1
|
Yeh LY, Fang YT, Lee HS, Liu CH, Chen YY, Lo YC, Laiman V, Liou JP, Chung KF, Chuang HC, Lin CH. A Potent Histone Deacetylase Inhibitor MPT0E028 Mitigates Emphysema Severity via Components of the Hippo Signaling Pathway in an Emphysematous Mouse Model. Front Med (Lausanne) 2022; 9:794025. [PMID: 35665319 PMCID: PMC9157428 DOI: 10.3389/fmed.2022.794025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a major cause of chronic mortality. The objective of this study was to investigate the therapeutic potential of a novel potent histone deacetylase (HDAC) inhibitor MPT0E028 on emphysema. Materials and Methods A mouse model of porcine pancreatic elastase (PPE)-induced emphysema was orally administered 0, 25, or 50 mg/kg body weight (BW) of the MPT0E028 five times/week for 3 weeks. Pulmonary function, mean linear intercept (MLI), chest CT, inflammation, yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), surfactant protein C (SPC), T1-α, p53, and sirtuin 1 (SIRT1) levels were examined. Results 50 mg/kg BW of the MPT0E028 significantly decreased the tidal volume in emphysematous mice (p < 0.05). Emphysema severity was significantly reduced from 26.65% (PPE only) to 13.83% (50 mg/kg BW of the MPT0E028). Total cell counts, neutrophils, lymphocytes, and eosinophils significantly decreased with both 25 and 50 mg/kg BW of the MPT0E028 (p < 0.05). Also, 50 mg/kg BW of the MPT0E028 significantly decreased the levels of KC, TNF-α, and IL-6 in lung tissues and serum (p < 0.05). Expressions of p-TAZ/TAZ in lung tissues significantly decreased with 50 mg/kg BW of the MPT0E028 (p < 0.05). Expressions of p53 significantly decreased in alveolar regions with 50 mg/kg BW of the MPT0E028 (p < 0.05), and the expression of SPC increased in alveolar regions with 50 mg/kg BW of the MPT0E028 (p < 0.05). Conclusions Our study showed that the potent HDAC inhibitor MPT0E028 reduced the severity and inflammation of emphysema with improvement in lung function, which could be regulated by Hippo signaling pathway. The MPT0E028 may have therapeutic potential for emphysema.
Collapse
Affiliation(s)
- Lu-Yang Yeh
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Fang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hong-Sheng Lee
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hao Liu
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chun Lo
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Vincent Laiman
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Hsiao-Chi Chuang
| | - Chien-Huang Lin
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Lin CR, Bahmed K, Kosmider B. Dysregulated Cell Signaling in Pulmonary Emphysema. Front Med (Lausanne) 2022; 8:762878. [PMID: 35047522 PMCID: PMC8762198 DOI: 10.3389/fmed.2021.762878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023] Open
Abstract
Pulmonary emphysema is characterized by the destruction of alveolar septa and irreversible airflow limitation. Cigarette smoking is the primary cause of this disease development. It induces oxidative stress and disturbs lung physiology and tissue homeostasis. Alveolar type II (ATII) cells have stem cell potential and can repair the denuded epithelium after injury; however, their dysfunction is evident in emphysema. There is no effective treatment available for this disease. Challenges in this field involve the large complexity of lung pathophysiological processes and gaps in our knowledge on the mechanisms of emphysema progression. It implicates dysregulation of various signaling pathways, including aberrant inflammatory and oxidative responses, defective antioxidant defense system, surfactant dysfunction, altered proteostasis, disrupted circadian rhythms, mitochondrial damage, increased cell senescence, apoptosis, and abnormal proliferation and differentiation. Also, genetic predispositions are involved in this disease development. Here, we comprehensively review studies regarding dysregulated cell signaling, especially in ATII cells, and their contribution to alveolar wall destruction in emphysema. Relevant preclinical and clinical interventions are also described.
Collapse
Affiliation(s)
- Chih-Ru Lin
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States.,Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, United States
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Spontaneous pulmonary emphysema in mice lacking all three nitric oxide synthase isoforms. Sci Rep 2021; 11:22088. [PMID: 34764368 PMCID: PMC8586362 DOI: 10.1038/s41598-021-01453-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
The roles of endogenous nitric oxide (NO) derived from the entire NO synthases (NOSs) system have yet to be fully elucidated. We addressed this issue in mice in which all three NOS isoforms were deleted. Under basal conditions, the triple n/i/eNOSs−/− mice displayed significantly longer mean alveolar linear intercept length, increased alveolar destructive index, reduced lung elastic fiber content, lower lung field computed tomographic value, and greater end-expiratory lung volume as compared with wild-type (WT) mice. None of single NOS−/− or double NOSs−/− genotypes showed such features. These findings were observed in the triple n/i/eNOSs−/− mice as early as 4 weeks after birth. Cyclopaedic and quantitative comparisons of mRNA expression levels between the lungs of WT and triple n/i/eNOSs−/− mice by cap analysis of gene expression (CAGE) revealed that mRNA expression levels of three Wnt ligands and ten Wnt/β-catenin signaling components were significantly reduced in the lungs of triple n/i/eNOSs−/− mice. These results provide the first direct evidence that complete disruption of all three NOS genes results in spontaneous pulmonary emphysema in juvenile mice in vivo possibly through down-regulation of the Wnt/β-catenin signaling pathway, demonstrating a novel preventive role of the endogenous NO/NOS system in the occurrence of pulmonary emphysema.
Collapse
|
4
|
Chen X, He Y, Fu W, Sahebkar A, Tan Y, Xu S, Li H. Histone Deacetylases (HDACs) and Atherosclerosis: A Mechanistic and Pharmacological Review. Front Cell Dev Biol 2020; 8:581015. [PMID: 33282862 PMCID: PMC7688915 DOI: 10.3389/fcell.2020.581015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS), the most common underlying pathology for coronary artery disease, is a chronic inflammatory, proliferative disease in large- and medium-sized arteries. The vascular endothelium is important for maintaining vascular health. Endothelial dysfunction is a critical early event leading to AS, which is a major risk factor for stroke and myocardial infarction. Accumulating evidence has suggested the critical roles of histone deacetylases (HDACs) in regulating vascular cell homeostasis and AS. The purpose of this review is to present an updated view on the roles of HDACs (Class I, Class II, Class IV) and HDAC inhibitors in vascular dysfunction and AS. We also elaborate on the novel therapeutic targets and agents in atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaona Chen
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhong He
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Fu
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Yuhui Tan
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Li
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Chelladurai P, Boucherat O, Stenmark K, Kracht M, Seeger W, Bauer UM, Bonnet S, Pullamsetti SS. Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy. Br J Pharmacol 2020; 178:54-71. [PMID: 31749139 DOI: 10.1111/bph.14932] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Epigenetic mechanisms, including DNA methylation and histone post-translational modifications (PTMs), have been known to regulate chromatin structure and lineage-specific gene expression during cardiovascular development and disease. However, alterations in the landscape of histone PTMs and their contribution to the pathogenesis of incurable cardiovascular diseases such as pulmonary hypertension (PH) and associated right heart failure (RHF) remain largely unexplored. This review focusses on the studies in PH and RHF that investigated the gene families that write (histone acetyltransferases), read (bromodomain-containing proteins) or erase (histone deacetylases [HDACs] and sirtuins [SIRT]) acetyl moieties from the ε-amino group of lysine residues of histones and non-histone proteins. Analysis of cells and tissues isolated from the in vivo preclinical models of PH and human pulmonary arterial hypertension not only confirmed significant alterations in the expression levels of multiple HDACs, SIRT1, SIRT3 and BRD4 proteins but also demonstrated their strong association to proliferative, inflammatory and fibrotic phenotypes linked to the pathological vascular remodelling process. Due to the reversible nature of post-translational protein acetylation, the therapeutic efficacy of numerous small-molecule inhibitors (vorinostat, valproic acid, sodium butyrate, mocetinostat, entinostat, tubastatin A, apabetalone, JQ1 and resveratrol) have been evaluated in different preclinical models of cardiovascular disease, which revealed the promising therapeutic benefits of targeting histone acetylation pathways in the attenuation of cardiac hypertrophy, fibrosis, left heart dysfunction, PH and RHF. This review also emphasizes the need for deeper molecular insights into the contribution of epigenetic changes to PH pathogenesis and therapeutic evaluation of isoform-specific modulation in ex vivo and in vivo models of PH and RHF. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Prakash Chelladurai
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the DZL, Member of CPI, Justus-Liebig University, Giessen, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the DZL, Member of CPI, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
6
|
Wadhwa R, Aggarwal T, Malyla V, Kumar N, Gupta G, Chellappan DK, Dureja H, Mehta M, Satija S, Gulati M, Maurya PK, Collet T, Hansbro PM, Dua K. Identification of biomarkers and genetic approaches toward chronic obstructive pulmonary disease. J Cell Physiol 2019; 234:16703-16723. [DOI: 10.1002/jcp.28482] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ridhima Wadhwa
- Faculty of Life Sciences and Biotechnology South Asian University New Delhi India
| | - Taru Aggarwal
- Amity Institute of Biotechnology Amity University Noida Uttar Pradesh India
| | - Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney New South Wales Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
| | - Nitesh Kumar
- Amity Institute for Advanced Research & Studies (M&D) Amity University Noida Uttar Pradesh India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences Jaipur National University, Jagatpura Jaipur Rajasthan India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy International Medical University Bukit Jalil Kuala Lumpur Malaysia
| | - Harish Dureja
- Department of Pharmaceutical Sciences Maharishi Dayanand University Rohtak Haryana India
| | - Meenu Mehta
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
| | - Saurabh Satija
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
| | - Monica Gulati
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
| | - Pawan Kumar Maurya
- Department of Biochemistry Central University of Haryana Mahendergarh Haryana India
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation Queensland University of Technology Brisbane Queensland Australia
| | - Philip Michael Hansbro
- Priority Research Centre for Healthy Lungs University of Newcastle & Hunter Medical Research Institute Newcastle New South Wales Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
- School of Life Sciences University of Technology Sydney Sydney New South Wales Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney New South Wales Australia
- Priority Research Centre for Healthy Lungs University of Newcastle & Hunter Medical Research Institute Newcastle New South Wales Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
| |
Collapse
|
7
|
Chida-Nagai A, Shintani M, Sato H, Nakayama T, Nii M, Akagawa H, Furukawa T, Rana A, Furutani Y, Inai K, Nonoyama S, Nakanishi T. Role of BRCA1-associated protein (BRAP) variant in childhood pulmonary arterial hypertension. PLoS One 2019; 14:e0211450. [PMID: 30703135 PMCID: PMC6355015 DOI: 10.1371/journal.pone.0211450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 01/15/2019] [Indexed: 11/18/2022] Open
Abstract
Although mutations in several genes have been reported in pulmonary arterial hypertension (PAH), most of PAH cases do not carry these mutations. This study aimed to identify a novel cause of PAH. To determine the disease-causing variants, direct sequencing and multiplex ligation-dependent probe amplification were performed to analyze 18 families with multiple affected family members with PAH. In one of the 18 families with PAH, no disease-causing variants were found in any of BMPR2, ACVRL1, ENG, SMAD1/4/8, BMPR1B, NOTCH3, CAV1, or KCNK3. In this family, a female proband and her paternal aunt developed PAH in their childhood. Whole-exome next-generation sequencing was performed in the 2 PAH patients and the proband’s healthy mother, and a BRCA1-associated protein (BRAP) gene variant, p.Arg554Leu, was identified in the 2 family members with PAH, but not in the proband’s mother without PAH. Functional analyses were performed using human pulmonary arterial smooth muscle cells (hPASMCs). Knockdown of BRAP via small interfering RNA in hPASMCs induced p53 signaling pathway activation and decreased cell proliferation. Overexpression of either wild-type BRAP or p.Arg554Leu-BRAP cDNA constructs caused cell death confounding these studies, however we observed higher levels of p53 signaling inactivation and hPASMC proliferation in cells expressing p.Arg554Leu-BRAP compared to wild-type BRAP. In addition, p.Arg554Leu-BRAP induced decreased apoptosis of hPASMCs compared with wild-type BRAP. In conclusion, we have identified a novel variant of BRAP in a Japanese family with PAH and our results suggest it could have a gain-of-function. This study sheds light on new mechanism of PAH pathogenesis.
Collapse
Affiliation(s)
- Ayako Chida-Nagai
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of Pediatric Cardiology, Tokyo Women’s Medical University, Shinjuku, Tokyo, Japan
| | - Masaki Shintani
- Department of Pediatric Cardiology, Tokyo Women’s Medical University, Shinjuku, Tokyo, Japan
| | - Hiroki Sato
- Department of Preventive Medicine and Public Health, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Tomotaka Nakayama
- Department of Pediatrics, Toho University Omori Medical Center, Ota, Tokyo, Japan
| | - Masaki Nii
- Department of Cardiology, Shizuoka Children’s Hospital, Shizuoka, Shizuoka, Japan
| | - Hiroyuki Akagawa
- Institute for Integrated Medical Sciences, Tokyo Women’s Medical University, Shinjuku, Tokyo, Japan
| | - Toru Furukawa
- Institute for Integrated Medical Sciences, Tokyo Women’s Medical University, Shinjuku, Tokyo, Japan
- Department of Histopathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Amer Rana
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yoshiyuki Furutani
- Department of Pediatric Cardiology, Tokyo Women’s Medical University, Shinjuku, Tokyo, Japan
| | - Kei Inai
- Department of Pediatric Cardiology, Tokyo Women’s Medical University, Shinjuku, Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshio Nakanishi
- Department of Pediatric Cardiology, Tokyo Women’s Medical University, Shinjuku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
8
|
Sundar IK, Rashid K, Gerloff J, Rangel-Moreno J, Li D, Rahman I. Genetic ablation of histone deacetylase 2 leads to lung cellular senescence and lymphoid follicle formation in COPD/emphysema. FASEB J 2018; 32:4955-4971. [PMID: 29630406 DOI: 10.1096/fj.201701518r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Histone deacetylase 2 (HDAC2), a critical determinant of chromatin remodeling, is reduced as a consequence of oxidative stress-mediated DNA damage and impaired repair. Cigarette smoke (CS) exposure causes DNA damage and cellular senescence. However, no information is available on the role of HDAC2 in CS-induced DNA damage, stress-induced premature senescence (SIPS), and senescence-associated secretory phenotype (SASP) during the pathogenesis of chronic obstructive pulmonary disease (COPD)/emphysema. We hypothesized that CS causes persistent DNA damage and cellular senescence via HDAC2-dependent mechanisms. We used HDAC2 global knockout (KO) and HDAC2 lung epithelial cell-specific KO [Clara cell-specific HDAC2 deletion (HDAC2 CreCC10)] mice to determine whether HDAC2 is a major player in CS-induced oxidative stress, SIPS, and SASP. HDAC2 KO mice exposed to CS show exaggerated DNA damage, inflammatory response, and decline in lung function leading to airspace enlargement. Chronic CS exposure augments lung senescence-associated β-galactosidase activity in HDAC2 KO, but not in HDAC2 CreCC10 mice. HDAC2 lung epithelial cell-specific KO did not further augment CS-induced inflammatory response and airspace enlargement but instead caused an increase in lymphoid aggregate formation. Our study reveals that HDAC2 is a key player regulating CS-induced DNA damage, inflammatory response, and cellular senescence leading to COPD/emphysema.-Sundar, I. K., Rashid, K., Gerloff, J., Rangel-Moreno, J., Li, D., Rahman, I. Genetic ablation of histone deacetylase 2 leads to lung cellular senescence and lymphoid follicle formation in COPD/emphysema.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Kahkashan Rashid
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Janice Gerloff
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA; and
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
9
|
Long YJ, Liu XP, Chen SS, Zong DD, Chen Y, Chen P. miR-34a is involved in CSE-induced apoptosis of human pulmonary microvascular endothelial cells by targeting Notch-1 receptor protein. Respir Res 2018; 19:21. [PMID: 29373969 PMCID: PMC5787261 DOI: 10.1186/s12931-018-0722-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/12/2018] [Indexed: 12/25/2022] Open
Abstract
Background Abnormal apoptosis of lung endothelial cells has been observed in emphysematous lung tissue and has been suggested to be an important upstream event in the pathogenesis of chronic obstructive pulmonary disease (COPD). Studies have shown that microRNAs (miRNAs) contribute to the pathogenesis of pulmonary diseases by regulating cell apoptosis. The present study was designed to investigate the expression of microRNA-34a (miR-34a) in human pulmonary microvascular endothelial cells (HPMECs) exposed to cigarette smoke extract (CSE), and the potential regulatory role of miR-34a in endothelial cell apoptosis. Results Our results showed that the expression of miR-34a was significantly increased in CSE-treated HPMECs, and inhibiting miR-34a attenuated CSE-induced HPMEC apoptosis. Furthermore, expression of Notch-1, a receptor protein in the Notch signalling pathway, was decreased and was inversely correlated with miR-34a expression in HPMECs treated with CSE. Computational miRNA target prediction confirmed that Notch-1 is a target of miR-34a. Luciferase reporter assay further confirmed the direct interaction between miR-34a and the 3’-untranslated region (UTR) of Notch-1. Restoration of Notch-1 pathway was able to partially block the effect of miR-34a on HPMEC apoptosis. These results indicate that Notch-1 is a critical downstream target of miR-34a in regulating the CSE-induced HPMEC apoptosis. Conclusions Our results suggest that miR-34a plays a key role in CSE-induced endothelial cell apoptosis by directly regulating its target gene Notch-1 in endothelial cells.
Collapse
Affiliation(s)
- Ying-Jiao Long
- Division of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
| | - Xiao-Peng Liu
- Department of Intensive Care Unit, The Want Want Hospital, Changsha, Hunan, 410013, China
| | - Shan-Shan Chen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Dan-Dan Zong
- Division of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
| | - Yan Chen
- Division of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
| | - Ping Chen
- Division of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China. .,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China. .,Division of Respiratory Medicine, Department of Internal Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
10
|
Lee JW, Yang DH, Park S, Han HK, Park JW, Kim BY, Um SH, Moon EY. Trichostatin A resistance is facilitated by HIF-1α acetylation in HeLa human cervical cancer cells under normoxic conditions. Oncotarget 2017; 9:2035-2049. [PMID: 29416751 PMCID: PMC5788619 DOI: 10.18632/oncotarget.23327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 12/08/2017] [Indexed: 12/31/2022] Open
Abstract
Trichostatin A (TSA) is an anticancer drug that inhibits histone deacetylases (HDACs). Hypoxia-inducible factor 1 (HIF-1) participates in tumor angiogenesis by upregulating target genes, such as vascular endothelial growth factor (VEGF). In the present study, we investigated whether TSA treatment increases HIF-1α stabilization via acetylation under normoxic conditions, which would lead to VEGF upregulation and resistance to anticancer drugs. TSA enhanced total HIF-1α and VEGF-HRE reporter activity under normoxic conditions. When cells were transfected with GFP-HIF-1α, treatment with TSA increased the number of green fluorescence protein (GFP)-positive cells. TSA also enhanced the nuclear translocation of HIF-1α protein, as assessed by immunoblotting and as evidenced by increased nuclear localization of GFP-HIF-1α. An increase in the interaction between HIF-1α and the VEGF promoter, which was assessed by a chromatin immunoprecipitation (ChIP) assay, led to activation of the VEGF promoter. TSA acetylated HIF-1α at lysine (K) 674, which led to an increase in TSA-induced VEGF-HRE reporter activity. In addition, TSA-mediated cell death was reduced by the overexpression of HIF-1α but it was rescued by transfection with a HIF-1α mutant (K674R). These data demonstrate that HIF-1α may be stabilized and translocated into the nucleus for the activation of VEGF promoter by TSA-mediated acetylation at K674 under normoxic conditions. These findings suggest that HIF-1α acetylation may lead to resistance to anticancer therapeutics, such as HDAC inhibitors, including TSA.
Collapse
Affiliation(s)
- Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Dong Hee Yang
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Sojin Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Hae-Kyoung Han
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Jong-Wan Park
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 03080, South Korea
| | - Bo Yeon Kim
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon 28116, South Korea
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 16419, South Korea.,Department of Health Sciences and Technology, SAIHST, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, South Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, South Korea
| |
Collapse
|
11
|
Truong TM, Li H, Dhapare S, Desai UR, Voelkel NF, Sakagami M. Sulfated dehydropolymer of caffeic acid: In vitro anti-lung cell death activity and in vivo intervention in emphysema induced by VEGF receptor blockade. Pulm Pharmacol Ther 2017. [PMID: 28648907 DOI: 10.1016/j.pupt.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Induced lung cell death and impaired hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) signaling are proposed as a pathobiologic mechanism for alveolar structural destruction and loss in emphysema. We hypothesized that our sulfated dehydropolymer of caffeic acid, CDSO3, exerts anti-cell death activities and therapeutic interventions in emphysema by virtue of Fe2+ chelation-based HIF-1α/VEGF stabilization and elevation. The Fe2+ chelating activity was determined in the chromogenic ferrozine-Fe2+ chelation inhibitory assay. The in vitro anti-cell death activities and their Fe2+ and HIF-1α dependence were assessed against a range of emphysematous insults in the lung endothelial (HMVEC-L) and epithelial (A549) cells. CDSO3 was spray-dosed to the lung for three weeks (day 1-21) in an in vivo rat model of apoptotic emphysema induced with a VEGF receptor antagonist SU5416. Post-treatment treadmill exercise endurance, airspace enlargement, and several lung biomarkers/proteins were measured. CDSO3 was a potent Fe2+ chelating molecule. At 10 μM, CDSO3 inhibited HMVEC-L and A549 cell death induced by histone deacetylase inhibition with trichostatin A, VEGF receptor blockade with SU5416, and cigarette smoke extract by 65-99%, which were all significantly opposed by addition of excess Fe2+ or HIF-1α inhibitors. As a potent elastase inhibitor and antioxidant, CDSO3 also inhibited elastase- and H2O2-induced cell death by 92 and 95%, respectively. In the rat model of SU5416-induced apoptotic emphysema, CDSO3 treatment at 60 μg/kg 1) produced 61-77% interventions against exercise endurance impairment, airspace enlargement [mean linear intercept] and oxidative lung damage [malondialdehyde activity]; 2) normalized the apoptotic marker [cleaved caspase-3]; 3) stimulated the VEGF signaling [VEGF receptor 2 phosphorylation] by 1.4-fold; and 4) elevated the HIF-1α and VEGF expression by 1.8- and 1.5-fold, respectively. All of these were consistent with CDSO3's Fe2+ chelation-based HIF-1α/VEGF stabilization and elevation against their pathobiologic deficiency, inhibiting lung cell death and development of apoptotic emphysema.
Collapse
Affiliation(s)
- Tien M Truong
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| | - Hua Li
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| | - Sneha Dhapare
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| | - Umesh R Desai
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery and Development, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23219, USA.
| | - Nobert F Voelkel
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| | - Masahiro Sakagami
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| |
Collapse
|
12
|
Valproic Acid Induces Endocytosis-Mediated Doxorubicin Internalization and Shows Synergistic Cytotoxic Effects in Hepatocellular Carcinoma Cells. Int J Mol Sci 2017; 18:ijms18051048. [PMID: 28498322 PMCID: PMC5454960 DOI: 10.3390/ijms18051048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
Abstract
Valproic acid (VPA), a well-known histone deacetylase (HDAC) inhibitor, is used as an anti-cancer drug for various cancers, but the synergistic anti-cancer effect of VPA and doxorubicin (DOX) combination treatment and its potential underlying mechanism in hepatocellular carcinoma (HCC) remain to be elucidated. Here, we evaluate the mono- and combination-therapy effects of VPA and DOX in HCC and identify a specific and efficient, synergistic anti-proliferative effect of the VPA and DOX combination in HCC cells, especially HepG2 cells; this effect was not apparent in MIHA cells, a normal hepatocyte cell line. The calculation of the coefficient of drug interaction confirmed the significant synergistic effect of the combination treatment. Concurrently, the synergistic apoptotic cell death caused by the VPA and DOX combination treatment was confirmed by Hoechst nuclear staining and Western blot analysis of caspase-3 and poly (ADP-ribose) polymerase (PARP) activation. Co-treatment with VPA and DOX enhanced reactive oxygen species (ROS) generation and autophagy, which were clearly attenuated by ROS and autophagy inhibitors, respectively. Furthermore, as an indication of the mechanism underlying the synergistic effect, we observed that DOX internalization, which was induced in the VPA and DOX combination-treated group, occurred via by the caveolae-mediated endocytosis pathway. Taken together, our study uncovered the potential effect of the VPA and DOX combination treatment with regard to cell death, including induction of cellular ROS, autophagy, and the caveolae-mediated endocytosis pathway. Therefore, these results present novel implications in drug delivery research for the treatment of HCC.
Collapse
|
13
|
Sirt1 expression is associated with CD31 expression in blood cells from patients with chronic obstructive pulmonary disease. Respir Res 2016; 17:139. [PMID: 27784320 PMCID: PMC5081972 DOI: 10.1186/s12931-016-0452-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022] Open
Abstract
Background Cigarette smoke induced oxidative stress has been shown to reduce silent information regulator 1 (Sirt1) levels in lung tissue from smokers and patients with COPD patients. Sirt1 is known to inhibit endothelial senescence and may play a protective role in vascular cells. Endothelial progenitor cells (EPCs) are mobilized into circulation under various pathophysiological conditions, and are thought to play an important role in tissue repair in chronic obstructive lung disease (COPD). Therefore, Sirt1 and EPC-associated mRNAs were measured in blood samples from patients with COPD and from cultured CD34+ progenitor cells to examine whether these genes are associated with COPD development. Methods This study included 358 patients with a smoking history of more than 10 pack-years. RNA was extracted from blood samples and from CD34+ progenitor cells treated with cigarette smoke extract (CSE), followed by assessment of CD31, CD34, Sirt1 mRNA, miR-34a, and miR-126-3p expression by real-time RT-PCR. Results The expression of CD31, CD34, Sirt1 mRNAs, and miR-126-3p decreased and that of miR-34a increased in moderate COPD compared with that in control smokers. However, no significant differences in these genes were observed in blood cells from patients with severe COPD compared with those in control smokers. CSE significantly decreased Sirt1 and increased miR-34a expression in cultured progenitor cells. Conclusion Sirt1 expression in blood cells from patients with COPD could be a biomarker for disease stability in patients with moderate COPD. MiR-34a may participate in apoptosis and/or senescence of EPCs in smokers. Decreased expression of CD31, CD34, and miR-126-3p potentially represents decreased numbers of EPCs in blood cell from patients with COPD.
Collapse
|
14
|
Padilha GDA, Horta LFB, Moraes L, Braga CL, Oliveira MV, Santos CL, Ramos IP, Morales MM, Capelozzi VL, Goldenberg RCS, de Abreu MG, Pelosi P, Silva PL, Rocco PRM. Comparison between effects of pressure support and pressure-controlled ventilation on lung and diaphragmatic damage in experimental emphysema. Intensive Care Med Exp 2016; 4:35. [PMID: 27761886 PMCID: PMC5071308 DOI: 10.1186/s40635-016-0107-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022] Open
Abstract
Background In patients with emphysema, invasive mechanical ventilation settings should be adjusted to minimize hyperinflation while reducing respiratory effort and providing adequate gas exchange. We evaluated the impact of pressure-controlled ventilation (PCV) and pressure support ventilation (PSV) on pulmonary and diaphragmatic damage, as well as cardiac function, in experimental emphysema. Methods Emphysema was induced by intratracheal instillation of porcine pancreatic elastase in Wistar rats, once weekly for 4 weeks. Control animals received saline under the same protocol. Eight weeks after first instillation, control and emphysema rats were randomly assigned to PCV (n = 6/each) or PSV (n = 6/each) under protective tidal volume (6 ml/kg) for 4 h. Non-ventilated control and emphysema animals (n = 6/group) were used to characterize the model and for molecular biology analysis. Cardiorespiratory function, lung histology, diaphragm ultrastructure alterations, extracellular matrix organization, diaphragmatic proteolysis, and biological markers associated with pulmonary inflammation, alveolar stretch, and epithelial and endothelial cell damage were assessed. Results Emphysema animals exhibited cardiorespiratory changes that resemble human emphysema, such as increased areas of lung hyperinflation, pulmonary amphiregulin expression, and diaphragmatic injury. In emphysema animals, PSV compared to PCV yielded: no changes in gas exchange; decreased mean transpulmonary pressure (Pmean,L), ratio between inspiratory and total time (Ti/Ttot), lung hyperinflation, and amphiregulin expression in lung; increased ratio of pulmonary artery acceleration time to pulmonary artery ejection time, suggesting reduced right ventricular afterload; and increased ultrastructural damage to the diaphragm. Amphiregulin correlated with Pmean,L (r = 0.99, p < 0.0001) and hyperinflation (r = 0.70, p = 0.043), whereas Ti/Ttot correlated with hyperinflation (r = 0.81, p = 0.002) and Pmean,L (r = 0.60, p = 0.04). Conclusions In the model of elastase-induced emphysema used herein, PSV reduced lung damage and improved cardiac function when compared to PCV, but worsened diaphragmatic injury. Electronic supplementary material The online version of this article (doi:10.1186/s40635-016-0107-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gisele de A Padilha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Lucas F B Horta
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Lillian Moraes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Cassia L Braga
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Milena V Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Cíntia L Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Isalira P Ramos
- Laboratory of Molecular and Cellular Cardiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Center for Structural Biology and Bio-imaging, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Regina C S Goldenberg
- Laboratory of Molecular and Cellular Cardiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo Gama de Abreu
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Therapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
15
|
Boucherat O, Morissette MC, Provencher S, Bonnet S, Maltais F. Bridging Lung Development with Chronic Obstructive Pulmonary Disease. Relevance of Developmental Pathways in Chronic Obstructive Pulmonary Disease Pathogenesis. Am J Respir Crit Care Med 2016; 193:362-75. [PMID: 26681127 DOI: 10.1164/rccm.201508-1518pp] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation. This generic term encompasses emphysema and chronic bronchitis, two common conditions, each having distinct but also overlapping features. Recent epidemiological and experimental studies have challenged the traditional view that COPD is exclusively an adult disease occurring after years of inhalational insults to the lungs, pinpointing abnormalities or disruption of the pathways that control lung development as an important susceptibility factor for adult COPD. In addition, there is growing evidence that emphysema is not solely a destructive process because it is also characterized by a failure in cell and molecular maintenance programs necessary for proper lung development. This leads to the concept that tissue regeneration required stimulation of signaling pathways that normally operate during development. We undertook a review of the literature to outline the contribution of developmental insults and genes in the occurrence and pathogenesis of COPD, respectively.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Mathieu C Morissette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Steeve Provencher
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Sébastien Bonnet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - François Maltais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| |
Collapse
|
16
|
Bousquet MS, Ma JJ, Ratnayake R, Havre PA, Yao J, Dang NH, Paul VJ, Carney TJ, Dang LH, Luesch H. Multidimensional Screening Platform for Simultaneously Targeting Oncogenic KRAS and Hypoxia-Inducible Factors Pathways in Colorectal Cancer. ACS Chem Biol 2016; 11:1322-31. [PMID: 26938486 DOI: 10.1021/acschembio.5b00860] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Colorectal cancer (CRC) is a genetic disease, due to progressive accumulation of mutations in oncogenes and tumor suppressor genes. Large scale genomic sequencing projects revealed >100 mutations in any individual CRC. Many of these mutations are likely passenger mutations, and fewer are driver mutations. Of these, activating mutations in RAS proteins are essential for cancer initiation, progression, and/or resistance to therapy. There has been significant interest in developing drugs targeting mutated cancer gene products or downstream signaling pathways. Due to the number of mutations involved and inherent redundancy in intracellular signaling, drugs targeting one mutation or pathway have been either ineffective or led to rapid resistance. We have devised a strategy whereby multiple cancer pathways may be simultaneously targeted for drug discovery. For proof-of-concept, we targeted the oncogenic KRAS and HIF pathways, since oncogenic KRAS has been shown to be required for cancer initiation and progression, and HIF-1α and HIF-2α are induced by the majority of mutated oncogenes and tumor suppressor genes in CRC. We have generated isogenic cell lines defective in either oncogenic KRAS or both HIF-1α and HIF-2α and subjected them to multiplex genomic, siRNA, and high-throughput small molecule screening. We have identified potential drug targets and compounds for preclinical and clinical development. Screening of our marine natural product library led to the rediscovery of the microtubule agent dolastatin 10 and the class I histone deacetylase (HDAC) inhibitor largazole to inhibit oncogenic KRAS and HIF pathways. Largazole was further validated as an antiangiogenic agent in a HIF-dependent manner in human cells and in vivo in zebrafish using a genetic model with activated HIF. Our general strategy, coupling functional genomics with drug susceptibility or chemical-genetic interaction screens, enables the identification of potential drug targets and candidates with requisite selectivity. Molecules prioritized in this manner can easily be validated in suitable zebrafish models due to the genetic tractability of the system. Our multidimensional platform with cellular and organismal components can be extended to larger scale multiplex screens that include other mutations and pathways.
Collapse
Affiliation(s)
- Michelle S. Bousquet
- Institute
of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore 138673, Singapore
| | - Jia Jia Ma
- Institute
of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore 138673, Singapore
| | | | | | | | | | - Valerie J. Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida 34949, United States
| | - Thomas J. Carney
- Institute
of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore 138673, Singapore
- Lee Kong
Chian School of Medicine, Nanyang Technological University, 59 Nanyang
Drive, 636921, Singapore
| | | | - Hendrik Luesch
- Institute
of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore 138673, Singapore
| |
Collapse
|
17
|
Goldklang M, Stockley R. Pathophysiology of Emphysema and Implications. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2016; 3:454-458. [PMID: 28848866 DOI: 10.15326/jcopdf.3.1.2015.0175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article serves as a CME-available, enduring material summary of the following COPD9USA presentations: "Overview of Lung Injury in COPD: Types and Key Questions" Presenter: Caroline Owen, MD, PhD Emphysema as a Disease of Deficient Tissue Repair/Maintenance" Presenter: Rubin Tuder, MD.
Collapse
Affiliation(s)
- Monica Goldklang
- Departments of Anesthesiology and Medicine, Columbia University Medical Center, New York, New York
| | - Robert Stockley
- Department of Medicine, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
18
|
Lu W, You R, Yuan X, Yang T, Samuel ELG, Marcano DC, Sikkema WKA, Tour JM, Rodriguez A, Kheradmand F, Corry DB. The microRNA miR-22 inhibits the histone deacetylase HDAC4 to promote T(H)17 cell-dependent emphysema. Nat Immunol 2015; 16:1185-94. [PMID: 26437241 PMCID: PMC4597310 DOI: 10.1038/ni.3292] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/09/2015] [Indexed: 12/15/2022]
Abstract
Smoking-related emphysema is a chronic inflammatory disease driven by the T(H)17 subset of helper T cells through molecular mechanisms that remain obscure. Here we explored the role of the microRNA miR-22 in emphysema. We found that miR-22 was upregulated in lung myeloid dendritic cells (mDCs) of smokers with emphysema and antigen-presenting cells (APCs) of mice exposed to smoke or nanoparticulate carbon black (nCB) through a mechanism that involved the transcription factor NF-κB. Mice deficient in miR-22, but not wild-type mice, showed attenuated T(H)17 responses and failed to develop emphysema after exposure to smoke or nCB. We further found that miR-22 controlled the activation of APCs and T(H)17 responses through the activation of AP-1 transcription factor complexes and the histone deacetylase HDAC4. Thus, miR-22 is a critical regulator of both emphysema and T(H)17 responses.
Collapse
Affiliation(s)
- Wen Lu
- Department of Pathology &Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Ran You
- Department of Pathology &Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoyi Yuan
- Department of Pathology &Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Tianshu Yang
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | - James M Tour
- Department of Chemistry, Rice University, Houston, Texas, USA
| | - Antony Rodriguez
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Farrah Kheradmand
- Department of Pathology &Immunology, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Biology of Inflammation Center and the Michael E. DeBakey Virginia Center for Translational Research on Inflammatory Diseases, Houston, Texas, USA
| | - David B Corry
- Department of Pathology &Immunology, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Biology of Inflammation Center and the Michael E. DeBakey Virginia Center for Translational Research on Inflammatory Diseases, Houston, Texas, USA
| |
Collapse
|
19
|
Obeidat M, Hao K, Bossé Y, Nickle DC, Nie Y, Postma DS, Laviolette M, Sandford AJ, Daley DD, Hogg JC, Elliott WM, Fishbane N, Timens W, Hysi PG, Kaprio J, Wilson JF, Hui J, Rawal R, Schulz H, Stubbe B, Hayward C, Polasek O, Järvelin MR, Zhao JH, Jarvis D, Kähönen M, Franceschini N, North KE, Loth DW, Brusselle GG, Smith AV, Gudnason V, Bartz TM, Wilk JB, O'Connor GT, Cassano PA, Tang W, Wain LV, Soler Artigas M, Gharib SA, Strachan DP, Sin DD, Tobin MD, London SJ, Hall IP, Paré PD. Molecular mechanisms underlying variations in lung function: a systems genetics analysis. THE LANCET. RESPIRATORY MEDICINE 2015; 3:782-95. [PMID: 26404118 PMCID: PMC5021067 DOI: 10.1016/s2213-2600(15)00380-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND Lung function measures reflect the physiological state of the lung, and are essential to the diagnosis of chronic obstructive pulmonary disease (COPD). The SpiroMeta-CHARGE consortium undertook the largest genome-wide association study (GWAS) so far (n=48,201) for forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) in the general population. The lung expression quantitative trait loci (eQTLs) study mapped the genetic architecture of gene expression in lung tissue from 1111 individuals. We used a systems genetics approach to identify single nucleotide polymorphisms (SNPs) associated with lung function that act as eQTLs and change the level of expression of their target genes in lung tissue; termed eSNPs. METHODS The SpiroMeta-CHARGE GWAS results were integrated with lung eQTLs to map eSNPs and the genes and pathways underlying the associations in lung tissue. For comparison, a similar analysis was done in peripheral blood. The lung mRNA expression levels of the eSNP-regulated genes were tested for associations with lung function measures in 727 individuals. Additional analyses identified the pleiotropic effects of eSNPs from the published GWAS catalogue, and mapped enrichment in regulatory regions from the ENCODE project. Finally, the Connectivity Map database was used to identify potential therapeutics in silico that could reverse the COPD lung tissue gene signature. FINDINGS SNPs associated with lung function measures were more likely to be eQTLs and vice versa. The integration mapped the specific genes underlying the GWAS signals in lung tissue. The eSNP-regulated genes were enriched for developmental and inflammatory pathways; by comparison, SNPs associated with lung function that were eQTLs in blood, but not in lung, were only involved in inflammatory pathways. Lung function eSNPs were enriched for regulatory elements and were over-represented among genes showing differential expression during fetal lung development. An mRNA gene expression signature for COPD was identified in lung tissue and compared with the Connectivity Map. This in-silico drug repurposing approach suggested several compounds that reverse the COPD gene expression signature, including a nicotine receptor antagonist. These findings represent novel therapeutic pathways for COPD. INTERPRETATION The system genetics approach identified lung tissue genes driving the variation in lung function and susceptibility to COPD. The identification of these genes and the pathways in which they are enriched is essential to understand the pathophysiology of airway obstruction and to identify novel therapeutic targets and biomarkers for COPD, including drugs that reverse the COPD gene signature in silico. FUNDING The research reported in this article was not specifically funded by any agency. See Acknowledgments for a full list of funders of the lung eQTL study and the Spiro-Meta CHARGE GWAS.
Collapse
Affiliation(s)
- Ma'en Obeidat
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Ke Hao
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Québec, QC, Canada; Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, QC, Canada
| | - David C Nickle
- Merck Research Laboratories, Genetics and Pharmacogenomics, Boston, MA, USA
| | - Yunlong Nie
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Dirkje S Postma
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, GRIAC Research Institute, University of Groningen, Groningen, Netherlands
| | - Michel Laviolette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, QC, Canada
| | - Andrew J Sandford
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Denise D Daley
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - James C Hogg
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - W Mark Elliott
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nick Fishbane
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, Groningen, Netherlands
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King's College, London, UK
| | - Jaakko Kaprio
- Department of Public Health, and Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - James F Wilson
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Jennie Hui
- Busselton Population Medical Research Institute, Busselton, WA, Australia; PathWest Laboratory Medicine of Western Australia, Nedlands, WA, Australia; School of Population Health and School of Pahology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia
| | - Rajesh Rawal
- Research Unit of Molecular Epidemiology, Helmholtz-Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Genetic Epidemiology, Helmholtz-Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz-Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Beate Stubbe
- University Hospital, Department of Internal Medicine B, Greifswald, Germany
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Ozren Polasek
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK; Faculty of Medicine, University of Split, Croatia
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK; Center for Life Course Epidemiology, Faculty of Medicine, Biocenter Oulu, and Unit of Primary Care, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge UK
| | - Deborah Jarvis
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK; Respiratory Epidemiology and Public Health Group, National Heart and Lung Institute, Imperial College, London, UK
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Nora Franceschini
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kari E North
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; University of North Carolina Center for Genome Sciences, Chapel Hill, NC, USA
| | - Daan W Loth
- Departments of Epidemiology and Respiratory Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Guy G Brusselle
- Departments of Epidemiology and Respiratory Medicine, Erasmus MC, Rotterdam, Netherlands; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - Jemma B Wilk
- Human Genetics & Computational Biomedicine, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - George T O'Connor
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA; NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medical College, NY, USA
| | - Wenbo Tang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Louise V Wain
- University of Leicester, Genetic Epidemiology Group, Department of Health Sciences, Leicester, UK; National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - María Soler Artigas
- University of Leicester, Genetic Epidemiology Group, Department of Health Sciences, Leicester, UK; National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, WA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, UK
| | - Don D Sin
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Martin D Tobin
- University of Leicester, Genetic Epidemiology Group, Department of Health Sciences, Leicester, UK; National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Ian P Hall
- University of Nottingham Division of Respiratory Medicine, University Hospital of Nottingham, Nottingham, UK
| | - Peter D Paré
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Thannickal VJ, Murthy M, Balch WE, Chandel NS, Meiners S, Eickelberg O, Selman M, Pardo A, White ES, Levy BD, Busse PJ, Tuder RM, Antony VB, Sznajder JI, Budinger GRS. Blue journal conference. Aging and susceptibility to lung disease. Am J Respir Crit Care Med 2015; 191:261-9. [PMID: 25590812 DOI: 10.1164/rccm.201410-1876pp] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aging of the population in the United States and throughout the developed world has increased morbidity and mortality attributable to lung disease, while the morbidity and mortality from other prevalent diseases has declined or remained stable. Recognizing the importance of aging in the development of lung disease, the American Thoracic Society (ATS) highlighted this topic as a core theme for the 2014 annual meeting. The relationship between aging and lung disease was discussed in several oral symposiums and poster sessions at the annual ATS meeting. In this article, we used the input gathered at the conference to develop a broad framework and perspective to stimulate basic, clinical, and translational research to understand how the aging process contributes to the onset and/or progression of lung diseases. A consistent theme that emerged from the conference was the need to apply novel, systems-based approaches to integrate a growing body of genomic, epigenomic, transcriptomic, and proteomic data and elucidate the relationship between biologic hallmarks of aging, altered lung function, and increased susceptibility to lung diseases in the older population. The challenge remains to causally link the molecular and cellular changes of aging with age-related changes in lung physiology and disease susceptibility. The purpose of this review is to stimulate further research to identify new strategies to prevent or treat age-related lung disease.
Collapse
|
21
|
Mizuno S, Bogaard HJ, Ishizaki T, Toga H. Role of p53 in lung tissue remodeling. World J Respirol 2015; 5:40-46. [DOI: 10.5320/wjr.v5.i1.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/25/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor gene p53 regulates a wide range of cellular processes including cell cycle progression, proliferation, apoptosis and tissue development and remodeling. Lung cell apoptosis and tissue remodeling have critical roles in many lung diseases. Abnormal proliferation or resistance to apoptosis of lung cells will lead to structural changes of many lung tissues, including the pulmonary vascular wall, small airways and lung parenchyma. Among the many lung diseases caused by vascular cell apoptosis and tissue remodeling are chronic obstructive pulmonary disease, bronchial asthma and pulmonary arterial hypertension. Recent advances in biology and medicine have provided new insights and have resulted in new therapeutic strategies for tissue remodeling in human and animal models. This review is focused on lung disease susceptibility associated with the p53 pathway and describes molecular mechanisms upstream and downstream of p53 in lung tissue remodeling. Improved understanding of structural changes associated with pulmonary vascular remodeling and lung cell apoptosis induced by the p53 pathway may new provide therapeutic targets.
Collapse
|
22
|
Swierczynski S, Klieser E, Illig R, Alinger-Scharinger B, Kiesslich T, Neureiter D. Histone deacetylation meets miRNA: epigenetics and post-transcriptional regulation in cancer and chronic diseases. Expert Opin Biol Ther 2015; 15:651-64. [PMID: 25766312 DOI: 10.1517/14712598.2015.1025047] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Epigenetic regulation via DNA methylation, histone acetylation, as well as by microRNAs (miRNAs) is currently in the scientific focus due to its role in carcinogenesis and its involvement in initiation, progression and metastasis. While many target genes of DNA methylation, histone acetylation and miRNAs are known, even less information exists as to how these mechanisms cooperate and how they may regulate each other in a specific pathological context. For further development of therapeutic approaches, this review presents the current status of the crosstalk of histone acetylation and miRNAs in human carcinogenesis and chronic diseases. AREAS COVERED This article reviews information from comprehensive PubMed searches to evaluate relevant literature with a focus on possible association between histone acetylation, miRNAs and their targets. Our analysis identified specific miRNAs which collaborate with histone deacetylases (HDACs) and cooperatively regulate several relevant target genes. EXPERT OPINION Fourteen miRNAs could be linked to the expression of eight HDACs influencing the α-(1,6)-fucosyltransferase, polycystin-2 and the fibroblast-growth-factor 2 pathways. Focusing on the complex linkage of miRNA and HDAC expression could give deeper insights in new 'druggable' targets and might provide possible novel therapeutic approaches in future.
Collapse
Affiliation(s)
- Stefan Swierczynski
- Paracelsus Medical University, Salzburger Landeskliniken, Department of Surgery , Salzburg , Austria
| | | | | | | | | | | |
Collapse
|
23
|
Schamberger AC, Mise N, Meiners S, Eickelberg O. Epigenetic mechanisms in COPD: implications for pathogenesis and drug discovery. Expert Opin Drug Discov 2015; 9:609-28. [PMID: 24850530 DOI: 10.1517/17460441.2014.913020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide. The growing burden of COPD is due to continuous tobacco use, which is the most important risk factor of the disease, indoor fumes, occupational exposures and also aging of the world's population. Epigenetic mechanisms significantly contribute to COPD pathophysiology. AREAS COVERED This review focuses on disease-relevant changes in DNA modification, histone modification and non-coding RNA expression in COPD, and provides insight into novel therapeutic approaches modulating epigenetic mechanisms. Recent findings revealed, among others, globally changed DNA methylation patterns, decreased levels of histone deacetylases and reduced microRNAs levels in COPD. The authors also discuss a potential role of the chromatin silencing Polycomb group of proteins in COPD. EXPERT OPINION COPD is a highly complex disease and therapy development is complicated by the fact that many smokers develop both COPD and lung cancer. Of interest, combination therapies involving DNA methyltransferase inhibitors and anti-inflammatory drugs provide a promising approach, as they might be therapeutic for both COPD and cancer. Although the field of epigenetic research has virtually exploded over the last 10 years, particular efforts are required to enhance our knowledge of the COPD epigenome in order to successfully establish epigenetic-based therapies for this widespread disease.
Collapse
Affiliation(s)
- Andrea C Schamberger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, University Hospital and Ludwig-Maximilians-University, Member of the German Center for Lung Research (DZL) , Max-Lebsche-Platz 31, 81377 Munich , Germany
| | | | | | | |
Collapse
|
24
|
Epigenetic mechanisms in respiratory muscle dysfunction of patients with chronic obstructive pulmonary disease. PLoS One 2014; 9:e111514. [PMID: 25369292 PMCID: PMC4219759 DOI: 10.1371/journal.pone.0111514] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/26/2014] [Indexed: 12/19/2022] Open
Abstract
Epigenetic events are differentially expressed in the lungs and airways of patients with chronic obstructive pulmonary disease (COPD). Moreover, epigenetic mechanisms are involved in the skeletal (peripheral) muscle dysfunction of COPD patients. Whether epigenetic events may also regulate respiratory muscle dysfunction in COPD remains unknown. We hypothesized that epigenetic mechanisms would be differentially expressed in the main inspiratory muscle (diaphragm) of patients with COPD of a wide range of disease severity compared to healthy controls. In diaphragm muscle specimens (thoracotomy due to lung localized neoplasms) of sedentary patients with mild-to-moderate and severe COPD, with preserved body composition, and sedentary healthy controls, expression of muscle-enriched microRNAs, histone acetyltransferases (HATs) and deacetylases (HDACs), total DNA methylation and protein acetylation, small ubiquitin-related modifier (SUMO) ligases, muscle-specific transcription factors, and muscle structure were explored. All subjects were also clinically evaluated: lung and muscle functions and exercise capacity. Compared to healthy controls, patients exhibited moderate airflow limitation and diffusion capacity, and reduced exercise tolerance and transdiaphragmatic strength. Moreover, in the diaphragm of the COPD patients, muscle-specific microRNA expression was downregulated, while HDAC4 and myocyte enhancer factor (MEF)2C protein levels were higher, and DNA methylation levels, muscle fiber types and sizes did not differ between patients and controls. In the main respiratory muscle of COPD patients with a wide range of disease severity and normal body composition, muscle-specific microRNAs were downregulated, while HDAC4 and MEF2C levels were upregulated. It is likely that these epigenetic events act as biological adaptive mechanisms to better overcome the continuous inspiratory loads of the respiratory system in COPD. These findings may offer novel therapeutic strategies to specifically target respiratory muscle dysfunction in patients with COPD.
Collapse
|
25
|
Dutta B, Yan R, Lim SK, Tam JP, Sze SK. Quantitative profiling of chromatome dynamics reveals a novel role for HP1BP3 in hypoxia-induced oncogenesis. Mol Cell Proteomics 2014; 13:3236-49. [PMID: 25100860 DOI: 10.1074/mcp.m114.038232] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In contrast to the intensely studied genetic and epigenetic changes that induce host cell transformation to initiate tumor development, those that promote the malignant progression of cancer remain poorly defined. As emerging evidence suggests that the hypoxic tumor microenvironment could re-model the chromatin-associated proteome (chromatome) to induce epigenetic changes and alter gene expression in cancer cells, we hypothesized that hypoxia-driven evolution of the chromatome promotes malignant changes and the development of therapy resistance in tumor cells. To test this hypothesis, we isolated chromatins from tumor cells treated with varying conditions of normoxia, hypoxia, and re-oxygenation and then partially digested them with DNase I and analyzed them for changes in euchromatin- and heterochromatin-associated proteins using an iTRAQ-based quantitative proteomic approach. We identified a total of 1446 proteins with a high level of confidence, including 819 proteins that were observed to change their chromatin association topology under hypoxic conditions. These hypoxia-sensitive proteins included key mediators of chromatin organization, transcriptional regulation, and DNA repair. Furthermore, our proteomic and functional experiments revealed a novel role for the chromatin organizer protein HP1BP3 in mediating chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance, and self-renewal. Taken together, our findings indicate that HP1BP3 is a key mediator of tumor progression and cancer cell acquisition of therapy-resistant traits, and thus might represent a novel therapeutic target in a range of human malignancies.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr., Singapore 637551
| | - Ren Yan
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr., Singapore 637551
| | - Sai Kiang Lim
- §Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, Singapore 138648
| | - James P Tam
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr., Singapore 637551
| | - Siu Kwan Sze
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr., Singapore 637551;
| |
Collapse
|
26
|
Histone deacetylase 2 controls p53 and is a critical factor in tumorigenesis. Biochim Biophys Acta Rev Cancer 2014; 1846:524-38. [PMID: 25072962 DOI: 10.1016/j.bbcan.2014.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/05/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022]
Abstract
Histone deacetylase 2 (HDAC2) regulates biological processes by deacetylation of histones and non-histone proteins. HDAC2 is overexpressed in numerous cancer types, suggesting general cancer-relevant functions of HDAC2. In human tumors the TP53 gene encoding p53 is frequently mutated and wild-type p53 is often disarmed. Molecular pathways inactivating wild-type p53 often remain to be defined and understood. Remarkably, current data link HDAC2 to the regulation of the tumor suppressor p53 by deacetylation and to the maintenance of genomic stability. Here, we summarize recent findings on HDAC2 overexpression in solid and hematopoietic cancers with a focus on mechanisms connecting HDAC2 and p53 in vitro and in vivo. In addition, we present an evidence-based model that integrates molecular pathways and feedback loops by which p53 and further transcription factors govern the expression and the ubiquitin-dependent proteasomal degradation of HDAC2 and of p53 itself. Understanding the interactions between p53 and HDAC2 might aid in the development of new therapeutic approaches against cancer.
Collapse
|
27
|
Pace E, Ferraro M, Di Vincenzo S, Cipollina C, Gerbino S, Cigna D, Caputo V, Balsamo R, Lanata L, Gjomarkaj M. Comparative cytoprotective effects of carbocysteine and fluticasone propionate in cigarette smoke extract-stimulated bronchial epithelial cells. Cell Stress Chaperones 2013; 18:733-43. [PMID: 23580157 PMCID: PMC3789875 DOI: 10.1007/s12192-013-0424-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 01/01/2023] Open
Abstract
Cigarette smoke extracts (CSE) induce oxidative stress, an important feature in chronic obstructive pulmonary disease (COPD), and oxidative stress contributes to the poor clinical efficacy of corticosteroids in COPD patients. Carbocysteine, an antioxidant and mucolytic agent, is effective in reducing the severity and the rate of exacerbations in COPD patients. The effects of carbocysteine on CSE-induced oxidative stress in bronchial epithelial cells as well as the comparison of these antioxidant effects of carbocysteine with those of fluticasone propionate are unknown. The present study was aimed to assess the effects of carbocysteine (10(-4) M) in cell survival and intracellular reactive oxygen species (ROS) production (by flow cytometry) as well as total glutathione (GSH), heme oxygenase-1 (HO-1), nuclear-related factor 2 (Nrf2) expression and histone deacetylase 2 (HDAC-2) expression/activation in CSE-stimulated bronchial epithelial cells (16-HBE) and to compare these effects with those of fluticasone propionate (10(-8) M). CSE, carbocysteine or fluticasone propionate did not induce cell necrosis (propidium positive cells) or cell apoptosis (annexin V-positive/propidium-negative cells) in 16-HBE. CSE increased ROS production, nuclear Nrf2 and HO-1 in 16-HBE. Fluticasone propionate did not modify intracellular ROS production, GSH and HDCA-2 but reduced Nrf2 and HO-1 in CSE-stimulated 16-HBE. Carbocysteine reduced ROS production and increased GSH, HO-1, Nrf2 and HDAC-2 nuclear expression/activity in CSE-stimulated cells and was more effective than fluticasone propionate in modulating the CSE-mediated effects. In conclusion, the present study provides compelling evidences that the use of carbocysteine may be considered a promising strategy in diseases associated with corticosteroid resistance.
Collapse
Affiliation(s)
- Elisabetta Pace
- Institute of Biomedicine and Molecular Immunology, National Research Council-Palermo, Palermo, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Voelkel NF, Mizuno S, Bogaard HJ. The role of hypoxia in pulmonary vascular diseases: a perspective. Am J Physiol Lung Cell Mol Physiol 2013; 304:L457-65. [PMID: 23377344 DOI: 10.1152/ajplung.00335.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
From the discovery of hypoxic pulmonary vasoconstriction, responses to hypoxia have been considered as representative for the many alterations in lung vessels that occur in several chronic lung diseases, including pulmonary hypertension, interstitial pulmonary fibrosis, acute respiratory distress syndrome, and chronic obstructive pulmonary disease. An essential part of preclinical research to explain the pathobiology of these diseases has been centered on the exposure of small and large animals to hypoxia. This review aims to summarize pivotal results of clinical and preclinical research on hypoxia, which still have important implications for researchers today.
Collapse
Affiliation(s)
- Norbert F Voelkel
- Victoria Johnson Laboratory for Lung Research, Pulmonary and Critical Care Medicine Division, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
29
|
Yasuo M, Mizuno S, Allegood J, Kraskauskas D, Bogaard HJ, Spiegel S, Voelkel NF. Fenretinide causes emphysema, which is prevented by sphingosine 1-phoshate. PLoS One 2013; 8:e53927. [PMID: 23326540 PMCID: PMC3543313 DOI: 10.1371/journal.pone.0053927] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/07/2012] [Indexed: 01/08/2023] Open
Abstract
Sphingolipids play a role in the development of emphysema and ceramide levels are increased in experimental models of emphysema; however, the mechanisms of ceramide-related pulmonary emphysema are not fully understood. Here we examine mechanisms of ceramide-induced pulmonary emphysema. Male Sprague-Dawley rats were treated with fenretinide (20 mg/kg BW), a synthetic derivative of retinoic acid that causes the formation of ceramide, and we postulated that the effects of fenretinide could be offset by administering sphingosine 1-phosphate (S1P) (100 µg/kg BW). Lung tissues were analyzed and mean alveolar airspace area, total length of the alveolar perimeter and the number of caspase-3 positive cells were measured. Hypoxia-inducible factor alpha (HIF-1α), vascular endothelial growth factor (VEGF) and other related proteins were analyzed by Western blot analysis. Immunohistochemical analysis of HIF-1α was also performed. Ceramide, dihydroceramide, S1P, and dihydro-S1P were measured by mass spectrometer. Chronic intraperitoneal injection of fenretinide increased the alveolar airspace surface area and increased the number of caspase-3 positive cells in rat lungs. Fenretinide also suppressed HIF-1α and VEGF protein expression in rat lungs. Concomitant injection of S1P prevented the decrease in the expression of HIF-1α, VEGF, histone deacetylase 2 (HDAC2), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) protein expression in the lungs. S1P injection also increased phosphorylated sphingosine kinase 1. Dihydroceramide was significantly increased by fenretinide injection and S1P treatment prevented the increase in dihydroceramide levels in rat lungs. These data support the concept that increased de novo ceramide production causes alveolar septal cell apoptosis and causes emphysema via suppressing HIF-1α. Concomitant treatment with S1P normalizes the ceramide-S1P balance in the rat lungs and increases HIF-1α protein expression via activation of sphingosine kinase 1; as a consequence, S1P salvages fenretinide induced emphysema in rat lungs.
Collapse
Affiliation(s)
- Masanori Yasuo
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shiro Mizuno
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jeremy Allegood
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Donatas Kraskauskas
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Harm J. Bogaard
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sarah Spiegel
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Norbert F. Voelkel
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
30
|
Bouchecareilh M, Hutt DM, Szajner P, Flotte TR, Balch WE. Histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA)-mediated correction of α1-antitrypsin deficiency. J Biol Chem 2012; 287:38265-78. [PMID: 22995909 PMCID: PMC3488095 DOI: 10.1074/jbc.m112.404707] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/12/2012] [Indexed: 02/06/2023] Open
Abstract
α1-Antitrypsin (α1AT) deficiency (α1ATD) is a consequence of defective folding, trafficking, and secretion of α1AT in response to a defect in its interaction with the endoplasmic reticulum proteostasis machineries. The most common and severe form of α1ATD is caused by the Z-variant and is characterized by the accumulation of α1AT polymers in the endoplasmic reticulum of the liver leading to a severe reduction (>85%) of α1AT in the serum and its anti-protease activity in the lung. In this organ α1AT is critical for ensuring tissue integrity by inhibiting neutrophil elastase, a protease that degrades elastin. Given the limited therapeutic options in α1ATD, a more detailed understanding of the folding and trafficking biology governing α1AT biogenesis and its response to small molecule regulators is required. Herein we report the correction of Z-α1AT secretion in response to treatment with the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA), acting in part through HDAC7 silencing and involving a calnexin-sensitive mechanism. SAHA-mediated correction restores Z-α1AT secretion and serpin activity to a level 50% that observed for wild-type α1AT. These data suggest that HDAC activity can influence Z-α1AT protein traffic and that SAHA may represent a potential therapeutic approach for α1ATD and other protein misfolding diseases.
Collapse
Affiliation(s)
| | | | | | - Terence R. Flotte
- the Department of Pediatrics and Gene Therapy Center UMass Medical School, Worcester, Massachusetts 01655
| | - William E. Balch
- From the Department of Cell Biology
- The Skaggs Institute for Chemical Biology
- Department of Chemical Physiology, and
- the Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92037 and
| |
Collapse
|
31
|
Mizuno S, Bogaard HJ, Gomez-Arroyo J, Alhussaini A, Kraskauskas D, Cool CD, Voelkel NF. MicroRNA-199a-5p is associated with hypoxia-inducible factor-1α expression in lungs from patients with COPD. Chest 2012; 142:663-672. [PMID: 22383663 PMCID: PMC3435138 DOI: 10.1378/chest.11-2746] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/01/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small noncoding RNAs that silence target gene expression posttranscriptionally, and their impact on gene expression has been reported in various diseases. It has been reported that the expression of the hypoxia-inducible factor-1α (HIF-1α) is reduced and that of p53 is increased in lungs from patients with COPD. However, the role of miRNAs associated with these genes in lungs from patients with COPD is unknown. METHODS Lung tissue samples from 55 patients were included in this study. Total RNA, miRNA, and protein were extracted from lung tissues and used for reverse transcriptase polymerase chain reaction and Western blot analysis. Cell culture experiments were performed using cultured human pulmonary microvascular endothelial cells (HPMVECs). RESULTS miR-34a and miR-199a-5p expressions were increased, and the phosphorylation of AKT was decreased in the lung tissue samples of patients with COPD. The miR-199a-5p expression was correlated with HIF-1α protein expression in the lungs of patients with COPD. Transfection of HPMVECs with the miR-199a-5p precursor gene decreased HIF-1α protein expression, and transfection with the miR-34a precursor gene increased miR-199a-5p expression. CONCLUSIONS These data suggest that miR-34a and miR-199a-5p contribute to the pathogenesis of COPD, and these miRNAs may also affect the HIF-1α-dependent lung structure maintenance program.
Collapse
Affiliation(s)
- Shiro Mizuno
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA; Division of Respiratory Disease, Kanazawa Medical University, Ishikawa, Japan
| | - Harm J Bogaard
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA; VU University Medical Center, Amsterdam, The Netherlands
| | - Jose Gomez-Arroyo
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Aysar Alhussaini
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Donatas Kraskauskas
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Carlyne D Cool
- Department of Pathology, University of Colorado Health Science Center, Lung Tissue Repository Consortium Repository, Aurora, CO
| | - Norbert F Voelkel
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA.
| |
Collapse
|
32
|
Robinson CM, Watson CJ, Baugh JA. Epigenetics within the matrix: a neo-regulator of fibrotic disease. Epigenetics 2012; 7:987-93. [PMID: 22894907 DOI: 10.4161/epi.21567] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrosis of any tissue is characterized by excessive extracellular matrix accumulation that ultimately destroys tissue architecture and eventually abolishes normal organ function. Although much research has focused on the mechanisms underlying disease pathogenesis, there are still no effective antifibrotic therapies that can reverse, stop or delay the formation of scar tissue in most fibrotic organs. As fibrosis can be described as an aberrant wound healing response, a recent hypothesis suggests that the cells involved in this process gain an altered heritable phenotype that promotes excessive fibrotic tissue accumulation. This article will review the most recent observations in a newly emerging field that links epigenetic modifications to the pathogenesis of fibrosis. Specifically, the roles of DNA methylation and histone modifications in fibrotic disease will be discussed.
Collapse
Affiliation(s)
- Claire M Robinson
- The Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
33
|
Kabesch M, Adcock IM. Epigenetics in asthma and COPD. Biochimie 2012; 94:2231-41. [PMID: 22874820 DOI: 10.1016/j.biochi.2012.07.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 07/20/2012] [Indexed: 12/20/2022]
Abstract
Epigenetic mechanisms are likely to play a role in many complex diseases, the extent of which we only beginning to understand. COPD and asthma are two respiratory diseases subject to strong environmental influences depending on underlying genetic susceptibility. Epigenetic mechanisms such as DNA methylation, histone modification and microRNA may be involved in these processes by modulating environmental effects to influence disease development. Given their demonstrated modifiable nature, epigenetic mechanisms may open new possibilities for therapeutic intervention. Here we give an overview of recent developments in the field of respiratory epigenetics in relation to asthma and COPD in the context of our current understanding of mechanisms leading to such diseases.
Collapse
Affiliation(s)
- Michael Kabesch
- Department of Pediatric Pneumology, Hannover Medical School, Allergy and Neonatology, Hannover, Germany.
| | | |
Collapse
|
34
|
Yao H, Rahman I. Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD. Am J Physiol Lung Cell Mol Physiol 2012; 303:L557-66. [PMID: 22842217 DOI: 10.1152/ajplung.00175.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Histone deacetylase 2 (HDAC2) is a class I histone deacetylase that regulates various cellular processes, such as cell cycle, senescence, proliferation, differentiation, development, apoptosis, and glucocorticoid function in inhibiting inflammatory response. HDAC2 has been shown to protect against DNA damage response and cellular senescence/premature aging via an epigenetic mechanism in response to oxidative stress. These phenomena are observed in patients with chronic obstructive pulmonary disease (COPD). HDAC2 is posttranslationally modified by oxidative/carbonyl stress imposed by cigarette smoke and oxidants, leading to its reduction via an ubiquitination-proteasome dependent degradation in lungs of patients with COPD. In this perspective, we have discussed the role of HDAC2 posttranslational modifications and its role in regulation of inflammation, histone/DNA epigenetic modifications, DNA damage response, and cellular senescence, particularly in inflammaging, and during the development of COPD. We have also discussed the potential directions for future translational research avenues in modulating lung inflammaging and cellular senescence based on epigenetic chromatin modifications in diseases associated with increased oxidative stress.
Collapse
Affiliation(s)
- Hongwei Yao
- Dept. of Environmental Medicine, Lung Biology and Disease Program, Univ. of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
35
|
To M, Yamamura S, Akashi K, Charron CE, Haruki K, Barnes PJ, Ito K. Defect of adaptation to hypoxia in patients with COPD due to reduction of histone deacetylase 7. Chest 2012; 141:1233-1242. [PMID: 22172637 PMCID: PMC3342783 DOI: 10.1378/chest.11-1536] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 11/16/2011] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Hypoxia inducible factor (HIF)-1 plays an important role in cellular adaptation to hypoxia by activating oxygen-regulated genes such as vascular endothelial growth factor (VEGF) and erythropoietin. Sputum VEGF levels are reported to be decreased in COPD, despite hypoxia. Here we show that patients with COPD fail to induce HIF-1α and VEGF under hypoxic condition because of a reduction in histone deacetylase (HDAC) 7. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from patients with moderate to severe COPD (n = 21), smokers without COPD (n = 12), and nonsmokers (n = 15). PBMCs were exposed to hypoxia (1% oxygen, 5% CO(2), and 94% N(2)) for 24 h, and HIF-1α and HDAC7 protein expression in nuclear extracts were determined by sodium dodecyl sulfate poly acrylamide gel electrophoresis (SDS-PAGE)/Western blotting. RESULTS HIF-1α was significantly induced by hypoxia in each group when compared with the normoxic condition (12-fold induction in nonsmokers, 24-fold induction in smokers without COPD, fourfold induction in COPD), but induction of HIF-1α under hypoxia was significantly lower in patients with COPD than in nonsmokers and smokers without COPD (P < .05 and P < .01, respectively). VEGF messenger RNA detected by quantitative real-time polymerase chain reaction was correlated with HIF-1α protein in nuclei (r = 0.79, P < .05), and HDAC7 protein expression was correlated with HIF-1α protein in nuclei (r = 0.46, P < .05). HDAC7 knockdown inhibited hypoxia-induced HIF-1α activity in U937 cells, and HIF-1α nuclear translocation and HIF-1α binding to the VEGF promoter in A549 cells. CONCLUSIONS HDAC7 reduction in COPD causes a defect of HIF-1α induction response to hypoxia with impaired VEGF gene expression. This poor cellular adaptation might play a role in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Masako To
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, England; Department of Laboratory Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya-City, Saitama, Japan
| | - Satoshi Yamamura
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, England
| | - Kenichi Akashi
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, England
| | - Catherine E Charron
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, England
| | - Kosuke Haruki
- Department of Laboratory Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya-City, Saitama, Japan
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, England
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, England.
| |
Collapse
|
36
|
Mody K, Saslow JG, Kathiravan S, Eydelman R, Bhat V, Stahl GE, Pyon K, Bhandari V, Aghai ZH. Sirtuin1 in tracheal aspirate leukocytes: possible role in the development of bronchopulmonary dysplasia in premature infants. J Matern Fetal Neonatal Med 2012; 25:1483-7. [PMID: 22272724 DOI: 10.3109/14767058.2011.645925] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To study the association between Sirtuin1 (Sirt1), a class III histone deacetylator, in tracheal aspirate (TA) leukocytes and the development of bronchopulmonary dysplasia (BPD) in premature infants and modulation of Sirt1 with dexamethasone (Dex) use. DESIGN/METHODS Serial TA samples were collected on days 1, 3, 5 and 7 from ventilated premature neonates. Sirt1 was localized by immunocytochemistry and quantified on a scale of 0-4 by blinded observers. BPD was defined as the need of supplemental oxygen at 36 weeks postmenstrual age (PMA). RESULTS A total of 130 TA samples were collected from 51 infants (mean ± SD: GA 25.5 ± 1.4 w, BW 762 ± 174 g). Eleven infants survived without BPD and 40 infants died before 36 weeks PMA or developed BPD. Sirt1 was localized in the cytoplasm and nuclei of mononuclear (MONO) as well as polymorphonuclear cells. Sirt1 was significantly more localized in the nuclei of MONO cells in infants without BPD compared to infants who developed BPD or died before 36 weeks PMA. Twenty six infants received Dex. There was no significant change in Sirt1 localization with steroid therapy. CONCLUSIONS Lower Sirt1 in TA leukocytes is associated with the development of BPD or death in premature infants. Dex use had no effect on Sirt1.
Collapse
Affiliation(s)
- Kartik Mody
- Departmentsof Pediatrics, Cooper University Hospital-UMDNJ-Robert Wood Johnson Medical School, Camden, NJ 08103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Malhotra D, Thimmulappa RK, Mercado N, Ito K, Kombairaju P, Kumar S, Ma J, Feller-Kopman D, Wise R, Barnes P, Biswal S. Denitrosylation of HDAC2 by targeting Nrf2 restores glucocorticosteroid sensitivity in macrophages from COPD patients. J Clin Invest 2011; 121:4289-302. [PMID: 22005302 DOI: 10.1172/jci45144] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 09/14/2011] [Indexed: 01/25/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), which is caused primarily by cigarette smoking, is a major health problem worldwide. The progressive decline in lung function that occurs in COPD is a result of persistent inflammation of the airways and destruction of the lung parenchyma. Despite the key role of inflammation in the pathogenesis of COPD, treatment with corticosteroids - normally highly effective antiinflammatory drugs - has little therapeutic benefit. This corticosteroid resistance is largely caused by inactivation of histone deacetylase 2 (HDAC2), which is critical for the transrepressive activity of the glucocorticoid receptor (GR) that mediates the antiinflammatory effect of corticosteroids. Here, we show that in alveolar macrophages from patients with COPD, S-nitrosylation of HDAC2 is increased and that this abolishes its GR-transrepression activity and promotes corticosteroid insensitivity. Cys-262 and Cys-274 of HDAC2 were found to be the targets of S-nitrosylation, and exogenous glutathione treatment of macrophages from individuals with COPD restored HDAC2 activity. Treatment with sulforaphane, a small-molecule activator of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), was also able to denitrosylate HDAC2, restoring dexamethasone sensitivity in alveolar macrophages from patients with COPD. These effects of sulforaphane were glutathione dependent. We conclude that NRF2 is a novel drug target for reversing corticosteroid resistance in COPD and other corticosteroid-resistant inflammatory diseases.
Collapse
Affiliation(s)
- Deepti Malhotra
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dinarello CA, Fossati G, Mascagni P. Histone deacetylase inhibitors for treating a spectrum of diseases not related to cancer. Mol Med 2011; 17:333-52. [PMID: 21556484 DOI: 10.2119/molmed.2011.00116] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/04/2011] [Indexed: 01/04/2023] Open
Abstract
This issue of Molecular Medicine contains 14 original research reports and state-of-the-art reviews on histone deacetylase inhibitors (HDACi's), which are being studied in models of a broad range of diseases not related to the proapoptotic properties used to treat cancer. The spectrum of these diseases responsive to HDACi's is for the most part due to several antiinflammatory properties, often observed in vitro but importantly also in animal models. One unifying property is a reduction in cytokine production as well as inhibition of cytokine postreceptor signaling. Distinct from their use in cancer, the reduction in inflammation by HDACi's is consistently observed at low concentrations compared with the higher concentrations required for killing tumor cells. This characteristic makes HDACi's attractive candidates for treating chronic diseases, since low doses are well tolerated. For example, low oral doses of the HDACi givinostat have been used in children to reduce arthritis and are well tolerated. In addition to the antiinflammatory properties, HDACi's have shown promise in models of neurodegenerative disorders, and HDACi's also hold promise to drive HIV-1 out of latently infected cells. No one molecular mechanism accounts for the non-cancer-related properties of HDACi's, since there are 18 genes coding for histone deacetylases. Rather, there are mechanisms unique for the pathological process of specific cell types. In this overview, we summarize the preclinical data on HDACi's for therapy in a wide spectrum of diseases unrelated to the treatment of cancer. The data suggest the use of HDACi's in treating autoimmune as well as chronic inflammatory diseases.
Collapse
Affiliation(s)
- Charles A Dinarello
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|