Minireviews
Copyright ©2014 Baishideng Publishing Group Inc. All rights reserved.
World J Respirol. Nov 28, 2014; 4(3): 19-25
Published online Nov 28, 2014. doi: 10.5320/wjr.v4.i3.19
Pitfalls in spirometry: Clinical relevance
Andrea Antonelli, Giulia Michela Pellegrino, Giuseppe Francesco Sferrazza Papa, Riccardo Pellegrino
Andrea Antonelli, Riccardo Pellegrino, Allergologia e Fisiopatologia Respiratoria, ASO S. Croce e Carle, 12100 Cuneo, Italy
Giulia Michela Pellegrino, Giuseppe Francesco Sferrazza Papa, U.O. Pneumologia, Ospedale San Paolo, Università degli Studi di Milano, 20122 Milan, Italy
Author contributions: All authors contributed to this paper.
Correspondence to: Andrea Antonelli, MD, Allergologia e Fisiopatologia Respiratoria, ASO S. Croce e Carle, Via M. Coppino 26, 12100 Cuneo, Italy. antonelli.a@ospedale.cuneo.it
Telephone: +39-01-71616728 Fax: +39-01-71616495
Received: September 18, 2014
Revised: October 21, 2014
Accepted: November 7, 2014
Published online: November 28, 2014
Processing time: 70 Days and 13.8 Hours
Abstract

Spirometry is one of the functional tests most used in respiratory medicine to assess lung function in health and disease conditions. Its success is grounded on solid principles of lung mechanics that state that maximal flow on expiration is limited by the physical properties of airways and lung parenchyma. In contrast, on inspiration, flow depends on the force generated by the inspiratory muscles. Reduced expiratory forced flow and volumes usually reflect a deviation from health conditions. Yet due to a complex interplay of different obstructive and restrictive lung diseases within the multiple structural dimensions of the respiratory system, flows and volumes do not always perfectly reflect the impact of the disease on lung function. The present review is intended to shed light on a series of artefacts and biological phenomena that may confound the clinical interpretation of the main spirometric measurements. Among them is thoracic gas compression volume, the volume and time history of the inspiratory manoeuvre that precedes the forced expiration, the effects of heterogeneous distribution of the disease across the respiratory system, and the changes in lung elastic recoil.

Keywords: Spirometry; Thoracic gas compression volume; Volume history effects of the deep breath; Time history effects of the preceding inspiratory manoeuvre; Ventilation heterogeneities; Lung elastic recoil; Clinical interpretation

Core tip: Spirometry is usually taken as a marker of the disease and its progression independently of the condition. In the present review we partly challenge this notion by examining the role of different obstructive and restrictive lung diseases on a series of mechanisms that strongly affect the main spirometric parameters. Among them is thoracic gas compression volume, the volume and time history of the inspiratory manoeuvre that precedes the forced expiration, the effects of heterogeneous distribution of the disease across the respiratory system, and the changes in lung elastic recoil.