Published online Jul 28, 2015. doi: 10.5320/wjr.v5.i2.78
Peer-review started: December 26, 2014
First decision: January 20, 2015
Revised: March 15, 2015
Accepted: April 16, 2015
Article in press: April 20, 2015
Published online: July 28, 2015
Processing time: 223 Days and 11.5 Hours
Lung transplant is the standard of care for patients with end-stage lung disease refractory to medical management. There is currently a critical organ shortage for lung transplantation with only 17% of offered organs being transplanted. Of those patients receiving a lung transplant, up to 25% will develop primary graft dysfunction, which is associated with an 8-fold increase in 30-d mortality. There are numerous mechanical lung assistance modalities that may be employed to help combat these challenges. We will discuss the use of mechanical lung assistance during lung transplantation, as a bridge to transplant, as a treatment for primary graft dysfunction, and finally as a means to remodel and evaluate organs deemed unsuitable for transplant, thus increasing the donor pool, improving survival to transplant, and improving overall patient survival.
Core tip: Numerous modalities of mechanical lung assistance may be employed throughout the course of a lung transplant patient. The use of cardiopulmonary bypass for lung transplantation is controversial and should be employed only when necessary for hemodynamic stability. Extracorporeal membrane oxygenation or extracorporeal lung assist devices improve survival to transplant as well as improve survival in patients with primary graft dysfunction. These techniques should be implemented early and appropriately according to patient factors. Ex-vivo lung perfusion has been shown to be safe in clinical trials and holds promise for increasing the donor pool and thus decreasing waiting list mortality.