1
|
Li Y, Li F, Wang G, Zeng Q, Xie P. Additive impact of chronic obstructive pulmonary disease (COPD) and cardiovascular disease(CVD) on all-cause and disease-Specific mortality: a longitudinal nationwide population-based study. BMC Pulm Med 2025; 25:275. [PMID: 40450235 DOI: 10.1186/s12890-025-03688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 04/28/2025] [Indexed: 06/03/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD) are two age-related diseases commonly found in the elderly population, and they are associated with severe health consequences. However, it is currently unclear how patients with either one of these diseases or both diseases simultaneously compare to patients without COPD and CVD in terms of the additive impact on overall mortality, CVD-related mortality, and respiratory system disease-related mortality. METHOD The study included 42,317 participants from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2018. The main objective of the study was to assess the outcomes of all-cause mortality, CVD mortality, and respiratory system disease mortality. We utilized the National Death Index(NDI) Public Access File, up until December 31, 2019, to determine the participants' mortality status and causes of death, with a mean follow-up period of 9.25 years. To ensure the reliability of the results, we employed Cox proportional hazards models to calculate the hazard ratios (HR) and 95% confidence intervals (CI) for mortality rates, along with conducting sensitivity analyses. RESULTS Among the 42,317 participants, 36,251 individuals (85.7%) had neither COPD nor CVD (COPD-/CVD-). Additionally, 4,252 people (10.0%) had only CVD (COPD-/CVD+), 1,237 people (2.9%) had only COPD (COPD+/CVD-), and 577 people (1.4%) had both COPD and CVD (COPD+/CVD+). Compared to the COPD-/CVD- group, the all-cause mortality rates increased by 1.58-fold (95% CI: 1.46, 1.70), 1.56-fold (95% CI: 1.38, 1.76), and 2.02-fold (95% CI: 1.72, 2.37) in the COPD-/CVD + group, COPD+/CVD- group, and COPD+/CVD + group, respectively, with the COPD+/CVD + group having the highest all-cause mortality risk. Compared to the COPD-/CVD- group, the other three groups showed increased CVD mortality rates, with a HR of 2.35 for the COPD-/CVD + group and COPD+/CVD + group, respectively. Compared to the COPD-/CVD- group, the other three groups had increased respiratory system disease mortality rates, with a HR of 5.00 (95% CI: 3.70, 6.75) for the COPD+/CVD- group and 6.62 (95% CI: 4.56, 9.61) for the COPD+/CVD + group (All trend p-values < 0.0001). CONCLUSION Patients with COPD or CVD, or those who have both conditions, are at an increased risk of all-cause mortality, CVD-related mortality, and respiratory system disease-related mortality. Individuals with either of these diseases require more stringent management to prevent the progression of the other disease and reduce mortality rates.
Collapse
Affiliation(s)
- Yanling Li
- School of Traditional Chinese and western Medicine, Gansu University of Chinese Mdeicine, Lanzhou, 730000, China
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Fuliang Li
- Department of Cardiology, The Second People's Hospital of Huili City, 615100, Huili, China
| | - Gang Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Qingyue Zeng
- General Practice Ward, General Practice Medical Center, West China Hospital, International Medical Center Ward, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, 610000, China
| | - Ping Xie
- School of Traditional Chinese and western Medicine, Gansu University of Chinese Mdeicine, Lanzhou, 730000, China.
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Vaes RDW, Cortiula F, Lyu S, Hiltermann TJN, Houben R, Degens J, Hendriks LEL, Ruysscher DD. Chemoradiotherapy efficacy in patients with stage III non-small cell lung cancer (NSCLC): A prognostic clinical and biomarker-based model. Lung Cancer 2025; 203:108541. [PMID: 40250069 DOI: 10.1016/j.lungcan.2025.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Chemoradiotherapy (CRT) followed by adjuvant durvalumab is the standard of care for fit patients with unresectable stage III non-small cell lung cancer (NSCLC). However, 20-25 % of the patients do not survive longer than 1 year after treatment initiation, i.e. receive futile treatment. We aimed to develop a prognostic model that can identify patients at high risk of early mortality during and after CRT. METHODS Patients with stage III NSCLC treated with CRT were included in the development- (N = 328; MAASTRO Biobank, 2004-2020, NCT01084785) and validation cohorts (N = 39; NCT02921854, NCT04432142). Both clinical parameters (age, sex, body mass index, performance status (PS), tumor stage (UICC 8), and sequence of chemotherapy administration) and peripheral immune-related biomarkers were included in the model development. Futile treatment was defined as death within one year after the first fraction of RT. RESULTS In the multivariable logistic regression analysis, PS ≥ 2 (OR = 2.89, 95 % CI 1.25-6.66, p = 0.013), stage IIIC (OR = 3.07, 95 % CI 3.07-6.9, p = 0.007), sequential chemotherapy (OR = 2.07, 95 % CI 1.19-3.62, p = 0.010), IL-6 (OR = 2.17, 95 % CI 1.27-3.70, p = 0.005), IP-10 (OR = 1.58, 95 % CI 0.92-2.73, p = 0.099), and soluble programmed death-ligand 1 (sPD-L1) (OR = 3.24, 95 % CI 1.90-5.54, p < 0.001) were identified as independent risk factors of early mortality. A nomogram was developed to calculate the risk of receiving futile treatment for each patient. The AUC of the development and validation cohort was 0.774 (95 % CI 0.716-0.832) and 0.734 (95 % CI 0.568-0.902), respectively. Patients classified as intermediate or high risk to receive futile treatment presented 23.7 % of the total cohort. CONCLUSIONS A prognostic model was developed that can identify patients who are at high risk of early mortality during and after CRT. These patients may be included in clinical trials aiming to improve their outcome.
Collapse
Affiliation(s)
- Rianne D W Vaes
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Francesco Cortiula
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Medical Oncology, University Hospital of Udine, Udine, Italy
| | - Shaowen Lyu
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - T Jeroen N Hiltermann
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ruud Houben
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Juliette Degens
- Department of Pulmonary Diseases, Zuyderland Medical Center, 6162 BG Geleen, the Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
3
|
Liu Y, Huang J, Li E, Xiao Y, Li C, Xia M, Ke J, Xiang L, Lei M. Analysis of research trends and hot spots on COPD biomarkers from the perspective of bibliometrics. Respir Med 2025; 240:108030. [PMID: 40058665 DOI: 10.1016/j.rmed.2025.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/14/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), a chronic respiratory condition with airflow limitation, is the fourth leading global cause of death. Biomarkers are key for classifying COPD, detecting exacerbations, guiding treatment, and prognosis. This article uses bibliometrics and visualization to analyze COPD biomarker research trends, providing insights for future studies. METHODS This study adopts a range of literature analysis tools, including HistCite, VOSviewer, and CiteSpace, to systematically analyze literature on COPD biomarkers within the Web of Science Core Collection database from 2005 to 2024. RESULTS A total of 1835 papers or reviews related to COPD biomarkers are included in this study. Since 2003, the number of publications in this field has been on an upward trajectory. The United States being most influential in this field (n = 415, TLCS = 2319). Prominent institutions such as the University of British Columbia consistently deliver high-quality research results. Tal-Singer R, Sin DD, and Vestbo J have made significant contributions to COPD biomarker research. The journal American Journal of Respiratory and Critical Care Medicine is the most authoritative choice for researchers in the field.This research has long focused on biomarkers associated with the inflammatory response (C-reactive protein, eosinophils, etc.), pulmonary function, induced sputum, and computed tomography. Looking ahead, biomarkers such as microRNA, exosomes, DNA methylation, and microbiomics are likely to become popular topics, particularly regarding their roles in the prognosis and mechanisms of COPD. CONCLUSION Bibliometric analysis suggests that future research on COPD biomarkers will focus on advanced fields, such as microRNA, exosomes, DNA methylation, and microbiomics.
Collapse
Affiliation(s)
- Ying Liu
- Zhangjiajie College,Zhangjiajie, 427000, Hunan, China; Medical College of Jishou University, Jishou, 416000, Hunan, China; Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, 427000, Hunan, China
| | - Jianliang Huang
- Zhangjiajie College,Zhangjiajie, 427000, Hunan, China; Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, 427000, Hunan, China
| | - Enping Li
- Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, 427000, Hunan, China
| | - Yun Xiao
- Changsha Central Hospital, Changsha, 410028, Hunan, China
| | - Chengyou Li
- Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, 427000, Hunan, China
| | - Mingkai Xia
- Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, 427000, Hunan, China
| | - Jun Ke
- Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, 427000, Hunan, China.
| | - Lijun Xiang
- Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, 427000, Hunan, China.
| | - Mingsheng Lei
- Zhangjiajie College,Zhangjiajie, 427000, Hunan, China; Medical College of Jishou University, Jishou, 416000, Hunan, China; Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, 427000, Hunan, China.
| |
Collapse
|
4
|
Liu Q, Wang Y, Cao X, Zhang S, Xie J. IL-6 and CD4 +/CD8 + are Important Indicators for Predicting Prognosis in Elderly AECOPD Patients: A Retrospective Study. J Inflamm Res 2025; 18:2601-2611. [PMID: 40008081 PMCID: PMC11853116 DOI: 10.2147/jir.s496735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Purpose Evaluating the role of IL-6 and CD4+/CD8+ in predicting the prognosis of elderly patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Patients and Methods This study retrospectively enrolled 413 elderly patients who were hospitalized for AECOPD between January 2019 and December 2021. Patients were divided into event and non-event groups based on whether they were readmitted or died due to AECOPD during 18 months of follow-up. The associations between IL-6 and CD4+/CD8+ with adverse events were assessed using Cox proportional hazards regression models, Kaplan-Meier survival analysis, and restricted cubic spline (RCS) models. Additionally, subgroup analyses were conducted to evaluate the stability of these associations, and ROC curves were used to assess the predictive ability of IL-6 combined with CD4+/CD8+ for adverse events. Results A total of 413 patients were included in the study, with 218 experiencing adverse events. Patients with high levels of IL-6 and low levels of CD4+/CD8+ had a higher risk of adverse events. There was a non-linear relationship between IL-6 and CD4+/CD8+ with adverse events (p<0.05). Subgroup analyses further confirmed the robustness of this association. ROC curve analysis indicated that combining IL-6 with CD4+/CD8+ significantly improved the predictive value for adverse events. Conclusion There is a non-linear relationship between IL-6 and CD4+/CD8+ and adverse events in elderly patients with AECOPD. Combining IL-6 with CD4+/CD8+ ratios significantly enhances the predictive value for adverse events.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| | - Yanhui Wang
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| | - Xueshuai Cao
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| | - Shan Zhang
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| | - Juan Xie
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Pott H, Weckler B, Gaffron S, Martin R, Maier D, Alter P, Biertz F, Speicher T, Bertrams W, Jung AL, Laakmann K, Heider D, Wouters M, Vogelmeier CF, Schmeck B. Diffusion capacity and static hyperinflation as markers of disease progression predict 3-year mortality in COPD: Results from COSYCONET. Respirology 2025; 30:134-146. [PMID: 39448064 PMCID: PMC11788467 DOI: 10.1111/resp.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND AND OBJECTIVE Chronic obstructive pulmonary disease (COPD) exhibits diverse patterns of disease progression, due to underlying disease activity. We hypothesized that changes in static hyperinflation or KCO % predicted would reveal subgroups with disease progression unidentified by preestablished markers (FEV1, SGRQ, exacerbation history) and associated with unique baseline biomarker profiles. We explored 18-month measures of disease progression associated with 18-54-month mortality, including changes in hyperinflation parameters and transfer factor, in a large German COPD cohort. METHODS Analysing data of 1364 patients from the German observational COSYCONET-cohort, disease progression and improvement patterns were assessed for their impact on mortality via Cox hazard regression models. Association of biomarkers and COPD Assessment test items with phenotypes of disease progression or improvement were evaluated using logistic regression and random forest models. RESULTS Increased risk of 18-54-month mortality was linked to decrease in KCO % predicted (7.5% increments) and FEV1 (20 mL increments), increase in RV/TLC (2% increments) and SGRQ (≥6 points), and an exacerbation grade of 2 at 18 months. Decrease in KCO % predicted ≥7.5% and an increase of RV/TLC ≥2% were the most frequent measures of 18-month disease progression occurring in ~52% and ~46% of patients, respectively. IL-6 and CRP thresholds exhibited significant associations with medium- and long-term disease measures. CONCLUSION In a multicentric cohort of COPD, new markers of current disease activity predicted mid-term mortality and could not be anticipated by baseline biomarkers.
Collapse
Affiliation(s)
- Hendrik Pott
- Department of Medicine, Pulmonary and Critical Care Medicine, Clinic for Airway Infections, University Medical Centre MarburgPhilipps‐University MarburgMarburgGermany
| | - Barbara Weckler
- Department of Medicine, Pulmonary and Critical Care Medicine, Clinic for Airway Infections, University Medical Centre MarburgPhilipps‐University MarburgMarburgGermany
| | | | - Roman Martin
- Heinrich Heine University Düsseldorf, Machine Learning for Medical DataInstitute for Computer ScienceDüsseldorfGermany
| | | | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care MedicineUniversity of Marburg (UMR), Member of the German Centre for Lung Research [DZL]MarburgGermany
| | - Frank Biertz
- CAPNETZ FoundationMedical University HannoverHannoverGermany
| | - Tim Speicher
- Department of Medicine, Pulmonary and Critical Care MedicineUniversity of Marburg (UMR), Member of the German Centre for Lung Research [DZL]MarburgGermany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps‐University MarburgMarburgGermany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps‐University MarburgMarburgGermany
- German Center for Lung Research (DZL)MarburgGermany
| | - Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps‐University MarburgMarburgGermany
| | - Dominik Heider
- Institute for Medical InformaticsUniversity of MünsterMünsterGermany
| | - Miel Wouters
- Maastricht University Medical CentreMaastricht, the Netherlands and Sigmund Freud Private UniversityViennaAustria
| | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care MedicineUniversity of Marburg (UMR), Member of the German Centre for Lung Research [DZL]MarburgGermany
| | - Bernd Schmeck
- Department of Medicine, Pulmonary and Critical Care Medicine, Clinic for Airway Infections, University Medical Centre MarburgPhilipps‐University MarburgMarburgGermany
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps‐University MarburgMarburgGermany
- Member of the German Centre for Lung Research (DZL) and German Centre of Infectious Disease ResearchMarburgGermany
| |
Collapse
|
6
|
Liu X, Guo Y, Qi W. Prognostic value of composite inflammatory markers in patients with chronic obstructive pulmonary disease: A retrospective cohort study based on the MIMIC-IV database. PLoS One 2025; 20:e0316390. [PMID: 39854548 PMCID: PMC11761080 DOI: 10.1371/journal.pone.0316390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/10/2024] [Indexed: 01/26/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease, and inflammation plays a key role in the pathogenesis of COPD. The aim of this study is to investigate the association between systemic immune inflammation index (SII), systemic inflammatory response index (SIRI),pan-immune inflammation value (PIV), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) and all-cause mortality in patients with chronic obstructive pulmonary disease (COPD), and to evaluate the effect of composite inflammatory markers on the prognosis of COPD patients. We obtained data on COPD patients from the Medical Information Mart for Intensive Care (MIMIC) -IV database and divided patients into four groups based on quartiles of baseline levels of inflammatory markers, The primary outcomes were in-hospital and ICU mortality. We comprehensively explored the association between composite inflammatory markers and mortality in patients with COPD using restricted cubic splints (RCS), COX proportional hazards regression models, Kaplan-Meier curves, receiver operating characteristic (ROC), and subgroup analyses. A total of 1234 COPD patients were included in this study. RCS results showed that SII, SIRI, PLR, PIV and NLR were positively and non-linearly correlated with the increased risk of in-hospital mortality in COPD patients. Multivariate COX regression analysis showed that compound inflammatory markers were independent risk factors for in-hospital mortality in COPD patients. The KM curve results showed that COPD patients with higher SII, SIRI, PLR and PIV had a significantly lower survival probability. 5 kinds of compound between inflammatory markers and mortality in patients with COPD is related to nonlinear correlation, can increase the risk of mortality in patients with COPD is a risk factor for the prognosis of patients with COPD, and may serve as potential biomarkers for clinical COPD risk stratification and treatment management in critical patients.
Collapse
Affiliation(s)
- Xingxing Liu
- Guanganmen Hospital Affiliated to China Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| | - Yikun Guo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing, China
- Beijing University of Chinese medicine, Chao Yang District, Beijing, China
| | - Wensheng Qi
- Guanganmen Hospital Affiliated to China Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| |
Collapse
|
7
|
Zhao S, Su Y, Yang H. Associations of dietary inflammation index and composite dietary antioxidant index with all-cause mortality in COPD patients. Front Nutr 2025; 12:1514430. [PMID: 39906240 PMCID: PMC11790435 DOI: 10.3389/fnut.2025.1514430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Background Few studies have investigated the effects of both dietary inflammatory index (DII) and composite dietary antioxidant index (CDAI) on mortality in patients with Chronic Obstructive Pulmonary Disease (COPD). Our research aimed to explore the associations between the two indicators with all-cause mortality in COPD patients. Methods We conducted a prospective cohort analysis based on data from the six cycles of the National Health and Nutrition Examination Survey (NHANES) dataset from 2007 to 2018. Multivariate Cox proportional hazard models were used to analyze the effects of DII and CDAI on all-cause mortality in COPD. We employed restricted cubic spline (RCS) analysis to examine the dose-response relationship between two indicators and all-cause mortality, used threshold effect analysis to determine the inflection point, and conducted subgroup analysis and interaction tests to verify the stability of the results. Results A total of 1,457 COPD patients aged over 40 were enrolled in the study. The median follow-up time was 76.8 months. The multivariate Cox proportional hazards model showed that increased DII was associated with an increase in all-cause mortality (HR (95% CI): 1.11(1.04, 1.18), p = 0.002). In contrast, CDAI was negatively correlated with all-cause mortality (HR (95% CI): 0.95(0.91, 0.99), p = 0.01). The RCS analysis showed a nonlinear correlation between DII or CDAI and all-cause mortality. The maximum pro-inflammatory inflection point of DII was 2.32, while the antioxidant threshold of CDAI is -0.12. Subgroup analyses indicated that the relationship between exposure variables and all-cause mortality was stable in most populations. Conclusion Reducing the pro-inflammatory diet or increasing the antioxidant diet can reduce all-cause mortality in COPD patients.
Collapse
Affiliation(s)
- Sue Zhao
- Department of Pulmonary and Critical Care Medicine, Changsha Central Hospital, Changsha, China
| | - Yingjie Su
- Changsha Central Hospital, Changsha, China
| | - Hongzhong Yang
- Department of Pulmonary and Critical Care Medicine, Changsha Central Hospital, Changsha, China
| |
Collapse
|
8
|
Alotaibi BA, Alsabani MH, Alghamdi AS, Alotibi RS, Al-Mutairi AM, Philip W, Alghassab TS, Alhawiti NM, Shaheen NA, Alenzi MS, Alzahrani MA, Alanazi FJ, Alotaib AZ, Alotaibi TF, Ismaeil TT, Alanazi AM. Hematological Parameters Predicting Mortality in Patients with COPD Admitted to ICUs. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2025; 13:26-31. [PMID: 39935998 PMCID: PMC11809761 DOI: 10.4103/sjmms.sjmms_276_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 02/13/2025]
Abstract
Background The prevalence of chronic obstructive pulmonary disease (COPD) is increasing in Saudi Arabia, yet there is a lack of studies on the usefulness of routine hematological parameters in predicting mortality. Objective To determine hematological parameters that can predict mortality in patients with COPD exacerbation admitted to intensive care units. Materials and Methods This multicenter retrospective study included patients with COPD admitted at intensive care units of Ministry of National Guard Health Affairs hospitals in Saudi Arabia between 2016 to 2021. Hematological parameters were used to predict mortality. ROC curve analysis was used to establish the threshold value of variables linked to risk of mortality and optimal cut-off points, and its sensitivity and specificity were determined. Results The study included 323 patients with COPD, of which 61% were females and the mean age was 72.7 (±12.7) years. The median length of hospital stay was 14 days (range: 6-26 days), and the overall mortality rate was 37.2%. After adjusting for gender and length of hospital stay in the multivariate analysis, independent predictors of mortality were age (OR: 1.029, 95% CI: 1.008-1.051; P = 0.007) and low mean corpuscular hemoglobin concentration (MCHC) (OR: 0.985, 95% CI: 0.970-1.000; P = 0.047). The ROC curve analysis revealed a cut-off value of 320.5 g/L for MCHC, with an AUC of 0.576. Conclusion This study found that in patients with COPD exacerbation admitted to ICU, older age likely increases the risk of mortality, whereas low MCHC likely decreases the risk of mortality. Further large-scale studies are required to validate these findings.
Collapse
Affiliation(s)
- Badi A. Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohmad H. Alsabani
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Anesthesia Technology Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulrhman S. Alghamdi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Emergency Medical Services, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Raniah S. Alotibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Abrar M. Al-Mutairi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Research Unit, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Winnie Philip
- Research Unit, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Talal S. Alghassab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Naif M. Alhawiti
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Naila A. Shaheen
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Majed S. Alenzi
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohammed A. Alzahrani
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fay J. Alanazi
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulmohsen Z. Alotaib
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tareq F. Alotaibi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Taha T. Ismaeil
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdullah M. Alanazi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Januskevicius A, Vasyle E, Rimkunas A, Palacionyte J, Kalinauskaite-Zukauske V, Malakauskas K. Serum T2-High Inflammation Mediators in Eosinophilic COPD. Biomolecules 2024; 14:1648. [PMID: 39766355 PMCID: PMC11674300 DOI: 10.3390/biom14121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Eosinophils are central inflammatory cells in asthma; however, a portion of patients with chronic obstructive pulmonary disease (COPD) have blood or sputum eosinophilia, a condition termed eosinophilic COPD (eCOPD), which may contribute to the progression of the disease. We hypothesize that eosinophilic inflammation in eCOPD patients is related to Type 2 (T2)-high inflammation seen in asthma and that serum mediators might help us to identify T2-high inflammation in patients and choose an appropriate personalized treatment strategy. Thus, we aimed to investigate ten serum levels of T2-high inflammation mediators in eCOPD patients and compare them to severe non-allergic eosinophilic asthma (SNEA) patients. We included 8 subjects with eCOPD, 10 with SNEA, and 11 healthy subjects (HS) as a control group. The concentrations of biomarkers in serum samples were analyzed using an enzyme-linked immunosorbent assay (ELISA). In this study, we found that eCOPD patients were distinguished from SNEA patients by elevated serum levels of sIL-5Rα, MET, TRX1, ICTP, and IL-4, as well as decreased serum levels of eotaxin-1 and sFcεRI. Moreover, MET, ICTP, eotaxin-1, and sFcεRI demonstrated high sensitivity and specificity as potential biomarkers for eCOPD patients. Furthermore, serum levels of IL-5 and IL-25 in combination with sIL-5Rα, MET, and IL-4 demonstrated a high value in identifying T2-high inflammation in eCOPD patients. In conclusion, this study highlights that while T2-high inflammation drives eosinophilic inflammation in both eCOPD and SNEA through similar mechanisms, the distinct expression of its mediators reflects an imbalance between T1 and T2 inflammation pathways in eCOPD patients. A combined analysis of serum mediators may aid in identifying T2-high inflammation in eCOPD patients and in selecting an appropriate personalized treatment strategy.
Collapse
Affiliation(s)
- Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Egle Vasyle
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (J.P.); (V.K.-Z.)
| | | | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (J.P.); (V.K.-Z.)
| |
Collapse
|
10
|
Li Z, Gan H, Li S, Xue Y, Luo K, Huang K, Zhang Y, Wang Y, Jiang L, Zhang H. Bioinformatics Identification and Validation of Ferroptosis-Related Key Genes and Therapeutic Compounds in Septic Lung Injury. J Inflamm Res 2024; 17:9215-9230. [PMID: 39600675 PMCID: PMC11589777 DOI: 10.2147/jir.s476522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Background Septic lung injury (SLI) is a severe condition with high mortality, and ferroptosis, a form of programmed cell death, is implicated in its pathogenesis. However, the explicit mechanisms underlying this condition remain unclear. This study aimed to elucidate and validate key ferroptosis-related genes involved in the pathogenesis of SLI through bioinformatics analysis and experimental validation. Methods Microarray data related to SLI from the GSE130936 dataset were downloaded from the Gene Expression Omnibus (GEO) database. These data were then intersected with the FerrDb database to obtain ferroptosis-related differentially expressed genes (DEGs). Protein-protein interaction (PPI) networks and functional enrichment analysis were employed to identify key ferroptosis-related DEGs. The Connectivity Map (c-MAP) tool was used to search for potential compounds or drugs that may inhibit ferroptosis-related DEGs. The transcriptional levels of the key genes and potential therapeutic compounds were verified in an LPS-induced mouse model of lung injury. The expression of these key genes was further verified using the GSE60088 and GSE137342 datasets. Results 38 ferroptosis-related DEGs were identified between the septic and control mice. PPI network analysis revealed four modules, the most significant of which included eight ferroptosis-related DEGs. Functional enrichment analysis showed that these genes were enriched in the HIF-1 signaling pathway, including IL-6 (Interleukin-6), TIMP1 (Tissue Inhibitor of Metalloproteinase 1), HIF-1α (Hypoxia-Inducible Factor-1α), and HMOX1 (Heme Oxygenase-1). Phloretin, a natural compound, was identified as a potential inhibitor of these genes. Treatment with phloretin significantly reduced the expression of these genes (p < 0.05), mitigated lung injury, improved inflammatory profiles by approximately 50%, and ferroptosis profiles by nearly 30% in the SLI models. Conclusion This study elucidates the significant role of ferroptosis in SLI and identifies phloretin as a potential therapeutic agent. However, further research, particularly involving human clinical trials, is necessary to validate these findings for clinical use.
Collapse
Affiliation(s)
- Zhile Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Han Gan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Siyuan Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yuchen Xue
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Kai Luo
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Kai Huang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yunqian Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Reid C, Donlon J, Remot A, Kennedy E, De Matteis G, O’Farrelly C, McAloon C, Meade KG. Hyper-induction of IL-6 after TLR1/2 stimulation in calves with bovine respiratory disease. PLoS One 2024; 19:e0309964. [PMID: 39541407 PMCID: PMC11563416 DOI: 10.1371/journal.pone.0309964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
Bovine respiratory disease (BRD) is a leading cause of mortality and compromised welfare in bovines. It is a polymicrobial syndrome resulting from a complex interplay of viral and bacterial pathogens with environmental factors. Despite the availability of vaccines, incidence and severity in young calves remains unabated. A more precise analysis of host innate immune responses during infection will identify improved diagnostic and prognostic biomarkers for early intervention and targeted treatments to prevent severe disease and loss of production efficiency. Here, we investigate hematological and innate immune responses using standardized ex-vivo whole blood assays in calves diagnosed with BRD. A total of 65 calves were recruited for this study, all between 2-8 weeks of age with 28 diagnosed with BRD by a thoracic ultrasonography score (TUS) and 19 by Wisconsin health score (WHS) and all data compared to 22 healthy controls from the same 9 study farms. Haematology revealed circulating immune cell populations were similar in both TUS positive and WHS positive calves compared to healthy controls. Gene expression analysis of 48 innate immune signalling genes in whole blood stimulated with TLR ligands was completed in a subset of calves. TLR1/2 stimulation with Pam3CSK4 showed a decreased pattern of expression in IL-1 and inflammasome related genes in addition to chemokine genes in calves with BRD. In response to TLR ligands LPS, Pam3CSK4 and R848, protein analysis of supernatant collected from all calves with BRD revealed significantly increased IL-6, but not IL-1β or IL-8, compared to healthy controls. This hyper-induction of IL-6 was observed most significantly in response to TLR1/2 stimulation in TUS positive calves. ROC analysis identified this induced IL-6 response to TLR1/2 stimulation as a potential diagnostic for BRD with a 74% true positive and 5% false positive detection rate for an IL-6 concentration >1780pg/mL. Overall, these results show altered immune responses specifically upon TLR1/2 activation is associated with BRD pathology which may contribute to disease progression. We have also identified induced IL-6 as a potentially informative biomarker for improved early intervention strategies for BRD.
Collapse
Affiliation(s)
- Cian Reid
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co Meath, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - John Donlon
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co Meath, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Aude Remot
- INRAE, Université de Tours, Nouzilly, France
| | - Emer Kennedy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Giovanna De Matteis
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, CREA-ZA, Italy
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Conor McAloon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Kieran G. Meade
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4 Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
Li S, Dai Z, Zhang T, Guo Z, Gao F, Cheng X, An J, Lin Y, Xiong X, Wang N, Jiang G, Xu B, Lei H. Investigation of the therapeutic effects and mechanisms of Houpo Mahuang Decoction on a mouse model of chronic obstructive pulmonary disease. Front Pharmacol 2024; 15:1448069. [PMID: 39575390 PMCID: PMC11578825 DOI: 10.3389/fphar.2024.1448069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Background With a growing global population affected by Chronic Obstructive Pulmonary Disease (COPD), the traditional Chinese herbal formula Houpo Mahuang Decoction (HPMHD) has been used for centuries to address respiratory ailments. While studies have demonstrated the therapeutic benefits of HPMHD in COPD, the effective active ingredients, potential targets, and molecular mechanisms underlying its effectiveness remained unclear. Methods The mechanisms of action of certain HPMHD components, targets, and pathways for the treatment of COPD were predicted using a network pharmacology method. We induced a COPD mouse model using porcine pancreatic elastase and evaluated the pathological changes and healing processes through HE and Masson staining. Immunofluorescence was used to assess the levels of IL-6 and TNF-ɑ. RNA-Seq analysis was conducted to identify differentially expressed genes (DEGs) in the lungs of normal, control, and treated mice, revealing the biological pathways enriched by HPMHD in COPD treatment. Finally, the expression of DEGs was verified using Western blotting and RT-qPCR. Results HPMHD effectively alleviated pathological symptoms and improved COPD in mice by modulating the IL-17 signaling pathway. Treatment with HPMHD improved lung morphology and structure, reduced inflammatory cell infiltration, and inhibited IL-6 and TNF-ɑ levels. Network pharmacology and transcriptomics further revealed the mechanism, indicating that the IL-17 signaling pathway might been instrumental in the inhibitory effect of HPMHD on mouse model of COPD. Subsequent experiments, including protein blotting and RT-qPCR analysis, confirmed the activation of the IL-17 signaling pathway by HPMHD in the COPD mouse model, further supporting the initial findings. Conclusion HPMHD was shown to alleviate COPD and reduce lung inflammation in mice, potentially through the activation of the IL-17 signaling pathway. This study provides a novel direction for the development of COPD drugs.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xuehao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | | | - Nan Wang
- Aimin Pharmaceutical Group, Henan, China
| | | | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Zhao Y, Li H, Wang Z, Qi Y, Chang Y, Li Y, Xu D, Chen X. Exploring the association between magnesium deficiency and chronic obstructive pulmonary diseases in NHANES 2005-2018. Sci Rep 2024; 14:25981. [PMID: 39472459 PMCID: PMC11522679 DOI: 10.1038/s41598-024-76374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) significantly impacts patients' quality of life and burdens healthcare systems. Magnesium is crucial for lung function and reducing respiratory disease risk. This study investigates the association between Magnesium Depletion Score (MDS) and COPD and explores whether inflammatory markers mediate this relationship. A cross-sectional analysis was conducted using data from 30,490 participants in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018. MDS was calculated based on diuretic use, proton pump inhibitors, renal function, and alcohol consumption. Univariable and multivariable logistic regression analyses were performed to assess the association between MDS and COPD, adjusting for potential confounders. Mediation analysis was used to examine the roles of neutrophils, serum albumin, and the Systemic Immune-Inflammation Index (SII). In the univariable logistic model, higher MDS was significantly associated with increased COPD risk. Specifically, compared to MDS = 0, the odds ratios (OR) for COPD were 2.50, 4.12, 6.13, 8.53, and 7.81 for MDS = 1, 2, 3, 4, and 5, respectively (all P < 0.001). In the multivariable model, the ORs were 1.79, 2.25, 2.71, and 3.44 for MDS = 1, 2, 3, and 4, respectively (all P < 0.001). Higher neutrophil levels and SII were positively associated with increased COPD risk, while higher serum albumin levels were inversely associated. Mediation analysis indicated that neutrophils, serum albumin, and SII significantly mediated the MDS-COPD relationship. Higher MDS is significantly associated with increased COPD risk, mediated by systemic inflammation markers. Improving magnesium levels could potentially reduce COPD risk, warranting further research on magnesium supplementation in COPD prevention and management.
Collapse
Affiliation(s)
- Yixin Zhao
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Hongwei Li
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Zhenyu Wang
- The Second Hospital of Jilin University, Changchun, 130012, China
| | - Yue Qi
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Yu Chang
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Yuguang Li
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Dongsheng Xu
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China.
| | - Xiao Chen
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China.
| |
Collapse
|
14
|
Ren J, Zhang W, Liu Y, Fan X, Li X, Song X. Prevalence of and factors associated with cognitive frailty in elderly patients with chronic obstructive pulmonary disease: A cross-sectional study. Medicine (Baltimore) 2024; 103:e39561. [PMID: 39287286 PMCID: PMC11404930 DOI: 10.1097/md.0000000000039561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
The status of cognitive frailty in elderly patients with chronic obstructive pulmonary disease (COPD) and its influencing factors in China remains unclear. This study aimed to investigate the prevalence of and factors associated with cognitive frailty in elderly patients with COPD. This cross-sectional study enrolled elderly patients with stable COPD between May and November 2022 from the Respiratory Department of the First Affiliated Hospital of Zhengzhou University and the Fifth Affiliated Hospital of Zhengzhou University. Convenience sampling method was adopted. Frailty Phenotype scale, Montreal Cognitive Assessment scale, Geriatric Depression Scale, and Clinical Dementia Rating scale were used to assess the prevalence of cognitive frailty in elderly patients with COPD. Multivariable logistic regression analysis was used to explore the associated factors. A total of 406 valid questionnaires were collected, and 173 patients (35.6%) had cognitive frailty. Binary logistic regression analysis showed that sex (odds ratio [OR] = 0.009; 95%CI: 0.001-0.770; P = .038), depression (OR = 17.780; 95%CI: 1.092-289.478; P = .043), modified Medical Research Council grade 1-3 (OR = 28.394-4095.683; 95%CI: 1.086-4,592,652.211; P < .05), global initiative for chronic obstructive lung disease grade 2 and 3 (OR = 32.508-282.072; 95%CI: 1.101-12,516.874; P < .05), and frequencies of acute exacerbations of COPD and hospitalizations within 1 year of 2 times (OR = 21.907; 95%CI: 4.587-104.622; P < .001) were independently associated with cognitive frailty. The prevalence of cognitive frailty in elderly patients with stable COPD was high. Female, depression, modified Medical Research Council grade, global initiative for chronic obstructive lung disease grade, and frequencies of acute exacerbations of COPD and hospitalizations within 1 year might be the factors independently associated with cognitive frailty, educational level might be a protective associated factor for cognitive frailty.
Collapse
Affiliation(s)
- Jie Ren
- School of Nursing and Health, Zhengzhou University, Zhengzhou, China
| | - Weihong Zhang
- School of Nursing and Health, Zhengzhou University, Zhengzhou, China
| | - Yanfei Liu
- School of Nursing and Health, Zhengzhou University, Zhengzhou, China
| | - Xin Fan
- School of Nursing and Health, Zhengzhou University, Zhengzhou, China
| | - Xinxin Li
- School of Nursing and Health, Zhengzhou University, Zhengzhou, China
| | - Xinying Song
- School of Nursing and Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Ono Y, Fujino N, Saito T, Matsumoto S, Konno S, Endo T, Suzuki M, Yamada M, Okada Y, Sugiura H. Characterization of IL-6R-expressing monocytes in the lung of patients with chronic obstructive pulmonary disease. Respir Investig 2024; 62:856-866. [PMID: 39068895 DOI: 10.1016/j.resinv.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Monocytes play a crucial role in innate immune responses for host defense, however, their involvement in chronic obstructive pulmonary disease (COPD) remains poorly understood. We previously identified a subset of monocytes in COPD lung tissues characterized by high interleukin-6 receptor (IL-6R) expression. This study aimed to characterize the phenotypes of IL-6Rhi monocytes in the lungs of COPD patients. METHODS Using flow cytometry, we assessed the abundance of pulmonary CD14+IL-6Rhi cells in never smokers (CNS), control ex-smokers (CES) and COPD patients. IL-6 expression in CD14+ monocytes isolated from the peripheral blood of patients with COPD was also examined. CD45+CD206-CD14+IL-6Rhi and CD45+CD206-CD14+IL-6R-/lo cells were isolated from COPD lung tissues for transcriptome analysis. A monocyte line THP1 cell with constitutive IL-6R expression was stimulated with recombinant IL-6, followed by RNA sequencing to evaluate the IL-6 responsiveness of IL-6R+ monocytes. RESULTS The number of pulmonary CD14+IL-6Rhi monocytes was elevated in COPD patients compared to CNS, whereas CD14+ monocytes in the peripheral blood of COPD patients did not express IL-6R. Upregulated mRNA expression in CD14+IL-6Rhi monocytes was associated with chemotaxis, monocyte differentiation, fatty acid metabolism and integrin-mediated signaling pathway. Stimulation of THP1 cells with recombinant IL-6 induced changes in the expression of genes linked to chemotaxis and organism development. CONCLUSION In patients with COPD, CD14+IL-6Rhi monocytes are increased in lung tissues compared to those in CNS. They exhibit a transcriptome profile different from that of CD14+IL-6R-/lo monocytes.
Collapse
Affiliation(s)
- Yoshinao Ono
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan.
| | - Takuya Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| | - Shuichiro Matsumoto
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| | - Shuichi Konno
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| | - Takuto Endo
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| | - Manami Suzuki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8575, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryocho, Aoba-ku, Sendai, Miyagi, 980 8574, Japan
| |
Collapse
|
16
|
Liao K, Wang F, Xia C, Xu Z, Zhong S, Bi W, Ruan J. The cGAS-STING pathway in COPD: targeting its role and therapeutic potential. Respir Res 2024; 25:302. [PMID: 39113033 PMCID: PMC11308159 DOI: 10.1186/s12931-024-02915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Chronic obstructive pulmonary disease(COPD) is a gradually worsening and fatal heterogeneous lung disease characterized by airflow limitation and increasingly decline in lung function. Currently, it is one of the leading causes of death worldwide. The consistent feature of COPD is airway inflammation. Several inflammatory factors are known to be involved in COPD pathogenesis; however, anti-inflammatory therapy is not the first-line treatment for COPD. Although bronchodilators, corticosteroids and roflumilast could improve airflow and control symptoms, they could not reverse the disease. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway plays an important novel role in the immune system and has been confirmed to be a key mediator of inflammation during infection, cellular stress, and tissue damage. Recent studies have emphasized that abnormal activation of cGAS-STING contributes to COPD, providing a direction for new treatments that we urgently need to develop. Here, we focused on the cGAS-STING pathway, providing insight into its molecular mechanism and summarizing the current knowledge on the role of the cGAS-STING pathway in COPD. Moreover, we explored antagonists of cGAS and STING to identify potential therapeutic strategies for COPD that target the cGAS-STING pathway.
Collapse
Affiliation(s)
- Kexin Liao
- First Clinical Medical College, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Fengshuo Wang
- College of Pharmacy, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Chenhao Xia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Ze Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Sen Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Wenqi Bi
- First Clinical Medical College, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Jingjing Ruan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
17
|
Zhao T, Lv T. Correlation between serum bilirubin, blood uric acid, and C-reactive protein and the severity of chronic obstructive pulmonary disease. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:105. [PMID: 38978143 PMCID: PMC11232315 DOI: 10.1186/s41043-024-00593-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVE To explore the correlation between serum bilirubin, blood uric acid, and C-reactive protein (CRP) and the severity of chronic obstructive pulmonary disease (COPD). METHODS Patients with COPD who were admitted to our hospital between March 2020 and March 2023 were retrospectively studied. Based on whether their condition progressed to the acute exacerbation stage, they were divided into an exacerbation group (100 cases) and a stability group (100 cases). The clinical data from both groups were analysed to assess the correlations between serum bilirubin, blood uric acid, CRP, and the severity of COPD. RESULTS Univariate analysis indicated significant differences in the neutrophil-to-lymphocyte ratio (t = 5.678, P < 0.05), α-hydroxybutyrate dehydrogenase (t = 5.862, P < 0.05), total bilirubin (t = 4.341, P < 0.05), direct bilirubin (t = 5.342, P < 0.05), indirect bilirubin (t = 5.452, P < 0.05), blood uric acid (t = 4.698, P < 0.05), and CRP (t = 4.892, P < 0.05) between the two groups. Multivariate analysis revealed that total bilirubin, blood uric acid, and CRP were positively correlated with exacerbations of COPD (regression coefficients were 0.413, 0.354, and 0.356, respectively; P < 0.05). The evaluation of predictive value showed that the combined predictive value of these three indicators was the highest, with an AUC of 0.823 (95% CI: 0.754-0.911). CONCLUSION Serum bilirubin, blood uric acid, and CRP levels are elevated in patients with acute exacerbations of COPD (AECOPD), showing good consistency in predicting the occurrence of AECOPD. The combined diagnostic value of these three indicators is greater than that of any single indicator, providing a reference for the early clinical prediction of AECOPD.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Respiratory and Critical Care Medicine, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Wenzhou Medical University, No. 9 Jianmin Road, Taozhu Street, Zhuji, Zhejiang, 311800, China.
| | - Tian Lv
- Department of Neurology, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, 311800, China
| |
Collapse
|
18
|
Wang Y, Wang Y, Li R, Ni B, Chen R, Huang Y, Cheng R, Li P, Li H, Peng Y, Chen X, Wang J, Fu Y, Yang C, Yuan N, Xiao X, Huang Y, Zeng H, Xia W, Li Y, Xu S, Chen L, Liu H. Low-grade systemic inflammation links heavy metal exposures to mortality: A multi-metal inflammatory index approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174537. [PMID: 38977088 DOI: 10.1016/j.scitotenv.2024.174537] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Certain heavy metals have been correlated to an elevated risk of inflammation-related diseases and mortality. Nevertheless, the intricate relationships between metal exposure, inflammation and mortality remain unknown. We included 3741 adults with measurements of ten urinary heavy metals in the National Health and Nutritional Examination Survey (NHANES) 2005-2010, followed up to December 31, 2019. Low-grade systemic inflammation was evaluated by various markers, including C-reactive protein (CRP) and ratios derived from regular blood tests. We assessed associations between heavy metal and all-cause mortality using multivariate COX regressions. Then we assessed the mediation effect of low-grade systemic inflammation on the associations via Sobel Test. To gauge the systemic inflammatory potential of the multi-metal mixture and its correlation with all-cause mortality, a Metal Mixture Inflammatory Index (MMII) was developed using reduced rank regression (RRR) models. The association between MMII and all-cause mortality was explored via multivariate COX regressions. Cadmium, antimony and uranium displayed positive associations with mortality, with hazard ratios (HR) ranging from 1.18 to 1.46 (all P-FDR < 0.05). Mediation analyses revealed that the associations between specific heavy metals (cadmium and antimony) and mortality risk were slightly mediated by the low-grade systemic inflammation markers, with mediation proportions ranging from 3.11 % to 5.38 % (all P < 0.05). MMII, the weighted sum of 9 heavy metals, significantly predicted platelet-to-lymphocyte ratio (PLR) and CRP (β = 0.10 and 1.16, all P < 0.05), was positively associated with mortality risk (HR 1.28, 95 % CI 1.14 to 1.43). Exposure to heavy metals might increase all-cause mortality, partly mediated by low-grade systemic inflammation. MMII, designed to assess the potential systemic inflammatory effects of exposure to multiple heavy metals, was closely related to the all-cause mortality risk. This study introduces MMII as an approach to evaluating co-exposure and its potential health effects comprehensively.
Collapse
Affiliation(s)
- Yin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; The Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yuyan Wang
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Ruizhen Li
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, PR China
| | - Baiwen Ni
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ruixin Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yun Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Rongrong Cheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Pei Li
- Department of Physiology and Biophysics, University of New York at Buffalo, New York, NY, USA
| | - Han Li
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Yang Peng
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Xue Chen
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, PR China
| | - Jingyu Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yuehao Fu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Chenhui Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ningxue Yuan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xianhe Xiao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yizhao Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Huaicai Zeng
- Department of Occupational and Environmental Health, Guilin Medical University, Guilin, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Lei Chen
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, PR China.
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; The Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
19
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
20
|
Huang Q, Gu Y, Wu J, Zhan Y, Deng Z, Chen S, Peng M, Yang R, Chen J, Xie J. DACH1 Attenuates Airway Inflammation in Chronic Obstructive Pulmonary Disease by Activating NRF2 Signaling. Am J Respir Cell Mol Biol 2024; 71:121-132. [PMID: 38587806 DOI: 10.1165/rcmb.2023-0337oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/05/2024] [Indexed: 04/09/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways characterized by impaired lung function induced by cigarette smoke (CS). Reduced DACH1 (dachshund homolog 1) expression has a detrimental role in numerous disorders, but its role in COPD remains understudied. This study aimed to elucidate the role and underlying mechanism of DACH1 in airway inflammation in COPD by measuring DACH1 expression in lung tissues of patients with COPD. Airway epithelium-specific DACH1-knockdown mice and adenoassociated virus-transfected DACH1-overexpressing mice were used to investigate the role of DACH1 and the potential for therapeutic targeting in experimental COPD caused by CS. Furthermore, we discovered a potential mechanism of DACH1 in inflammation induced by CS extract stimulation in vitro. Compared with nonsmokers and smokers without COPD, patients with COPD had reduced DACH1 expression, especially in the airway epithelium. Airway epithelium-specific DACH1 knockdown aggravated airway inflammation and lung function decline caused by CS in mice, whereas DACH1 overexpression protected mice from airway inflammation and lung function decline. DACH1 knockdown and overexpression promoted and inhibited IL-6 and IL-8 secretion, respectively, in 16HBE human bronchial epidermal cells after CS extract stimulation. NRF2 (nuclear factor erythroid 2-related factor 2) was discovered to be a novel downstream target of DACH1, which binds directly to its promoter. By activating NRF2 signaling, DACH1 induction reduced inflammation. DACH1 levels are lower in smokers and nonsmoking patients with COPD than in nonsmokers. DACH1 has protective effects against inflammation induced by CS by activating the NRF2 signaling pathway. Targeting DACH1 is a potentially viable therapeutic approach for COPD treatment.
Collapse
Affiliation(s)
- Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Zhesong Deng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Shanshan Chen
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Maocuo Peng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Ruonan Yang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Jinkun Chen
- Department of Science, Western University, London, Ontario, Canada
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| |
Collapse
|
21
|
Roodenburg SA, Hartman JE, Eichhorn IA, Slebos DJ, Pouwels SD. Low serum double-stranded DNA levels are associated with higher survival rates in severe COPD patients. ERJ Open Res 2024; 10:00240-2024. [PMID: 39010886 PMCID: PMC11247366 DOI: 10.1183/23120541.00240-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Damage-associated molecular patterns (DAMPs) are endogenous danger signals that alert and activate the immune system upon cellular damage or death. It has previously been shown that DAMP release is increased in patients with COPD, leading to higher levels in extracellular fluids such as serum. In the current study we investigated whether the serum levels of DAMPs were associated with survival rates in COPD patients. Methods A panel of seven DAMPs, consisting of HMGB1, fibrinogen, α-defensin, heat shock protein 70, S100A8, galectin-9 and double-stranded DNA (dsDNA), was measured in serum of 949 severe COPD patients. Maximally selected rank statistics was used to define cut-off values and a Cox proportional hazards model was used to evaluate the effect of high or low DAMP levels on 4-year survival. For DAMPs that were found to affect survival significantly, baseline characteristics were compared between the two DAMP groups. Results Out of the seven DAMPs, only dsDNA was significantly associated with 4-year survival. Patients with elevated serum level of dsDNA had higher 4-year mortality rates, lower FEV1 % predicted values and higher emphysema scores. Discussion In conclusion, in a clinical cohort of 949 patients with moderate-to-severe COPD, elevated serum levels of dsDNA were associated with a higher risk of death. This study further illustrates the potential role of circulating DAMPs, such as dsDNA, in the progression of COPD. Together, the results of this study suggest that levels of circulating dsDNA might serve as an additional prognostic biomarker for survival in COPD patients.
Collapse
Affiliation(s)
- Sharyn A Roodenburg
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Jorine E Hartman
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Ilse A Eichhorn
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Dirk-Jan Slebos
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Simon D Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| |
Collapse
|
22
|
Zhai J, Voraphani N, Imboden M, Keidel D, Liu C, Stern DA, Venker C, Petersen H, Bosco A, Sherrill DL, Morgan WJ, Tesfaigzi Y, Probst-Hensch NM, Martinez FD, Halonen M, Guerra S. Circulating biomarkers of airflow limitation across the life span. J Allergy Clin Immunol 2024; 153:1692-1703. [PMID: 38253260 PMCID: PMC11162345 DOI: 10.1016/j.jaci.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Airflow limitation is a hallmark of chronic obstructive pulmonary disease, which can develop through different lung function trajectories across the life span. There is a need for longitudinal studies aimed at identifying circulating biomarkers of airflow limitation across different stages of life. OBJECTIVES This study sought to identify a signature of serum proteins associated with airflow limitation and evaluate their relation to lung function longitudinally in adults and children. METHODS This study used data from 3 adult cohorts (TESAOD [Tucson Epidemiological Study of Airway Obstructive Disease], SAPALDIA [Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults], LSC [Lovelace Smoker Cohort]) and 1 birth cohort (TCRS [Tucson Children's Respiratory Study]) (N = 1940). In TESAOD, among 46 circulating proteins, we identified those associated with FEV1/forced vital capacity (FVC) percent (%) predicted levels and generated a score based on the sum of their z-scores. Cross-sectional analyses were used to test the score for association with concomitant lung function. Longitudinal analyses were used to test the score for association with subsequent lung function growth in childhood and decline in adult life. RESULTS After false discovery rate adjustment, serum levels of 5 proteins (HP, carcinoembryonic antigen, ICAM1, CRP, TIMP1) were associated with percent predicted levels of FEV1/FVC and FEV1 in TESAOD. In cross-sectional multivariate analyses the 5-biomarker score was associated with FEV1 % predicted in all adult cohorts (meta-analyzed FEV1 decrease for 1-SD score increase: -2.9%; 95% CI: -3.9%, -1.9%; P = 2.4 × 10-16). In multivariate longitudinal analyses, the biomarker score at 6 years of age was inversely associated with FEV1 and FEV1/FVC levels attained by young adult life (P = .02 and .005, respectively). In adults, persistently high levels of the biomarker score were associated with subsequent accelerated decline of FEV1 and FEV1/FVC (P = .01 and .001). CONCLUSIONS A signature of 5 circulating biomarkers of airflow limitation was associated with both impaired lung function growth in childhood and accelerated lung function decline in adult life, indicating that these proteins may be involved in multiple lung function trajectories leading to chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jing Zhai
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Nipasiri Voraphani
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Dirk Keidel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Congjian Liu
- Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Debra A Stern
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Claire Venker
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Hans Petersen
- Lovelace Respiratory Research Institute, Albuquerque, NM
| | - Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Duane L Sherrill
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Wayne J Morgan
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Yohannes Tesfaigzi
- Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Lovelace Respiratory Research Institute, Albuquerque, NM
| | - Nicole M Probst-Hensch
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Fernando D Martinez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Marilyn Halonen
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz.
| |
Collapse
|
23
|
Li X, Fu G, Zhang C, Wu Y, Guo H, Li W, Zeng X. Blood miRNAs as Potential Diagnostic Biomarkers for Chronic Obstructive Pulmonary Disease: A Meta-Analysis. Int J Chron Obstruct Pulmon Dis 2024; 19:981-993. [PMID: 38715982 PMCID: PMC11075695 DOI: 10.2147/copd.s457172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/26/2024] [Indexed: 05/24/2024] Open
Abstract
Purpose Investigate the efficacy of blood microRNAs (miRNAs) as diagnostic biomarkers for Chronic Obstructive Pulmonary Disease (COPD). Patients and Methods We conducted a comprehensive search in English and Chinese databases, selecting studies based on predetermined criteria. Diagnostic parameters like summarized sensitivity (SSEN), summarized specificity (SSPE), summarized positive likelihood ratio (SPLR), summarized negative likelihood ratio (SNLR), and diagnostic odds ratio (DOR), and area under the curve (AUC) of the summary receiver operating characteristic (SROC) curves were analyzed using a bivariate model. Each parameter was accompanied by a 95% confidence interval (CI). Results Eighteen high-quality studies were included. For diagnosing COPD with blood miRNAs, the SSEN was 0.83 (95% CI 0.76-0.89), SSPE 0.76 (95% CI 0.70-0.82), SPLR 3.50 (95% CI 2.66-4.60), SNLR 0.22 (95% CI 0.15-0.33), DOR 15.72 (95% CI 8.58-28.77), and AUC 0.86 (95% CI 0.82-0.88). In acute exacerbations, SSEN was 0.85 (95% CI 0.76-0.91), SSPE 0.80 (95% CI 0.73-0.86), SPLR 4.26 (95% CI 3.05-5.95), SNLR 0.19 (95% CI 0.12-0.30), DOR 22.29 (95% CI 11.47-43.33), and AUC 0.89 (95% CI 0.86-0.91). Conclusion Blood miRNAs demonstrate significant accuracy in diagnosing COPD, both in general and during acute exacerbations, suggesting their potential as reliable biomarkers.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Respiratory and Critical Care Medicine, Sixth People’s Hospital of Chengdu, Chengdu, Sichuan, 61005, People’s Republic of China
| | - Guoxia Fu
- Department of Respiratory and Critical Care Medicine, Sixth People’s Hospital of Chengdu, Chengdu, Sichuan, 61005, People’s Republic of China
| | - Chunrong Zhang
- Department of Respiratory and Critical Care Medicine, Sixth People’s Hospital of Chengdu, Chengdu, Sichuan, 61005, People’s Republic of China
| | - Yu Wu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Hua Guo
- Department of Respiratory and Critical Care Medicine, Sixth People’s Hospital of Chengdu, Chengdu, Sichuan, 61005, People’s Republic of China
| | - Weiming Li
- Department of Respiratory and Critical Care Medicine, Sixth People’s Hospital of Chengdu, Chengdu, Sichuan, 61005, People’s Republic of China
| | - Xuefeng Zeng
- Department of Respiratory and Critical Care Medicine, Sixth People’s Hospital of Chengdu, Chengdu, Sichuan, 61005, People’s Republic of China
| |
Collapse
|
24
|
Yehia D, Leung C, Sin DD. Clinical utilization of airway inflammatory biomarkers in the prediction and monitoring of clinical outcomes in patients with chronic obstructive pulmonary disease. Expert Rev Mol Diagn 2024; 24:409-421. [PMID: 38635513 DOI: 10.1080/14737159.2024.2344777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) accounts for 545 million people living with chronic respiratory disorders and is the third leading cause of morbidity and mortality around the world. COPD is a progressive disease, characterized by episodes of acute worsening of symptoms such as cough, dyspnea, and sputum production. AREAS COVERED Airway inflammation is a prominent feature of COPD. Chronic airway inflammation results in airway structural remodeling and emphysema. Persistent airway inflammation is a treatable trait of COPD and plays a significant role in disease development and progression. In this review, the authors summarize the current and emerging biomarkers that reveal the heterogeneity of airway inflammation subtypes, clinical outcomes, and therapeutic response in COPD. EXPERT OPINION Airway inflammation can be broadly categorized as eosinophilic (type 2 inflammation) and non-eosinophilic (non-type 2 inflammation) in COPD. Currently, blood eosinophil counts are incorporated in clinical practice guidelines to identify COPD patients who are at a higher risk of exacerbations and lung function decline, and who are likely to respond to inhaled corticosteroids. As new therapeutics are being developed for the chronic management of COPD, it is essential to identify biomarkers that will predict treatment response.
Collapse
Affiliation(s)
- Dina Yehia
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Clarus Leung
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Lechowicz U, Martinez-Delgado B, Liu B, Wrenger S, Rozy A, Zdral A, DeLuca DS, Welte T, Janciauskiene S, Chorostowska-Wynimko J. An association between plasma levels of α2-macroglobulin and α1-antitrypsin in PiMM and PiZZ individuals differing in COPD presentation. Clin Biochem 2024; 126:110736. [PMID: 38428450 DOI: 10.1016/j.clinbiochem.2024.110736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
INTRODUCTION Compared to normal PiMM, individuals with severe α1-antitrypsin (AAT) PiZZ (Glu342Lys) genotype deficiency are at higher risk of developing early-onset chronic obstructive pulmonary disease (COPD)/emphysema associated with Z-AAT polymers and neutrophilic inflammation. We aimed to investigate putative differences in plasma levels of acute phase proteins (APP) between PiMM and PiZZ subjects and to determine plasma Z-AAT polymer levels in PiZZ subjects. MATERIALS AND METHODS Nephelometric analysis of seven plasma APPs was performed in 67 PiMM and 44 PiZZ subjects, of whom 43 and 42, respectively, had stable COPD. Of the PiZZ-COPD patients, 21 received and 23 did not receive intravenous therapy with human AAT preparations (IV-AAT). Plasma levels of Z-AAT polymers were determined by Western blotting using specific mouse monoclonal antibodies (2C1 and LG96). RESULTS In addition to lower plasma AAT, PiZZ patients had higher α2-macroglobulin (A2MG) levels than PiMM patients. In contrast, PiZZ who received IV-AAT had higher AAT values but lower A2MG values than PiZZ without IV-AAT. Regardless of the AAT genotype, AAT levels were inversely correlated with A2MG, and the AAT/A2MG ratio was correlated with lung diffusion capacity (DCLO%). All PiZZ patients had circulating Z-AAT polymer levels that correlated directly with A2MG. In PiZZ without IV-AAT therapy polymer levels correlated inversely with the ratio of forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC). CONCLUSION Combined measurement of plasma AAT and A2MG levels may be of clinical value in assessing the progression of COPD and requires further attention.
Collapse
Affiliation(s)
- Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases Warsaw, Poland
| | - Beatriz Martinez-Delgado
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), CIBER of Rare Diseases, CIBERER, Madrid, Spain.
| | - Bin Liu
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, Member of the German Center for Lung Research DZL, Hannover, Germany.
| | - Sabine Wrenger
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, Member of the German Center for Lung Research DZL, Hannover, Germany.
| | - Adriana Rozy
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases Warsaw, Poland
| | - Aneta Zdral
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases Warsaw, Poland.
| | - David S DeLuca
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, Member of the German Center for Lung Research DZL, Hannover, Germany.
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, Member of the German Center for Lung Research DZL, Hannover, Germany.
| | - Sabina Janciauskiene
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases Warsaw, Poland; Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, Member of the German Center for Lung Research DZL, Hannover, Germany.
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases Warsaw, Poland
| |
Collapse
|
26
|
Hegde M, Raj S, Pattanshetti AS, Nyamagoud SB. Gaining insights into chronic obstructive pulmonary disease exacerbation through emerging biomarkers and the chronic obstructive pulmonary disease assessment test score. Monaldi Arch Chest Dis 2024. [PMID: 38497202 DOI: 10.4081/monaldi.2024.2955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a leading cause of mortality and morbidity, presents significant challenges, particularly with exacerbations, which drastically impact patients' health and healthcare costs. The Global Initiative for Chronic Obstructive Lung Disease guidelines recommend comprehensive assessments beyond spirometry, with the COPD assessment test (CAT) emerging as a pivotal tool. Despite its utility, the relationship between CAT scores and specific biomarkers during exacerbations remains unclear. Hence, this study aims to assess the correlation between the CAT score and specific circulating biomarkers. A cross-sectional study from August 2023 to January 2024 included 59 COPD patients with exacerbations who underwent pulmonary function tests and completed the CAT score assessment. The CAT score cut-off point was set at 20, where a CAT score <20 indicated a low impact on health status and a CAT score ≥20 indicated a high impact on health status. On the same day, measurements of neutrophils, leukocytes, eosinophils, C-reactive protein, and procalcitonin were conducted. Patients with CAT scores ≥20 had significantly higher levels of neutrophils (p=0.001), leukocytes (p=0.006), procalcitonin (p=0.010), and forced expiratory volume in the first second/forced vital capacity (p=0.002), but lower eosinophil levels (p=0.025). A positive correlation existed between total CAT score and neutrophils (p=0.001), leukocytes (p=0.000), and procalcitonin (p=0.010), while eosinophil levels showed a negative correlation (p=0.025). The spirometry parameters showed no correlation with the total CAT score. This study highlights the link between CAT and key inflammatory biomarkers, supporting the use of blood biomarkers to identify COPD patients at risk of exacerbations.
Collapse
Affiliation(s)
- Megha Hegde
- Department of Pharmacy Practice, KLE College of Pharmacy, Hubli, Karnataka.
| | - Saurav Raj
- Department of Pharmacy Practice, KLE College of Pharmacy, Hubli, Karnataka.
| | | | | |
Collapse
|
27
|
Tirelli C, Mira S, Belmonte LA, De Filippi F, De Grassi M, Italia M, Maggioni S, Guido G, Mondoni M, Canonica GW, Centanni S. Exploring the Potential Role of Metabolomics in COPD: A Concise Review. Cells 2024; 13:475. [PMID: 38534319 PMCID: PMC10969696 DOI: 10.3390/cells13060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a pathological condition of the respiratory system characterized by chronic airflow obstruction, associated with changes in the lung parenchyma (pulmonary emphysema), bronchi (chronic bronchitis) and bronchioles (small airways disease). In the last years, the importance of phenotyping and endotyping COPD patients has strongly emerged. Metabolomics refers to the study of metabolites (both intermediate or final products) and their biological processes in biomatrices. The application of metabolomics to respiratory diseases and, particularly, to COPD started more than one decade ago and since then the number of scientific publications on the topic has constantly grown. In respiratory diseases, metabolomic studies have focused on the detection of metabolites derived from biomatrices such as exhaled breath condensate, bronchoalveolar lavage, and also plasma, serum and urine. Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy are powerful tools in the precise identification of potentially prognostic and treatment response biomarkers. The aim of this article was to comprehensively review the relevant literature regarding the applications of metabolomics in COPD, clarifying the potential clinical utility of the metabolomic profile from several biologic matrices in detecting biomarkers of disease and prognosis for COPD. Meanwhile, a complete description of the technological instruments and techniques currently adopted in the metabolomics research will be described.
Collapse
Affiliation(s)
- Claudio Tirelli
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sabrina Mira
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Luca Alessandro Belmonte
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Federica De Filippi
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Mauro De Grassi
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Marta Italia
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sara Maggioni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Gabriele Guido
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Clinical and Research Center, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Stefano Centanni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
28
|
Ware SA, Kliment CR, Giordano L, Redding KM, Rumsey WL, Bates S, Zhang Y, Sciurba FC, Nouraie SM, Kaufman BA. Cell-free DNA levels associate with COPD exacerbations and mortality. Respir Res 2024; 25:42. [PMID: 38238743 PMCID: PMC10797855 DOI: 10.1186/s12931-023-02658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
THE QUESTION ADDRESSED BY THE STUDY Good biological indicators capable of predicting chronic obstructive pulmonary disease (COPD) phenotypes and clinical trajectories are lacking. Because nuclear and mitochondrial genomes are damaged and released by cigarette smoke exposure, plasma cell-free mitochondrial and nuclear DNA (cf-mtDNA and cf-nDNA) levels could potentially integrate disease physiology and clinical phenotypes in COPD. This study aimed to determine whether plasma cf-mtDNA and cf-nDNA levels are associated with COPD disease severity, exacerbations, and mortality risk. MATERIALS AND METHODS We quantified mtDNA and nDNA copy numbers in plasma from participants enrolled in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE, n = 2,702) study and determined associations with relevant clinical parameters. RESULTS Of the 2,128 participants with COPD, 65% were male and the median age was 64 (interquartile range, 59-69) years. During the baseline visit, cf-mtDNA levels positively correlated with future exacerbation rates in subjects with mild/moderate and severe disease (Global Initiative for Obstructive Lung Disease [GOLD] I/II and III, respectively) or with high eosinophil count (≥ 300). cf-nDNA positively associated with an increased mortality risk (hazard ratio, 1.33 [95% confidence interval, 1.01-1.74] per each natural log of cf-nDNA copy number). Additional analysis revealed that individuals with low cf-mtDNA and high cf-nDNA abundance further increased the mortality risk (hazard ratio, 1.62 [95% confidence interval, 1.16-2.25] per each natural log of cf-nDNA copy number). ANSWER TO THE QUESTION Plasma cf-mtDNA and cf-nDNA, when integrated into quantitative clinical measurements, may aid in improving COPD severity and progression assessment.
Collapse
Affiliation(s)
- Sarah A Ware
- Department of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street BST W1044, Pittsburgh, PA, 15261, USA
| | - Corrine R Kliment
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Luca Giordano
- Department of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street BST W1044, Pittsburgh, PA, 15261, USA
| | - Kevin M Redding
- Department of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street BST W1044, Pittsburgh, PA, 15261, USA
| | - William L Rumsey
- GlaxoSmithKline Respiratory Therapeutic Area Unit, Collegeville, PA, USA
| | - Stewart Bates
- GlaxoSmithKline Respiratory Therapeutic Area Unit, Stevenage, UK
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Frank C Sciurba
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Mehdi Nouraie
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- UPMC Montefiore Hospital, NW628 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.
| | - Brett A Kaufman
- Department of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street BST W1044, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
29
|
Beeh KM, Scheithe K, Schmutzler H, Krüger S. Real-World Effectiveness of Fluticasone Furoate/Umeclidinium/Vilanterol Once-Daily Single-Inhaler Triple Therapy for Symptomatic COPD: The ELLITHE Non-Interventional Trial. Int J Chron Obstruct Pulmon Dis 2024; 19:205-216. [PMID: 38249826 PMCID: PMC10800114 DOI: 10.2147/copd.s427770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose Real-life effectiveness data on once-daily single-inhaler triple therapy (odSITT) with the inhaled corticosteroid fluticasone furoate (FF), the long-acting muscarinic antagonist umeclidinium (UMEC), and the long-acting β2-agonist vilanterol (VI) in patients with chronic obstructive pulmonary disease (COPD) are important to complement evidence from well-controlled randomized clinical trials. Effectiveness of odSITT was quantified by assessing health status and symptoms in usual care. Patients and Methods ELLITHE was a single-country (Germany), multicenter, open-label, non-interventional effectiveness study between 2020 and 2022, evaluating the effect of treatment initiation with FF/UMEC/VI 100/62.5/25 µg once-daily via the ELLIPTA inhaler on improvements in clinical outcomes versus baseline in COPD patients. The primary endpoint was the change in the total COPD Assessment Test (CAT) score between baseline and month 12. Key secondary endpoints included change in CAT score over time, occurrence of exacerbations until month 12, changes in forced expiratory volume in one second (FEV1), inhaler adherence, and safety. Results Nine hundred and six patients were included (age 66.6 years, 55.6% male, mean FEV1 52.6% of predicted, mean CAT 21.5 units, 1.4 exacerbations/year pre-study). About 63.9% of patients were escalated from dual therapies, and 18% were switched from multiple-inhaler triple therapies. Reductions in CAT score at month 12 were statistically significant and above the threshold of clinical importance (-2.6 units; p < 0.0001). CAT score also improved at interim visits. CAT improvements were more pronounced in patients with high baseline scores and better inhaler adherence. Exacerbations during follow-up were rare (0.2 events/year) compared to pre-study (1.4 events/year). FEV1 was improved by 93 mL (p < 0.0001). No new safety effects were observed. Conclusion In usual care, treatment with odSITT resulted in significant and clinically relevant improvements of CAT score and FEV1 in COPD patients, regardless of the occurrence of exacerbations. These findings challenge the current guideline recommendations for SITT only in patients experiencing exacerbations.
Collapse
Affiliation(s)
| | - Karl Scheithe
- Department of Biostatistics, GKM Gesellschaft Für Therapieforschung mbH, Munich, Germany
| | | | - Saskia Krüger
- Medical Department, BERLIN-CHEMIE AG, Berlin, Germany
| |
Collapse
|
30
|
Zhang M, Wang S, Guan Q, Wang J, Yan B, Zhang L, Li D. A bidirectional Mendelian randomization study investigating the relationship between genetically predicted systemic inflammatory regulators and chronic obstructive pulmonary disease. Heliyon 2024; 10:e24109. [PMID: 38268600 PMCID: PMC10806290 DOI: 10.1016/j.heliyon.2024.e24109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Research has shown a connection between inflammation and chronic obstructive pulmonary disease (COPD), however the relationship between inflammation mediators and COPD causation remains unknown. To investigate the causal relationship of mediators of inflammation and COPD, we conducted a two-sample Mendelian randomization (MR) study. In our study, we incorporated 41 regulators of inflammation from 8293 Finnish individuals from genome-wide association studies (GWASs) of COPD corresponding to GWAS summary data for 2115 cases and 454,233 healthy individuals in Europe. Our research validated that higher levels of interleukin 8 (IL-8) are related with a decrease occurrence of COPD (OR = 0.795, 95 % CI = 0.642-0.984, p = 0.035) but that elevated levels of interleukin 18(IL-18) and interleukin 2 (IL-2) may be connected to an amplified risk of COPD (OR = 1.247, 95 % CI = 1.011-1.538; p = 0.039; OR = 1.257, 95 % CI = 1.037-1.523, p = 0.020, respectively). According to our research, cytokines play a crucial role in the development of COPD, and further investigation is necessary to explore the potential of utilizing these cytokines as targets for treatment and prevention of COPD.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shengnan Wang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qingtian Guan
- First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Jianglong Wang
- First Operating Room, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bailing Yan
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Dan Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
31
|
Shakeel I, Ashraf A, Afzal M, Sohal SS, Islam A, Kazim SN, Hassan MI. The Molecular Blueprint for Chronic Obstructive Pulmonary Disease (COPD): A New Paradigm for Diagnosis and Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2297559. [PMID: 38155869 PMCID: PMC10754640 DOI: 10.1155/2023/2297559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
The global prevalence of chronic obstructive pulmonary disease (COPD) has increased over the last decade and has emerged as the third leading cause of death worldwide. It is characterized by emphysema with prolonged airflow limitation. COPD patients are more susceptible to COVID-19 and increase the disease severity about four times. The most used drugs to treat it show numerous side effects, including immune suppression and infection. This review discusses a narrative opinion and critical review of COPD. We present different aspects of the disease, from cellular and inflammatory responses to cigarette smoking in COPD and signaling pathways. In addition, we highlighted various risk factors for developing COPD apart from smoking, like occupational exposure, pollutants, genetic factors, gender, etc. After the recent elucidation of the underlying inflammatory signaling pathways in COPD, new molecular targeted drug candidates for COPD are signal-transmitting substances. We further summarize recent developments in biomarker discovery for COPD and its implications for disease diagnosis. In addition, we discuss novel drug targets for COPD that could be explored for drug development and subsequent clinical management of cardiovascular disease and COVID-19, commonly associated with COPD. Our extensive analysis of COPD cause, etiology, diagnosis, and therapeutic will provide a better understanding of the disease and the development of effective therapeutic options. In-depth knowledge of the underlying mechanism will offer deeper insights into identifying novel molecular targets for developing potent therapeutics and biomarkers of disease diagnosis.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
32
|
Qian Y, Cai C, Sun M, Lv D, Zhao Y. Analyses of Factors Associated with Acute Exacerbations of Chronic Obstructive Pulmonary Disease: A Review. Int J Chron Obstruct Pulmon Dis 2023; 18:2707-2723. [PMID: 38034468 PMCID: PMC10683659 DOI: 10.2147/copd.s433183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) is the exacerbation of a range of respiratory symptoms during the stable phase of chronic obstructive pulmonary disease (COPD). AECOPD is thus a dangerous stage and key event in the course of COPD, as its deterioration and frequency seriously affects the quality of life of patients and shortens their survival. Acute exacerbations occur and develop due to many factors such as infection, tobacco smoke inhalation, air pollution, comorbidities, airflow limitation, various biomarkers, history of previous deterioration, natural killer cell abnormalities, immunoglobulin G deficiency, genetics, abnormal muscle and nutritional status, negative psychology, and seasonal temperature changes. There is relatively limited research on the impact of the role of standardized management on the alleviation of AECOPD. However, with the establishment of relevant prevention and management systems and the promotion of artificial intelligence technology and Internet medical approaches, long-term effective and standardized management of COPD patients may help to achieve the quality of life and disease prognosis in COPD patients and reduce the risk of AE.
Collapse
Affiliation(s)
- Yang Qian
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Chenting Cai
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Mengqing Sun
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Dan Lv
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Yun Zhao
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
33
|
Gea J, Enríquez-Rodríguez CJ, Agranovich B, Pascual-Guardia S. Update on metabolomic findings in COPD patients. ERJ Open Res 2023; 9:00180-2023. [PMID: 37908399 PMCID: PMC10613990 DOI: 10.1183/23120541.00180-2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/15/2023] [Indexed: 11/02/2023] Open
Abstract
COPD is a heterogeneous disorder that shows diverse clinical presentations (phenotypes and "treatable traits") and biological mechanisms (endotypes). This heterogeneity implies that to carry out a more personalised clinical management, it is necessary to classify each patient accurately. With this objective, and in addition to clinical features, it would be very useful to have well-defined biological markers. The search for these markers may either be done through more conventional laboratory and hypothesis-driven techniques or relatively blind high-throughput methods, with the omics approaches being suitable for the latter. Metabolomics is the science that studies biological processes through their metabolites, using various techniques such as gas and liquid chromatography, mass spectrometry and nuclear magnetic resonance. The most relevant metabolomics studies carried out in COPD highlight the importance of metabolites involved in pathways directly related to proteins (peptides and amino acids), nucleic acids (nitrogenous bases and nucleosides), and lipids and their derivatives (especially fatty acids, phospholipids, ceramides and eicosanoids). These findings indicate the relevance of inflammatory-immune processes, oxidative stress, increased catabolism and alterations in the energy production. However, some specific findings have also been reported for different COPD phenotypes, demographic characteristics of the patients, disease progression profiles, exacerbations, systemic manifestations and even diverse treatments. Unfortunately, the studies carried out to date have some limitations and shortcomings and there is still a need to define clear metabolomic profiles with clinical utility for the management of COPD and its implicit heterogeneity.
Collapse
Affiliation(s)
- Joaquim Gea
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
- CIBERES, ISCIII, Barcelona, Spain
| | - César J. Enríquez-Rodríguez
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Bella Agranovich
- Rappaport Institute for Research in the Medical Sciences, Technion University, Haifa, Israel
| | - Sergi Pascual-Guardia
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
- CIBERES, ISCIII, Barcelona, Spain
| |
Collapse
|
34
|
Meurer F, Häberlein H, Franken S. Ivy Leaf Dry Extract EA 575 ® Has an Inhibitory Effect on the Signalling Cascade of Adenosine Receptor A 2B. Int J Mol Sci 2023; 24:12373. [PMID: 37569749 PMCID: PMC10418604 DOI: 10.3390/ijms241512373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Ivy leaf dry extract EA 575® is used to improve complaints of chronic inflammatory bronchial diseases and acute inflammation of the respiratory tract accompanied by coughing. Its mechanism of action has so far been explained by influencing β2-adrenergic signal transduction. In the present study, we investigated a possible influence on adenosine receptor A2B (A2BAR) signalling, as it has been described to play a significant and detrimental role in chronic inflammatory airway diseases. The influence of EA 575® on A2BAR signalling was assessed with measurements of dynamic mass redistribution. Subsequently, the effects on A2BAR-mediated second messenger cAMP levels, β-arrestin 2 recruitment, and cAMP response element (CRE) activation were examined using luciferase-based HEK293 reporter cell lines. Lastly, the impact on A2BAR-mediated IL-6 release in Calu-3 epithelial lung cells was investigated via the Lumit™ Immunoassay. Additionally, the adenosine receptor subtype mediating these effects was specified, and A2BAR was found to be responsible. The present study demonstrates an inhibitory influence of EA 575® on A2BAR-mediated general cellular response, cAMP levels, β-arrestin 2 recruitment, CRE activation, and IL-6 release. Since these EA 575®-mediated effects occur within a time frame of several hours of incubation, its mode of action can be described as indirect. The present data are the first to describe an inhibitory effect of EA 575® on A2BAR signalling. This may offer an explanation for the beneficial clinical effects of the extract in adjuvant asthma therapy.
Collapse
Affiliation(s)
| | | | - Sebastian Franken
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany; (F.M.); (H.H.)
| |
Collapse
|
35
|
Sanchez-Azofra A, Gu W, Masso-Silva JA, Sanz-Rubio D, Marin-Oto M, Cubero P, Gil AV, Moya EA, Barnes LA, Mesarwi OA, Marin T, Simonson TS, Crotty Alexander LE, Marin JM, Malhotra A. Inflammation biomarkers in OSA, chronic obstructive pulmonary disease, and chronic obstructive pulmonary disease/OSA overlap syndrome. J Clin Sleep Med 2023; 19:1447-1456. [PMID: 37082823 PMCID: PMC10394367 DOI: 10.5664/jcsm.10600] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
STUDY OBJECTIVES The coexistence of obstructive sleep apnea (OSA) and chronic obstructive pulmonary disease (COPD) in a single individual, also known as overlap syndrome (OVS), is associated with higher cardiovascular risk and mortality than either OSA or COPD alone. However, the underlying mechanisms remain unclear. We hypothesized that patients with OVS have elevated systemic inflammatory biomarkers relative to patients with either disease alone, which could explain greater cardiovascular risk observed in OVS. METHODS We included 255 participants in the study, 55 with COPD alone, 100 with OSA alone, 50 with OVS, and 50 healthy controls. All participants underwent a home sleep study, spirometry, and a blood draw for high-sensitivity C-reactive protein and total blood count analysis. In a randomly selected subset of 186 participants, inflammatory protein profiling was performed using Bio-Rad Bio-Plex Pro Human Cytokine 27-Plex Assays. Biomarker level differences across groups were identified using a mixed linear model. RESULTS Levels of interleukin 6 (IL-6), high-sensitivity C-reactive protein (hs-CRP), and granulocyte colony stimulating factor (G-CSF) were higher in participants with OVS and COPD compared with healthy controls and participants with OSA. Furthermore, participants with OVS had higher circulating levels of leukocytes and neutrophils than those with COPD, OSA, and controls. CONCLUSIONS COPD and OVS are associated with higher systemic inflammation relative to OSA and healthy controls. This work proposes the potential utilization of interleukin 6, granulocyte colony stimulating factor, and high-sensitivity C-reactive protein as screening biomarkers for COPD in patients with OSA. Inflammatory pathways may not fully explain the higher cardiovascular risk observed in OVS, indicating the need for further investigation. CITATION Sanchez-Azofra A, Gu W, Masso-Silva JA, et al. Inflammation biomarkers in OSA, chronic obstructive pulmonary disease, and chronic obstructive pulmonary disease/OSA overlap syndrome. J Clin Sleep Med. 2023;19(8):1447-1456.
Collapse
Affiliation(s)
- Ana Sanchez-Azofra
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, La Jolla, California
- Division of Pulmonary and Sleep Medicine. Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, España
| | - Wanjun Gu
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, La Jolla, California
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, California
| | - Jorge A. Masso-Silva
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, La Jolla, California
- Section of Pulmonary and Critical Care, VA San Diego, La Jolla, California
| | - David Sanz-Rubio
- Translational Research Unit, IIS Aragón, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Marta Marin-Oto
- Translational Research Unit, IIS Aragón, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Pablo Cubero
- Translational Research Unit, IIS Aragón, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Ana V. Gil
- Translational Research Unit, IIS Aragón, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, La Jolla, California
| | - Laura A. Barnes
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, La Jolla, California
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, La Jolla, California
| | - Traci Marin
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, La Jolla, California
- Health Sciences, Department of Respiratory Therapy, Victor Valley College, Victorville, California
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, La Jolla, California
- Center for Physiological Genomics of Low Oxygen, University of California, La Jolla, California
| | - Laura E. Crotty Alexander
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, La Jolla, California
- Section of Pulmonary and Critical Care, VA San Diego, La Jolla, California
| | - Jose M. Marin
- Translational Research Unit, IIS Aragón, Hospital Universitario Miguel Servet, Zaragoza, Spain
- CIBERES Instituto Salud Carlos III, and Department of Medicine, University of Zaragoza School of Medicine, Zaragoza, Spain
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, La Jolla, California
- Center for Physiological Genomics of Low Oxygen, University of California, La Jolla, California
| |
Collapse
|
36
|
Ayilya BL, Balde A, Ramya M, Benjakul S, Kim SK, Nazeer RA. Insights on the mechanism of bleomycin to induce lung injury and associated in vivo models: A review. Int Immunopharmacol 2023; 121:110493. [PMID: 37331299 DOI: 10.1016/j.intimp.2023.110493] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Acute lung injury leads to the development of chronic conditions such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma as well as alveolar sarcoma. Various investigations are being performed worldwide to understand the pathophysiology of these diseases, develop novel bioactive compounds and inhibitors to target the ailment. Generally, in vivo models are used to understand the disease outcome and therapeutic suppressing effects for which the animals are chemically or physically induced to mimic the onset of definite disease conditions. Amongst the chemical inducing agents, Bleomycin (BLM) is the most successful inducer. It is reported to target various receptors and activate inflammatory pathways, cellular apoptosis, epithelial mesenchymal transition leading to the release of inflammatory cytokines, and proteases. Mice is one of the most widely used animal model for BLM induced pulmonary associated studies apart from rat, rabbit, sheep, pig, and monkey. Although, there is considerable variation amongst in vivo studies for BLM induction which suggests a detailed study on the same to understand the mechanism of action of BLM at molecular level. Hence, herein we have reviewed various chemical inducers, mechanism of action of BLM in inducing lung injury in vivo, its advantages and disadvantages. Further, we have also discussed the rationale behind various in vivo models and recent development in BLM induction for various animals.
Collapse
Affiliation(s)
- Bakthavatchalam Loganathan Ayilya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Murugadoss Ramya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, 90112 Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
37
|
Baranasic J, Niazi Y, Chattopadhyay S, Rumora L, Ćorak L, Dugac AV, Jakopović M, Samaržija M, Försti A, Knežević J. Germline variants of the genes involved in NF-kB activation are associated with the risk of COPD and lung cancer development. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:243-256. [PMID: 37307368 DOI: 10.2478/acph-2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 06/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer (LC) are closely related diseases associated with smoking history and dysregulated immune response. However, not all smokers develop the disease, indicating that genetic susceptibility could be important. Therefore, the aim of this study was to search for the potential overlapping genetic biomarkers, with a focus on single nucleotide polymorphisms (SNPs) located in the regulatory regions of immune-related genes. Additionally, the aim was to see if an identified SNP has potentially an effect on proinflamma-tory cytokine concentration in the serum of COPD patients. We extracted summary data of variants in 1511 immune-related genes from COPD and LC genome-wide association studies (GWAS) from the UK Biobank. The LC data had 203 cases, patients diagnosed with LC, and 360 938 controls, while COPD data had 1 897 cases and 359 297 controls. Assuming 1 association/gene, SNPs with a p-value < 3.3 × 10-5 were considered statistically significantly associated with the disease. We identified seven SNPs located in different genes (BAG6, BTNL2, TNF, HCP5, MICB, NCR3, ABCF1, TCF7L1) to be associated with the COPD risk and two with the LC risk (HLA-C, HLA-B), with statistical significance. We also identified two SNPs located in the IL2RA gene associated with LC (rs2386841; p = 1.86 × 10-4) and COPD (rs11256442; p = 9.79 × 10-3) but with lower significance. Functional studies conducted on COPD patients showed that RNA expression of IL2RA, IFNγ and related proinflammatory cytokines in blood serum did not correlate with a specific genotype. Although results presented in this study do not fully support our hypothesis, it is worth to mention that the identified genes/SNPs that were associated with either COPD or LC risk, all were involved in the activation of the NF-κB transcription factor which is closely related to the regulation of the inflammatory response, a condition associated with both pathologies.
Collapse
Affiliation(s)
- Jurica Baranasic
- 1Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Yasmeen Niazi
- 2Hopp Children's Cancer Center (KiTZ) Heidelberg, Germany
- 3Division of Pediatric Neurooncology German Cancer Research Center (DKFZ) German Cancer Consortium (DKTK) Heidelberg, Germany
| | - Subhayan Chattopadhyay
- 3Division of Pediatric Neurooncology German Cancer Research Center (DKFZ) German Cancer Consortium (DKTK) Heidelberg, Germany
- 4Departments of Clinical Genetics, Lund University, Lund, Sweden
| | - Lada Rumora
- 5Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb Zagreb, Croatia
| | - Lorna Ćorak
- 6Clinical Department for Respiratory Diseases Jordanovac, University Hospital Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Andrea Vukić Dugac
- 6Clinical Department for Respiratory Diseases Jordanovac, University Hospital Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Marko Jakopović
- 6Clinical Department for Respiratory Diseases Jordanovac, University Hospital Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Miroslav Samaržija
- 6Clinical Department for Respiratory Diseases Jordanovac, University Hospital Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Asta Försti
- 2Hopp Children's Cancer Center (KiTZ) Heidelberg, Germany
- 3Division of Pediatric Neurooncology German Cancer Research Center (DKFZ) German Cancer Consortium (DKTK) Heidelberg, Germany
| | - Jelena Knežević
- 1Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
- 7Faculty of Dental Medicine and Health University of Osijek, Osijek, Croatia
| |
Collapse
|
38
|
Kaur D, Mehta RL, Jarrett H, Jowett S, Gale NK, Turner AM, Spiteri M, Patel N. Phase III, two arm, multi-centre, open label, parallel-group randomised designed clinical investigation of the use of a personalised early warning decision support system to predict and prevent acute exacerbations of chronic obstructive pulmonary disease: 'Predict & Prevent AECOPD' - study protocol. BMJ Open 2023; 13:e061050. [PMID: 36914185 PMCID: PMC10016266 DOI: 10.1136/bmjopen-2022-061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
INTRODUCTION With 65 million cases globally, chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death and imposes a heavy burden on patients' lives and healthcare resources worldwide. Around half of all patients with COPD have frequent (≥2 per year) acute exacerbations of COPD (AECOPD). Rapid readmissions are also common. Exacerbations impact significantly on COPD outcomes, causing significant lung function decline. Prompt exacerbation management optimises recovery and delays the time to the next acute episode. METHODS/ANALYSIS The Predict & Prevent AECOPD trial is a phase III, two arm, multi-centre, open label, parallel-group individually randomised clinical trial investigating the use of a personalised early warning decision support system (COPDPredict) to predict and prevent AECOPD. We aim to recruit 384 participants and randomise each individual in a 1:1 ratio to either standard self-management plans with rescue medication (RM) (control arm) or COPDPredict with RM (intervention arm).The trial will inform the future standard of care regarding management of exacerbations in COPD patients. The main outcome measure is to provide further validation, as compared with usual care, for the clinical effectiveness of COPDPredict to help guide and support COPD patients and their respective clinical teams in identifying exacerbations early, with an aim to reduce the total number of AECOPD-induced hospital admissions in the 12 months following each patient's randomisation. ETHICS AND DISSEMINATION This study protocol is reported in accordance with the guidance set out in the Standard Protocol Items: Recommendations for Interventional Trials statement. Predict & Prevent AECOPD has obtained ethical approval in England (19/LO/1939). On completion of the trial and publication of results a lay findings summary will be disseminated to trial participants. TRIAL REGISTRATION NUMBER NCT04136418.
Collapse
Affiliation(s)
- Dalbir Kaur
- Warwick Clinical Trials Unit (BWCTU), Warwick Medical School University of Warwick Coventry, Coventry, UK
| | - Rajnikant L Mehta
- Birmingham Clinical Trials Unit (BCTU), Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hugh Jarrett
- Birmingham Clinical Trials Unit (BCTU), Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sue Jowett
- Health Economics Unit, Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nicola K Gale
- Health Services Management Centre, School of Social Policy Director of Postgraduate Research, College of Social Sciences, University of Birmingham, Birmingham, UK
| | - Alice M Turner
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Respiratory Medicine, Institute for Applied Health Research, University of Birmingham, Birmingham, UK
| | - Monica Spiteri
- Respiratory Research, Academic Research Unit, Royal Stoke University Hospital, University Hospitals of North Midlands NHS Trust, Staffordshire, UK
| | | |
Collapse
|
39
|
Agusti A, Ambrosino N, Blackstock F, Bourbeau J, Casaburi R, Celli B, Crouch R, Negro RD, Dreher M, Garvey C, Gerardi D, Goldstein R, Hanania N, Holland AE, Kaur A, Lareau S, Lindenauer PK, Mannino D, Make B, Maltais F, Marciniuk JD, Meek P, Morgan M, Pepin JL, Reardon JZ, Rochester C, Singh S, Spruit MA, Steiner MC, Troosters T, Vitacca M, Clini E, Jardim J, Nici L, Raskin J, ZuWallack R. COPD: Providing the right treatment for the right patient at the right time. Respir Med 2023; 207:107041. [PMID: 36610384 DOI: 10.1016/j.rmed.2022.107041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a common disease associated with significant morbidity and mortality that is both preventable and treatable. However, a major challenge in recognizing, preventing, and treating COPD is understanding its complexity. While COPD has historically been characterized as a disease defined by airflow limitation, we now understand it as a multi-component disease with many clinical phenotypes, systemic manifestations, and associated co-morbidities. Evidence is rapidly emerging in our understanding of the many factors that contribute to the pathogenesis of COPD and the identification of "early" or "pre-COPD" which should provide exciting opportunities for early treatment and disease modification. In addition to breakthroughs in our understanding of the origins of COPD, we are optimizing treatment strategies and delivery of care that are showing impressive benefits in patient-centered outcomes and healthcare utilization. This special issue of Respiratory Medicine, "COPD: Providing the Right Treatment for the Right Patient at the Right Time" is a summary of the proceedings of a conference held in Stresa, Italy in April 2022 that brought together international experts to discuss emerging evidence in COPD and Pulmonary Rehabilitation in honor of a distinguished friend and colleague, Claudio Ferdinando Donor (1948-2021). Claudio was a true pioneer in the field of pulmonary rehabilitation and the comprehensive care of individuals with COPD. He held numerous leadership roles in in the field, provide editorial stewardship of several respiratory journals, authored numerous papers, statement and guidelines in COPD and Pulmonary Rehabilitation, and provided mentorship to many in our field. Claudio's most impressive talent was his ability to organize spectacular conferences and symposia that highlighted cutting edge science and clinical medicine. It is in this spirit that this conference was conceived and planned. These proceedings are divided into 4 sections which highlight crucial areas in the field of COPD: (1) New concepts in COPD pathogenesis; (2) Enhancing outcomes in COPD; (3) Non-pharmacologic management of COPD; and (4) Optimizing delivery of care for COPD. These presentations summarize the newest evidence in the field and capture lively discussion on the exciting future of treating this prevalent and impactful disease. We thank each of the authors for their participation and applaud their efforts toward pushing the envelope in our understanding of COPD and optimizing care for these patients. We believe that this edition is a most fitting tribute to a dear colleague and friend and will prove useful to students, clinicians, and researchers as they continually strive to provide the right treatment for the right patient at the right time. It has been our pleasure and a distinct honor to serve as editors and oversee such wonderful scholarly work.
Collapse
Affiliation(s)
- Alvar Agusti
- Clinic Barcelona Hospital University, Barcelona, Spain.
| | | | | | - Jean Bourbeau
- Department of Medicine, Division of Experimental Medicine, McGill University Health Centre, Montreal, QC, CA, USA.
| | | | | | | | - Roberto Dal Negro
- National Centre for Pharmacoeconomics and Pharmacoepidemiology (CESFAR), Verona, Italy.
| | - Michael Dreher
- Clinic of Cardiology, Angiology, Pneumology and Intensive Medicine, University Hospital Aachen, Aachen, 52074, DE, USA.
| | | | | | - Roger Goldstein
- Respiratory Rehabilitation Service, West Park Health Care Centre, Toronto, Ontario, CA, USA.
| | | | - Anne E Holland
- Departments of Physiotherapy and Respiratory Medicine, Alfred Health, Melbourne, Australia; Central Clinical School, Monash University, Melbourne, Australia; Institute for Breathing and Sleep, Melbourne, Australia.
| | - Antarpreet Kaur
- Section of Pulmonary, Critical Care, and Sleep Medicine, Trinity Health of New England, Hartford, CT, USA; University of Colorado School of Nursing, Aurora, CO, USA.
| | - Suzanne Lareau
- University of Colorado School of Nursing, Aurora, CO, USA.
| | - Peter K Lindenauer
- Department of Healthcare Delivery and Population Sciences, University of Massachusetts Chan Medical School - Baystate, Springfield, MA, USA.
| | | | - Barry Make
- National Jewish Health, Denver, CO, USA.
| | - François Maltais
- Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec, CA, USA.
| | - Jeffrey D Marciniuk
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, CA, USA.
| | - Paula Meek
- University of Utah College of Nursing, Salt Lake City, UT, USA.
| | - Mike Morgan
- Dept of Respiratory Medicine, University Hospitals of Leicester, UK.
| | - Jean-Louis Pepin
- CHU de Grenoble - Clin Univ. de physiologie, sommeil et exercice, Grenoble, France.
| | - Jane Z Reardon
- Section of Pulmonary, Critical Care, and Sleep Medicine, Trinity Health of New England, Hartford, CT, USA.
| | | | - Sally Singh
- Department of Respiratory Diseases, University of Leicester, UK.
| | | | - Michael C Steiner
- Department of Respiratory Sciences, Leicester NIHR Biomedical Research Centre, Professor, University of Leicester, UK.
| | - Thierry Troosters
- Laboratory of Respiratory Diseases and Thoracic Surgery, KU Leuven: Leuven, Vlaanderen, Belgium.
| | - Michele Vitacca
- Department of Respiratory Rehabilitation, ICS S. Maugeri Care and Research Institutes, IRCCS Pavia, Italy.
| | - Enico Clini
- University of Modena and Reggio Emilia, Italy.
| | - Jose Jardim
- Federal University of Sao Paulo Paulista, Brazil.
| | - Linda Nici
- nBrown University School of Medicine, USA.
| | | | - Richard ZuWallack
- Section of Pulmonary, Critical Care, and Sleep Medicine, Saint Francis Hospital and Medical Center, 114 Woodland Street, Hartford, CT, 06105, USA.
| |
Collapse
|
40
|
Gea J, Enríquez-Rodríguez CJ, Pascual-Guardia S. Metabolomics in COPD. Arch Bronconeumol 2023; 59:311-321. [PMID: 36717301 DOI: 10.1016/j.arbres.2022.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 01/20/2023]
Abstract
The clinical presentation of chronic obstructive pulmonary disease (COPD) is highly heterogeneous. Attempts have been made to define subpopulations of patients who share clinical characteristics (phenotypes and treatable traits) and/or biological characteristics (endotypes), in order to offer more personalized care. Assigning a patient to any of these groups requires the identification of both clinical and biological markers. Ideally, biological markers should be easily obtained from blood or urine, but these may lack specificity. Biomarkers can be identified initially using conventional or more sophisticated techniques. However, the more sophisticated techniques should be simplified in the future if they are to have clinical utility. The -omics approach offers a methodology that can assist in the investigation and identification of useful markers in both targeted and blind searches. Specifically, metabolomics is the science that studies biological processes involving metabolites, which can be intermediate or final products. The metabolites associated with COPD and their specific phenotypic and endotypic features have been studied using various techniques. Several compounds of particular interest have emerged, namely, several types of lipids and derivatives (mainly phospholipids, but also ceramides, fatty acids and eicosanoids), amino acids, coagulation factors, and nucleic acid components, likely to be involved in their function, protein catabolism, energy production, oxidative stress, immune-inflammatory response and coagulation disorders. However, clear metabolomic profiles of the disease and its various manifestations that may already be applicable in clinical practice still need to be defined.
Collapse
Affiliation(s)
- Joaquim Gea
- Servicio de Neumología, Hospital del Mar - IMIM, Barcelona, Spain; Dpt. MELIS, Universitat Pompeu Fabra, Barcelona, Spain; CIBERES, ISCIII, Barcelona, Spain.
| | - César J Enríquez-Rodríguez
- Servicio de Neumología, Hospital del Mar - IMIM, Barcelona, Spain; Dpt. MELIS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sergi Pascual-Guardia
- Servicio de Neumología, Hospital del Mar - IMIM, Barcelona, Spain; Dpt. MELIS, Universitat Pompeu Fabra, Barcelona, Spain; CIBERES, ISCIII, Barcelona, Spain
| |
Collapse
|
41
|
Ding Y, Tang S, Zhou Z, Wei H, Yang W. Plasma miR-150-5p as a Biomarker for Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:399-406. [PMID: 36993790 PMCID: PMC10041995 DOI: 10.2147/copd.s400985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose To investigate the potential of plasma microRNA-150-5p (miR-150-5p) as a biomarker for chronic obstructive pulmonary disease (COPD) and its relationship with clinical indicators such as pulmonary function. Patients and Methods Fifty-nine patients with COPD and twenty-six healthy control individuals were recruited in the Second People's Hospital of Hefei from September 2021 to September 2022. The plasma expression level of miR-150-5p was measured by quantitative real-time polymerase chain reaction. Results The miR-150-5p level in the COPD group was significantly lower than that in the control group, and the relative expression was lower in patients with severe airflow limitation than those with mild limitation. Plasma miR-150-5p levels were positively correlated with pulmonary function indicators and negatively correlated with the white blood cell count and C-reactive protein level. The receiver operating characteristic curve suggested that plasma miR-150-5p had predictive value for COPD (area under curve = 0.819, sensitivity 64.4%, specificity 92.3%). Conclusion MiR-150-5p can be useful for the diagnosis and disease assessment of COPD, and has value as a biomarker for COPD.
Collapse
Affiliation(s)
- Yichuan Ding
- Department of Respiratory and Critical Care Medicine, the Second People’s Hospital of Hefei, Hefei, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Hefei Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
- The Fifth Clinical College of Anhui Medical University, Hefei, People’s Republic of China
| | - Sihui Tang
- Department of Respiratory and Critical Care Medicine, the Second People’s Hospital of Hefei, Hefei, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Hefei Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, the Second People’s Hospital of Hefei Affiliated to Bengbu Medical University, Bengbu, People’s Republic of China
| | - Zihan Zhou
- Department of Respiratory and Critical Care Medicine, the Second People’s Hospital of Hefei, Hefei, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Hefei Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
- The Fifth Clinical College of Anhui Medical University, Hefei, People’s Republic of China
| | - Hui Wei
- Department of Respiratory and Critical Care Medicine, the Second People’s Hospital of Hefei, Hefei, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Hefei Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
- The Fifth Clinical College of Anhui Medical University, Hefei, People’s Republic of China
| | - Wanchun Yang
- Department of Respiratory and Critical Care Medicine, the Second People’s Hospital of Hefei, Hefei, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Hefei Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
- The Fifth Clinical College of Anhui Medical University, Hefei, People’s Republic of China
- Correspondence: Wanchun Yang, Department of Respiratory and Critical Care Medicine, the Second People’s Hospital of Hefei, Hefei, Anhui, 230011, People’s Republic of China, Tel +8662965684, Fax +8662965684, Email
| |
Collapse
|
42
|
Groenewegen A, Zwartkruis VW, Smit LJ, de Boer RA, Rienstra M, Hoes AW, Hollander M, Rutten FH. Sex-specific and age-specific incidence of ischaemic heart disease, atrial fibrillation and heart failure in community patients with chronic obstructive pulmonary disease. BMJ Open Respir Res 2022; 9:9/1/e001307. [PMID: 36585036 PMCID: PMC9809303 DOI: 10.1136/bmjresp-2022-001307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To estimate the incidence of ischaemic heart disease, atrial fibrillation and heart failure in community patients with or without chronic obstructive pulmonary disease (COPD). METHODS For this population-based study, we used primary care data of the Julius General Practitioners' Network. Eligible participants were aged 40-80 years old and contributed data between January 2014 and February 2019. Participants were divided into groups according to COPD status and were followed up for new ischaemic heart disease, atrial fibrillation and/or heart failure. Age-specific and sex-specific incidence and incidence rate ratios were calculated for patients with and without COPD. RESULTS Mean follow-up was 3.9 years, 6223 patients were included in the COPD group, and 137 028 individuals in the background group without COPD. Incidence rates of all three heart diseases increased with age and were higher in males, independent of presence of COPD. Incidence rate ratios for patients with COPD, adjusted for age and sex, were 1.69 (95% CI 1.49 to 1.92) for ischaemic heart disease, 1.56 (95% CI 1.38 to 1.77) for atrial fibrillation and 2.96 (95% CI 2.58 to 3.40) for heart failure. CONCLUSION The incidence of all major cardiovascular diseases is higher in patients with COPD, with the highest incidence rate ratio observed for heart failure.
Collapse
Affiliation(s)
- Amy Groenewegen
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Victor W Zwartkruis
- Department of Cardiology, University Medical Centre Groningen, Groningen, Netherlands
| | - Lennart J Smit
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, Groningen, Netherlands
| | - Michiel Rienstra
- Department of Cardiology, University Medical Centre Groningen, Groningen, Netherlands
| | - Arno W Hoes
- University Medical Centre, Utrecht, Netherlands
| | - Monika Hollander
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Frans H Rutten
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands
| |
Collapse
|
43
|
Malik K, Diaz-Coto S, de la Asunción Villaverde M, Martinez-Camblor P, Navarro-Rolon A, Pujalte F, De la Sierra A, Almagro P. Impact of Spirometrically Confirmed Chronic Obstructive Pulmonary Disease on Arterial Stiffness and Surfactant Protein D After Percutaneous Coronary Intervention. The CATEPOC Study. Int J Chron Obstruct Pulmon Dis 2022; 17:2577-2587. [PMID: 36267326 PMCID: PMC9578359 DOI: 10.2147/copd.s373853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background Several mechanisms have been proposed to explain why chronic obstructive pulmonary disease (COPD) impairs the prognosis of coronary events. We aimed to explore COPD variables related to a worse prognosis in patients undergoing percutaneous coronary intervention (PCI). Methods Patients with an acute coronary event treated by PCI were prospectively included. One month after discharge, clinical characteristics, comorbidities measured with the Charlson index, and prognostic coronary scales (logistic EuroSCORE; GRACE 2.0) were collected. Post-bronchodilator spirometry, arterial stiffness, and serum inflammatory and myocardial biomarkers were measured. Lung plasmatic biomarkers (Surfactant protein D, desmosine, and Clara cell secretory protein-16) were determined with ELISA. COPD was defined by the fixed ratio (FEV1/FVC <70%). Spirometric values were also analyzed as continuous variables using adjusted and non-adjusted ANCOVA analysis. Finally, we evaluated the presence of a respiratory pattern defined by non-stratified spirometric values and pulmonary biomarkers. Results A total of 164 patients with a mean age of 65 (±10) years (79% males) were included. COPD was diagnosed in 56 (34%) patients (68% previously undiagnosed). COPD patients had a longer smoking history, higher scores on the EuroSCORE (p < 0.0001) and GRACE 2.0 (p < 0.001) scales, and more comorbidities (p = 0.006). Arterial stiffness determined by pulse wave velocity was increased in COPD patients (7.35 m/s vs 6.60 m/s; p = 0.006). Serum values of high sensitive T troponin (p = 0.007) and surfactant protein D (p = 0.003) were also higher in COPD patients. FEV1% remained significantly associated with arterial stiffness and surfactant protein D in the adjusted ANCOVA analysis. In the cluster exploration, 53% of the patients had a respiratory pattern. Conclusion COPD affects one-third of patients with an acute coronary event and frequently remains undiagnosed. Several mechanisms, including arterial stiffness and SPD, were increased in COPD patients. Their relationship with the prognosis should be confirmed with longitudinal follow-up of the cohort.
Collapse
Affiliation(s)
- Komal Malik
- Internal Medicine Service, University Hospital Mútua de Terrassa, University of Barcelona, Barcelona, Spain
| | - Susana Diaz-Coto
- Epidemiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Pablo Martinez-Camblor
- Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA,Faculty of Health Sciences, Universidad Autonoma de Chile, Providencia, 7500912, Chile
| | - Annie Navarro-Rolon
- Pneumology Service, University Hospital Mútua de Terrassa, University of Barcelona, Barcelona, Spain,Immunology Department, Catlab Laboratory, Barcelona, Spain
| | | | - Alejandro De la Sierra
- Internal Medicine Service, University Hospital Mútua de Terrassa, University of Barcelona, Barcelona, Spain
| | - Pere Almagro
- Internal Medicine Service, University Hospital Mútua de Terrassa, University of Barcelona, Barcelona, Spain,Correspondence: Pere Almagro, Email
| |
Collapse
|
44
|
Uysal P. Novel Applications of Biomarkers in Chronic Obstructive Pulmonary Disease. Biomark Med 2022. [DOI: 10.2174/9789815040463122010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an important health
problem and an increasing cause of morbidity and mortality worldwide. Currently,
COPD is considered a multisystem disease. Although it primarily affects the lungs,
structural and functional changes occur in other organs due to systemic inflammation.
It is stated that in patients with COPD, airway and systemic inflammatory markers are
increased and that these markers are high are associated with a faster decline in lung
functions. In recent years, numerous articles have been published on the discovery and
evaluation of biomarkers in COPD. Many markers have also been studied to accurately
assess COPD exacerbations and provide effective treatment. However, based on the
evidence from published studies, a single molecule has not been adequately validated
for broad clinical use.
Collapse
Affiliation(s)
- Pelin Uysal
- Department of Chest Diseases, Faculty of Medicine, Mehmet Ali Aydınlar University, Atakent
Hospital, Istanbul, Turkey
| |
Collapse
|
45
|
Tsutsumi T, Nakano D, Kawaguchi M, Hashida R, Yoshinaga S, Takahashi H, Anzai K, Kawaguchi T. MAFLD associated with COPD via systemic inflammation independent of aging and smoking in men. Diabetol Metab Syndr 2022; 14:115. [PMID: 35974418 PMCID: PMC9380323 DOI: 10.1186/s13098-022-00887-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND AIM Metabolic dysfunction and associated systemic inflammation are risk factors for chronic obstructive pulmonary disease (COPD) and COPD is highly prevalent in men. We investigated the impact of metabolic-associated fatty liver disease (MAFLD) and MAFLD-related systemic inflammation on COPD in men. METHODS We enrolled 2,041 men with fatty liver. Patients were classified into the COPD (n = 420/2041) and non-COPD (n = 1621/2041) groups. COPD and its high-risk group were diagnosed using the Japanese Respiratory Society Disease statement. Systemic inflammation was evaluated using the C-reactive protein (CRP)/albumin ratio. Independent factors for COPD were investigated by multivariate analysis and decision-tree analysis. RESULTS The prevalence of MAFLD was significantly higher in the COPD group than in the non-COPD group. In multivariable analysis, in addition to heavy smoking and aging, MAFLD was identified as an independent factor for COPD (OR 1.46, 95% CI 1.020-2.101, P = 0.0385). Decision-tree analysis showed that MAFLD, rather than heavy smoking, was the most influential classifier for COPD in non-elderly men (14% in MAFLD vs 6% in non-MAFLD groups). MAFLD was also the second most influential factor in elderly men who were not heavy smokers. In both groups, the CRP/albumin ratio was the first classifier for COPD (16% in the high CRP/albumin ratio group vs 3% in the low CRP/albumin ratio group of non-elderly men). CONCLUSIONS MAFLD is an independent predictor of COPD in men. MAFLD had a significant impact on COPD through systemic inflammation in men of all ages who were not heavy smokers. MAFLD may be useful to broadly identify COPD in men.
Collapse
Affiliation(s)
- Tsubasa Tsutsumi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.
| | - Dan Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Machiko Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ryuki Hashida
- Department of Orthopedics, Kurume University School of Medicine, Kurume, Japan
| | - Shinobu Yoshinaga
- Medical Examination Section, Medical Examination Part Facilities, Public Utility Foundation Saga Prefectural Health Promotion Foundation, Saga, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
46
|
Darras-Hostens M, Achour D, Muntaner M, Grare C, Zarcone G, Garçon G, Amouyel P, Zerimech F, Matran R, Guidice JML, Dauchet L. Short-term and residential exposure to air pollution: Associations with inflammatory biomarker levels in adults living in northern France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:154985. [PMID: 35398417 DOI: 10.1016/j.scitotenv.2022.154985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Air pollution has an impact on health, and low-grade inflammation might be one of the underlying mechanisms. The objective of the present study of adults from northern France was to assess the associations between short-term and residential exposure to air pollution and levels of various inflammatory biomarkers. METHODS The cross-sectional Enquête Littoral Souffle Air Biologie Environnement (ELISABET) study was conducted from 2011 to 2013 in the Lille and Dunkirk urban areas of northern France. Here, we evaluated the associations between PM10, NO2 and O3 exposure (on the day of the blood sample collection and on the day before, and the mean annual residential level) and levels of the inflammatory biomarkers high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-17A, IL-22, and tumor necrosis factor α. RESULTS We assessed 3074 participants for the association with hsCRP and a subsample of 982 non-smokers from Lille for the association with plasma cytokine levels. A 10 μg/m3 increment in PM10 and NO2 levels on the day of sample collection and on the day before was associated with a higher hsCRP concentration (3.43% [0.68; 6.25] and 1.75% [-1.96; 5.61], respectively, whereas a 10 μg/m3 increment in O3 was associated with lower hsCRP concentration (-1.2% [-3.95; 1.64]). The associations between mean annual exposure and the hsCRP level were not significant. Likewise, the associations between exposure and plasma cytokine levels were not statistically significant. CONCLUSION Short-term exposure to air pollution was associated with higher serum hsCRP levels in adult residents of two urban areas in northern France. Our results suggest that along with other factors, low-grade inflammation might explain the harmful effects of air pollution on health.
Collapse
Affiliation(s)
- Marion Darras-Hostens
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Djamal Achour
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Manon Muntaner
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Céline Grare
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Gianni Zarcone
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Philippe Amouyel
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Farid Zerimech
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Régis Matran
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Jean-Marc Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Luc Dauchet
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| |
Collapse
|
47
|
Predictive Value of Serum Markers SFRP1 and CC16 in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6488935. [PMID: 35958937 PMCID: PMC9363185 DOI: 10.1155/2022/6488935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) patients are particularly vulnerable to acute exacerbation, resulting in a huge socioeconomic burden. Objective In this study, we evaluated the value of serum secreted frizzled-related protein 1 (SFRP1) and Clara cell-secreted protein (CC16) in predicting the risk of acute exacerbations in patients with COPD. Methods The study included 123 COPD patients admitted to our hospital from May 2020 to June 2021, including 65 patients in stable stage (STCOPD group), 58 patients in acute exacerbation stage (AECOPD group), and 60 healthy volunteers (control group). Serum SFRP1 and CC16 levels were detected by enzyme-linked immunosorbent assay (ELISA). The receiver operating characteristics curve (ROC) analysis was performed to evaluate the sensitivity and specificity of serum SFRP1 and CC16 for predicting the risk of acute exacerbation in COPD patients. Results The age among groups is significantly different, but there is no difference in the gender and body mass index (BMI). The level of serum SFRP1 in the AECOPD group was significantly higher than that in the STCOPD group and the control group, and the level of serum CC16 was lower than that in the STCOPD group and the control group. Serum SFRP1 was negatively correlated with forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) (r = −0.473, P < 0.001). Serum CC16 was positively correlated with FEV1/FVC (r = 0.457, P < 0.001). The area under the curve (AUC), sensitivity, and specificity of SFRP1 for predicting the risk of exacerbation was 0.847 (95% CI: 0.775 to 0.920), 86.20%, and 80.00%. The AUC, sensitivity, and specificity of CC16 for predicting the risk of exacerbation were 0.795 (95% CI: 0.711 to 0.879), 74.10%, and 86.20%. Conclusions These findings suggest that SFRP1 and CC16 may be useful serum markers for predicting the risk of exacerbation in COPD patients.
Collapse
|
48
|
Ghorani V, Khazdair MR, Mirsadraee M, Rajabi O, Boskabady MH. The effect of two-month treatment with Zataria multiflora on inflammatory cytokines, pulmonary function testes and respiratory symptoms in patients with chronic obstructive pulmonary disease (COPD). JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115265. [PMID: 35398241 DOI: 10.1016/j.jep.2022.115265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/10/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zataria multiflora Boiss. (Z. multiflora) is a valuable medicinal plant that has been used in Iranian traditional and folk medicine as an antiseptic, carminative, diaphoretic, diuretic, anti-spasmodic and analgesic herbal medicine. This plant has been also used to relieve cough in common cold and respiratory tract disorders. The previous studies reported the pharmacological effects of Z. multiflora such as anti-inflammatory and anti-oxidant properties in respiratory disorders in animal models and clinical studies. AIM OF THE STUDY The effects of Z. multiflora extract on inflammatory cytokines, pulmonary function tests (PFT), and respiratory symptoms in chronic obstructive pulmonary diseases (COPD) patients were investigated. MATERIALS AND METHODS COPD patients (41 cases) were divided to three groups including placebo group (P) and groups received 3 and 6 mg/kg/day Z. multiflora extract (Z3 and Z6) for two months. Inflammatory cytokines, PFT values, and respiratory symptoms were assessed before treatment (stage 0), one (stage I) and two (stage II) months after treatment. RESULTS Serum levels of TNF-α and IL-8 were significantly decreased after two months treatment compared to baseline values in Z3 and Z6 groups. The PFT values including forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) were significantly increased during two months treatment with Z3 and Z6. The peak expiratory flow (PEF) was also significantly increased after one-month treatment with Z6. The respiratory symptoms including cough, chest tightness, modified medical research council (mMRC) dyspnea scale were significantly improved after one and two treatments with both doses of Z. multiflora compared to baseline values. CONCLUSION The results suggest the potential therapeutic effect of Z. multiflora in COPD patients through reduction of inflammatory cytokines, increasing PFT values and improvement of respiratory symptoms.
Collapse
Affiliation(s)
- Vahideh Ghorani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Mirsadraee
- Department of Internal Medicine, Faculty of Medicine, Islamic Azad University-Mashhad Branch, Mashhad, Iran
| | - Omid Rajabi
- Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Yeh LY, Fang YT, Lee HS, Liu CH, Chen YY, Lo YC, Laiman V, Liou JP, Chung KF, Chuang HC, Lin CH. A Potent Histone Deacetylase Inhibitor MPT0E028 Mitigates Emphysema Severity via Components of the Hippo Signaling Pathway in an Emphysematous Mouse Model. Front Med (Lausanne) 2022; 9:794025. [PMID: 35665319 PMCID: PMC9157428 DOI: 10.3389/fmed.2022.794025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a major cause of chronic mortality. The objective of this study was to investigate the therapeutic potential of a novel potent histone deacetylase (HDAC) inhibitor MPT0E028 on emphysema. Materials and Methods A mouse model of porcine pancreatic elastase (PPE)-induced emphysema was orally administered 0, 25, or 50 mg/kg body weight (BW) of the MPT0E028 five times/week for 3 weeks. Pulmonary function, mean linear intercept (MLI), chest CT, inflammation, yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), surfactant protein C (SPC), T1-α, p53, and sirtuin 1 (SIRT1) levels were examined. Results 50 mg/kg BW of the MPT0E028 significantly decreased the tidal volume in emphysematous mice (p < 0.05). Emphysema severity was significantly reduced from 26.65% (PPE only) to 13.83% (50 mg/kg BW of the MPT0E028). Total cell counts, neutrophils, lymphocytes, and eosinophils significantly decreased with both 25 and 50 mg/kg BW of the MPT0E028 (p < 0.05). Also, 50 mg/kg BW of the MPT0E028 significantly decreased the levels of KC, TNF-α, and IL-6 in lung tissues and serum (p < 0.05). Expressions of p-TAZ/TAZ in lung tissues significantly decreased with 50 mg/kg BW of the MPT0E028 (p < 0.05). Expressions of p53 significantly decreased in alveolar regions with 50 mg/kg BW of the MPT0E028 (p < 0.05), and the expression of SPC increased in alveolar regions with 50 mg/kg BW of the MPT0E028 (p < 0.05). Conclusions Our study showed that the potent HDAC inhibitor MPT0E028 reduced the severity and inflammation of emphysema with improvement in lung function, which could be regulated by Hippo signaling pathway. The MPT0E028 may have therapeutic potential for emphysema.
Collapse
Affiliation(s)
- Lu-Yang Yeh
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Fang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hong-Sheng Lee
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hao Liu
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chun Lo
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Vincent Laiman
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Hsiao-Chi Chuang
| | - Chien-Huang Lin
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
50
|
Florentin J, O'Neil SP, Ohayon LL, Uddin A, Vasamsetti SB, Arunkumar A, Ghosh S, Boatz JC, Sui J, Kliment CR, Chan SY, Dutta P. VEGF Receptor 1 Promotes Hypoxia-Induced Hematopoietic Progenitor Proliferation and Differentiation. Front Immunol 2022; 13:882484. [PMID: 35634304 PMCID: PMC9133347 DOI: 10.3389/fimmu.2022.882484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Although it is well known that hypoxia incites unleashed cellular inflammation, the mechanisms of exaggerated cellular inflammation in hypoxic conditions are not known. We observed augmented proliferation of hematopoietic stem and progenitor cells (HSPC), precursors of inflammatory leukocytes, in mice under hypoxia. Consistently, a transcriptomic analysis of human HSPC exposed to hypoxic conditions revealed elevated expression of genes involved in progenitor proliferation and differentiation. Additionally, bone marrow cells in mice expressed high amount of vascular endothelial growth factor (VEGF), and HSPC elevated VEGF receptor 1 (VEGFr1) and its target genes in hypoxic conditions. In line with this, VEGFr1 blockade in vivo and in vitro decreased HSPC proliferation and attenuated inflammation. In silico and ChIP experiments demonstrated that HIF-1α binds to the promoter region of VEGFR1. Correspondingly, HIF1a silencing decreased VEGFr1 expression in HSPC and diminished their proliferation. These results indicate that VEGF signaling in HSPC is an important mediator of their proliferation and differentiation in hypoxia-induced inflammation and represents a potential therapeutic target to prevent aberrant inflammation in hypoxia-associated diseases.
Collapse
Affiliation(s)
- Jonathan Florentin
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Scott P O'Neil
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lee L Ohayon
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Afaz Uddin
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sathish Babu Vasamsetti
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Anagha Arunkumar
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Samit Ghosh
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer C Boatz
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin Sui
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Corrine R Kliment
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Partha Dutta
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|