating better features can increase their therapeutic efficacy in neurodegenerative diseases (NDs). Peptidomimetics, which mimic these neurotrophins, show potential for treating NDs. This study emphasizes the use of peptidomimetics from neurotrophins for treating NDs and their benefits. By improving bioavailability and stability, these molecules can completely transform the therapy for NDs. This in-depth review guides researchers and pharmaceutical developers, providing insight into the changing field of neurodegenerative medicine.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
| | - Rosy Mahato
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Asis Bala
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Fursa GA, Andretsova SS, Shishkina VS, Voronova AD, Karsuntseva EK, Chadin AV, Reshetov IV, Stepanova OV, Chekhonin VP. The Use of Neurotrophic Factors as a Promising Strategy for the Treatment of Neurodegenerative Diseases (Review). Bull Exp Biol Med 2024:10.1007/s10517-024-06218-5. [PMID: 39266924 DOI: 10.1007/s10517-024-06218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 09/14/2024]
Abstract
The review considers the use of exogenous neurotrophic factors in the treatment of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and others. This group of diseases is associated with the death of neurons and dysfunction of the nervous tissue. Currently, there is no effective therapy for neurodegenerative diseases, and their treatment remains a serious problem of modern medicine. A promising strategy is the use of exogenous neurotrophic factors. Targeted delivery of these factors to the nervous tissue can improve survival of neurons during the development of neurodegenerative processes and ensure neuroplasticity. There are methods of direct injection of neurotrophic factors into the nervous tissue, delivery using viral vectors, as well as the use of gene cell products. The effectiveness of these approaches has been studied in numerous experimental works and in a number of clinical trials. Further research in this area could provide the basis for the creation of an alternative treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- G A Fursa
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
- Pirogov Russian National Research Medical University, Moscow, Russia.
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - S S Andretsova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V S Shishkina
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A D Voronova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E K Karsuntseva
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Chadin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I V Reshetov
- University Clinical Hospital No. 1, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Academy of Postgraduate Education, Federal Research and Clinical Center of Specialized Types of Health Care and Medical Technology of the Federal Medical and Biological Agency, Moscow, Russia
| | - O V Stepanova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
5
|
Saijilafu, Ye LC, Zhang JY, Xu RJ. The top 100 most cited articles on axon regeneration from 2003 to 2023: a bibliometric analysis. Front Neurosci 2024; 18:1410988. [PMID: 38988773 PMCID: PMC11233811 DOI: 10.3389/fnins.2024.1410988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
Objective In this study, we used a bibliometric and visual analysis to evaluate the characteristics of the 100 most cited articles on axon regeneration. Methods The 100 most cited papers on axon regeneration published between 2003 and 2023 were identified by searching the Web of Science Core Collection database. The extracted data included the title, author, keywords, journal, publication year, country, and institution. A bibliometric analysis was subsequently undertaken. Results The examined set of 100 papers collectively accumulated a total of 39,548 citations. The number of citations for each of the top 100 articles ranged from 215 to 1,604, with a median value of 326. The author with the most contributions to this collection was He, Zhigang, having authored eight papers. Most articles originated in the United States (n = 72), while Harvard University was the institution with the most cited manuscripts (n = 19). Keyword analysis unveiled several research hotspots, such as chondroitin sulfate proteoglycan, alternative activation, exosome, Schwann cells, axonal protein synthesis, electrical stimulation, therapeutic factors, and remyelination. Examination of keywords in the articles indicated that the most recent prominent keyword was "local delivery." Conclusion This study offers bibliometric insights into axon regeneration, underscoring that the United States is a prominent leader in this field. Our analysis highlights the growing relevance of local delivery systems in axon regeneration. Although these systems have shown promise in preclinical models, challenges associated with long-term optimization, agent selection, and clinical translation remain. Nevertheless, the continued development of local delivery technologies represents a promising pathway for achieving axon regeneration; however, additional research is essential to fully realize their potential and thereby enhance patient outcomes.
Collapse
Affiliation(s)
- Saijilafu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ling-Chen Ye
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jing-Yu Zhang
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ren-Jie Xu
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
6
|
Rouchka EC, de Almeida C, House RB, Daneshmand JC, Chariker JH, Saraswat-Ohri S, Gomes C, Sharp M, Shum-Siu A, Cesarz GM, Petruska JC, Magnuson DSK. Construction of a Searchable Database for Gene Expression Changes in Spinal Cord Injury Experiments. J Neurotrauma 2024; 41:1030-1043. [PMID: 37917105 PMCID: PMC11302316 DOI: 10.1089/neu.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition with an estimated 18,000 new cases annually in the United States. The field has accepted and adopted standardized databases such as the Open Data Commons for Spinal Cord Injury (ODC-SCI) to aid in broader analyses, but these currently lack high-throughput data despite the availability of nearly 6000 samples from over 90 studies available in the Sequence Read Archive. This limits the potential for large datasets to enhance our understanding of SCI-related mechanisms at the molecular and cellular level. Therefore, we have developed a protocol for processing RNA-Seq samples from high-throughput sequencing experiments related to SCI resulting in both raw and normalized data that can be efficiently mined for comparisons across studies, as well as homologous discovery across species. We have processed 1196 publicly available RNA-Seq samples from 50 bulk RNA-Seq studies across nine different species, resulting in an SQLite database that can be used by the SCI research community for further discovery. We provide both the database as well as a web-based front-end that can be used to query the database for genes of interest, differential gene expression, genes with high variance, and gene set enrichments.
Collapse
Affiliation(s)
- Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, USA
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
- Bioinformatics Program, University of Louisville, Louisville, Kentucky, USA
| | - Carlos de Almeida
- Translational Neuroscience Program, University of Louisville, Louisville, Kentucky, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Randi B. House
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | | | - Julia H. Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
- Department of Neuroscience Training, University of Louisville, Louisville, Kentucky, USA
| | - Sujata Saraswat-Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Cynthia Gomes
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Morgan Sharp
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Greta M. Cesarz
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Jeffrey C. Petruska
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - David S. K. Magnuson
- Translational Neuroscience Program, University of Louisville, Louisville, Kentucky, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Li ZY, Dai YX, Wu ZM, Li G, Pu PM, Hu CW, Zhou LY, Zhu K, Shu B, Wang YJ, Cui XJ, Yao M. Network pharmacology analysis and animal experiment validation of neuroinflammation inhibition by total ginsenoside in treating CSM. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155073. [PMID: 38417244 DOI: 10.1016/j.phymed.2023.155073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Cervical spondylotic myelopathy (CSM) is a degenerative pathology that affects both upper and lower extremity mobility and sensory function, causing significant pressure on patients and society. Prior research has suggested that ginsenosides may have neuroprotective properties in central nervous system diseases. However, the efficacy and mechanism of ginsenosides for CSM have yet to be investigated. PURPOSE This study aims to analyze the composition of ginsenosides using UPLC-MS, identify the underlying mechanism of ginsenosides in treating CSM using network pharmacology, and subsequently confirm the efficacy and mechanism of ginsenosides in rats with chronic spinal cord compression. METHODS UPLC-Q-TOF-MS was utilized to obtain mass spectrum data of ginsenoside samples. The chemical constituents of the samples were analyzed by consulting literature reports and relevant databases. Ginsenoside and CSM targets were obtained from the TCMSP, OMIM, and GeneCards databases. GO and KEGG analyses were conducted, and a visualization network of ginsenosides-compounds-key targets-pathways-CSM was constructed, along with molecular docking of key bioactive compounds and targets, to identify the signaling pathways and proteins associated with the therapeutic effects of ginsenosides on CSM. Chronic spinal cord compression rats were intraperitoneally injected with ginsenosides (50 mg/kg and 150 mg/kg) and methylprednisolone for 28 days, and motor function was assessed to investigate the therapeutic efficacy of ginsenosides for CSM. The expression of proteins associated with TNF, IL-17, TLR4/MyD88/NF-κB, and NLRP3 signaling pathways was assessed by immunofluorescence staining and western blotting. RESULTS Using UPLC-Q-TOF-MS, 37 compounds were identified from ginsenoside samples. Furthermore, ginsenosides-compounds-key targets-pathways-CSM visualization network indicated that ginsenosides may modulate the PI3K-Akt signaling pathway, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, Toll-like receptor signaling pathway and Apoptosis by targeting AKT1, TNF, MAPK1, CASP3, IL6, and IL1B, exerting a therapeutic effect on CSM. By attenuating neuroinflammation through the TNF, IL-17, TLR4/MyD88/NF-κB, and MAPK signaling pathways, ginsenosides restored the motor function of rats with CSM, and ginsenosides 150 mg/kg showed better effect. This was achieved by reducing the phosphorylation of NF-κB and the activation of the NLRP3 inflammasome. CONCLUSIONS The results of network pharmacology indicate that ginsenosides can inhibit neuroinflammation resulting from spinal cord compression through multiple pathways and targets. This finding was validated through in vivo tests, which demonstrated that ginsenosides can reduce neuroinflammation by inhibiting NLRP3 inflammasomes via multiple signaling pathways, additionally, it should be noted that 150 mg/kg was a relatively superior dose. This study is the first to verify the intrinsic molecular mechanism of ginsenosides in treating CSM by combining pharmacokinetics, network pharmacology, and animal experiments. The findings can provide evidence for subsequent clinical research and drug development.
Collapse
Affiliation(s)
- Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Xiang Dai
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Ming Wu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei-Min Pu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cai-Wei Hu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long-Yun Zhou
- Department of Rehabilitation Medicine, The First Aliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Zhu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Shu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Lammers MJW, Young E, Yanai A, Viringipurampeer IA, Le TN, Straatman LV, Westerberg BD, Gregory-Evans K. IGF-1 Mediated Neuroprotective Effects of Olfactory-Derived Mesenchymal Stem Cells on Auditory Hair Cells. J Otolaryngol Head Neck Surg 2024; 53:19160216241258431. [PMID: 38888945 PMCID: PMC11177734 DOI: 10.1177/19160216241258431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
IMPORTANCE Mesenchymal stem cells (MSCs) have the capability of providing ongoing paracrine support to degenerating tissues. Since MSCs can be extracted from a broad range of tissues, their specific surface marker profiles and growth factor secretions can be different. We hypothesized that MSCs derived from different sources might also have different neuroprotective potential. OBJECTIVE In this study, we extracted MSCs from rodent olfactory mucosa and compared their neuroprotective effects on auditory hair cell survival with MSCs extracted from rodent adipose tissue. METHODS Organ of Corti explants were dissected from 41 cochlea and incubated with olfactory mesenchymal stem cells (OMSCs) and adipose mesenchymal stem cells (AMSCs). After 72 hours, Corti explants were fixed, stained, and hair cells counted. Growth factor concentrations were determined in the supernatant and cell lysate using Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS Co-culturing of organ of Corti explants with OMSCs resulted in a significant increase in inner and outer hair cell stereocilia survival, compared to control. Comparisons between both stem cell lines, showed that co-culturing with OMSCs resulted in superior inner and outer hair cell stereocilia survival rates over co-culturing with AMSCs. Assessment of growth factor secretions revealed that the OMSCs secrete significant amounts of insulin-like growth factor 1 (IGF-1). Co-culturing OMSCs with organ of Corti explants resulted in a 10-fold increase in IGF-1 level compared to control, and their secretion was 2 to 3 times higher compared to the AMSCs. CONCLUSIONS This study has shown that OMSCs may mitigate auditory hair cell stereocilia degeneration. Their neuroprotective effects may, at least partially, be ascribed to their enhanced IGF-1 secretory abilities compared to AMSCs.
Collapse
Affiliation(s)
- Marc J. W. Lammers
- BC Rotary Hearing and Balance Centre at St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Otolaryngology—Head and Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Emily Young
- BC Rotary Hearing and Balance Centre at St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Otolaryngology—Head and Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Anat Yanai
- Department of Ophthalmology and Visual Science, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Ishaq A. Viringipurampeer
- Department of Ophthalmology and Visual Science, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Trung N. Le
- Sunnybrook Research Institute, Department of Otolaryngology—Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| | - Louise V. Straatman
- Department of Otolaryngology—Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Brian D. Westerberg
- BC Rotary Hearing and Balance Centre at St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Otolaryngology—Head and Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Science, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Garcia E, Buzoianu-Anguiano V, Silva-Garcia R, Esparza-Salazar F, Arriero-Cabañero A, Escandon A, Doncel-Pérez E, Ibarra A. Use of Cells, Supplements, and Peptides as Therapeutic Strategies for Modulating Inflammation after Spinal Cord Injury: An Update. Int J Mol Sci 2023; 24:13946. [PMID: 37762251 PMCID: PMC10531377 DOI: 10.3390/ijms241813946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injury is a traumatic lesion that causes a catastrophic condition in patients, resulting in neuronal deficit and loss of motor and sensory function. That loss is caused by secondary injury events following mechanical damage, which results in cell death. One of the most important events is inflammation, which activates molecules like proinflammatory cytokines (IL-1β, IFN-γ, and TNF-α) that provoke a toxic environment, inhibiting axonal growth and exacerbating CNS damage. As there is no effective treatment, one of the developed therapies is neuroprotection of the tissue to preserve healthy tissue. Among the strategies that have been developed are the use of cell therapy, the use of peptides, and molecules or supplements that have been shown to favor an anti-inflammatory environment that helps to preserve tissue and cells at the site of injury, thus favoring axonal growth and improved locomotor function. In this review, we will explain some of these strategies used in different animal models of spinal cord injury, their activity as modulators of the immune system, and the benefits they have shown.
Collapse
Affiliation(s)
- Elisa Garcia
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Vinnitsa Buzoianu-Anguiano
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Raúl Silva-Garcia
- Unidad de Investigación Médica en Inmunología Hospital de Pediatría, CMN-SXXI, IMSS, Mexico City 06720, Mexico;
| | - Felipe Esparza-Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Alejandro Arriero-Cabañero
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Adela Escandon
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Ernesto Doncel-Pérez
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| |
Collapse
|
10
|
Gouveia D, Correia J, Cardoso A, Carvalho C, Oliveira AC, Almeida A, Gamboa Ó, Ribeiro L, Branquinho M, Sousa A, Lopes B, Sousa P, Moreira A, Coelho A, Rêma A, Alvites R, Ferreira A, Maurício AC, Martins Â. Intensive neurorehabilitation and allogeneic stem cells transplantation in canine degenerative myelopathy. Front Vet Sci 2023; 10:1192744. [PMID: 37520009 PMCID: PMC10374290 DOI: 10.3389/fvets.2023.1192744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Degenerative myelopathy (DM) is a neurodegenerative spinal cord disease with upper motor neurons, with progressive and chronic clinical signs, similar to amyotrophic lateral sclerosis (ALS). DM has a complex etiology mainly associated with SOD1 gene mutation and its toxic role, with no specific treatment. Daily intensive rehabilitation showed survival time near 8 months but most animals are euthanized 6-12 months after clinical signs onset. Methods This prospective controlled blinded cohort clinical study aims to evaluate the neural regeneration response ability of DM dogs subjected to an intensive neurorehabilitation protocol with mesenchymal stem cells (MSCs) transplantation. In total, 13 non-ambulatory (OFS 6 or 8) dogs with homozygous genotype DM/DM and diagnosed by exclusion were included. All were allocated to the intensive neurorehabilitation with MSCs protocol (INSCP) group (n = 8) or to the ambulatory rehabilitation protocol (ARP) group (n = 5), which differ in regard to training intensity, modalities frequency, and MSCs transplantation. The INSCP group was hospitalized for 1 month (T0 to T1), followed by MSCs transplantation (T1) and a second month (T2), whereas the ARP group was under ambulatory treatment for the same 2 months. Results Survival mean time of total population was 375 days, with 438 days for the INSCP group and 274 for the ARP group, with a marked difference on the Kaplan-Meier survival analysis. When comparing the literature's results, there was also a clear difference in the one-sample t-test (p = 0.013) with an increase in time of approximately 70%. OFS classifications between groups at each time point were significantly different (p = 0.008) by the one-way ANOVA and the independent sample t-test. Discussion This INSCP showed to be safe, feasible, and a possibility for a long progression of DM dogs with quality of life and functional improvement. This study should be continued.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal
| | - Jéssica Correia
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Lisboa, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
| | - Ana Catarina Oliveira
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Lisboa, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | - Lénio Ribeiro
- Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal
| | - Mariana Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Ana Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Gandra, Portugal
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- CIISA - Centro Interdisciplinar-Investigáo em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universi dade Técnica de Lisboa, Lisboa, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal
| |
Collapse
|
11
|
Madhubala D, Patra A, Islam T, Saikia K, Khan MR, Ahmed SA, Borah JC, Mukherjee AK. Snake venom nerve growth factor-inspired designing of novel peptide therapeutics for the prevention of paraquat-induced apoptosis, neurodegeneration, and alteration of metabolic pathway genes in the rat pheochromocytoma PC-12 cell. Free Radic Biol Med 2023; 197:23-45. [PMID: 36669545 DOI: 10.1016/j.freeradbiomed.2023.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Neurodegenerative disorders (ND), associated with the progressive loss of neurons, oxidative stress-mediated production of reactive oxygen species (ROS), and mitochondrial dysfunction, can be treated with synthetic peptides possessing innate neurotrophic effects and neuroprotective activity. Computational analysis of two small synthetic peptides (trideca-neuropeptide, TNP; heptadeca-neuropeptide, HNP) developed from the nerve growth factors from snake venoms predicted their significant interaction with the human TrkA receptor (TrkA). In silico results were validated by an in vitro binding study of the FITC-conjugated custom peptides to rat pheochromocytoma PC-12 cell TrkA receptors. Pre-treatment of PC-12 cells with TNP and HNP induced neuritogenesis and significantly reduced the paraquat (PT)-induced cellular toxicity, the release of lactate dehydrogenase from the cell cytoplasm, production of intracellular ROS, restored the level of antioxidants, prevented alteration of mitochondrial transmembrane potential (ΔΨm) and adenosine triphosphate (ATP) production, and inhibited cellular apoptosis. These peptides lack in vitro cytotoxicity, haemolytic activity, and platelet-modulating properties and do not interfere with the blood coagulation system. Functional proteomic analyses demonstrated the reversal of PT-induced upregulated and downregulated metabolic pathway genes in PC-12 cells that were pre-treated with HNP and revealed the metabolic pathways regulated by HNP to induce neuritogenesis and confer protection against PT-induced neuronal damage in PC-12. The quantitative RT-PCR analysis confirmed that the PT-induced increased and decreased expression of critical pro-apoptotic and anti-apoptotic genes had been restored in the PC-12 cells pre-treated with the custom peptides. A network gene expression profile was proposed to elucidate the molecular interactions among the regulatory proteins for HNP to salvage the PT-induced damage. Taken together, our results show how the peptides can rescue PT-induced oxidative stress, mitochondrial dysfunction, and cellular death and suggest new opportunities for developing neuroprotective drugs.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Taufikul Islam
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Kangkon Saikia
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Mojibur R Khan
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Semim Akhtar Ahmed
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Jagat C Borah
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India.
| |
Collapse
|
12
|
Davaa G, Hong JY, Lee JH, Kim MS, Buitrago JO, Li YM, Lee HH, Han DW, Leong KW, Hyun JK, Kim HW. Delivery of Induced Neural Stem Cells Through Mechano-Tuned Silk-Collagen Hydrogels for the Recovery of Contused Spinal Cord in Rats. Adv Healthc Mater 2023; 12:e2201720. [PMID: 36447307 DOI: 10.1002/adhm.202201720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Indexed: 12/02/2022]
Abstract
Neural stem cells (NSC) have tremendous potential for therapeutic regeneration of diseased or traumatized neural tissues, including injured spinal cord. However, transplanted NSC suffer from low cell survival and uncontrolled differentiation, limiting in vivo efficacy. Here, this issue is tackled by delivery through silk-collagen protein hydrogels that are stiffness-matched, stress-relaxing, and shear-thinning. The mechanically-tuned hydrogels protect NSC reprogrammed from fibroblasts (iNSC) initially from injection shear-stress, and enhance long-term survival over 12 weeks. Hydrogel-iNSC treatment alleviates neural inflammation, with reduced inflammatory cells and lesions than NSC-only. The iNSC migrate from the hydrogel into surrounding tissues, secrete up-regulated neurotrophic factors, and differentiate into neural cell subtypes, forming synapses. More serotonergic axons are observed in the lesion cavity, and locomotor functions are improved in hydrogel-iNSC than in iNSC-only. This study highlights the ability of mechanically-tuned protein hydrogels to protect iNSC from the injection stress and severe inflammatory environment, allowing them to differentiate and function to recover the injured spinal cord.
Collapse
Affiliation(s)
- Ganchimeg Davaa
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jin Young Hong
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.,Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Min Soo Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jennifer O Buitrago
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Basic Sciences Department, International University of Catalonia (UIC), Barcelona, 08017, Spain
| | - Yu-Meng Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.,Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong Wook Han
- Konkuk University Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, Seoul, 143701, Republic of Korea
| | - Kam W Leong
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.,Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jung Keun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Rehabilitation Medicine, College of Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Wiregene Co., Ltd., Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.,Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
13
|
Rouchka EC, de Almeida C, House RB, Daneshmand JC, Chariker JH, Saraswat-Ohri S, Gomes C, Sharp M, Shum-Siu A, Cesarz GM, Petruska JC, Magnuson DS. Construction of a searchable database for gene expression changes in spinal cord injury experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526630. [PMID: 36778366 PMCID: PMC9915599 DOI: 10.1101/2023.02.01.526630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a debilitating disease resulting in an estimated 18,000 new cases in the United States on an annual basis. Significant behavioral research on animal models has led to a large amount of data, some of which has been catalogued in the Open Data Commons for Spinal Cord Injury (ODC-SCI). More recently, high throughput sequencing experiments have been utilized to understand molecular mechanisms associated with SCI, with nearly 6,000 samples from over 90 studies available in the Sequence Read Archive. However, to date, no resource is available for efficiently mining high throughput sequencing data from SCI experiments. Therefore, we have developed a protocol for processing RNA-Seq samples from high-throughput sequencing experiments related to SCI resulting in both raw and normalized data that can be efficiently mined for comparisons across studies as well as homologous discovery across species. We have processed 1,196 publicly available RNA-seq samples from 50 bulk RNA-Seq studies across nine different species, resulting in an SQLite database that can be used by the SCI research community for further discovery. We provide both the database as well as a web-based front-end that can be used to query the database for genes of interest, differential gene expression, genes with high variance, and gene set enrichments.
Collapse
Affiliation(s)
- Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, University of Louisville, Louisville, KY USA
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville School of Medicine, 522 East Gray Street, Louisville, KY USA 40202
- Bioinformatics Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
| | - Carlos de Almeida
- Translational Neuroscience Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
| | - Randi B. House
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY
| | - Jonah C. Daneshmand
- Bioinformatics Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
| | - Julia H. Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville School of Medicine, 522 East Gray Street, Louisville, KY USA 40202
- Department of Neuroscience Training, School of Medicine, University of Louisville, Louisville, KY
| | - Sujata Saraswat-Ohri
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Cynthia Gomes
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| | - Morgan Sharp
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Greta M. Cesarz
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
| | - Jeffrey C. Petruska
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| | - David S.K. Magnuson
- Translational Neuroscience Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
14
|
Combination Therapy of Mesenchymal Stem Cell Transplantation and Astrocyte Ablation Improve Remyelination in a Cuprizone-Induced Demyelination Mouse Model. Mol Neurobiol 2022; 59:7278-7292. [PMID: 36175823 DOI: 10.1007/s12035-022-03036-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Astrocytes display an active, dual, and controversial role in multiple sclerosis (MS), a chronic inflammatory demyelination disorder. However, mesenchymal stem cells (MSCs) can affect myelination in demyelinating disorders. This study aimed to investigate the effect of single and combination therapies of astrocyte ablation and MSC transplantation on remyelination in the cuprizone (CPZ) model of MS. C57BL/6 mice were fed 0.2% CPZ diet for 12 weeks. Astrocytes were ablated twice by L-a-aminoadipate (L-AAA) at the beginning of weeks 13 and 14 whereas MSCs were injected in the corpus callosum at the beginning of week 13. Motor coordination and balance were assessed through rotarod test whereas myelin content was evaluated by Luxol-fast blue (LFB) staining and transmission electron microscopy (TEM). Glial cells were assessed by immunofluorescence staining while mRNA expression was evaluated by quantitative real-time PCR. Combination treatment of ablation of astrocytes and MSC transplantation (CPZ + MSC + L-AAA) significantly decreased motor coordination deficits better than single treatments (CPZ + MSCs or CPZ + L-AAA), in comparison to CPZ mice. In addition, L-AAA and MSCs treatment significantly enhanced remyelination compared to CPZ group. Moreover, combination therapy caused a significant decrease in the number of GFAP+ and Iba-1+ cells, whereas oligodendrocytes were significantly increased in comparison to CPZ mice. Finally, MSC administration resulted in a significant upregulation of BDNF and NGF mRNA expression levels. Our data indicate that transient ablation of astrocytes along with MSCs treatment improve remyelination through enhancing oligodendrocytes and attenuating gliosis in a chronic demyelinating mouse model of MS.
Collapse
|
15
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
16
|
Liu B, Kong Y, Shi W, Kuss M, Liao K, Hu G, Xiao P, Sankarasubramanian J, Guda C, Wang X, Lei Y, Duan B. Exosomes derived from differentiated human ADMSC with the Schwann cell phenotype modulate peripheral nerve-related cellular functions. Bioact Mater 2022; 14:61-75. [PMID: 35310346 PMCID: PMC8892082 DOI: 10.1016/j.bioactmat.2021.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Peripheral nerve regeneration remains a significant clinical challenge due to the unsatisfactory functional recovery and public health burden. Exosomes, especially those derived from mesenchymal stem cells (MSCs), are promising as potential cell-free therapeutics and gene therapy vehicles for promoting neural regeneration. In this study, we reported the differentiation of human adipose derived MSCs (hADMSCs) towards the Schwann cell (SC) phenotype (hADMSC-SCs) and then isolated exosomes from hADMSCs with and without differentiation (i.e., dExo vs uExo). We assessed and compared the effects of uExo and dExo on antioxidative, angiogenic, anti-inflammatory, and axon growth promoting properties by using various peripheral nerve-related cells. Our results demonstrated that hADMSC-SCs secreted more neurotrophic factors and other growth factors, compared to hADMSCs without differentiation. The dExo isolated from hADMSC-SCs protected rat SCs from oxidative stress and enhanced HUVEC migration and angiogenesis. Compared to uExo, dExo also had improved performances in downregulating pro-inflammatory gene expressions and cytokine secretions and promoting axonal growth of sensory neurons differentiated from human induced pluripotent stem cells. Furthermore, microRNA (miRNA) sequencing analysis revealed that exosomes and their parent cells shared some similarities in their miRNA profiles and exosomes displayed a distinct miRNA signature. Many more miRNAs were identified in dExo than in uExo. Several upregulated miRNAs, like miRNA-132-3p and miRNA-199b-5p, were highly related to neuroprotection, anti-inflammation, and angiogenesis. The dExo can effectively modulate various peripheral nerve-related cellular functions and is promising for cell-free biological therapeutics to enhance neural regeneration.
Exosomes were isolated from hADMSCs with and without differentiation towards SC phenotype (i.e., dExo vs uExo). hADMSC-SCs secreted more growth factors compared to hADMSCs without differentiation. The dExo protected rat SCs from oxidative stress and enhanced endothelial cell migration and angiogenesis. dExo promoted axonal growth of sensory neurons differentiated from hiPSCs. miRNA sequencing analysis unveiled and compared the exosomal and cellular miRNA profiles.
Collapse
|
17
|
Nicoletti VG, Pajer K, Calcagno D, Pajenda G, Nógrádi A. The Role of Metals in the Neuroregenerative Action of BDNF, GDNF, NGF and Other Neurotrophic Factors. Biomolecules 2022; 12:biom12081015. [PMID: 35892326 PMCID: PMC9330237 DOI: 10.3390/biom12081015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
Mature neurotrophic factors and their propeptides play key roles ranging from the regulation of neuronal growth and differentiation to prominent participation in neuronal survival and recovery after injury. Their signaling pathways sculpture neuronal circuits during brain development and regulate adaptive neuroplasticity. In addition, neurotrophic factors provide trophic support for damaged neurons, giving them a greater capacity to survive and maintain their potential to regenerate their axons. Therefore, the modulation of these factors can be a valuable target for treating or preventing neurologic disorders and age-dependent cognitive decline. Neuroregenerative medicine can take great advantage by the deepening of our knowledge on the molecular mechanisms underlying the properties of neurotrophic factors. It is indeed an intriguing topic that a significant interplay between neurotrophic factors and various metals can modulate the outcome of neuronal recovery. This review is particularly focused on the roles of GDNF, BDNF and NGF in motoneuron survival and recovery from injuries and evaluates the therapeutic potential of various neurotrophic factors in neuronal regeneration. The key role of metal homeostasis/dyshomeostasis and metal interaction with neurotrophic factors on neuronal pathophysiology is also highlighted as a novel mechanism and potential target for neuronal recovery. The progress in mechanistic studies in the field of neurotrophic factor-mediated neuroprotection and neural regeneration, aiming at a complete understanding of integrated pathways, offers possibilities for the development of novel neuroregenerative therapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Giuseppe Nicoletti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Medical Biochemistry, University of Catania, 95124 Catania, Italy; (V.G.N.); (D.C.)
| | - Krisztián Pajer
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary;
| | - Damiano Calcagno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Medical Biochemistry, University of Catania, 95124 Catania, Italy; (V.G.N.); (D.C.)
| | - Gholam Pajenda
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Research Centre for Traumatology of the Austrian Workers, 1200 Vienna, Austria;
- Department for Trauma Surgery, Medical University Vienna, 1090 Vienna, Austria
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary;
- Correspondence: ; Tel.: +36-6-234-2855
| |
Collapse
|
18
|
Yousefifard M, Sarveazad A, Babahajian A, Rafiei Alavi SN, Neishaboori AM, Vaccaro AR, Hosseini M, Rahimi-Movaghar V. Growth Factor Gene-Modified Cells in Spinal Cord Injury Recovery; a Systematic Review. World Neurosurg 2022; 162:150-162.e1. [PMID: 35276395 DOI: 10.1016/j.wneu.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Numerous pre-clinical studies have been performed in recent years on the effects of growth factor gene-modified cells' administration in spinal cord injury (SCI). However, findings of these studies are contradictory. OBJECTIVE The present study aims to conduct a systematic review and meta-analysis on animal studies evaluating the effects of growth factor gene-modified cells' administration on locomotion recovery following SCI. METHODS A search of the Medline, Embase, Scopus and Web of Science databases was conducted, including all animal studies until the end of 2020. Two researchers screened search results, summarized relevant studies and assessed risk of bias, independently. RESULTS Thirty-three studies were included in the final analysis. Transplantation of growth factor gene-modified cells in the injured spinal cord resulted in a significant improvement in animals' locomotion compared with non-treated animals [standardized mean difference (SMD)=1.86; 95% CI: 1.39-2.33; p<0.0001)] and non-genetically modified cells treated animals (SMD=1.30; 0.80-1.79; p<0.0001). Transplantation efficacy of these cells failed to achieve significance in moderate lesions (p=0.091), when using modified neural stem/progenitor cells (p=0.164), when using synthetic neurotrophins (p=0.086) and when the number of transplanted cells was less than 1.0 × 105 cells per animal (p = 0.119). CONCLUSION The result showed that transplantation of growth factor gene-modified cells significantly improved locomotion in SCI animal models. However, there is a major concern regarding the safety of genetically modified cells' transplantation, in terms of overexpressing growth factors. Further studies are needed before any effort to perform a translational and clinical study.
Collapse
Affiliation(s)
- Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asrin Babahajian
- Liver and digestive research center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | | | - Alex R Vaccaro
- Department of Orthopedics and Neurosurgery, Rothman Institute, Thomas Jefferson University, Philadelphia, USA
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Injuries Research Center (BASIR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Liu ZH, Huang YC, Kuo CY, Chuang CC, Chen CC, Chen NY, Yip PK, Chen JP. Co-Delivery of Docosahexaenoic Acid and Brain-Derived Neurotropic Factor from Electrospun Aligned Core-Shell Fibrous Membranes in Treatment of Spinal Cord Injury. Pharmaceutics 2022; 14:321. [PMID: 35214053 PMCID: PMC8880006 DOI: 10.3390/pharmaceutics14020321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
To restore lost functions while repairing the neuronal structure after spinal cord injury (SCI), pharmacological interventions with multiple therapeutic agents will be a more effective modality given the complex pathophysiology of acute SCI. Toward this end, we prepared electrospun membranes containing aligned core-shell fibers with a polylactic acid (PLA) shell, and docosahexaenoic acid (DHA) or a brain-derived neurotropic factor (BDNF) in the core. The controlled release of both pro-regenerative agents is expected to provide combinatory treatment efficacy for effective neurogenesis, while aligned fiber topography is expected to guide directional neurite extension. The in vitro release study indicates that both DHA and BDNF could be released continuously from the electrospun membrane for up to 50 days, while aligned microfibers guide the neurite extension of primary cortical neurons along the fiber axis. Furthermore, the PLA/DHA/BDNF core-shell fibrous membrane (CSFM) provides a significantly higher neurite outgrowth length from the neuron cells than the PLA/DHA CSFM. This is supported by the upregulation of genes associated with neuroprotection and neuroplasticity from RT-PCR analysis. From an in vivo study by implanting a drug-loaded CSFM into the injury site of a rat suffering from SCI with a cervical hemisection, the co-delivery of DHA and BDNF from a PLA/DHA/BDNF CSFM could significantly improve neurological function recovery from behavioral assessment, as well as provide neuroprotection and promote neuroplasticity changes in recovered neuronal tissue from histological analysis.
Collapse
Affiliation(s)
- Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-C.C.); (C.-C.C.)
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-C.C.); (C.-C.C.)
| | - Chang-Yi Kuo
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
| | - Chi-Cheng Chuang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-C.C.); (C.-C.C.)
| | - Ching-Chang Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-C.C.); (C.-C.C.)
| | - Nan-Yu Chen
- Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan;
| | - Ping K. Yip
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Jyh-Ping Chen
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
20
|
Potential of different cells-derived exosomal microRNA cargos for treating spinal cord injury. J Orthop Translat 2021; 31:33-40. [PMID: 34760623 PMCID: PMC8560648 DOI: 10.1016/j.jot.2021.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a disastrous situation that affects many patients worldwide. A profound understanding of the pathology and etiology of SCI is of great importance in inspiring new therapeutic concepts and treatment. In recent years, exosomes, which are complex lipid membrane structures secreted nearly by all kinds of plants and animal cells, can transport their valuable cargoes (e.g., proteins, lipids, RNAs) to the targeted cells and exert their communication and regulation functions, which open up a new field of treatment of SCI. Notably, the exosome's advantage is transporting the carried material to the target cells across the blood-brain barrier and exerting regulatory functions. Among the cargoes of exosomes, microRNAs, through the modulation of their mRNA targets, emerges with great potentiality in the pathological process, diagnosis and treatment of SCI. In this review, we discuss the role of miRNAs transported by different cell-derived exosomes in SCI that are poised to enhance SCI-specific therapeutic capabilities of exosomes.
Collapse
|
21
|
Ito S, Nagoshi N, Kamata Y, Kojima K, Nori S, Matsumoto M, Takei K, Nakamura M, Okano H. LOTUS overexpression via ex vivo gene transduction further promotes recovery of motor function following human iPSC-NS/PC transplantation for contusive spinal cord injury. Stem Cell Reports 2021; 16:2703-2717. [PMID: 34653401 PMCID: PMC8580872 DOI: 10.1016/j.stemcr.2021.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
Functional recovery is still limited mainly due to several mechanisms, such as the activation of Nogo receptor-1 (NgR1) signaling, when human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PC) are transplanted for subacute spinal cord injury (SCI). We previously reported the neuroprotective and regenerative benefits of overexpression of lateral olfactory tract usher substance (LOTUS), an endogenous NgR1 antagonist, in the injured spinal cord using transgenic mice. Here, we evaluate the effects of lentiviral transduction of LOTUS gene into hiPSC-NS/PCs before transplantation in a mouse model of subacute SCI. The transduced LOTUS contributes to neurite extension, suppression of apoptosis, and secretion of neurotrophic factors in vitro. In vivo, the hiPSC-NS/PCs enhance the survival of grafted cells and enhance axonal extension of the transplanted cells, resulting in significant restoration of motor function following SCI. Therefore, the gene transduction of LOTUS in hiPSC-NS/PCs could be a promising adjunct for transplantation therapy for SCI.
Collapse
Affiliation(s)
- Shuhei Ito
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Orthopaedic Surgery, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasuhiro Kamata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kota Kojima
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoshi Nori
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
22
|
Randelman M, Zholudeva LV, Vinit S, Lane MA. Respiratory Training and Plasticity After Cervical Spinal Cord Injury. Front Cell Neurosci 2021; 15:700821. [PMID: 34621156 PMCID: PMC8490715 DOI: 10.3389/fncel.2021.700821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
While spinal cord injuries (SCIs) result in a vast array of functional deficits, many of which are life threatening, the majority of SCIs are anatomically incomplete. Spared neural pathways contribute to functional and anatomical neuroplasticity that can occur spontaneously, or can be harnessed using rehabilitative, electrophysiological, or pharmacological strategies. With a focus on respiratory networks that are affected by cervical level SCI, the present review summarizes how non-invasive respiratory treatments can be used to harness this neuroplastic potential and enhance long-term recovery. Specific attention is given to "respiratory training" strategies currently used clinically (e.g., strength training) and those being developed through pre-clinical and early clinical testing [e.g., intermittent chemical stimulation via altering inhaled oxygen (hypoxia) or carbon dioxide stimulation]. Consideration is also given to the effect of training on non-respiratory (e.g., locomotor) networks. This review highlights advances in this area of pre-clinical and translational research, with insight into future directions for enhancing plasticity and improving functional outcomes after SCI.
Collapse
Affiliation(s)
- Margo Randelman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Lyandysha V Zholudeva
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States.,Gladstone Institutes, San Francisco, CA, United States
| | - Stéphane Vinit
- INSERM, END-ICAP, Université Paris-Saclay, UVSQ, Versailles, France
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
23
|
Boakye PA, Tang SJ, Smith PA. Mediators of Neuropathic Pain; Focus on Spinal Microglia, CSF-1, BDNF, CCL21, TNF-α, Wnt Ligands, and Interleukin 1β. FRONTIERS IN PAIN RESEARCH 2021; 2:698157. [PMID: 35295524 PMCID: PMC8915739 DOI: 10.3389/fpain.2021.698157] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Intractable neuropathic pain is a frequent consequence of nerve injury or disease. When peripheral nerves are injured, damaged axons undergo Wallerian degeneration. Schwann cells, mast cells, fibroblasts, keratinocytes and epithelial cells are activated leading to the generation of an "inflammatory soup" containing cytokines, chemokines and growth factors. These primary mediators sensitize sensory nerve endings, attract macrophages, neutrophils and lymphocytes, alter gene expression, promote post-translational modification of proteins, and alter ion channel function in primary afferent neurons. This leads to increased excitability and spontaneous activity and the generation of secondary mediators including colony stimulating factor 1 (CSF-1), chemokine C-C motif ligand 21 (CCL-21), Wnt3a, and Wnt5a. Release of these mediators from primary afferent neurons alters the properties of spinal microglial cells causing them to release tertiary mediators, in many situations via ATP-dependent mechanisms. Tertiary mediators such as BDNF, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and other Wnt ligands facilitate the generation and transmission of nociceptive information by increasing excitatory glutamatergic transmission and attenuating inhibitory GABA and glycinergic transmission in the spinal dorsal horn. This review focusses on activation of microglia by secondary mediators, release of tertiary mediators from microglia and a description of their actions in the spinal dorsal horn. Attention is drawn to the substantial differences in the precise roles of various mediators in males compared to females. At least 25 different mediators have been identified but the similarity of their actions at sensory nerve endings, in the dorsal root ganglia and in the spinal cord means there is considerable redundancy in the available mechanisms. Despite this, behavioral studies show that interruption of the actions of any single mediator can relieve signs of pain in experimental animals. We draw attention this paradox. It is difficult to explain how inactivation of one mediator can relieve pain when so many parallel pathways are available.
Collapse
Affiliation(s)
- Paul A. Boakye
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Girotra P, Behl T, Sehgal A, Singh S, Bungau S. Investigation of the Molecular Role of Brain-Derived Neurotrophic Factor in Alzheimer's Disease. J Mol Neurosci 2021; 72:173-186. [PMID: 34424488 DOI: 10.1007/s12031-021-01824-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), or abrineurin, is a member of the neurotrophin family of growth factors that acts on both the central and peripheral nervous systems. BDNF is also well known for its cardinal role in normal neural maturation. It binds to at least two receptors at the cell surface known as tyrosine kinase B (TrkB) and p75NTR. Additional neurotrophins that are anatomically linked with BDNF include neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), and nerve growth factor (NGF). It is evident that BDNF levels in patients with Alzheimer's disease (AD) are altered. AD is a progressive disorder and a form of dementia, where the mental function of an elderly person is disrupted. It is associated with a progressive decline in cognitive function, which mainly targets the thinking, memory, and behavior of the person. The degeneration of neurons occurs in the cerebral cortex region of brain. The two major sources responsible for neuronal degeneration are protein fragment amyloid-beta (Aβ), which builds up in the spaces between the nerve cells, known as plaques, disrupting the neuron signaling pathway and leading to dementia, and neurofibrillary tangles (NFTs), which are the twisted fibers of proteins that build up inside the cells. AD is highly prevalent, with recent data indicating nearly 5.8 million Americans aged 65 and older with AD in 2020, and with 80% of patients 75 and older. AD is recognized as the sixth leading cause of death in the USA, and its prevalence is predicted to increase exponentially in the coming years. As AD worsens over time, it becomes increasingly important to understand the exact pathophysiology, biomarkers, and treatment. In this article, we focus primarily on the controversial aspect of BDNF in AD, including its influence on various other proteins and enzymes and the current treatments associated with BDNF, along with future perspectives.
Collapse
Affiliation(s)
- Pragya Girotra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
25
|
Chen W, Zhang Y, Yang S, Sun J, Qiu H, Hu X, Niu X, Xiao Z, Zhao Y, Zhou Y, Dai J, Chu T. NeuroRegen Scaffolds Combined with Autologous Bone Marrow Mononuclear Cells for the Repair of Acute Complete Spinal Cord Injury: A 3-Year Clinical Study. Cell Transplant 2021; 29:963689720950637. [PMID: 32862715 PMCID: PMC7784506 DOI: 10.1177/0963689720950637] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spinal cord injury (SCI) remains among the most challenging pathologies worldwide and has limited therapeutic possibilities and a very bleak prognosis. Biomaterials and stem cell transplantation are promising treatments for functional recovery in SCI. Seven patients with acute complete SCI diagnosed by a combination of methods were included in the study, and different lengths (2.0–6.0 cm) of necrotic spinal cord tissue were surgically cleaned under intraoperative neurophysiological monitoring. Subsequently, NeuroRegen scaffolds loaded with autologous bone marrow mononuclear cells (BMMCs) were implanted into the cleaned site. All patients participated in 6 months of rehabilitation and at least 3 years of clinical follow-up. No adverse symptoms associated with stem cell or functional scaffold implantation were observed during the 3-year follow-up period. Additionally, partial shallow sensory and autonomic nervous functional improvements were observed in some patients, but no motor function recovery was observed. Magnetic resonance imaging suggested that NeuroRegen scaffold implantation supported injured spinal cord continuity after treatment. These findings indicate that implantation of NeuroRegen scaffolds combined with stem cells may serve as a safe and promising clinical treatment for patients with acute complete SCI. However, determining the therapeutic effects and exact application methods still requires further study.
Collapse
Affiliation(s)
- Wugui Chen
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China.,* Both the authors contributed equally as first author
| | - Ying Zhang
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China.,* Both the authors contributed equally as first author
| | - Sizhen Yang
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China
| | - Jing Sun
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China
| | - Hao Qiu
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China
| | - Xu Hu
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China
| | - Xiaojian Niu
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, 53019Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, 53019Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yue Zhou
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, 53019Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tongwei Chu
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China
| |
Collapse
|
26
|
Sieck GC, Gransee HM, Zhan WZ, Mantilla CB. Acute intrathecal BDNF enhances functional recovery after cervical spinal cord injury in rats. J Neurophysiol 2021; 125:2158-2165. [PMID: 33949892 DOI: 10.1152/jn.00146.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unilateral C2 hemisection (C2SH) disrupts descending inspiratory-related drive to phrenic motor neurons and thus, silences rhythmic diaphragm muscle (DIAm) activity. There is gradual recovery of rhythmic DIAm EMG activity over time post-C2SH, consistent with neuroplasticity, which is enhanced by chronic (2 wk) intrathecal BDNF treatment. In the present study, we hypothesized that acute (30 min) intrathecal BDNF treatment also enhances recovery of DIAm EMG activity after C2SH. Rats were implanted with bilateral DIAm EMG electrodes to verify the absence of ipsilateral eupneic DIAm EMG activity at the time of C2SH and at 3 days post-C2SH. In those animals displaying no recovery of DIAm EMG activity after 28 days (n = 7), BDNF was administered intrathecally (450 mcg) at C4. DIAm EMG activity was measured continuously both before and for 30 min after BDNF treatment, during eupnea, hypoxia-hypercapnia, and spontaneous sighs. Acute BDNF treatment restored eupneic DIAm EMG activity in all treated animals to an amplitude that was 78% ± 9% of pre-C2SH root mean square (RMS) (P < 0.001). In addition, acute BDNF treatment increased DIAm RMS EMG amplitude during hypoxia-hypercapnia (P = 0.023) but had no effect on RMS EMG amplitude during sighs. These results support an acute modulatory role of BDNF signaling on excitatory synaptic transmission at phrenic motor neurons after cervical spinal cord injury.NEW & NOTEWORTHY Brain-derived neurotrophic factor (BDNF) plays an important role in promoting neuroplasticity following unilateral C2 spinal hemisection (C2SH). BDNF was administered intrathecally in rats displaying lack of ipsilateral inspiratory-related diaphragm (DIAm) EMG activity after C2SH. Acute BDNF treatment (30 min) restored eupneic DIAm EMG activity in all treated animals to 78% ± 9% of pre-C2SH level. In addition, acute BDNF treatment increased DIAm EMG amplitude during hypoxia-hypercapnia but had no effect on EMG amplitude during sighs.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Heather M Gransee
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
27
|
Atiq Hassan, Nasir N, Muzammil K. Treatment Strategies to Promote Regeneration in Experimental Spinal Cord Injury Models. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Yang Y, Xu HY, Deng QW, Wu GH, Zeng X, Jin H, Wang LJ, Lai BQ, Li G, Ma YH, Jiang B, Ruan JW, Wang YQ, Ding Y, Zeng YS. Electroacupuncture facilitates the integration of a grafted TrkC-modified mesenchymal stem cell-derived neural network into transected spinal cord in rats via increasing neurotrophin-3. CNS Neurosci Ther 2021; 27:776-791. [PMID: 33763978 PMCID: PMC8193704 DOI: 10.1111/cns.13638] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Aims This study was aimed to investigate whether electroacupuncture (EA) would increase the secretion of neurotrophin‐3 (NT‐3) from injured spinal cord tissue, and, if so, whether the increased NT‐3 would promote the survival, differentiation, and migration of grafted tyrosine kinase C (TrkC)‐modified mesenchymal stem cell (MSC)‐derived neural network cells. We next sought to determine if the latter would integrate with the host spinal cord neural circuit to improve the neurological function of injured spinal cord. Methods After NT‐3‐modified Schwann cells (SCs) and TrkC‐modified MSCs were co‐cultured in a gelatin sponge scaffold for 14 days, the MSCs differentiated into neuron‐like cells that formed a MSC‐derived neural network (MN) implant. On this basis, we combined the MN implantation with EA in a rat model of spinal cord injury (SCI) and performed immunohistochemical staining, neural tracing, electrophysiology, and behavioral testing after 8 weeks. Results Electroacupuncture application enhanced the production of endogenous NT‐3 in damaged spinal cord tissues. The increase in local NT‐3 production promoted the survival, migration, and maintenance of the grafted MN, which expressed NT‐3 high‐affinity TrkC. The combination of MN implantation and EA application improved cortical motor‐evoked potential relay and facilitated the locomotor performance of the paralyzed hindlimb compared with those of controls. These results suggest that the MN was better integrated into the host spinal cord neural network after EA treatment compared with control treatment. Conclusions Electroacupuncture as an adjuvant therapy for TrkC‐modified MSC‐derived MN, acted by increasing the local production of NT‐3, which accelerated neural network reconstruction and restoration of spinal cord function following SCI.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Hao-Yu Xu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qing-Wen Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guo-Hui Wu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Jin
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Lai-Jian Wang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Bin Jiang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing-Wen Ruan
- Department of Acupuncture, The 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ya-Qiong Wang
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Krull AA, Setter DO, Gendron TF, Hrstka SCL, Polzin MJ, Hart J, Dudakovic A, Madigan NN, Dietz AB, Windebank AJ, van Wijnen AJ, Staff NP. Alterations of mesenchymal stromal cells in cerebrospinal fluid: insights from transcriptomics and an ALS clinical trial. Stem Cell Res Ther 2021; 12:187. [PMID: 33736701 PMCID: PMC7977179 DOI: 10.1186/s13287-021-02241-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) have been studied with increasing intensity as clinicians and researchers strive to understand the ability of MSCs to modulate disease progression and promote tissue regeneration. As MSCs are used for diverse applications, it is important to appreciate how specific physiological environments may stimulate changes that alter the phenotype of the cells. One need for neuroregenerative applications is to characterize the spectrum of MSC responses to the cerebrospinal fluid (CSF) environment after their injection into the intrathecal space. Mechanistic understanding of cellular biology in response to the CSF environment may predict the ability of MSCs to promote injury repair or provide neuroprotection in neurodegenerative diseases. Methods In this study, we characterized changes in morphology, metabolism, and gene expression occurring in human adipose-derived MSCs cultured in human (hCSF) or artificial CSF (aCSF) as well as examined relevant protein levels in the CSF of subjects treated with MSCs for amyotrophic lateral sclerosis (ALS). Results Our results demonstrated that, under intrathecal-like conditions, MSCs retained their morphology, though they became quiescent. Large-scale transcriptomic analysis of MSCs revealed a distinct gene expression profile for cells cultured in aCSF. The aCSF culture environment induced expression of genes related to angiogenesis and immunomodulation. In addition, MSCs in aCSF expressed genes encoding nutritional growth factors to expression levels at or above those of control cells. Furthermore, we observed a dose-dependent increase in growth factors and immunomodulatory cytokines in CSF from subjects with ALS treated intrathecally with autologous MSCs. Conclusions Overall, our results suggest that MSCs injected into the intrathecal space in ongoing clinical trials remain viable and may provide a therapeutic benefit to patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02241-9.
Collapse
Affiliation(s)
- Ashley A Krull
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Deborah O Setter
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sybil C L Hrstka
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Michael J Polzin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Joseph Hart
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nicolas N Madigan
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Anthony J Windebank
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
30
|
Gisbert Roca F, André FM, Más Estellés J, Monleón Pradas M, Mir LM, Martínez-Ramos C. BDNF-Gene Transfected Schwann Cell-Assisted Axonal Extension and Sprouting on New PLA-PPy Microfiber Substrates. Macromol Biosci 2021; 21:e2000391. [PMID: 33645917 DOI: 10.1002/mabi.202000391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Indexed: 01/09/2023]
Abstract
The work here reported analyzes the effect of increased efficiency of brain-derived neurotrophic factor (BDNF) production by electroporated Schwann cells (SCs) on the axonal extension in a coculture system on a biomaterial platform that can be of interest for the treatment of injuries of the nervous system, both central and peripheral. Rat SCs are electrotransfected with a plasmid coding for the BDNF protein in order to achieve an increased expression and release of this protein into the culture medium of the cells, performing the best balance between the level of transfection and the number of living cells. Gene-transfected SCs show an about 100-fold increase in the release of BDNF into the culture medium, compared to nonelectroporated SCs. Cocultivation of electroporated SCs with rat dorsal root ganglia (DRG) is performed on highly aligned substrates of polylactic acid (PLA) microfibers coated with the electroconductive polymer polypyrrol (PPy). The coculture of DRG with electrotransfected SCs increase both the axonal extension and the axonal sprouting from DRG neurons compared to the coculture of DRG with nonelectroporated SCs. Therefore, the use of PLA-PPy highly aligned microfiber substrates preseeded with electrotransfected SCs with an increased BDNF secretion is capable of both guiding and accelerating axonal growth.
Collapse
Affiliation(s)
- Fernando Gisbert Roca
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Franck M André
- Metabolic and systemic aspects of oncogenesis (METSY), CNRS, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94805, France
| | - Jorge Más Estellés
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Manuel Monleón Pradas
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.,CIBER-BBN, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina, Madrid, 28029, Spain
| | - Lluis M Mir
- Metabolic and systemic aspects of oncogenesis (METSY), CNRS, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94805, France
| | - Cristina Martínez-Ramos
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.,Unitat predepartamental de Medicina, Universitat Jaume I, Avda/Sos Baynat, S/N, Castellón de la Plana, 12071, Spain
| |
Collapse
|
31
|
Muheremu A, Shu L, Liang J, Aili A, Jiang K. Sustained delivery of neurotrophic factors to treat spinal cord injury. Transl Neurosci 2021; 12:494-511. [PMID: 34900347 PMCID: PMC8633588 DOI: 10.1515/tnsci-2020-0200] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
Acute spinal cord injury (SCI) is a devastating condition that results in tremendous physical and psychological harm and a series of socioeconomic problems. Although neurons in the spinal cord need neurotrophic factors for their survival and development to reestablish their connections with their original targets, endogenous neurotrophic factors are scarce and the sustainable delivery of exogeneous neurotrophic factors is challenging. The widely studied neurotrophic factors such as brain-derived neurotrophic factor, neurotrophin-3, nerve growth factor, ciliary neurotrophic factor, basic fibroblast growth factor, and glial cell-derived neurotrophic factor have a relatively short cycle that is not sufficient enough for functionally significant neural regeneration after SCI. In the past decades, scholars have tried a variety of cellular and viral vehicles as well as tissue engineering scaffolds to safely and sustainably deliver those necessary neurotrophic factors to the injury site, and achieved satisfactory neural repair and functional recovery on many occasions. Here, we review the neurotrophic factors that have been used in trials to treat SCI, and vehicles that were commonly used for their sustained delivery.
Collapse
Affiliation(s)
- Aikeremujiang Muheremu
- Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 39 Wuxing Nan Rd, Tianshan District, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Li Shu
- Department of Orthopedics, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Jing Liang
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, 39, Wuxing Nan Rd, Tianshan District, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Abudunaibi Aili
- Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 39 Wuxing Nan Rd, Tianshan District, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Kan Jiang
- Department of Orthopedics, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 86830001, People’s Republic of China
| |
Collapse
|
32
|
Marchionne F, Krupka AJ, Smith GM, Lemay MA. Intrathecal Delivery of BDNF Into the Lumbar Cistern Re-Engages Locomotor Stepping After Spinal Cord Injury. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2459-2467. [PMID: 32986558 PMCID: PMC7720348 DOI: 10.1109/tnsre.2020.3027393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Delivery of neurotrophins to the spinal injury site via cellular transplants or viral vectors administration has been shown to promote recovery of locomotion in the absence of locomotor training in adult spinalized animals. These delivery methods involved risks of secondary injury to the cord and do not allow for precise and controlled dosing making them unsuitable for clinical applications. The present study was aimed at evaluating the locomotor recovery efficacy and safety of the neurotrophin BDNF delivered intrathecally to the lumbar locomotor centers using an implantable and programmable infusion mini-pump. Results showed that BDNF treated spinal cats recovered weight-bearing plantar stepping at all velocities tested (0.3-0.8 m/s). Spinal cats treated with saline did not recover stepping ability, especially at higher velocities, and dragged their hind paws on the treadmill. Histological evaluation showed minimal catheter associated trauma and tissue inflammation, underlining that intrathecal delivery by an implantable/programmable pump is a safe and effective method for delivery of a controlled BDNF dosage; it poses minimal risks to the cord and is clinically translational.
Collapse
|
33
|
Li XX, Zhang SJ, Man KY, Chiu AP, Lo LH, To JC, Chiu CH, Chan CO, Mok DK, Rowlands DK, Keng VW. Schwann cell-specific Pten inactivation reveals essential role of the sympathetic nervous system activity in adipose tissue development. Biochem Biophys Res Commun 2020; 531:118-124. [DOI: 10.1016/j.bbrc.2020.07.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023]
|
34
|
Pinho AG, Cibrão JR, Silva NA, Monteiro S, Salgado AJ. Cell Secretome: Basic Insights and Therapeutic Opportunities for CNS Disorders. Pharmaceuticals (Basel) 2020; 13:E31. [PMID: 32093352 PMCID: PMC7169381 DOI: 10.3390/ph13020031] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Transplantation of stem cells, in particular mesenchymal stem cells (MSCs), stands as a promising therapy for trauma, stroke or neurodegenerative conditions such as spinal cord or traumatic brain injuries (SCI or TBI), ischemic stroke (IS), or Parkinson's disease (PD). Over the last few years, cell transplantation-based approaches have started to focus on the use of cell byproducts, with a strong emphasis on cell secretome. Having this in mind, the present review discusses the current state of the art of secretome-based therapy applications in different central nervous system (CNS) pathologies. For this purpose, the following topics are discussed: (1) What are the main cell secretome sources, composition, and associated collection techniques; (2) Possible differences of the therapeutic potential of the protein and vesicular fraction of the secretome; and (3) Impact of the cell secretome on CNS-related problems such as SCI, TBI, IS, and PD. With this, we aim to clarify some of the main questions that currently exist in the field of secretome-based therapies and consequently gain new knowledge that may help in the clinical application of secretome in CNS disorders.
Collapse
Affiliation(s)
- Andreia G. Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jorge R. Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
35
|
Romero-Ramírez L, Wu S, de Munter J, Wolters EC, Kramer BW, Mey J. Treatment of rats with spinal cord injury using human bone marrow-derived stromal cells prepared by negative selection. J Biomed Sci 2020; 27:35. [PMID: 32066435 PMCID: PMC7026953 DOI: 10.1186/s12929-020-00629-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Background Spinal cord injury (SCI) is a highly debilitating pathology without curative treatment. One of the most promising disease modifying strategies consists in the implantation of stem cells to reduce inflammation and promote neural regeneration. In the present study we tested a new human bone marrow-derived stromal cell preparation (bmSC) as a therapy of SCI. Methods Spinal cord contusion injury was induced in adult male rats at thoracic level T9/T10 using the Infinite Horizon impactor. One hour after lesion the animals were treated with a sub-occipital injection of human bmSC into the cisterna magna. No immune suppression was used. One dose of bmSC consisted, on average, of 2.3 million non-manipulated cells in 100 μL suspension, which was processed out of fresh human bone marrow from the iliac crest of healthy volunteers. Treatment efficacy was compared with intraperitoneal injections of methylprednisolone (MP) and saline. The recovery of motor functions was assessed during a surveillance period of nine weeks. Adverse events as well as general health, weight and urodynamic functions were monitored daily. After this time, the animals were perfused, and the spinal cord tissue was investigated histologically. Results Rats treated with bmSC did not reject the human implants and showed no sign of sickness behavior or neuropathic pain. Compared to MP treatment, animals displayed better recovery of their SCI-induced motor deficits. There were no significant differences in the recovery of bladder control between groups. Histological analysis at ten weeks after SCI revealed no differences in tissue sparing and astrogliosis, however, bmSC treatment was accompanied with reduced axonal degeneration in the dorsal ascending fiber tracts, lower Iba1-immunoreactivity (IR) close to the lesion site and reduced apoptosis in the ventral grey matter. Neuroinflammation, as evidenced by CD68-IR, was significantly reduced in the MP-treated group. Conclusions Human bmSC that were prepared by negative selection without expansion in culture have neuroprotective properties after SCI. Given the effect size on motor function, implantation in the acute phase was not sufficient to induce spinal cord repair. Due to their immune modulatory properties, allogeneic implants of bmSC can be used in combinatorial therapies of SCI.
Collapse
Affiliation(s)
| | - Siyu Wu
- Hospital Nacional de Parapléjicos, c/Finca la Peraleda, 45071, Toledo, Spain.,School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Universiteitssingel 40, 6229ER, Maastricht, Netherlands
| | | | | | - Boris W Kramer
- School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Universiteitssingel 40, 6229ER, Maastricht, Netherlands
| | - Jörg Mey
- Hospital Nacional de Parapléjicos, c/Finca la Peraleda, 45071, Toledo, Spain. .,School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Universiteitssingel 40, 6229ER, Maastricht, Netherlands.
| |
Collapse
|
36
|
Dravid A, Parittotokkaporn S, Aqrawe Z, O’Carroll SJ, Svirskis D. Determining Neurotrophin Gradients in Vitro To Direct Axonal Outgrowth Following Spinal Cord Injury. ACS Chem Neurosci 2020; 11:121-132. [PMID: 31825204 DOI: 10.1021/acschemneuro.9b00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A spinal cord injury can damage neuronal connections required for both motor and sensory function. Barriers to regeneration within the central nervous system, including an absence of neurotrophic stimulation, impair the ability of injured neurons to reestablish their original circuitry. Exogenous neurotrophin administration has been shown to promote axonal regeneration and outgrowth following injury. The neurotrophins possess chemotrophic properties that guide axons toward the region of highest concentration. These growth factors have demonstrated potential to be used as a therapeutic intervention for orienting axonal growth beyond the injury lesion, toward denervated targets. However, the success of this approach is dependent on the appropriate spatiotemporal distribution of these molecules to ensure detection and navigation by the axonal growth cone. A number of in vitro gradient-based assays have been employed to investigate axonal response to neurotrophic gradients. Such platforms have helped elucidate the potential of applying a concentration gradient of neurotrophins to promote directed axonal regeneration toward a functionally significant target. Here, we review these techniques and the principles of gradient detection in axonal guidance, with particular focus on the use of neurotrophins to orient the trajectory of regenerating axons.
Collapse
Affiliation(s)
- Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Zaid Aqrawe
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
37
|
Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury. Acta Biomater 2020; 101:357-371. [PMID: 31711898 DOI: 10.1016/j.actbio.2019.11.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is a devastating lesion lacking effective treatment options currently available in clinics. The inflammatory process exacerbates the extent of the lesion through a secondary injury mechanism, where proinflammatory classically activated macrophages (M1) are prevalent at the lesion site. However, the polarized alternatively activated anti-inflammatory macrophages (M2) are known to play an important role in wound healing and regeneration following SCI. Herein, we introduce porcine brain decellularized extracellular matrix (dECM) to modulate the macrophages in the injured spinal cord. The hydrogels with collagen and dECM at various dECM concentrations (1, 5, and 8 mg/ml) were used to cultivate primary macrophages and neurons. The dECM hydrogels were shown to promote the polarization of macrophages toward M2 phase and the neurite outgrowth of cortical and hippocampal neurons. When the dECM hydrogels were applied to rat SCI models, the proportion of M1 and M2 macrophages in the injured spinal cord was substantially altered. When received dECM concetration of 5 mg/ml, the expression of molecules associated with M2 (CD206, arginase1, and IL-10) was significantly increased. Consistently, the population of total macrophages and cavity area were substantially reduced in the dECM-treated groups. As a result, the locomotor functions of injured spinal cord, as assessed by BBB and ladder scoring, were significantly improved. Collectively, the porcine brain dECM with optimal concentration promotes functional recovery in SCI models through the activation of M2 macrophages, suggesting the promising use of the engineered hydrogels in the treatment of acute SCI. STATEMENT OF SIGNIFICANCE: Spinal cord injury (SCI) is a devastating lesion, lacking effective treatment options currently available in clinics. Here we delineated that the treatment of injured spinal cord with porcine brain decellularized matrix-based hydrogels for the first time, and could modulate the macrophage polarization and the ultimate functional recovery. When appropriate formulations were applied to a contused spinal cord model in rats, the decellularized matrix hydrogels shifted the macrophages to polarize to pro-regenerative M2 phenotype, decreased the size of lesion cavity, and finally promoted the locomotor functions until 8 weeks following the injury. We consider this work can significantly augment the matrix(biomaterial)-based therapeutic options, as an alternative to drug or cell-free approaches, for the treatment of acute injury of spinal cord.
Collapse
|
38
|
Chen YT, Tsai MJ, Hsieh N, Lo MJ, Lee MJ, Cheng H, Huang WC. The superiority of conditioned medium derived from rapidly expanded mesenchymal stem cells for neural repair. Stem Cell Res Ther 2019; 10:390. [PMID: 31842998 PMCID: PMC6916259 DOI: 10.1186/s13287-019-1491-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/06/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023] Open
Abstract
Background Spinal cord injury (SCI) is a complex and severe neurological condition. Mesenchymal stem cells (MSCs) and their secreted factors show promising potential for regenerative medicine. Many studies have investigated MSC expansion efficacy of all kinds of culture medium formulations, such as growth factor-supplemented or xeno-free medium. However, very few studies have focused on the potential of human MSC (hMSC) culture medium formulations for injured spinal cord repair. In this study, we investigated the effect of hMSC-conditioned medium supplemented with bFGF, EGF, and patient plasma, namely, neural regeneration laboratory medium (NRLM), on SCI in vitro and in vivo. Methods Commercial and patient bone marrow hMSCs were obtained for cultivation in standard medium and NRLM separately. Several characteristics, including CD marker expression, differentiation, and growth curves, were compared between MSCs cultured in standard medium and NRLM. Additionally, we investigated the effect of the conditioned medium (referred to as NRLM-CM) on neural repair, including inflammation inhibition, neurite regeneration, and spinal cord injury (SCI), and used a coculture system to detect the neural repair function of NRLM-MSCs. Results Compared to standard culture medium, NRLM-CM had superior in inflammation reduction and neurite regeneration effects in vitro and improved functional restoration in SCI rats in vivo. In comparison with standard culture medium MSCs, NRLM-MSCs proliferated faster regardless of the age of the donor. NRLM-MSCs also showed increased adipose differentiative potential and reduced CD90 expression. Both types of hMSC CM effectively enhanced injured neurite outgrowth and protected against H2O2 toxicity in spinal cord neuron cultures. Cytokine arrays performed in hMSC-CM further revealed the presence of at least 120 proteins. Among these proteins, 6 demonstrated significantly increased expression in NRLM-CM: adiponectin (Acrp30), angiogenin (ANG), HGF, NAP-2, uPAR, and IGFBP2. Conclusions The NRLM culture system provides rapid expansion effects and functional hMSCs. The superiority of the derived conditioned medium on neural repair shows potential for future clinical applications.
Collapse
Affiliation(s)
- Ya-Tzu Chen
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.,Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - May-Jywan Tsai
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Nini Hsieh
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Ming-Jei Lo
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Meng-Jen Lee
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan
| | - Henrich Cheng
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.,Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Neural Regeneration and Repair, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Cheng Huang
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Department of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan. .,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan. .,Division of Neural Regeneration and Repair, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
39
|
Neumannova K, Machova-Urdzikova L, Kwok JCF, Fawcett JW, Jendelova P. Adaptation of tape removal test for measurement of sensitivity in perineal area of rat. Exp Neurol 2019; 324:113097. [PMID: 31707082 DOI: 10.1016/j.expneurol.2019.113097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022]
Abstract
Regeneration after spinal cord injury is a goal of many studies. Although the most obvious target is to recover motor function, restoration of sensation can also improve the quality of life after spinal cord injury. For many patients, recovery of sensation in the perineal and genital area is a high priority. Currently there is no experimental test in rodents for measuring changes in sensation in the perineal and genital area after spinal cord injury. The aim of our study was to develop a behavioural test for measuring the sensitivity of the perineal and genital area in rats. We have modified the tape removal test used routinely to test sensorimotor deficits after stroke and spinal cord injury to test the perineal area with several variations. A small piece of tape (approximately 1 cm2) was attached to the perineal area. Time to first contact and to the removal of the tape was measured. Each rat was trained for 5 consecutive days and then tested weekly. We compared different rat strains (Wistar, Sprague-Dawley, Long-Evans and Lewis), both genders, shaving and non-shaving and different types of tape. We found that the test was suitable for all tested strains, however, Lewis rats achieved the lowest contact times, but this difference was significant only for the first few days of learning the task. There were no significant differences between gender and different types of tape or shaving. After training the animals underwent dorsal column lesion at T10 and were tested at day 3, 8, 14 and 21. The test detected a sensory deficit, the average time across all animals to sense the stimulus increased from 1'32 up to 3'20. There was a strong relationship between lesion size and tape detection time, and only lesions that extended laterally to the dorsal root entry zone produced significant sensory deficits. Other standard behavioural tests (BBB, von Frey, ladder and Plantar test) were performed in the same animals. There was a correlation between lesion size and deficit for the ladder and BBB tests, but not for the von Frey and Plantar tests. We conclude that the tape removal test is suitable for testing perineal sensation in rats, can be used in different strains and is appropriate for monitoring changes in sensation after spinal cord injury.
Collapse
Affiliation(s)
- K Neumannova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - L Machova-Urdzikova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - J C F Kwok
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; Faculty of Biological Sciences, University of Leeds, UK
| | - J W Fawcett
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; John van Geest Centre for Brain Repair, University of Cambridge, UK
| | - P Jendelova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic.
| |
Collapse
|
40
|
Scheper V, Schwieger J, Hamm A, Lenarz T, Hoffmann A. BDNF-overexpressing human mesenchymal stem cells mediate increased neuronal protection in vitro. J Neurosci Res 2019; 97:1414-1429. [PMID: 31257632 PMCID: PMC6772136 DOI: 10.1002/jnr.24488] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Abstract
The use of neurotrophic factors as therapeutic agents for neurodegenerative diseases is considered as an approach aimed at restoring and maintaining neuronal function in the peripheral and central nervous system. Since the neuroprotective effect is depending on chronic delivery of the neurotrophic factors a sustained application, e.g., via cell‐based delivery is necessary. Human mesenchymal stem cells (hMSCs) were lentivirally modified to overexpress brain‐derived neurotrophic factor (BDNF) and to express fluorescent marker genes for easy visualization. Since genetically modified cells should be site‐specifically retained (e.g., by encapsulation) in the patients to avoid adverse effects the cells were additionally differentiated to chondrocytes to hypothetically improve their vitality and survival in a delivery matrix. Different polycations for lentiviral transduction were investigated for their efficiency. The success of differentiation was determined by analysis of chondrocyte marker genes and the neuroprotective effect of BDNF‐overexpressing cells was exemplarily investigated on neurons of the peripheral auditory system. The genetically modified hMSCs overexpressed BDNF from under 1 to 125 ng ml−1 day−1 depending on the donor and transfection method. Using protamine sulfate the transfection efficacy was superior compared to the use of polybrene. The BDNF secreted by the MSCs was significantly neuroprotective in comparison to the relevant controls even though the produced mean concentrations were lower than the effective concentrations for recombinant industrially produced proteins described in literature. The presented system of BDNF‐overexpressing hMSCs is neuroprotective and is therefore considered as a promising method for sustained delivery of proteins in therapeutically relevant amounts to degenerating neuronal structures.
Collapse
Affiliation(s)
- Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Jana Schwieger
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Anika Hamm
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.,Department of Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Andrea Hoffmann
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.,Department of Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
41
|
Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy. Int J Mol Sci 2019; 20:ijms20112698. [PMID: 31159345 PMCID: PMC6600381 DOI: 10.3390/ijms20112698] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) constitutes an inestimable public health issue. The most crucial phase in the pathophysiological process of SCI concerns the well-known secondary injury, which is the uncontrolled and destructive cascade occurring later with aberrant molecular signaling, inflammation, vascular changes, and secondary cellular dysfunctions. The use of mesenchymal stem cells (MSCs) represents one of the most important and promising tested strategies. Their appeal, among the other sources and types of stem cells, increased because of their ease of isolation/preservation and their properties. Nevertheless, encouraging promise from preclinical studies was followed by weak and conflicting results in clinical trials. In this review, the therapeutic role of MSCs is discussed, together with their properties, application, limitations, and future perspectives.
Collapse
Affiliation(s)
- Fabio Cofano
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Matteo Monticelli
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Francesco Zenga
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Ducati
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
42
|
Stem cell paracrine effect and delivery strategies for spinal cord injury regeneration. J Control Release 2019; 300:141-153. [PMID: 30851286 DOI: 10.1016/j.jconrel.2019.02.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/29/2022]
Abstract
Spinal cord injury (SCI) is a complicated neuropathological condition that results in functional dysfunction and paralysis. Various treatments have been proposed including drugs, biological factors and cells administered in several ways. Stem cell therapy offers a potentially revolutionary mode to repair the damaged spinal cord after injury. Initially, stem cells were considered promising for replacing cells and tissue lost after SCI. Many studies looked at their differentiation to replace neuronal and glial cells for a better functional outcome. However, it is becoming clear that different functional improvements recognized to stem cells are due to biomolecular activities by the transplanted stem cells rather than cell replacement. This review aimed to discuss the paracrine mechanisms for tissue repair and regeneration after stem cell transplantation in SCI. It focuses on stem cell factor production, effect in tissue restoration, and novel delivery strategies to use them for SCI therapy.
Collapse
|
43
|
He Z, Zang H, Zhu L, Huang K, Yi T, Zhang S, Cheng S. An anti-inflammatory peptide and brain-derived neurotrophic factor-modified hyaluronan-methylcellulose hydrogel promotes nerve regeneration in rats with spinal cord injury. Int J Nanomedicine 2019; 14:721-732. [PMID: 30705588 PMCID: PMC6342221 DOI: 10.2147/ijn.s187854] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Traumatic spinal cord injury (SCI) causes neuronal death, demyelination, axonal degeneration, inflammation, glial scar formation, and cystic cavitation resulting in interruption of neural signaling and loss of nerve function. Multifactorial targeted therapy is a promising strategy for SCI. Methods The anti-inflammatory peptide KAFAKLAARLYRKALARQLGVAA (KAFAK) and brain-derived neurotrophic factor (BDNF)-modified hyaluronan-methylcellulose (HAMC) hydrogel was designed for minimally invasive, localized, and sustained intrathecal protein delivery. The physical and biological characteristics of HAMC-KAFAK/BDNF hydrogel were measured in vitro. SCI model was performed in rats and HAMC-KAFAK/BDNF hydrogel was injected into the injured site of spinal cord. The neuronal regeneration effect was evaluated by inflammatory cytokine levels, behavioral test and histological analysis at 8 weeks post operation. Results HAMC-KAFAK/BDNF hydrogel showed minimally swelling property and sustained release of the KAFAK and BDNF. HAMC-KAFAK/BDNF hydrogel significantly improved the proliferation of PC12 cells in vitro without cytotoxicity. Significant recovery in both neurological function and nerve tissue morphology in SCI rats were observed in HAMC-KAFAK/BDNF group. HAMC-KAFAK/BDNF group showed significant reduction in proinflammatory cytokines expression and cystic cavitation, decreased glial scar formation, and improved neuronal survival in the rat SCI model compared to HAMC group and SCI group. Conclusion The HAMC-KAFAK/BDNF hydrogel promotes functional recovery of rats with spinal cord injury by regulating inflammatory cytokine levels and improving axonal regeneration.
Collapse
Affiliation(s)
- Zhijiang He
- Logistics University of Chinese People's Armed Police Force (PAP), Tianjin 300309, China
| | - Hongxin Zang
- Department of Nursing, Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin 300162, China
| | - Lei Zhu
- Department of Orthopaedics Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin 300162, China
| | - Kui Huang
- Logistics University of Chinese People's Armed Police Force (PAP), Tianjin 300309, China
| | - Tailong Yi
- Institute of TBI and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China, ;
| | - Sai Zhang
- Institute of TBI and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China, ;
| | - Shixiang Cheng
- Institute of TBI and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China, ;
| |
Collapse
|
44
|
|
45
|
Sultan N, Amin LE, Zaher AR, Scheven BA, Grawish ME. Dental pulp stem cells: Novel cell-based and cell-free therapy for peripheral nerve repair. World J Stomatol 2019; 7:1-19. [DOI: 10.5321/wjs.v7.i1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/15/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023] Open
Abstract
The regeneration of peripheral nerves comprises complicated steps involving a set of cellular and molecular events in distal nerve stumps with axonal sprouting and remyelination. Stem cell isolation and expansion for peripheral nerve repair (PNR) can be achieved using a wide diversity of prenatal and adult tissues, such as bone marrow or brain tissues. The ability to obtain stem cells for cell-based therapy (CBT) is limited due to donor site morbidity and the invasive nature of the harvesting process. Dental pulp stem cells (DPSCs) can be relatively and simply isolated from the dental pulps of permanent teeth, extracted for surgical or orthodontic reasons. DPSCs are of neural crest origin with an outstanding ability to differentiate into multiple cell lineages. They have better potential to differentiate into neural and glial cells than other stem cell sources through the expression and secretion of certain markers and a range of neurotropic factors; thus, they should be considered a good choice for PNR using CBT. In addition, these cells have paracrine effects through the secretion of neurotrophic growth factors and extracellular vesicles, which can enhance axonal growth and remyelination by decreasing the number of dying cells and activating local inhabitant stem cell populations, thereby revitalizing dormant or blocked cells, modulating the immune system and regulating inflammatory responses. The use of DPSC-derived secretomes holds great promise for controllable and manageable therapy for peripheral nerve injury. In this review, up-to-date information about the neurotrophic and neurogenic properties of DPSCs and their secretomes is provided.
Collapse
Affiliation(s)
- Nessma Sultan
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Laila E Amin
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed R Zaher
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Ben A Scheven
- School of Dentistry, Oral Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, United Kingdom
| | - Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
46
|
Patel S, Athirasala A, Menezes PP, Ashwanikumar N, Zou T, Sahay G, Bertassoni LE. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Eng Part A 2019; 25:91-112. [PMID: 29661055 PMCID: PMC6352544 DOI: 10.1089/ten.tea.2017.0444] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022] Open
Abstract
The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Paula P. Menezes
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Postgraduate Program in Health Sciences, Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - N. Ashwanikumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Ting Zou
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
47
|
García E, Rodríguez-Barrera R, Buzoianu-Anguiano V, Flores-Romero A, Malagón-Axotla E, Guerrero-Godinez M, De la Cruz-Castillo E, Castillo-Carvajal L, Rivas-Gonzalez M, Santiago-Tovar P, Morales I, Borlongan C, Ibarra A. Use of a combination strategy to improve neuroprotection and neuroregeneration in a rat model of acute spinal cord injury. Neural Regen Res 2019; 14:1060-1068. [PMID: 30762019 PMCID: PMC6404491 DOI: 10.4103/1673-5374.250627] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury is a very common pathological event that has devastating functional consequences in patients. In recent years, several research groups are trying to find an effective therapy that could be applied in clinical practice. In this study, we analyzed the combination of different strategies as a potential therapy for spinal cord injury. Immunization with neural derived peptides (INDP), inhibition of glial scar formation (dipyridyl: DPY), as well as the use of biocompatible matrix (fibrin glue: FG) impregnated with bone marrow mesenchymal stem cells (MSCs) were combined and then its beneficial effects were evaluated in the induction of neuroprotection and neuroregeneration after acute SCI. Sprague-Dawley female rats were subjected to a moderate spinal cord injury and then randomly allocated into five groups: 1) phosphate buffered saline; 2) DPY; 3) INDP + DPY; 4) DPY+ FG; 5) INDP + DPY + FG + MSCs. In all rats, intervention was performed 72 hours after spinal cord injury. Locomotor and sensibility recovery was assessed in all rats. At 60 days after treatment, histological examinations of the spinal cord (hematoxylin-eosin and Bielschowsky staining) were performed. Our results showed that the combination therapy (DPY+ INDP + FG + MSCs) was the best strategy to promote motor and sensibility recovery. In addition, significant increases in tissue preservation and axonal density were observed in the combination therapy group. Findings from this study suggest that the combination theapy (DPY+ INDP + FG + MSCs) exhibits potential effects on the protection and regeneration of neural tissue after acute spinal cord injury. All procedures were approved by the Animal Bioethics and Welfare Committee (approval No. 178544; CSNBTBIBAJ 090812960) on August 15, 2016.
Collapse
Affiliation(s)
- Elisa García
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México; Centro de Investigación del Proyecto CAMINA A.C.; Ciudad de México, México
| | - Roxana Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México; Centro de Investigación del Proyecto CAMINA A.C.; Ciudad de México, México
| | - Vinnitsa Buzoianu-Anguiano
- Unidad de Investigación Médica en Enfermedades Neurologicas, Hospital Especialidades CMN Siglo XXI, Ciudad de México, Mexico
| | - Adrian Flores-Romero
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México; Centro de Investigación del Proyecto CAMINA A.C.; Ciudad de México, México
| | - Emanuel Malagón-Axotla
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México
| | - Marco Guerrero-Godinez
- Unidad de Rehabilitación Osteoarticular. Instituto Nacional de Rehabilitación. Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Estefanía De la Cruz-Castillo
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México
| | - Laura Castillo-Carvajal
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México
| | - Monserrat Rivas-Gonzalez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México
| | - Paola Santiago-Tovar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México
| | - Ivis Morales
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México
| | - Cesar Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México; Centro de Investigación del Proyecto CAMINA A.C.; Ciudad de México, México
| |
Collapse
|
48
|
Stewart AN, Kendziorski G, Deak ZM, Bartosek NC, Rezmer BE, Jenrow K, Rossignol J, Dunbar GL. Transplantation of mesenchymal stem cells that overexpress NT-3 produce motor improvements without axonal regeneration following complete spinal cord transections in rats. Brain Res 2018; 1699:19-33. [DOI: 10.1016/j.brainres.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/26/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
|
49
|
Edelbrock AN, Àlvarez Z, Simkin D, Fyrner T, Chin SM, Sato K, Kiskinis E, Stupp SI. Supramolecular Nanostructure Activates TrkB Receptor Signaling of Neuronal Cells by Mimicking Brain-Derived Neurotrophic Factor. NANO LETTERS 2018; 18:6237-6247. [PMID: 30211565 PMCID: PMC6207372 DOI: 10.1021/acs.nanolett.8b02317] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Brain-derived neurotrophic factor (BDNF), a neurotrophin that binds specifically to the tyrosine kinase B (TrkB) receptor, has been shown to promote neuronal differentiation, maturation, and synaptic plasticity in the central nervous system (CNS) during development or after injury and onset of disease. Unfortunately, native BDNF protein-based therapies have had little clinical success due to their suboptimal pharmacological properties. In the past 20 years, BDNF mimetic peptides have been designed with the purpose of activating certain cell pathways that mimic the functional activity of native BDNF, but the interaction of mimetic peptides with cells can be limited due to the conformational specificity required for receptor activation. We report here on the incorporation of a BDNF mimetic sequence into a supramolecular peptide amphiphile filamentous nanostructure capable of activating the BDNF receptor TrkB and downstream signaling in primary cortical neurons in vitro. Interestingly, we found that this BDNF mimetic peptide is only active when displayed on a peptide amphiphile supramolecular nanostructure. We confirmed that increased neuronal maturation is linked to TrkB signaling pathways by analyzing the phosphorylation of downstream signaling effectors and tracking electrical activity over time. Furthermore, three-dimensional gels containing the BDNF peptide amphiphile (PA) nanostructures encourage cell infiltration while increasing functional maturation. Our findings suggest that the BDNF mimetic PA nanostructure creates a highly bioactive matrix that could serve as a biomaterial therapy in injured regions of the CNS. This new strategy has the potential to induce endogenous cell infiltration and promote functional neuronal maturation through the presentation of the BDNF mimetic signal.
Collapse
Affiliation(s)
- Alexandra N. Edelbrock
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
| | - Zaida Àlvarez
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
| | - Dina Simkin
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Timmy Fyrner
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
| | - Stacey M. Chin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Kohei Sato
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samuel I. Stupp
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
50
|
Young E, Westerberg B, Yanai A, Gregory-Evans K. The olfactory mucosa: a potential source of stem cells for hearing regeneration. Regen Med 2018; 13:581-593. [PMID: 30113240 DOI: 10.2217/rme-2018-0009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The olfactory mucosa contains cells that enable it to generate new neurons and other supporting cells throughout life, allowing it to replace cells of the mucosa that have been damaged by exposure to various insults. In this article, we discuss the different types of stem cell found within the olfactory mucosa and their properties. In particular, the mesenchymal-like cells found within the lamina propria will be reviewed in detail. In addition, we discuss potential applications of olfactory-derived stem cells toward hearing regeneration secondary to either inner hair cell loss or primary or secondary auditory nerve degeneration.
Collapse
Affiliation(s)
- Emily Young
- Department of Ophthalmology, Eye Care Centre, University of British Columbia, Vancouver, Canada
| | - Brian Westerberg
- Department of Otolaryngology, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Anat Yanai
- Department of Ophthalmology, Eye Care Centre, University of British Columbia, Vancouver, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology, Eye Care Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|