1
|
Zhong BY, Fan W, Guan JJ, Peng Z, Jia Z, Jin H, Jin ZC, Chen JJ, Zhu HD, Teng GJ. Combination locoregional and systemic therapies in hepatocellular carcinoma. Lancet Gastroenterol Hepatol 2025; 10:369-386. [PMID: 39993404 DOI: 10.1016/s2468-1253(24)00247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 02/26/2025]
Abstract
Locoregional therapies play a fundamental role in the treatment of patients with early and intermediate and locally advanced hepatocellular carcinomas. With encouraging recent advances in immunotherapy-based systemic therapies, locoregional therapies are being both promoted and challenged by new systemic therapy options. Combined locoregional and systemic therapies might enhance treatment outcomes compared with either option alone. This Series paper summarises the existing data on locoregional and systemic therapies for hepatocellular carcinoma, and discusses evidence from studies investigating their combination with a focus on their synergistic efficacy and safety.
Collapse
Affiliation(s)
- Bin-Yan Zhong
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China; Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenzhe Fan
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Justin J Guan
- Division of Interventional Radiology, Department of Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Zhenwei Peng
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhongzhi Jia
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Haojie Jin
- Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Cheng Jin
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jian-Jian Chen
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Hai-Dong Zhu
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Gao-Jun Teng
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Wehrle CJ, Burns K, Ong E, Couillard A, Parikh ND, Caoili E, Kim J, Aucejo F, Schlegel A, Knott E, Laeseke P, Boudreaux JP, von Breitenbuch P, Silk M, Alassas M, Guzowski A, Fuller B, Koepsel EK, Hewitt B, Mendiratta-Lala M, Kwon DCH. The first international experience with histotripsy: a safety analysis of 230 cases. J Gastrointest Surg 2025; 29:102000. [PMID: 39978577 DOI: 10.1016/j.gassur.2025.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/08/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Histotripsy is a novel, noninvasive, nonionizing, and nonthermal approach that uses focused ultrasound waves to treat liver tumors. This technology received a de novo Food and Drug Administration grant in late 2023. This study aimed to provide the first report on post-trial real-world clinical safety data. METHODS Safety outcomes within 30 days of histotripsy were collected after obtaining Food and Drug Administration clearance (December 22, 2023 to July 26, 2024). All centers that performed histotripsy were invited to participate in this study. Complications requiring treatment were graded using the Clavien-Dindo classification and Comprehensive Complication Index (CCI). RESULTS A total of 295 patients underwent histotripsy for 510 tumors at 18 centers. The treated liver tumor types included colorectal metastases (n = 140), neuroendocrine tumors (n = 46), hepatocellular carcinomas (n = 31), pancreatic tumors (n = 30), and breast metastases (n = 26). The most common numbers of tumors treated per procedure were 1 (n = 170), 2 (n = 69), and 3 (n = 37). All 8 liver segments were treated for tumors. Safety data were available for 230 patients from 9 centers. Of note, 12 of 230 patients (5.2%) experienced complications of any grade. Most patients (9 [75%]) had minor cases (Clavien-Dindo grade ≤ II). The median and mean CCIs were 0.00 (IQR, 0.00-0.00) and 0.00 (95% CI, 0.00-0.75). All 3 major complications (Clavien-Dindo grade > II [1.3%]) were death due to disease progression. All 3 patients underwent histotripsy with palliative intent for known advanced intra- and extrahepatic diseases. CONCLUSION To the best of our knowledge, this is the first study to report on the real-world therapeutic use of histotripsy for liver tumors. Histotripsy was well tolerated, with few overall complications and rare serious complications, indicating a safety profile that compares favorably with that of other liver-directed and surgical therapies for the treatment of liver tumors. Long-term follow-up data, including oncologic outcomes, were collected.
Collapse
Affiliation(s)
- Chase J Wehrle
- Division of Hepatopancreatobiliary Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH, United States.
| | - Kevin Burns
- Department of Interventional Radiology, Mission Community Hospital, Los Angeles, CA, United States
| | - Evan Ong
- Division of Surgical Oncology, Swedish Health Services, Seattle, WA, United States
| | - Allison Couillard
- Department of Interventional Radiology, University of Wisconsin - Madison, Madison, WI, United States
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, United States
| | - Elaine Caoili
- Division of Abdominal and Cross-Sectional Interventional Radiology, University of Michigan, Ann Arbor, MI, United States
| | - JaeKeun Kim
- Division of Hepatopancreatobiliary Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH, United States
| | - Federico Aucejo
- Division of Hepatopancreatobiliary Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH, United States
| | - Andrea Schlegel
- Division of Hepatopancreatobiliary Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH, United States
| | - Emily Knott
- Division of Hepatopancreatobiliary Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH, United States
| | - Paul Laeseke
- Department of Interventional Radiology, University of Wisconsin - Madison, Madison, WI, United States
| | - J Philip Boudreaux
- New Orleans Louisiana Neuroendocrine Tumor Specialists, Louisiana State University Health Center, New Orleans, LA, United States
| | - Philipp von Breitenbuch
- Department of Surgery, Sheikh Tahnoon Bin Mohammed Medical City, Al Ain, United Arab Emirates
| | - Mikhail Silk
- Division of Interventional Radiology, New York University Langone Health, New York, NY, United States
| | - Mohamed Alassas
- Division of Surgical Oncology, Swedish Health Services, Seattle, WA, United States
| | - Andrew Guzowski
- Division of Hepatopancreatobiliary and Advanced Gastrointestinal Surgery, AdventHealth, Orlando, FL, United States
| | - Brian Fuller
- Department of Interventional Radiology, Mission Community Hospital, Los Angeles, CA, United States
| | - Erica Knavel Koepsel
- Department of Interventional Radiology, University of Wisconsin - Madison, Madison, WI, United States
| | - Brock Hewitt
- Division of Surgical Oncology, New York University Langone Health, New York, NY, United States
| | - Mishal Mendiratta-Lala
- Division of Abdominal and Cross-Sectional Interventional Radiology, University of Michigan, Ann Arbor, MI, United States
| | - David C H Kwon
- Division of Hepatopancreatobiliary Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
3
|
Yariv O, Newman NB, Yarchoan M, Rabiee A, Wood BJ, Salem R, Hernandez JM, Bang CK, Yanagihara TK, Escorcia FE. Advances in radiation therapy for HCC: Integration with liver-directed treatments. Hepatol Commun 2025; 9:e0653. [PMID: 40163776 PMCID: PMC11927661 DOI: 10.1097/hc9.0000000000000653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 04/02/2025] Open
Abstract
HCC is the fourth leading cause of cancer-related mortality with increasing incidence worldwide. Historically, treatment for early disease includes liver transplantation, surgical resection, and/or other local therapies, such as thermal ablation. As a result of technical advances and high-quality prospective data, the use of definitive external beam radiotherapy with ablative doses has emerged. Intermediate-stage disease has been generally addressed with arterially directed therapies (eg, chemoembolization or radioembolization) and external beam radiotherapy, while advanced stages have been addressed by systemic therapy or best supportive care. The role of each local/locoregional therapy has rapidly evolved in the context of novel pharmacotherapies, including immunotherapies and antiangiogenic agents. The combinations, indications, and timing of treatments vary widely among specialties and geographies. Here, we aim to synthesize the best quality evidence available regarding the efficacy and safety of different liver-directed modalities, with a focus on recent prospective clinical data of external beam radiotherapy within the context of other available liver-directed therapies across Barcelona Liver Classification (BCLC) stages.
Collapse
Affiliation(s)
- Orly Yariv
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Neil B. Newman
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mark Yarchoan
- Department of Medical Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Atoosa Rabiee
- Division of Gastroenterology and Hepatology, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, USA
| | - Bradford J. Wood
- Interventional Radiology, Center for Interventional Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Riad Salem
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jonathan M. Hernandez
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Christine K. Bang
- Radiation Oncology Clinical Care Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Ted K. Yanagihara
- Department of Radiation Oncology, University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Pan H, Ruan M, Jin R, Zhang J, Li Y, Wu D, Zhang L, Sun W, Wang R. Immune checkpoint inhibitor plus tyrosine kinase inhibitor with or without transarterial chemoembolization for unresectable hepatocellular carcinoma. Front Oncol 2025; 15:1385304. [PMID: 40129919 PMCID: PMC11930818 DOI: 10.3389/fonc.2025.1385304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 02/11/2025] [Indexed: 03/26/2025] Open
Abstract
Background and aims Transcatheter arterial chemoembolization (TACE) has been combined with immune checkpoint inhibitor (ICI)-based systemic therapies for unresectable hepatocellular carcinoma (uHCC) with promising efficacy. However, whether the addition of TACE to the combination of ICI and tyrosine kinase inhibitor (TKI) (ICI+TKI+TACE) is superior to ICI+TKI combination therapy is still not clear. Thus, this study compares the efficacy of ICI+TKI+TACE triple therapy and ICI+TKI doublet therapy in patients with uHCC. Methods uHCC patients treated with either ICI+TKI+TACE triple therapy or ICI+TKI doublet therapy were retrospectively recruited between January 2016 and December 2021 at Eastern Hepatobiliary Surgery Hospital. The patients from ICI+TKI+TACE group and ICI+TKI group were further subjected to propensity score matching (PSM). The primary outcome was progression-free survival (PFS). The secondary outcomes were overall survival (OS) and objective response rate (ORR). Post-progression survival (PPS) as well as treatment-related adverse events (TRAEs) were also assessed. Results A total of 120 patients were matched. The median PFS was 8.4 months in ICI+TKI+TACE triple therapy group versus 6.6 months in ICI+TKI doublet therapy group (HR 0.72, 95%CI 0.48-1.08; p=0.115). Similar results were obtained in term of OS (26.9 versus 24.2 months, HR 0.88, 95% CI 0.51-1.52; p=0.670). The ORR in the triple therapy group was comparable with that in the doublet therapy group (16.6% versus 21.6%, p=0.487). Further subgroup analysis for PFS illustrated that patients without previous locoregional treatment (preLRT) (10.5 versus 3.7 months, HR 0.35 [0.16-0.76]; p=0.009), without previous treatment (10.5 versus 3.5 months, HR 0.34 [0.14-0.81]; p=0.015) or treated with lenvatinib (14.8 versus 6.9 months, HR 0.52 [0.31-0.87]; p=0.013) can significantly benefit from triple therapy compared with doublet therapy. A remarkable interaction between treatment and preLRT (p=0.049) or TKIs-combined (p=0.005) was also detected in term of PFS. Post progression treatment significantly improved PPS in both groups. The incidence of TRAEs was comparable between two groups. Conclusions The addition of TACE to ICI+TKI combination therapy did not result in a substantial improvement in efficacy and prognosis of patients. However, in selected uHCC patients (without preLRT or treated with lenvatinib as combination), ICI+TKI+TACE triple therapy may remarkably improve PFS.
Collapse
Affiliation(s)
- Hongyu Pan
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China
| | - Minghao Ruan
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China
| | - Riming Jin
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China
| | - Jin Zhang
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China
| | - Yao Li
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China
| | - Dong Wu
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China
| | - Lijie Zhang
- The Department of Information, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen Sun
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Ruoyu Wang
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Goodsell KE, Tao AJ, Park JO. Neoadjuvant therapy for hepatocellular carcinoma-priming precision innovations to transform HCC treatment. Front Surg 2025; 12:1531852. [PMID: 40115081 PMCID: PMC11922951 DOI: 10.3389/fsurg.2025.1531852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is increasing in prevalence globally, and cure remains limited with non-operative treatment. Surgical intervention, through resection or transplantation, offers a potential for cure for select patients. However, many patients present with advanced or unresectable disease, and recurrence rates remain high. Recent advances in systemic therapies, particularly immune checkpoint inhibitors, have demonstrated promise in treating unresectable HCC and as adjuvant therapy. Evidence from adjuvant trials highlights the synergistic potential of combined liver-directed and systemic therapies. These findings have ignited growing interest in neoadjuvant therapy across various scenarios: (1) as a bridging strategy while awaiting transplantation, (2) for downstaging disease to enable transplantation, (3) for converting unresectable disease to a resectable state, or (4) as neoadjuvant treatment in operable cases. Early-stage trials of neoadjuvant therapy in resectable HCC have reported promising outcomes. To realize the potential of neoadjuvant treatment for HCC, thoughtfully designed, adequately powered, multi-center clinical trials are essential.
Collapse
Affiliation(s)
- Kristin E Goodsell
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Alice J Tao
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - James O Park
- Department of Surgery, University of Washington, Seattle, WA, United States
- Department of Surgery, Mount Sinai Hospital, New York, NY, United States
| |
Collapse
|
6
|
Wu G, Chen C, Chang J, Fazlollahi F, Makary MS. Expanding the Scope of Interventional Oncology: Locoregional Therapies in Extrahepatic Malignancies. Cancers (Basel) 2025; 17:726. [PMID: 40075574 PMCID: PMC11899649 DOI: 10.3390/cancers17050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Locoregional therapies (LRTs), including transarterial embolization (TAE), transarterial chemoembolization (TACE), and transarterial radioembolization (TARE), have become integral in the management of hepatocellular carcinoma (HCC) in recent decades and continue to shape evolving treatment strategies. While their role in liver tumor management is well established, their potential for treating extrahepatic malignancies is gaining increasing attention. Notably, growing research has highlighted the promising applications of TAE, TACE, and TARE in extrahepatic cancers such as glioblastoma (GBM), soft tissue sarcomas (STSs), prostate cancer (PCa), pancreatic cancer, and renal cell carcinoma (RCC). This review aims to explore these novel applications, providing a comprehensive summary of the current literature, examining clinical outcomes, and discussing future directions for integrating these techniques into broader oncologic treatment strategies. METHODS A systematic literature review was conducted focusing on LRTs such as TAE, TACE, and TARE in extrahepatic malignancies. Studies published between May 1998 and December 2024 were included, emphasizing outcomes in GBM, STS, PCa, pancreatic cancer, and RCC. Data extraction prioritized clinical outcomes, safety profiles, and procedural efficacy. RESULTS LRTs demonstrated significant potential in managing extrahepatic malignancies, with TAE, TACE, and TARE showing promising results in palliative management and tumor control. Across studies, these therapies exhibited varying degrees of success in improving progression-free survival and overall survival, with minimal systemic toxicity. CONCLUSIONS The expanding application of LRTs in extrahepatic malignancies highlights their transformative potential in interventional oncology. By offering targeted, minimally invasive treatment options, these modalities bridge critical gaps in managing tumors refractory to conventional therapies. Future research should focus on standardizing protocols, optimizing patient selection, and exploring combination therapies to maximize their clinical efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Mina S. Makary
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (G.W.); (C.C.); (J.C.)
| |
Collapse
|
7
|
Khalid M, Likhitsup A, Parikh ND. Embolic and Ablative Therapy for Hepatocellular Carcinoma. Clin Liver Dis 2025; 29:87-103. [PMID: 39608960 DOI: 10.1016/j.cld.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Embolic and ablative locoregional therapies (LRTs) for hepatocellular carcinoma are widely used to cure, bridge, or downstage patients for more definitive therapies. Common ablative therapies include microwave ablation and radiofrequency ablation, while embolic options include transarterial chemoembolization and 90Y transarterial radioembolization. While these therapies can be highly effective for the appropriate stage of disease, LRTs can suffer from a high rate of posttreatment recurrences. Considerations for administration of specific therapies include disease burden and underlying liver function. Recent data on concomitant or adjuvant systemic therapy, with LRT, have the potential to improve disease control and improve outcomes in this high-risk patient population.
Collapse
Affiliation(s)
- Mian Khalid
- Division of Gastroenterology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Alisa Likhitsup
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Liu Q, Zhang R, Shen W. Advancements in locoregional therapy for advanced hepatocellular carcinoma: Emerging perspectives on combined treatment strategies. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:109502. [PMID: 39615292 DOI: 10.1016/j.ejso.2024.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 01/03/2025]
Abstract
Hepatocellular carcinoma (HCC) persists as a leading cause of cancer-related mortality, often diagnosed at advanced stages with limited treatment options. Locoregional therapies (LRTs) are crucial in HCC management, playing significant roles in neoadjuvant and palliative treatments, among others. However, the unique disease background of HCC necessitates multidisciplinary and integrated treatment strategies. The therapeutic landscape for advanced HCC has been significantly broadened by the advent of combined therapies, presenting multiple approaches aimed at improving long-term survival, which remains a critical challenge. This review offers a comprehensive overview of major LRTs for HCC, highlighting recent technological advancements and exploring the challenges and limitations in their application, and presents the latest developments in combination therapies, including combinations between different LRTs and their integration with systemic treatments. Additionally, we outline future directions for the development of integrated treatment modalities for advanced HCC.
Collapse
Affiliation(s)
- Qi Liu
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China; The Second Clinical Medical College of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Renjie Zhang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China; The Second Clinical Medical College of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Weixi Shen
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
| |
Collapse
|
9
|
Chen G, Li W, Ge R, Guo T, Zhang Y, Zhou C, Lin M. NUSAP1 Promotes Immunity and Apoptosis by the SHCBP1/JAK2/STAT3 Phosphorylation Pathway to Induce Dendritic Cell Generation in Hepatocellular Carcinoma. J Immunother 2025; 48:46-57. [PMID: 38980111 PMCID: PMC11753460 DOI: 10.1097/cji.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is associated with high morbidity and mortality rates. The aims of this study were to investigate the immune-promoting action of nucleolar and spindle-associated protein 1 (NUSAP1) and identify an immunotherapy target for HCC. The Cancer Genome Atlas (TCGA) was used to analyze interaction molecules and immune correlation. The interaction between NUSAP1 and SHC binding and spindle associated 1 (SHCBP1) was examined. The role of the SHCBP1/Janus kinase 2/signal transducer and activator of transcription 3 (SHCBP1/JAK2/STAT3) pathway in this process was explored. After co-culture with HCC cell lines, the differentiation of peripheral blood mononuclear cells (PBMCs) into dendritic cells (DC) was evaluated by measuring the expression of surface factors CD1a and CD86. Pathological tissues from 50 patients with HCC were collected to validate the results of cell experiments. The expression levels of CD1a and CD86 in tissues were also determined. The results show that NUSAP1 interacted with SHCBP1 and was positively correlated with DC. In HCC cell lines, an interaction was observed between NUSAP1 and SHCBP1. It was verified that NUSAP1 inhibited the JAK2/STAT3 phosphorylation pathway by blocking SHCBP1. After co-culture, the levels of CD1a and CD86 in PBMC were elevated. In the clinical specimens, CD1a and CD86 expression levels were significantly higher in the high-NUSAP1 group versus the low-NUSAP1 group. In Summary, NUSAP1 enhanced immunity by inhibiting the SHCBP1/JAK2/STAT3 phosphorylation pathway and promoted DC generation and HCC apoptosis. NUSAP1 may be a target of immunotherapy for HCC.
Collapse
Affiliation(s)
- Guojie Chen
- Medical School of Nantong University, Nantong, Jiangsu, China
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - WenYa Li
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ruomu Ge
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Ting Guo
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Yuhan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenglin Zhou
- Laboratory Department, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Mei Lin
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
10
|
Verset G, Iezzi R, Bargellini I, Bucalau AM, Pereira P, Groezinger G, Spreafico C, Maleux G. BioPearl™ doxorubicin microspheres for unresectable HCC: a prospective, single-arm, multicenter study: BIOPEARL-ONE. Future Oncol 2025; 21:557-564. [PMID: 39972606 PMCID: PMC11845106 DOI: 10.1080/14796694.2024.2446137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025] Open
Abstract
Drug-eluting microsphere transarterial chemoembolization (DEM-TACE) reduces systemic exposure to chemotherapeutic drugs compared with conventional TACE but permanently occludes the embolized vessels, potentially obviating the possibility of re-treatment with TACE. Temporary embolization by resorbable BioPearl™ microspheres might facilitate subsequent re-treatments. We herein describe the trial protocol of BIOPEARL-ONE, a prospective, single-arm, multicenter, post-market clinical follow-up study. The primary objectives are technical success and safety following the use. DEM-TACE with doxorubicin-loaded BioPearl™ for unresectable hepatocellular carcinoma (HCC). The secondary objectives are tumor response, duration of response, progression-free survival, and survival rate at 18 months. Fifty patients with HCC nodules smaller than 5 cm and within the up-to-7 criteria will be enrolled.Clinical Trial Registration: NCT05911633.
Collapse
Affiliation(s)
- Gontran Verset
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
- Institut Paoli-Calmettes, Oncology Marseille, Provence-Alpes-Côte d’Azu, France
| | - Roberto Iezzi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radiologia Diagnostica ed Interventistica General, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Lazio, Italy
| | - Irene Bargellini
- Radiodiagnostic Department, Candiolo Cancer Institute, Turin, Italy
| | - Ana-Maria Bucalau
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Philippe Pereira
- Center for Radiology, Minimally-Invasive Therapies and Nuclear Medicine, SLK Kliniken GmbH Heilbronn, Heilbronn, Germany
| | - Gerd Groezinger
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Carlo Spreafico
- Department of Radiology, IRCCS Istituto Nazionale dei Tumori di Milano, IRCCS Foundation, Interventional Radiology Unit, Milano, Italy
| | - Geert Maleux
- Radiology, University Hospitals Leuven, Leuven, Vlaams-Brabant, Belgium
| |
Collapse
|
11
|
Groß S, Bitzer M, Albert J, Blödt S, Boda-Heggemann J, Borucki K, Brunner T, Caspari R, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Gebert J, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, Fougère CL, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Ott J, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ringe K, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schütte K, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Trojan J, van Thiel I, Utzig M, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wenzel G, Wildner D, Wörns MA, Galle P, Malek N. S3-Leitlinie Diagnostik und Therapie biliärer Karzinome – Langversion. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2025; 63:e82-e158. [PMID: 39919781 DOI: 10.1055/a-2460-6347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Affiliation(s)
- Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | | | - Katrin Borucki
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Klinische Chemie und Pathobiochemie
| | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e.V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Jamila Gebert
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e.V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Julia Ott
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Digestive Diseases and Nutrition, Gastroenterology, University of Kentucky
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | - Kristina Ringe
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | | | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Kerstin Schütte
- Klinik für Innere Medizin und Gastroenterologie, Niels-Stensen-Kliniken, Marienhospital Osnabrück
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Martin Utzig
- Abteilung Zertifizierung, Deutsche Krebsgesellschaft e.V., Berlin
| | - Arndt Vogel
- Institute of Medical Science, University of Toronto
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie, Infektiologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Gregor Wenzel
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e.V., Berlin
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
12
|
Sangro B, Argemi J, Ronot M, Paradis V, Meyer T, Mazzaferro V, Jepsen P, Golfieri R, Galle P, Dawson L, Reig M. EASL Clinical Practice Guidelines on the management of hepatocellular carcinoma. J Hepatol 2025; 82:315-374. [PMID: 39690085 DOI: 10.1016/j.jhep.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Liver cancer is the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) accounting for approximately 90% of primary liver cancers. Advances in diagnostic and therapeutic tools, along with improved understanding of their application, are transforming patient treatment. Integrating these innovations into clinical practice presents challenges and necessitates guidance. These clinical practice guidelines offer updated advice for managing patients with HCC and provide a comprehensive review of pertinent data. Key updates from the 2018 EASL guidelines include personalised surveillance based on individual risk assessment and the use of new tools, standardisation of liver imaging procedures and diagnostic criteria, use of minimally invasive surgery in complex cases together with updates on the integrated role of liver transplantation, transitions between surgical, locoregional, and systemic therapies, the role of radiation therapies, and the use of combination immunotherapies at various stages of disease. Above all, there is an absolute need for a multiparametric assessment of individual risks and benefits, considering the patient's perspective, by a multidisciplinary team encompassing various specialties.
Collapse
|
13
|
Das S, Berlin J. Systemic Therapy Improvements Will Render Locoregional Treatments Obsolete for Patients with Cancer with Liver Metastases. Hematol Oncol Clin North Am 2025; 39:191-206. [PMID: 39510673 DOI: 10.1016/j.hoc.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Hepatic metastases are a major cause of morbidity and mortality for patients with cancer. Apart from curative resection, which offers patients the potential for long-term survival, an array of locoregional therapies, with limited evidence of improving survival, are used to treat them. The authors use examples from the realm of gastrointestinal cancer, largely focusing on the experience of patients with neuroendocrine cancer, hepatobiliary cancer, and colorectal cancer, to suggest that current systemic therapies offer, at minimum, similar survival outcomes for patients compared with these locoregional approaches.
Collapse
Affiliation(s)
- Satya Das
- Department of Medicine, Division of Hematology Oncology, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA.
| | - Jordan Berlin
- Department of Medicine, Division of Hematology Oncology, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA. https://twitter.com/jordanberlin5
| |
Collapse
|
14
|
Hwang SY, Danpanichkul P, Agopian V, Mehta N, Parikh ND, Abou-Alfa GK, Singal AG, Yang JD. Hepatocellular carcinoma: updates on epidemiology, surveillance, diagnosis and treatment. Clin Mol Hepatol 2025; 31:S228-S254. [PMID: 39722614 PMCID: PMC11925437 DOI: 10.3350/cmh.2024.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global burden, ranking as the third leading cause of cancer-related mortality. HCC due to chronic hepatitis B virus (HBV) or C virus (HCV) infection has decreased due to universal vaccination for HBV and effective antiviral therapy for both HBV and HCV, but HCC related to metabolic dysfunction-associated steatotic liver disease and alcohol-associated liver disease is increasing. Biannual liver ultrasonography and serum α-fetoprotein are the primary surveillance tools for early HCC detection among high-risk patients (e.g., cirrhosis, chronic HBV). Alternative surveillance tools such as blood-based biomarker panels and abbreviated magnetic resonance imaging (MRI) are being investigated. Multiphasic computed tomography or MRI is the standard for HCC diagnosis, but histological confirmation should be considered, especially when inconclusive findings are seen on cross-sectional imaging. Staging and treatment decisions are complex and should be made in multidisciplinary settings, incorporating multiple factors including tumor burden, degree of liver dysfunction, patient performance status, available expertise, and patient preferences. Early-stage HCC is best treated with curative options such as resection, ablation, or transplantation. For intermediate-stage disease, locoregional therapies are primarily recommended although systemic therapies may be preferred for patients with large intrahepatic tumor burden. In advanced-stage disease, immune checkpoint inhibitor-based therapy is the preferred treatment regimen. In this review article, we discuss the recent global epidemiology, risk factors, and HCC care continuum encompassing surveillance, diagnosis, staging, and treatments.
Collapse
Affiliation(s)
- Soo Young Hwang
- Department of Internal Medicine, University of Maryland Medical Center, Midtown Campus, Baltimore, Maryland, USA
| | - Pojsakorn Danpanichkul
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Vatche Agopian
- Dumont-UCLA Transplant and Liver Cancer Centers, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Neil Mehta
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, California, USA
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
- Department of Medicine, Weill Medical College at Cornell University, New York, USA
- Trinity College Dublin, Dublin, Ireland
| | - Amit G Singal
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
15
|
Kinsey E, Morse MA. Systemic Therapy for Hepatocellular Carcinoma. Clin Liver Dis 2025; 29:105-124. [PMID: 39608951 DOI: 10.1016/j.cld.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Systemic therapy for hepatocellular carcinoma has evolved from sorafenib to now include immune checkpoint blockade, either atezolizumab/bevacizumab or durvalumab/tremelimumab, and soon to include camrelizumab/rivoceranib and nivolumab/ipilimumab. Second-line therapy remains predominantly either a multikinase inhibitor or ramucirumab. Areas of development include testing immune checkpoint-based regimens in the adjuvant setting after surgery, ablation, or transarterial embolization. Also of interest are studies for patients with Child-Pugh B liver function and adding new checkpoint molecules to the current standard platforms.
Collapse
Affiliation(s)
- Emily Kinsey
- Department of Medicine, Division of Hematology, Oncology & Palliative Care, VCU Health, Richmond, VA, USA
| | - Michael A Morse
- Department of Medicine, Division of Medical Oncology, Duke University Health System, Durham, NC, USA.
| |
Collapse
|
16
|
Groß S, Bitzer M, Albert J, Blödt S, Boda-Heggemann J, Borucki K, Brunner T, Caspari R, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Gebert J, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, La Fougère C, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Ott J, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ringe K, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schütte K, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Trojan J, van Thiel I, Utzig M, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wenzel G, Wildner D, Wörns MA, Galle P, Malek N. S3-Leitlinie Diagnostik und Therapie biliärer Karzinome – Kurzversion. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2025; 63:169-203. [PMID: 39919782 DOI: 10.1055/a-2446-2454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Affiliation(s)
- Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | | | - Katrin Borucki
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Klinische Chemie und Pathobiochemie
| | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Jamila Gebert
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Julia Ott
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Digestive Diseases and Nutrition, Gastroenterology, University of Kentucky
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | - Kristina Ringe
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | - Hans J Schlitt
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg
| | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Kerstin Schütte
- Klinik für Innere Medizin und Gastroenterologie, Niels-Stensen-Kliniken, Marienhospital Osnabrück
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Martin Utzig
- Abteilung Zertifizierung, Deutsche Krebsgesellschaft e. V., Berlin
| | - Arndt Vogel
- Institute of Medical Science, University of Toronto
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie, Infektiologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Gregor Wenzel
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
17
|
Wu L, Chen L, Zhang L, Liu Y, Ouyang D, Wu W, Lei Y, Han P, Zhao H, Zheng C. A Machine Learning Model for Predicting Prognosis in HCC Patients With Diabetes After TACE. J Hepatocell Carcinoma 2025; 12:77-91. [PMID: 39867262 PMCID: PMC11762020 DOI: 10.2147/jhc.s496481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025] Open
Abstract
Purpose Type II diabetes mellitus (T2DM) has been found to increase the mortality of patients with hepatocellular carcinoma (HCC). Therefore, this study aimed to establish and validate a machine learning-based explainable prediction model of prognosis in patients with HCC and T2DM undergoing transarterial chemoembolization (TACE). Patients and Methods The prediction model was developed using data from the derivation cohort comprising patients from three medical centers, followed by external validation utilizing patient data extracted from another center. Further, five predictive models were employed to establish prognosis models for 1-, 2-, and 3-year survival, respectively. Prediction performance was assessed by the receiver operating characteristic (ROC), calibration, and decision curve analysis curves. Lastly, the SHapley Additive exPlanations (SHAP) method was used to interpret the final ML model. Results A total of 636 patients were included. Thirteen variables were selected for the model development. The final random survival forest (RSF) model exhibited excellent performance in the internal validation cohort, with areas under the ROC curve (AUCs) of 0.824, 0.853, and 0.810 in the 1-, 2-, and 3-year survival groups, respectively. This model also demonstrated remarkable discrimination in the external validation cohort, achieving AUCs of 0.862, 0.815, and 0.798 in the 1-, 2-, and 3-year survival groups, respectively. SHAP summary plots were also created to interpret the RSF model. Conclusion An RSF model with good predictive performance was developed by incorporating simple parameters. This prognostic prediction model may assist physicians in early clinical intervention and improve prognosis outcomes in patients with HCC and comorbid T2DM after TACE.
Collapse
Affiliation(s)
- Linxia Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, People’s Republic of China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, People’s Republic of China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, Hubei Province, 430022, People’s Republic of China
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, People’s Republic of China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, People’s Republic of China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, Hubei Province, 430022, People’s Republic of China
| | - Lijie Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, People’s Republic of China
- Department of Interventional Radiology, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Yiming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, People’s Republic of China
- Department of Interventional Radiology, Auto Valley Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430056, People’s Republic of China
| | - Die Ouyang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, People’s Republic of China
| | - Wenlong Wu
- Department of Interventional Radiology, Auto Valley Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430056, People’s Republic of China
- Department of Interventional Radiology, Jinyinhu Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430048, People’s Republic of China
| | - Yu Lei
- Department of Interventional Radiology, Auto Valley Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430056, People’s Republic of China
- Department of Interventional Radiology, Jinyinhu Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430048, People’s Republic of China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, People’s Republic of China
| | - Huangxuan Zhao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, People’s Republic of China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, People’s Republic of China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, Hubei Province, 430022, People’s Republic of China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, People’s Republic of China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, People’s Republic of China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, Hubei Province, 430022, People’s Republic of China
| |
Collapse
|
18
|
Lanza C, Ascenti V, Amato GV, Pellegrino G, Triggiani S, Tintori J, Intrieri C, Angileri SA, Biondetti P, Carriero S, Torcia P, Ierardi AM, Carrafiello G. All You Need to Know About TACE: A Comprehensive Review of Indications, Techniques, Efficacy, Limits, and Technical Advancement. J Clin Med 2025; 14:314. [PMID: 39860320 PMCID: PMC11766109 DOI: 10.3390/jcm14020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Transcatheter arterial chemoembolization (TACE) is a proven and widely accepted treatment option for hepatocellular carcinoma and it is recommended as first-line non-curative therapy for BCLC B/intermediate HCC (preserved liver function, multifocal, no cancer-related symptoms) in patients without vascular involvement. Different types of TACE are available nowadays, including TAE, c-TACE, DEB-TACE, and DSM-TACE, but at present there is insufficient evidence to recommend one TACE technique over another and the choice is left to the operator. This review then aims to provide a comprehensive overview of the current literature on indications, types of procedures, safety, and efficacy of different TACE treatments.
Collapse
Affiliation(s)
- Carolina Lanza
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Velio Ascenti
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Gaetano Valerio Amato
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Giuseppe Pellegrino
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Sonia Triggiani
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Jacopo Tintori
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Cristina Intrieri
- Postgraduate School in Diangostic Imaging, Università degli Studi di Siena, 20122 Milan, Italy;
| | - Salvatore Alessio Angileri
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Pierpaolo Biondetti
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Serena Carriero
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Pierluca Torcia
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Anna Maria Ierardi
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Gianpaolo Carrafiello
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
- Faculty of Health Science, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| |
Collapse
|
19
|
Wilkins LR, Sheth RA, Tabori NE, Tam AL. Caveat Lector: The Importance of Becoming a Discerning Guidelines Reader. J Vasc Interv Radiol 2025; 36:1-8. [PMID: 39383936 DOI: 10.1016/j.jvir.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024] Open
Affiliation(s)
- Luke R Wilkins
- Section of Vascular and Interventional Radiology, Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia.
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nora E Tabori
- Section of Interventional Radiology, Department of Radiology, MedStar Washington Hospital Center, Washington, DC
| | - Alda L Tam
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
20
|
Liu X, Lei X, Huang S, Yang X. Current Perspectives of Immunotherapy for Hepatocellular Carcinoma. Comb Chem High Throughput Screen 2025; 28:185-201. [PMID: 38031784 DOI: 10.2174/0113862073255266231025111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Hepatocellular carcinoma is the sixth most common tumor and the third leading cause of cancer death worldwide. It ranks fourth in the spectrum of malignant tumor incidence and second in the order of death from major malignant tumors in China. Hepatocellular carcinoma is a complex ecosystem containing non-tumor cells (mainly immune-related cells), and its immunotherapy can stimulate the recognition of specific tumor antigens, inhibit the proliferation of cancer cells, and produce over-memory lymphocytes, which can prevent recurrence. So, immunotherapy of hepatocellular carcinoma is increasingly becoming a research hotspot in liver cancer treatment. With the intensive research in recent years, great progress has been made in immunotherapy for hepatocellular carcinoma, including immune checkpoint inhibitors, pericyte therapy, vaccination, and antiviral therapy. In addition, the study found that the therapeutic effect of combination therapy was enhanced compared to monotherapy. This review summarizes the most prominent immunotherapies currently available for the clinical treatment of patients with HCC and the main opportunities and challenges facing HCC research.
Collapse
Affiliation(s)
- Xiaoyi Liu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
21
|
Chen L, Wu L, Zhang L, Sun B, Wu W, Lei Y, Zhu L, Sun T, Liang B, Zhao H, Zheng C. Effect of metformin on hepatocellular carcinoma patients with type II diabetes receiving transarterial chemoembolization: a multicenter retrospective cohort study. Int J Surg 2025; 111:828-838. [PMID: 38935094 PMCID: PMC11745749 DOI: 10.1097/js9.0000000000001872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Diabetes is prevalent among patients with hepatocellular carcinoma (HCC) and is associated with a poor prognosis. Although the hypoglycemic drug metformin has shown antitumor effects, its potential positive effect on patients with HCC and diabetes undergoing transarterial chemoembolization (TACE) remains unclear. Therefore, this study aimed to investigate the efficacy and safety of metformin in patients with HCC and type II diabetes who are receiving TACE. MATERIALS AND METHODS This retrospective study involved 372 consecutive patients with HCC and type II diabetes across three medical centers between January 2014 and June 2021. All patients underwent TACE. Propensity score matching (PSM) was used to reduce selection bias. Cox proportional hazards regression was employed to compare all-cause death between the metformin and nonmetformin groups while competing risk regression was performed to assess cancer-specific death. RESULTS Among 372 patients included in the study, 208 patients (177 male patients and 31 female patients) with a mean age of 59.6 (10.3) years received metformin, and 164 patients (139 male patients and 25 female patients) with a mean age of 60.3 (10.0) years did not. Before PSM, patients with metformin had significantly longer median overall survival (mOS) and median progression-free survival (mPFS) than those without metformin (mOS: 34 months, 95% CI: 25.6-42.4 vs. 20 months, 95% CI: 15.3-24.7; P <0.001; mPFS: 11 months, 95% CI: 9.3-12.7 vs. 8 months, 95% CI: 5.9-10.1; P <0.001). Similar results were observed after PSM. Multivariate regression analysis indicated that metformin was associated with a reduced risk of all-cause mortality (HR: 0.589, 95% CI: 0.454-0.763; P <0.001) and tumor progression (HR: 0.667, 95% CI: 0.526-0.845; P =0.001) before PSM. After excluding deaths related to other factors, metformin continued to demonstrate a reduction in cancer-specific mortality risk among the patients. Subgroup analysis further revealed that patients using metformin had lower all-cause mortality risk and tumor progression risk than those without metformin in most subgroups. Adverse event evaluation suggested that metformin could lead to elevated nausea incidence. CONCLUSION Metformin may confer survival benefits to patients with HCC and type II diabetes undergoing TACE. Metformin may simultaneously address multiple aspects of treatment in these patients.
Collapse
Affiliation(s)
- Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Linxia Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Lijie Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Department of Interventional Radiology, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, People’s Republic of China
| | - Bo Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Wenlong Wu
- Department of Interventional Radiology, Chegu Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Yu Lei
- Department of Interventional Radiology, Chegu Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Tao Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Bin Liang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Department of Interventional Radiology, Chegu Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Huangxuan Zhao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
22
|
Zhang H, Xu J, Meng H, Shen L. Comparison of the Effectiveness of Transarterial Bland Embolization and Transarterial Chemoembolization for Intermediate-Stage Hepatocellular Carcinoma: A Propensity Score-Matched Study of 1,008 Patients. J Vasc Interv Radiol 2025; 36:41-49. [PMID: 39299651 DOI: 10.1016/j.jvir.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE To assess the effectiveness of transarterial bland embolization (TAE) compared with transarterial chemoembolization (TACE) therapy in the treatment of patients with intermediate-stage hepatocellular carcinoma (HCC). MATERIALS AND METHODS Two thousand two hundred ninety-seven patients with intermediate-stage HCC were screened, and 1,461 patients who underwent TAE or TACE as the first-choice treatment were retrospectively analyzed and baseline matched according to the 2 treatment methods. Subgroup analysis was performed among patients according to the Up-to-7 criteria. The primary endpoint was overall survival (OS). RESULTS A total of 1,461 patients with HCC who underwent TAE or TACE were included; 730 patients underwent TACE and 731 underwent TAE. The patients in the TAE group exhibited poorer liver function and a significantly higher rate of hepatitis B infection (P < .001) compared with the TACE group. After propensity score matching, 504 well-matched pairs of patients with intermediate-stage HCC were selected for analysis. Univariate analysis showed that TACE significantly prolonged patient survival compared with TAE (P < .001). The 1-, 2-, and 3-year OS rates were 74.3%, 57.1%, and 44.4% and for the TACE group and 58.3%, 32.4%, and 21.7% for the TAE group, respectively. Multivariate analysis showed a hazard ratio of 0.517 (95% CI, 0.442-0.605; P < .001) for the TACE approach over the TAE approach for OS. The TACE group had a significantly higher overall response rate than the TAE group (35% vs 26%; P = .024). CONCLUSIONS TACE resulted in higher response rate and longer OS compared with TAE as the initial treatment for intermediate-stage HCC.
Collapse
Affiliation(s)
- Hongmin Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jian Xu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haoyu Meng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lujun Shen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
23
|
Pol S. [Hepatocellular carcinoma (HCC)]. MEDECINE TROPICALE ET SANTE INTERNATIONALE 2024; 4:mtsi.v4i4.2024.614. [PMID: 40070978 PMCID: PMC11892391 DOI: 10.48327/mtsi.v4i4.2024.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/15/2024] [Indexed: 03/14/2025]
Abstract
Primary liver cancers are tumors that develop from different liver cells. Hepatocellular carcinoma (HCC), which develops from hepatocytes, accounts for approximately 75-85% of primary liver cancers.HCC is the 6th leading cause of cancer worldwide and the 3rd leading cause of cancer-related death. Its incidence is low in northern Europe, but high in sub-Saharan Africa and the Far East, where both hepatotropic viruses and exposure to mycotoxins are. It complicates cirrhosis in over 90% of cases and is predominantly male.The prevalence of HCC is increasing due to improved diagnostic techniques and criteria, but also to the persistence of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections in adults. A worldwide increase in the incidence of steatopathy makes it the leading cause of liver disease worldwide, associated with alcohol abuse and/or steatohepatitis associated with metabolic dysfunction (MASH), including type 2 diabetes.Chronic hepatotropic viral infections, cirrhosis and chemical carcinogens combine to produce an annual incidence of 2-5% of hepatocellular carcinoma arising from cirrhosis. This justifies biannual surveillance of known cirrhosis, without which late diagnosis limits therapeutic options.Major advances have been made in curative treatment (liver transplantation, surgery, radiodestruction) and palliative treatment (chemo- or radioembolization, sorafenib chemotherapy or immunotherapy), depending on how early HCC is diagnosed (size, number of hepatic or extrahepatic lesions) and the severity of underlying liver disease and associated comorbidities.
Collapse
Affiliation(s)
- Stanislas Pol
- AP-HP. Centre Université Paris Centre, Groupe hospitalier Cochin Port Royal, Département médical universitaire de Cancérologie et spécialités médico-chirurgicales, Service des maladies du foie, Paris, France; Université Paris Cité, F-75006, Paris, France
| |
Collapse
|
24
|
Zhou WJ, Huang JT, Lu X, Hu D, Hong X, Wang FA, Lv PH, Zhu XL. Transarterial Chemoembolization Plus Camrelizumab and Rivoceranib versus Camrelizumab and Rivoceranib Alone for BCLC Stage C Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:2515-2524. [PMID: 39720263 PMCID: PMC11668319 DOI: 10.2147/jhc.s494520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024] Open
Abstract
Purpose Camrelizumab and rivoceranib together provide a new first-line treatment approach for unresectable hepatocellular carcinoma (HCC). Meanwhile, transarterial chemoembolization (TACE) is an effective method for the local control of the HCC. The study compared the clinical benefit and safety between TACE with camrelizumab-rivoceranib and camrelizumab-rivoceranib alone for Barcelona Clinic Liver Cancer (BCLC)-C HCC patients. Patients and Methods This multi-center retrospective analysis included continuous BCLC-C HCC patients who received camrelizumab-rivoceranib with TACE and camrelizumab-rivoceranib alone from January 2020 to December 2022. The therapeutic response, progression-free survival (PFS), safety, and overall survival (OS) were compared. The quantitative data were compared via the t-test or Mann-Whitney U-test. Comparison of the categorical data was done by chi-square or Fisher's exact tests. The comparison of PFS with OS was compared by Log rank test. A Multivariate Cox regression test was utilized to identify risk variables for both PFS and OS. Results This analysis comprised 132 BCLC-C HCC patients who received camrelizumab-rivoceranib alone (n = 74) or combined treatment (n = 58). The combined group displayed higher partial response (44.8% vs 21.6%, p = 0.004) and total response (55.2% versus 36.5%, p = 0.032) rates than camrelizumab-rivoceranib alone group. The median PFS (13.5 months vs 10.3 months, p = 0.046) and OS (22.8 months vs 18.4 months, p = 0.041) for the combined group was significantly longer relative to the camrelizumab-rivoceranib alone group. Additional risk factors, excluding the therapy option, were a higher alpha-fetoprotein level and Eastern Cooperative Oncology Group performance status. The incident rates of camrelizumab-rivoceranib-related advents were comparable between combined and camrelizumab-rivoceranib alone groups (46.3% vs 51.4%, p = 0.572). The combined group contained 33 patients (56.9%) who experienced temporary post-embolization symptoms. Conclusion For BCLC-C HCC patients, TACE may significantly increase the therapeutic effectiveness of camrelizumab-rivoceranib without increasing the risk of camrelizumab-rivoceranib-related complications.
Collapse
Affiliation(s)
- Wen-Jie Zhou
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- Department of Interventional Radiology, Northern Jiangsu People’s Hospital, Clinical Medical College of Yangzhou University, Yangzhou, People’s Republic of China
| | - Jin-Tao Huang
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xin Lu
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, People’s Republic of China
| | - Di Hu
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xin Hong
- Department of Interventional Radiology, Affiliated Hospital 2 of Nantong University, Nantong, People’s Republic of China
| | - Fu-An Wang
- Department of Interventional Radiology, Northern Jiangsu People’s Hospital, Clinical Medical College of Yangzhou University, Yangzhou, People’s Republic of China
| | - Peng-Hua Lv
- Department of Interventional Radiology, Northern Jiangsu People’s Hospital, Clinical Medical College of Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiao-Li Zhu
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
25
|
Wu D, Sun X, Li X, Zuo Z, Yan D, Yin W. RRM2 Regulates Hepatocellular Carcinoma Progression Through Activation of TGF-β/Smad Signaling and Hepatitis B Virus Transcription. Genes (Basel) 2024; 15:1575. [PMID: 39766842 PMCID: PMC11675542 DOI: 10.3390/genes15121575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a type of malignant tumor with high morbidity and mortality. Untimely treatment and high recurrence are currently the major challenges for HCC. The identification of potential targets of HCC progression is crucial for the development of new therapeutic strategies. METHODS Bioinformatics analyses have been employed to discover genes that are differentially expressed in clinical cases of HCC. A variety of pharmacological methods, such as MTT, colony formation, EdU, Western blotting, Q-PCR, wound healing, Transwell, cytoskeleton F-actin filaments, immunohistochemistry (IHC), hematoxylin-eosin (HE) staining, and dual-luciferase reporter assay analyses, were utilized to study the pharmacological effects and potential mechanisms of ribonucleotide reductase regulatory subunit M2 (RRM2) in HCC. RESULTS RRM2 expression is significantly elevated in HCC, which is well correlated with poor clinical outcomes. Both in vitro and in vivo experiments demonstrated that RRM2 promoted HCC cell growth and metastasis. Mechanistically, RRM2 modulates the EMT phenotype of HCC, and further studies have shown that RRM2 facilitates the activation of the TGF-β/Smad signaling pathway. SB431542, an inhibitor of TGF-β signaling, significantly inhibited RRM2-induced cell migration. Furthermore, RRM2 expression was correlated with diminished survival in HBV-associated HCC patients. RRM2 knockdown decreased the levels of HBV RNA, pgRNA, cccDNA, and HBV DNA in HepG2.2.15 cells exhibiting sustained HBV infection, while RRM2 knockdown inhibited the activity of the HBV Cp, Xp, and SpI promoters. CONCLUSION RRM2 is involved in the progression of HCC by activating the TGF-β/Smad signaling pathway. RRM2 increases HBV transcription in HBV-expressing HCC cells. Targeting RRM2 may be of potential value in the treatment of HCC.
Collapse
Affiliation(s)
- Dandan Wu
- State Key Lab of Pharmaceutical Biotechnology (SKLPB), College of Life Sciences in Nanjing University (Xianlin Campus), Nanjing University, Nanjing 210046, China; (D.W.); (X.S.); (X.L.)
| | - Xinning Sun
- State Key Lab of Pharmaceutical Biotechnology (SKLPB), College of Life Sciences in Nanjing University (Xianlin Campus), Nanjing University, Nanjing 210046, China; (D.W.); (X.S.); (X.L.)
| | - Xin Li
- State Key Lab of Pharmaceutical Biotechnology (SKLPB), College of Life Sciences in Nanjing University (Xianlin Campus), Nanjing University, Nanjing 210046, China; (D.W.); (X.S.); (X.L.)
| | - Zongchao Zuo
- The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China;
| | - Dong Yan
- Department of Cardiology, Affiliated Hospital of Nanjing University of TCM, Nanjing 210023, China;
| | - Wu Yin
- State Key Lab of Pharmaceutical Biotechnology (SKLPB), College of Life Sciences in Nanjing University (Xianlin Campus), Nanjing University, Nanjing 210046, China; (D.W.); (X.S.); (X.L.)
| |
Collapse
|
26
|
Patresan J, Patel H, Chandrasekaran K, Reynolds G. Current Treatment Paradigm and Approach to Advanced Hepatocellular Carcinoma. Cureus 2024; 16:e75471. [PMID: 39791050 PMCID: PMC11717138 DOI: 10.7759/cureus.75471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common forms of primary liver cancer worldwide. Herein, we present a review article that provides a broad overview of the current landscape of HCC, including the etiology, potential risk factors, and molecular pathways that can serve as potential therapeutic targets. The risk factors tend to vary depending on the geographic distribution; hepatitis B-induced cirrhosis and HCC occur more frequently in Asia and Sub-Saharan Africa, whereas metabolic disorders are the culprits in Western Europe and the Americas. The exact molecular alterations that drive hepatocarcinogenesis have yet to be elucidated; however, a complex interplay exists between oxidative stress and chronic inflammation. Diagnostic modalities such as tri-phasic MRI or CT also have distinct patterns for HCC, which aid significantly in diagnosis. Furthermore, the review aims to highlight treatment strategies, including transplantation, locoregional radiation therapies, and interventional radiological techniques such as chemotherapy or radioembolization. Finally, systemic therapies will be discussed, taking advantage of molecular pathways that influence cellular proliferation and survival as well as immunotherapy.
Collapse
Affiliation(s)
- John Patresan
- Hematology and Oncology, Roger Williams Medical Center, Boston University School of Medicine, Providence, USA
| | - Harsh Patel
- Gastroenterology and Hepatology, New York-Presbyterian Brooklyn Methodist Hospital, Weill Cornell Medicine, Brooklyn, USA
| | - Karthik Chandrasekaran
- Internal Medicine and Gastroenterology, New York-Presbyterian Brooklyn Methodist Hospital, Weill Cornell Medicine, Brooklyn, USA
| | - Griffin Reynolds
- Hematology and Oncology, Roger Williams Medical Center, Boston University School of Medicine, Providence, USA
| |
Collapse
|
27
|
Whitesell RT, Nordman CR, Johnston SK, Sheafor DH. Clinical management of active bleeding: what the emergency radiologist needs to know. Emerg Radiol 2024; 31:903-918. [PMID: 39400642 DOI: 10.1007/s10140-024-02289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Active bleeding is a clinical emergency that often requires swift action driven by efficient communication. Extravasation of intravenous (IV) contrast on computed tomography (CT) is a hallmark of active hemorrhage. This can be seen on exams performed for a variety of indications and can occur anywhere in the body. As both traumatic and non-traumatic etiologies of significant blood loss are clinical emergencies, exams demonstrating active bleeding are often performed in emergency departments and read by emergency radiologists. Prompt communication of these findings to the appropriate emergency medicine and surgical providers is crucial. Although many types of active hemorrhage can be managed by interventional radiology techniques, endoscopic and surgical management or clinical observation may be appropriate in certain cases. To facilitate optimal care, it is important for emergency radiologists to understand the scope of indications for embolization of bleeding by interventional radiologists (IR) and when an IR consultation is warranted. Similarly, timely comprehensive diagnostic radiology reporting including pertinent positive and negative findings tailored for IR colleagues can expedite the appropriate intervention.
Collapse
Affiliation(s)
- Ryan T Whitesell
- Division of Emergency Radiology, Midwest Radiology, 2355 Highway 36 West, Roseville, MN, USA.
| | - Cory R Nordman
- Division of Interventional Radiology, Midwest Radiology, 2355 Highway 36 West, Roseville, MN, USA.
| | - Sean K Johnston
- Division of Emergency Radiology, Midwest Radiology, 2355 Highway 36 West, Roseville, MN, USA.
| | - Douglas H Sheafor
- Division of Emergency Radiology, Midwest Radiology, 2355 Highway 36 West, Roseville, MN, USA.
| |
Collapse
|
28
|
Xie Q, Yang Y, Hao W, Luo C. Unleashing the potential: transarterial chemoembolization combined with intra-arterial infusion of bevacizumab for unresectable hepatocellular carcinoma. Clin Transl Oncol 2024; 26:3075-3084. [PMID: 38801510 DOI: 10.1007/s12094-024-03498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND The purpose of this study is to compare the efficacy and safety of transarterial chemoembolization (TACE) alone with transarterial chemoembolization combined with the arterial infusion of bevacizumab (TACE + Bev) in patients with unresectable hepatocellular carcinoma (uHCC). METHODS A retrospective analysis was conducted on 446 uHCC patients treated with TACE or TACE + Bev between January 2021 and March 2023. The study evaluated objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and adverse events in both treatment groups. RESULTS Finally, the TACE group comprised 295 patients, and the TACE + Bev group comprised 151 patients. Patients in the TACE + Bev group exhibited significantly prolonged median PFS (7.9 months vs. 10.3 months, P = 0.013) and median OS (16.1 months vs. 21.4 months, P = 0.041), improved ORR (26.8% vs. 37.7%, P = 0.017) and DCR (71.5% vs. 80.8%, P = 0.033) compared to the TACE group. Multifactorial Cox analysis identified alpha-fetoprotein (AFP) > 400 ng/ml as an independent prognostic factor for PFS and OS. Meanwhile, portal vein cancer thrombosis and distant metastasis are poor prognostic factors for OS. The overall incidence of adverse events was similar between the two groups. CONCLUSION In comparison with the TACE group, the TACE + Bev group demonstrated efficacy in improving outcomes for patients with uHCC with a manageable safety profile.
Collapse
Affiliation(s)
- Qu Xie
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Yanzhen Yang
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Weiyuan Hao
- Department of Intervention, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Cong Luo
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
29
|
Zhang X, Deng X, Tan J, Liu H, Zhang H, Li C, Li Q, Zhou J, Xiao Z, Li J. Idarubicin-loaded degradable hydrogel for TACE therapy enhances anti-tumor immunity in hepatocellular carcinoma. Mater Today Bio 2024; 29:101343. [PMID: 39687797 PMCID: PMC11647502 DOI: 10.1016/j.mtbio.2024.101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common and deadly cancer, often diagnosed at advanced stages, limiting surgical options. Transcatheter arterial chemoembolization (TACE) is a primary treatment for inoperable and involves the use of drug-eluting microspheres to slowly release chemotherapy drugs. However, patient responses to TACE vary, with some experiencing tumor progression and recurrence. Traditional TACE uses agents like oil-based drug emulsions and polyvinyl alcohol particles, which can permanently block blood vessels and increase tumor hypoxia. Additionally, TACE can suppress the immune system by reducing immune cell numbers and function, contributing to poor treatment outcomes. New approaches, like TACE using degradable starch microspheres and hydrogel-based materials, offer the potential to create different tumor environments that could improve both safety and efficacy. In our research, we developed a composite hydrogel (IF@Gel) made of Poloxamer-407 gel and Fe3O4 nanoparticles, loaded with idarubicin, to use as an embolic material for TACE in a rat model of orthotopic HCC. We observed promising therapeutic effects and investigated the impact on the tumor immune microenvironment, focusing on the role of immunogenic cell death (ICD). The composite hydrogel demonstrated excellent potential as an embolic material for TACE, and IF@Gel-based TACE demonstrated significant efficacy in rat HCC. Furthermore, our findings highlight the potential synergistic effects of ICD with anti-PD-L1 therapy, providing new insights into HCC treatment strategies. This study aims to provide improved treatment options for HCC and to deepen our understanding of the mechanisms of TACE and tumor environment regulation.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Department of Hepatobiliopancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiujiao Deng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Jizhou Tan
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haikuan Liu
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hong Zhang
- Department of Interventional Radiology and Vascular Surgery, The Sixth Affiliated Hospital of Jinan University, Dongguan 523067, China
| | - Chengzhi Li
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Qingjun Li
- Department of Hepatobiliopancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Jinxue Zhou
- Department of Hepatobiliopancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jiaping Li
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
30
|
Kumar P, Singh A, Triveni GS, Chandrashekhara SH, Gamanagatti S, Nichat V. Celiac trunk arterial variations and their clinical implications: Role of imaging. Indian J Gastroenterol 2024; 43:1099-1110. [PMID: 39243342 DOI: 10.1007/s12664-024-01656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/23/2024] [Indexed: 09/09/2024]
Abstract
The awareness of anatomical variations of hepatic arteries and celiac trunk is very important in interventional radiology, liver transplant and intra-abdominal oncologic surgeries. Radiology plays an important role in the identification of these variants non-invasively. Digital subtraction angiography was the gold standard for their identification. Computed tomography (CT) angiography non-invasively provides detailed knowledge of various anatomical vascular variations. This pictorial review highlights the role of multidetector computed tomography (MDCT) in the identification of celiac trunk-hepatic arterial system variations and clinical consequences.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Radio-Diagnosis, IRCH, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Anuradha Singh
- Department of Radio-Diagnosis, IRCH, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - G S Triveni
- Department of Obstetrics and Gynecology, Lady Hardinge Medical College, Delhi, 110 001, India
| | - S H Chandrashekhara
- Department of Radio-Diagnosis, IRCH, All India Institute of Medical Sciences, New Delhi, 110 029, India.
| | - Shivanand Gamanagatti
- Department of Radio-Diagnosis, IRCH, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Vaibhav Nichat
- Department of Radio-Diagnosis, IRCH, All India Institute of Medical Sciences, New Delhi, 110 029, India
| |
Collapse
|
31
|
Yamane A, Yasui D, Itoh H, Kobayashi M, Kumita SI. An experimental study on the diagnostic advantage of dual-energy computed tomography over single-energy scan to evaluate the treatment effect following transcatheter arterial chemoembolization. PLoS One 2024; 19:e0313543. [PMID: 39531441 PMCID: PMC11556725 DOI: 10.1371/journal.pone.0313543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES We assessed the diagnostic advantage of dual-energy computed tomography (DECT) over single-energy computed tomography (SECT) to evaluate lipiodol accumulation in target lesions following transcatheter arterial chemoembolization (TACE). METHODS TACE was performed in 10 rabbits in whom the VX2 tumor was implanted in their left liver lobes. The miriplatin-lipiodol mixture was injected into the common hepatic artery. All rabbits were sacrificed 2 days after TACE, and the liver was harvested. CT was performed using both single-energy and dual-energy scan modes. The specimen was stained with Oil Red O to evaluate lipiodol accumulation; this was considered the reference standard. Mutual information (MI) was used to evaluate the significance of radiological-pathological correlation. Estimated iodine content values on iodine material density images were compared with actual values obtained using mass spectroscopy. RESULTS Mean MI values were 0.69, 0.32, 0.83, 0.72, 0.65, and 0.58 for single-energy scan; iodine density images; and virtual monoenergetic images for energy levels of 40, 60, 80, and 100 keV, respectively. The MI value of the monochromatic image (40 keV) was the highest among all sequences. However, this was not significant compared with the single-energy scan (p = 0.81). A significant correlation was observed between the estimated and actual values of iodine content (Pearson's product moment coefficient = 0.70, p = 0.023). CONCLUSION More accurate and quantitative lipiodol evaluation in targeted tumors after TACE can be achieved by applying DECT rather than SECT.
Collapse
Affiliation(s)
- Aya Yamane
- Department of Radiology, Nippon Medical School Musashi Kosugi Hospital, Kawasaki-shi, Kanagawa, Japan
| | - Daisuke Yasui
- Department of Radiology, Nippon Medical School Musashi Kosugi Hospital, Kawasaki-shi, Kanagawa, Japan
| | | | | | | |
Collapse
|
32
|
Chen Y, Jia L, Li Y, Cui W, Wang J, Zhang C, Bian C, Wang Z, Lin D, Luo T. Clinical Effectiveness and Safety of Transarterial Chemoembolization: Hepatic Artery Infusion Chemotherapy Plus Tyrosine Kinase Inhibitors With or Without Programmed Cell Death Protein-1 Inhibitors for Unresectable Hepatocellular Carcinoma-A Retrospective Study. Ann Surg Oncol 2024; 31:7860-7869. [PMID: 39090499 DOI: 10.1245/s10434-024-15933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Locoregional treatment with transarterial chemoembolization (TACE) or hepatic artery infusion chemotherapy (HAIC) and systemic targeted immunotherapy with tyrosine kinase inhibitors (TKI) and programmed cell death protein-1 (PD-1) inhibitors in the treatment of unresectable hepatocellular carcinoma (uHCC) have achieved promising efficacy. The retrospective study aimed to evaluate the efficacy and safety of TACE and HAIC plus TKI with or without PD-1 for uHCC. PATIENTS AND METHODS From November 2020 to February 2024, the data of 44 patients who received TACE-HAIC + TKI + PD-1 (THKP group) and 34 patients who received TACE-HAIC + TKI (THK group) were retrospectively analyzed. Primary outcomes were overall survival (OS) and progress-free survival (PFS), and secondary outcomes were objective response rate (ORR), disease control rate (DCR), conversion rates, and adverse events (AEs). RESULTS A total of 78 patients were recruited in our single-center study. The patients in THKP group had prolonged median OS [25 months, 95% confidence interval (CI) 24.0-26.0 vs 18 months, 95% CI 16.1-19.9; p = 0.000278], median PFS [16 months, 95% CI 14.1-17.9 vs 12 months 95% CI 9.6-14.4; p = 0.004] and higher ORR (38.6% vs 23.5%, p = 0. 156) and DCR (88.6% vs 64.7%, p = 0.011) compared with those in THK group. Multivariate analysis showed that treatment option and alpha-fetoprotein (AFP) level were independent prognostic factors of OS and PFS. The frequency of AEs were similar between the two groups. CONCLUSIONS The THKP group had better efficacy for uHCC than the THK group, with acceptable safety.
Collapse
Affiliation(s)
- Yue Chen
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Luyao Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenhao Cui
- Emergency Medicine Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jukun Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunjing Bian
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenshun Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongdong Lin
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Luo
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
33
|
Song L, Zhu C, Shi Q, Xia Y, Liang X, Qin W, Ye T, Yang B, Cao X, Xia J, Zhang K. Gelation embolism agents suppress clinical TACE-incited pro-metastatic microenvironment against hepatocellular carcinoma progression. EBioMedicine 2024; 109:105436. [PMID: 39476535 PMCID: PMC11567102 DOI: 10.1016/j.ebiom.2024.105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Current embolic agents in transcatheter arterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) encounter instability and easy leakage, discounting TACE efficacy with residual HCC. Moreover, clinical TACE aggravates hypoxia and pro-metastatic microenvironments, rendering patients with HCC poor prognosis. METHODS Herein, we developed Zein-based embolic agents that harness water-insoluble but ethanol-soluble Zein to encompass doxorubicin (DOX)-loaded mesoporous hollow MnO2 (HMnO2). The conditions and capacity of HMnO2 to generate reactive oxygen species (ROS) were assayed. Mechanical examinations of Zein-HMnO2@DOX were performed to evaluate its potential as the embolic agent. In vitro experiments were carried out to evaluate the effect of Zein-HMnO2@DOX on HCC. The subcutaneous HCC mouse model and rabbit VX2 HCC model were established to investigate its anti-tumor and anti-metastasis efficacy and explore its potential anti-tumor mechanism. FINDINGS The high adhesion and crosslinking of Zein with HMnO2@DOX impart Zein-HMnO2@DOX with strong mechanical strength to resist deformation and wash-off. Zein gelation and HMnO2 decomposition in response to water and acidic tumor microenvironment, respectively, enable continuous DOX release and Fenton-like reaction for reactive oxygen species (ROS) production and O2 release to execute ROS-enhanced TACE. Consequently, Zein-based embolic agents outperform clinically-used lipiodol to significantly inhibit orthotopic HCC growth. More significantly, O2 release down-regulates hypoxia inducible factor (HIF-1α), vascular endothelial growth factor (VEGF) and glucose transporter protein 1 (GLUT1), which thereby re-programmes TACE-aggravated hypoxic and pro-metastatic microenvironments to repress HCC metastasis towards lung. Mechanistic explorations uncover that such Zein-based TACE agents disrupt oxidative stress, angiogenesis and glycometabolism pathways to inhibit HCC progression. INTERPRETATION This innovative work not only provides a new TACE agent for HCC, but also establishes a new strategy to ameliorate TACE-aggravated hypoxia and metastasis motivation against clinically-common HCC metastasis after TACE operation. FUNDING Excellent Young Science Fund for National Natural Science Foundation of China (82022033); National Natural Science Foundation of China (Grant No. 82373086, 82102761); Major scientific and technological innovation project of Wenzhou Science and Technology Bureau (Grant No. ZY2021009); Shanghai Young Top-Notch Talent.
Collapse
Affiliation(s)
- Li Song
- National Medical Center & National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Chunyan Zhu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China; Department of Stomatology and Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, China
| | - Qing Shi
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Xuefu Lane, Wenzhou, 325000, Zhejiang, China
| | - Yuhan Xia
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170, Shensong Road, Shanghai, 200032, China
| | - Xiayi Liang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Wen Qin
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Tao Ye
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170, Shensong Road, Shanghai, 200032, China
| | - Biwei Yang
- National Medical Center & National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
| | - Jinglin Xia
- National Medical Center & National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China; Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Xuefu Lane, Wenzhou, 325000, Zhejiang, China.
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
34
|
Hao K, Paik AJ, Han LH, Makary MS. Yttrium-90 radioembolization treatment strategies for management of hepatocellular carcinoma. World J Radiol 2024; 16:512-527. [PMID: 39494134 PMCID: PMC11525828 DOI: 10.4329/wjr.v16.i10.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
As the third leading cause of cancer-related deaths worldwide, hepatocellular carcinoma (HCC) represents a significant global health challenge. This paper provides an introduction and comprehensive review of transarterial radioembolization (TARE) with Yttrium-90 (Y90), a widely performed transcatheter procedure for HCC patients who are not suitable candidates for surgery. TARE involves the targeted delivery of radioactive microspheres to liver tumors, offering a promising treatment option for managing HCC across various stages of the disease. By evaluating Y90 TARE outcomes across early, intermediate, and advanced stages of HCC, the review aims to present a thorough understanding of its efficacy and safety. Additionally, this paper highlights future research directions focusing on the potential of combination therapies with systemic and immunotherapies, as well as personalized treatments. The exploration of these innovative approaches aims to improve treatment outcomes, reduce adverse events, and provide new therapeutic opportunities for HCC patients. The review underscores the importance of ongoing research and clinical trials to optimize TARE further and integrate it into comprehensive HCC treatment paradigms.
Collapse
Affiliation(s)
- Kelly Hao
- College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Andrew J Paik
- College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Lauren H Han
- College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Mina S Makary
- Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, United States
| |
Collapse
|
35
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
36
|
Zhu L, Dai Y, Feng Y, Zhang Q, You R, Li X. Chemical-free fabrication of silk fibroin microspheres with silk I structure. Int J Biol Macromol 2024; 278:134927. [PMID: 39182862 DOI: 10.1016/j.ijbiomac.2024.134927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Silk fibroin (SF) microspheres show bright prospects for biomedical applications, such as microcarriers, drug delivery, tumor embolization agents, and microscaffolds. However, the chemistry-independent preparation of SF microspheres, which is critical to biomedical applications, has been challenging. In this study, the SF microspheres with silk I crystal type were generated by using electrostatic spraying and freezing-induced assembly. The SF solution was sprayed into liquid nitrogen to form frozen microspheres with tunable size. Annealing can crystallize frozen SF to form silk I crystal type, providing a green approach to harvest water-insoluble microspheres. The SF microspheres can retain a monolithic shape in water for up to 30 days, while having a 77 % degradation ratio in PBS in 14 days, showing high stability in water and rapid degradation under physiological conditions. The biomedical application prospects of the silk I microspheres were demonstrated by cell culture and small molecule drugs (doxorubicin). The microspheres can support the growth and expansion of mammalian cells, and provide a sustainable release for DOX with 10 days. This strategy offers a green approach that avoids the use of organic solvents and cross-linkers for designing SF microsphere biomaterials.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yunfeng Dai
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yanfei Feng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Xiufang Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
37
|
Susman S, Santoso B, Makary MS. Locoregional Therapies for Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease. Biomedicines 2024; 12:2226. [PMID: 39457538 PMCID: PMC11504147 DOI: 10.3390/biomedicines12102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide with an average five-year survival rate in the US of 19.6%. With the advent of HBV and HCV treatment and prevention, along with the rising rates of obesity, nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome are set to overtake infectious causes as the most common cause of HCC. While surgical resection and transplantation can be curative when amenable, the disease is most commonly unresectable on presentation, and other treatment approaches are the mainstay of therapy. In these patients, locoregional therapies have evolved as a vital tool in both palliation for advanced disease and as a bridge to surgical resection and transplantation. In this review, we will be exploring the primary locoregional therapies for HCC in patients with NAFLD, including transarterial chemoembolization (TACE), bland transarterial embolization (TAE), transarterial radioembolization (TARE), and percutaneous ablation.
Collapse
Affiliation(s)
- Stephen Susman
- Department of Radiology, Yale University Medical Center, New Haven, CT 06510, USA
| | - Breanna Santoso
- Heritage College of Osteopathic Medicine, Ohio University, Dublin, OH 43016, USA
| | - Mina S. Makary
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43202, USA
| |
Collapse
|
38
|
Callan L, Razeghi H, Grindrod N, Gaede S, Wong E, Tan D, Vickress J, Patrick J, Lock M. Prognostic Index for Liver Radiation (PILiR). Curr Oncol 2024; 31:5862-5872. [PMID: 39451740 PMCID: PMC11506490 DOI: 10.3390/curroncol31100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
A Prognostic Index for Liver Radiation (PILiR) for improved patient selection for stereotactic liver-directed radiotherapy (SBRT) was developed. Using a large single-center database, 195 patients treated with SBRT for local control, including 66 with hepatocellular carcinoma (HCC) and 129 with metastatic liver disease, were analyzed. Only patients ineligible for alternative treatments were included. Overall survival was 11.9 months and 9.4 months in the HCC group and metastatic groups, respectively. In the combined dataset, Child-Pugh Score (CPS) (p = 0.002), serum albumin (p = 0.039), and presence of extrahepatic disease (p = 0.012) were significant predictors of early death on multivariable analysis and were included in the PILiR (total score 0 to 5). Median survival was 23.8, 9.1, 4.5, and 2.6 months for patients with 0, 1-2, 3, and 4-5 points, respectively. In the HCC dataset, CPS (p < 0.001) and gross tumor volume (p = 0.013) were predictive of early death. In the metastatic dataset, serum albumin (p < 0.001) and primary disease site (p = 0.003) were predictive of early death. The AUC for the combined, HCC, and metastatic datasets are 0.78, 0.84, and 0.80, respectively. Poor liver function (defined by CPS and serum albumin) and extrahepatic disease were most predictive of early death, providing clinically important expected survival information for patients and caregivers.
Collapse
Affiliation(s)
| | - Haddis Razeghi
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Faculty of Nursing, Western University, London, ON N6A 3K7, Canada
| | - Natalie Grindrod
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Pathology & Labaratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Stewart Gaede
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| | - Eugene Wong
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| | - David Tan
- Asian Alliance Radiation & Oncology, Centre for Stereotactic Radiosurgery, Singapore 289891, Singapore;
| | - Jason Vickress
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| | - John Patrick
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
| | - Michael Lock
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Schulich School of Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
39
|
Tan BB, Fu Y, Shao MH, Chen HL, Liu P, Fan C, Zhang H. Combined transarterial chemoembolization and tislelizumab for patients with unresectable hepatocellular carcinoma. World J Gastrointest Surg 2024; 16:2829-2841. [PMID: 39351562 PMCID: PMC11438790 DOI: 10.4240/wjgs.v16.i9.2829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) often presents as unresectable, necessitating effective treatment modalities. Combining transarterial chemoembolization (TACE) with immunotherapy and targeted therapy has shown promise, yet real-world evidence is needed. AIM To investigate effectiveness and safety of TACE with tislelizumab ± targeted therapy for unresectable HCC in real-world setting. METHODS This retrospective study included patients with unresectable HCC receiving combined treatment of TACE and tislelizumab. The clinical outcomes included progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and disease control rate (DCR). All patients were evaluated according to the mRECIST criteria. The adverse event (AE) was also assessed. RESULTS In this study of 56 patients with median follow-up of 10.9 months, 7 had previous immunotherapy. Tislelizumab was administered before TACE in 21 (37.50%) and after in 35 (62.50%) patients, with 91.07% receiving concurrent targeted therapy. Median PFS was 14.0 (95%CI: 7.0-18.00) months, and OS was 28 (95%CI: 2.94-53.05) months. Patients with prior immunotherapy had shorter PFS (6 vs. 18 months, P = 0.006). Overall ORR and DCR were 82.14% and 87.50%. Grade ≥ 3 treatment-related AEs included increased alanine aminotransferase (8.93%), aspartate aminotransferase (10.71%), and total bilirubin (3.57%). CONCLUSION The combination of TACE and tislelizumab, with or without targeted therapy, demonstrated promising efficacy and safety in unresectable HCC, especially in immunotherapy-naive patients, warranting further prospective validation studies.
Collapse
Affiliation(s)
- Bin-Bin Tan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ying Fu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Third Military Medical University (Army Medical University), Jiangbei Area (The 958th Hospital of Chinese People's Liberation Army), Chongqing 400020, China
| | - Ming-Hua Shao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hai-Lei Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ping Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Third Military Medical University (Army Medical University), Jiangbei Area (The 958th Hospital of Chinese People's Liberation Army), Chongqing 400020, China
| | - Chao Fan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Third Military Medical University (Army Medical University), Jiangbei Area (The 958th Hospital of Chinese People's Liberation Army), Chongqing 400020, China
| | - Hui Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
40
|
Hua X, Xuan S, Tang Y, You S, Zhao S, Qiu Y, Li Y, Li Y, Su Y, Qu P. Progression of oncolytic virus in liver cancer treatment. Front Oncol 2024; 14:1446085. [PMID: 39391253 PMCID: PMC11464341 DOI: 10.3389/fonc.2024.1446085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
The liver plays a crucrial role in detoxification, metabolism, and nutrient storage. Because liver cancer ranks among the top three leading causes of death globally, there is an urgent need for developing treatment strategies for liver cancer. Although traditional approaches such as radiation, chemotherapy, surgical removal, and transplantation are widely practiced, the number of patients with liver cancer continues to increase rapidly each year. Some novel therapeutics for liver cancer have been studied for many years. In the past decade, oncolytic therapy has emerged, in which viruses selectively infect and destroy cancer cells while sparing normal cells. However, oncolytic virotherapy for liver cancer remains relatively obscure due to the aggressive nature of the disease and the limited effectiveness of treatment. To keep pace with the latest developments in oncolytic tumor therapy for liver cancer, this review summarizes basic science studies and clinical trials conducted within 5 years, focusing on the efficacy and safety profiles of the five most commonly used oncolytic viruses: herpes simplex virus, adenovirus, influenza virus, vaccinia virus, and coxsackievirus.
Collapse
Affiliation(s)
- Xuesi Hua
- School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Siyu Xuan
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yangyang Tang
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shilin You
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
| | - Shang Zhao
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
| | - Yinqing Li
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peng Qu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
- Department of Pharmacy, Zhejiang University of Technology Fuyang Yinhu Institute of Innovation and Entrepreneurship, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Zhou MT, Zhang P, Mao Q, Wei XQ, Yang L, Zhang XM. Current research status of transarterial therapies for hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:3752-3760. [PMID: 39350995 PMCID: PMC11438772 DOI: 10.4251/wjgo.v16.i9.3752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 09/09/2024] Open
Abstract
With continuous advancements in interventional radiology, considerable progress has been made in transarterial therapies for hepatocellular carcinoma (HCC) in recent years, and an increasing number of research papers on transarterial therapies for HCC have been published. In this editorial, we comment on the article by Ma et al published in the recent issue of the World Journal of Gastro intestinal Oncology: "Efficacy and predictive factors of transarterial chemoembolization combined with lenvatinib plus programmed cell death protein-1 inhibition for unresectable HCC". We focus specifically on the current research status and future directions of transarterial therapies. In the future, more studies are needed to determine the optimal transarterial local treatment for HCC. With the emergence of checkpoint immunotherapy modalities, it is expected that the results of trials of transarterial local therapy combined with systemic therapy will bring new hope to HCC patients.
Collapse
Affiliation(s)
- Mao-Ting Zhou
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Peng Zhang
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Qi Mao
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Qin Wei
- School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
42
|
Makary MS, Alexander J, Regalado LE, Jalil S, Mumtaz K. Clinical outcomes of DEB-TACE in locally advanced hepatocellular carcinoma: A 5-year real world experience. PLoS One 2024; 19:e0309693. [PMID: 39264904 PMCID: PMC11392408 DOI: 10.1371/journal.pone.0309693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/18/2024] [Indexed: 09/14/2024] Open
Abstract
PURPOSE To evaluate outcomes including safety and efficacy of drug-eluting bead trans-arterial chemo-embolization (DEB-TACE) in the treatment of locally advanced hepatocellular carcinoma (LA-HCC). MATERIALS AND METHODS In this single-center, retrospective study, we evaluated 471 consecutive patients with LA-HCC who underwent DEB-TACE from 2015 to 2020. Efficacy of DEB-TACE was assessed based on the imaging response using the modified Response Evaluation Criteria in Solid Tumors (mRECIST) and the biochemical response using alpha-fetoprotein (AFP) levels at 1-month follow-up. Adverse events, progression free survival (PFS), and overall survival were also examined. RESULTS HCC distribution was bilobar in 49% with largest lesion mean size of 4.3 cm ± 3.2, and a majority of patients (46.7%) were Barcelona Club Liver Cancer (BCLC) stage B. Complete radiologic response was achieved in 120 (25.5%) patients, comparable to a reported 28% rate for conventional TACE. Biochemically, 41 (8.7%) patients achieved complete response, and 113 (24%) had a partial response. A total of 59 (12.5%) patients were successfully bridged to liver transplantation. Major adverse events were observed in 3%, while 7.2% experienced post-embolization syndrome. Mean PFS was 6.7 months ± 6.6, and overall survival was 64%, 16.3%, 2.1% at 1, 3, and 5 years, respectively. CONCLUSION Based on our real world experience at a single center, DEB-TACE remains the locoregional therapy of choice for LA-HCC due to its favorable safety and efficacy profile.
Collapse
Affiliation(s)
- Mina S Makary
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Jonathan Alexander
- Department of Radiology, Madigan Army Medical Center, Tacoma, Washington, United States of America
| | - Luis E Regalado
- Department of Radiology, Northwestern University Medical Center, Chicago, Illinois, United States of America
| | - Sajid Jalil
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Khalid Mumtaz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| |
Collapse
|
43
|
Promsorn P, Yamaguchi T, Kosaka H, Aoi K, Yoshida K, Matsushima H, Matsui K, Shimoda S, Kaibori M, Naganuma M. Efficacy of lenvatinib and transarterial chemoembolization combination therapy in patients with hepatocellular carcinoma administered an insufficient dose of early lenvatinib. Mol Clin Oncol 2024; 21:63. [PMID: 39071976 PMCID: PMC11273243 DOI: 10.3892/mco.2024.2761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Recently, the relationship between the relative dose intensity (RDI) and efficacy was demonstrated for lenvatinib therapy in patients with advanced hepatocellular carcinoma (HCC), with a higher RDI of lenvatinib monotherapy indicating a higher efficacy. However, not every patient can tolerate a high RDI during the course of treatment; therefore, add-on combination therapy may be necessary for patients requiring a low RDI. The addition of transarterial chemoembolization (TACE) to lenvatinib therapy improves clinical outcomes. Therefore, the aim of the present study was to compare the clinical outcomes of lenvatinib plus TACE (the LEN-TACE group) with those of lenvatinib alone (the LEN group) in patients with unresectable HCC with a high- or low-RDI. A total of 66 patients with advanced HCC were enrolled in the present retrospective study. Eligible patients were those who initiated lenvatinib monotherapy between April 2018 and September 2020. Of these patients, 29 had an 8-week RDI of ≥60%, 6 of which received LEN-TACE. A further 37 patients had an 8-week RDI of <60%, 7 of which received LEN-TACE. In the high-RDI group, both the radiological evaluations and the overall survival (OS) time were improved in those in the low-RDI group. In addition, the median OS of patients treated with LEN-TACE was longer compared with that of patients treated with lenvatinib alone in the low-RDI group (P=0.0467). Therefore, the results of the present study revealed that early TACE should be considered instead of continuing lenvatinib only treatment in patients receiving an insufficient dose of lenvatinib, such as those with an 8-week RDI of <60%.
Collapse
Affiliation(s)
- Panuwat Promsorn
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1101, Japan
| | - Takashi Yamaguchi
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1101, Japan
| | - Hisashi Kosaka
- Department of Surgery, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Kazunori Aoi
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1101, Japan
| | - Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1101, Japan
| | - Hideyuki Matsushima
- Department of Surgery, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Kosuke Matsui
- Department of Surgery, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Shinji Shimoda
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1101, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Makoto Naganuma
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1101, Japan
| |
Collapse
|
44
|
Zheng Q, Xu X, Weng J, Li M, Li B, Cao Y. The elevated expression of serum glutathione reductase in hepatocellular carcinoma and its role in assessing the therapeutic efficacy and prognosis of transarterial chemoembolization. Free Radic Biol Med 2024; 221:225-234. [PMID: 38815771 DOI: 10.1016/j.freeradbiomed.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Currently, there is a scarcity of reliable biomarkers that can accurately forecast the outcome and prognosis of transarterial chemoembolization (TACE). In this study, we assessed the diagnostic efficacy of serum glutathione reductase (GR) as a biomarker for hepatocellular carcinoma (HCC) and its practicality in predicting TACE treatment response. METHODS The baseline positive rate and level of serum GR were analyzed and compared between HCC group and control group. Serum GR levels were assessed at three specific time points in 181 patients with unresectable HCC who underwent TACE (HCC-TACE). The correlation between serum GR levels and clinical pathological factors, tumor reactivity, and prognosis was investigated. The modified Response Evaluation Criteria in Solid Tumors (mRECIST) was utilized for assessing the treatment response to TACE. A nomogram for predicting the response to TACE treatment efficacy was developed. RESULTS Serum GR demonstrated superior diagnostic performance in HCC patients. The baseline levels of serum GR were associated with the patient's age, tumor size, BCLC staging, and tumor thrombi of the portal vein (TTPV) (p < 0.05). Elevated baseline levels of serum GR were also identified as independent prognostic factors for predicting lower overall survival (OS) and shorter time to radiological progression (TTP) (p < 0.001). Moreover, it is worth noting that non-responders group exhibited a substantial increase in median GR level in the fourth week following TACE treatment (p < 0.0001), whereas the median GR level of responders group did not display a significant augmentation (p > 0.05). Lastly, the changes in serum GRt1-t3 were negatively correlated with TTP (p < 0.001). The nomogram developed to predict the risk of mRECIST responsiveness in patients with HCC-TACE demonstrated excellent discriminatory ability. CONCLUSION Serum GR can serve as a valuable biomarker for the diagnosis of HCC and for predicting the therapeutic efficacy and prognosis of TACE treatment.
Collapse
Affiliation(s)
- Qingzhu Zheng
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiaohong Xu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jiamiao Weng
- Fujian Medical University Provincial Clinical Medical College, Fuzhou, 350001, China
| | - Mingjie Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
45
|
Wang Z, Li Q, Liang B. Hypoxia as a Target for Combination with Transarterial Chemoembolization in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2024; 17:1057. [PMID: 39204162 PMCID: PMC11357673 DOI: 10.3390/ph17081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Hypoxia is a hallmark of solid tumors, including hepatocellular carcinoma (HCC). Hypoxia has proven to be involved in multiple tumor biological processes and associated with malignant progression and resistance to therapy. Transarterial chemoembolization (TACE) is a well-established locoregional therapy for patients with unresectable HCC. However, TACE-induced hypoxia regulates tumor angiogenesis, energy metabolism, epithelial-mesenchymal transition (EMT), and immune processes through hypoxia-inducible factor 1 (HIF-1), which may have adverse effects on the therapeutic efficacy of TACE. Hypoxia has emerged as a promising target for combination with TACE in the treatment of HCC. This review summarizes the impact of hypoxia on HCC tumor biology and the adverse effects of TACE-induced hypoxia on its therapeutic efficacy, highlighting the therapeutic potential of hypoxia-targeted therapy in combination with TACE for HCC.
Collapse
Affiliation(s)
- Zizhuo Wang
- Hubei Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan 430022, China;
| | - Qing Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Bin Liang
- Hubei Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan 430022, China;
| |
Collapse
|
46
|
Hua R, Zhao K, Xu Z, Zheng Y, Wu C, Zhang L, Teng Y, Wang J, Wang M, Hu J, Chen L, Yuan D, Dong W, Cheng X, Xia Y. Stratifin-mediated activation of AKT signaling and therapeutic targetability in hepatocellular carcinoma progression. CELL INSIGHT 2024; 3:100178. [PMID: 39027058 PMCID: PMC11254524 DOI: 10.1016/j.cellin.2024.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 07/20/2024]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide and presents a significant threat to human health. Despite its prevalence, the underlying regulatory mechanisms of HCC remain unclear. In this study, we integrated RNA-seq datasets, proteome dataset and survival analysis and unveiled Stratifin (SFN) as a potential prognostic biomarker for HCC. SFN knockdown inhibited HCC progression in cell cultures and mouse models. Conversely, ectopic expression of Sfn in primary mouse HCC model accelerated HCC progression. Mechanistically, SFN acted as an adaptor protein, activating AKT1 signaling by fostering the interaction between PDK1 and AKT1, with the R56 and R129 sites on SFN proving to be crucial for this binding. In the syngeneic implantation model, the R56A/R129A mutant of SFN inhibited Akt signaling activation and impeded HCC growth. Additionally, peptide inhibitors designed based on the binding motif of AKT1 to SFN significantly inhibited HCC progression. In summary, our findings establish that SFN promotes HCC progression by activating AKT signaling through the R56 and R129 binding sites. This discovery opens new avenues for a promising therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Rong Hua
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Zaichao Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yingcheng Zheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Chuanjian Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Lu Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yan Teng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Jingjing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Mengfei Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Jiayu Hu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Lang Chen
- Department of Immunology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
- Wuhan University Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
- Pingyuan Laboratory, Henan, China
| |
Collapse
|
47
|
Song Z, Wu DD, Fan WZ, Wu MJ, Miao HF, Du JH, Zhang H, Jiang DR, Zhang YQ. A real-world study of tyrosine kinase inhibitors plus anti-PD-1 immunotherapy with or without chemoembolization for hepatocellular carcinoma patients with main portal vein invasion. Abdom Radiol (NY) 2024; 49:2650-2658. [PMID: 38977489 DOI: 10.1007/s00261-024-04490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Although systemic therapies are recommended for hepatocellular carcinoma (HCC) patients with main portal vein (MPV) invasion and preserved liver function, the outcome is limited. In the real-world, chemoembolization is a commonly used local treatment for advanced HCC. PURPOSE To evaluate whether the additional chemoembolization treatment yields survival benefits compared to systemic therapy for HCC patients with MPV invasion and preserved liver function (Child-Pugh score ≤ B7) in a real-world study from multiple centers. PATIENTS AND METHODS Between January 2020 and December 2022, 91 consecutive HCC patients with MPV invasion who received either systemic medical therapy (i.e., tyrosine kinase inhibitors (TKIs) plus anti-PD-1 immunotherapy, S group, n = 43) or in combination with chemoembolization treatment (S-T group, n = 48) from five centers were enrolled in the study. The primary outcome was overall survival (OS), and the secondary outcomes were progression-free survival (PFS) and treatment response. Adverse events (AEs) related to treatment were also recorded. Survival curves were constructed with the Kaplan-Meier method and compared using the log-rank test. RESULTS The baseline characteristics were comparable between the two groups. The mean number of chemoembolization sessions per patient was 2.1 (range 1-3). The median OS was 10.0 months and 8.0 months in the S-T group and S group, respectively (P = 0.254). The median PFS between the two groups was similar (4.0 months vs. 4.0 months, P = 0.404). The disease control rate between the S-T and S groups were comparable (60.4% vs. 62.8%, P = 0.816). Although no chemoembolization-related deaths occurred, 13 grade 3-4 AEs occurred in the S-T group. CONCLUSIONS The results of the real-world study demonstrated that additional chemoembolization treatment did not yield survival benefits compared to TKIs plus anti-PD-1 immunotherapy for the overall patients with advanced HCC and MPV invasion.
Collapse
Affiliation(s)
- Ze Song
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - De-Di Wu
- Department of Interventional Radiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 628 Zhenyuan Road, Shenzhen, 518107, China
| | - Wen-Zhe Fan
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Min-Jiang Wu
- Department of Pharmacy, Huizhou Municipal Centre Hospital, Office of GCP, Huizhou, China
| | - Hong-Fei Miao
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Hang Du
- Department of Interventional Radiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 628 Zhenyuan Road, Shenzhen, 518107, China
| | - Hao Zhang
- Department of Interventional Radiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 628 Zhenyuan Road, Shenzhen, 518107, China
| | - Dai-Rong Jiang
- Department of Ultrasonography, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 Xiangchun Road, Changsha, 410008, China.
| | - Ying-Qiang Zhang
- Department of Interventional Radiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 628 Zhenyuan Road, Shenzhen, 518107, China.
| |
Collapse
|
48
|
Shi ZX, Li CF, Zhao LF, Sun ZQ, Cui LM, Xin YJ, Wang DQ, Kang TR, Jiang HJ. Computed tomography radiomic features and clinical factors predicting the response to first transarterial chemoembolization in intermediate-stage hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2024; 23:361-369. [PMID: 37429785 DOI: 10.1016/j.hbpd.2023.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 04/24/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND According to clinical practice guidelines, transarterial chemoembolization (TACE) is the standard treatment modality for patients with intermediate-stage hepatocellular carcinoma (HCC). Early prediction of treatment response can help patients choose a reasonable treatment plan. This study aimed to investigate the value of the radiomic-clinical model in predicting the efficacy of the first TACE treatment for HCC to prolong patient survival. METHODS A total of 164 patients with HCC who underwent the first TACE from January 2017 to September 2021 were analyzed. The tumor response was assessed by modified response evaluation criteria in solid tumors (mRECIST), and the response of the first TACE to each session and its correlation with overall survival were evaluated. The radiomic signatures associated with the treatment response were identified by the least absolute shrinkage and selection operator (LASSO), and four machine learning models were built with different types of regions of interest (ROIs) (tumor and corresponding tissues) and the model with the best performance was selected. The predictive performance was assessed with receiver operating characteristic (ROC) curves and calibration curves. RESULTS Of all the models, the random forest (RF) model with peritumor (+10 mm) radiomic signatures had the best performance [area under ROC curve (AUC) = 0.964 in the training cohort, AUC = 0.949 in the validation cohort]. The RF model was used to calculate the radiomic score (Rad-score), and the optimal cutoff value (0.34) was calculated according to the Youden's index. Patients were then divided into a high-risk group (Rad-score > 0.34) and a low-risk group (Rad-score ≤ 0.34), and a nomogram model was successfully established to predict treatment response. The predicted treatment response also allowed for significant discrimination of Kaplan-Meier curves. Multivariate Cox regression identified six independent prognostic factors for overall survival, including male [hazard ratio (HR) = 0.500, 95% confidence interval (CI): 0.260-0.962, P = 0.038], alpha-fetoprotein (HR = 1.003, 95% CI: 1.002-1.004, P < 0.001), alanine aminotransferase (HR = 1.003, 95% CI: 1.001-1.005, P = 0.025), performance status (HR = 2.400, 95% CI: 1.200-4.800, P = 0.013), the number of TACE sessions (HR = 0.870, 95% CI: 0.780-0.970, P = 0.012) and Rad-score (HR = 3.480, 95% CI: 1.416-8.552, P = 0.007). CONCLUSIONS The radiomic signatures and clinical factors can be well-used to predict the response of HCC patients to the first TACE and may help identify the patients most likely to benefit from TACE.
Collapse
Affiliation(s)
- Zhong-Xing Shi
- Department of Interventional Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Chang-Fu Li
- Department of Digestive Medicine, Daqing Longnan Hospital, Daqing 163453, China
| | - Li-Feng Zhao
- Department of Radiology, Daqing Longnan Hospital, Daqing 163453, China
| | - Zhong-Qi Sun
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Li-Ming Cui
- Department of Interventional Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yan-Jie Xin
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Dong-Qing Wang
- Department of Interventional Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Tan-Rong Kang
- Department of Interventional Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hui-Jie Jiang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
49
|
Quan B, Li J, Mi H, Li M, Liu W, Yao F, Chen R, Shan Y, Xu P, Ren Z, Yin X. Development and Preliminary Validation of a Novel Convolutional Neural Network Model for Predicting Treatment Response in Patients with Unresectable Hepatocellular Carcinoma Receiving Hepatic Arterial Infusion Chemotherapy. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1282-1296. [PMID: 38393621 PMCID: PMC11300745 DOI: 10.1007/s10278-024-01003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 02/25/2024]
Abstract
The goal of this study was to evaluate the performance of a convolutional neural network (CNN) with preoperative MRI and clinical factors in predicting the treatment response of unresectable hepatocellular carcinoma (HCC) patients receiving hepatic arterial infusion chemotherapy (HAIC). A total of 191 patients with unresectable HCC who underwent HAIC in our hospital between May 2019 and March 2022 were retrospectively recruited. We selected InceptionV4 from three representative CNN models, AlexNet, ResNet, and InceptionV4, according to the cross-entropy loss (CEL). We subsequently developed InceptionV4 to fuse the information from qualified pretreatment MRI data and patient clinical factors. Radiomic information was evaluated based on several constant sequences, including enhanced T1-weighted sequences (with arterial, portal, and delayed phases), T2 FSE sequences, and dual-echo sequences. The performance of InceptionV4 was cross-validated in the training cohort (n = 127) and internally validated in an independent cohort (n = 64), with comparisons against single important clinical factors and radiologists in terms of receiver operating characteristic (ROC) curves. Class activation mapping was used to visualize the InceptionV4 model. The InceptionV4 model achieved an AUC of 0.871 (95% confidence interval [CI] 0.761-0.981) in the cross-validation cohort and an AUC of 0.826 (95% CI 0.682-0.970) in the internal validation cohort; these two models performed better than did the other methods (AUC ranges 0.783-0.873 and 0.708-0.806 for cross- and internal validations, respectively; P < 0.01). The present InceptionV4 model, which integrates radiomic information and clinical factors, helps predict the treatment response of unresectable HCC patients receiving HAIC treatment.
Collapse
Affiliation(s)
- Bing Quan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Jinghuan Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Hailin Mi
- Department of Computer Science and Technology, Harbin Engineering University, Harbin, China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Wenfeng Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Fan Yao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yan Shan
- Department of Radiology, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Pengju Xu
- Department of Radiology, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Xin Yin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
50
|
Hua Y, Sun Z, Xiao Y, Li H, Ma X, Luo X, Tan W, Xie Z, Zhang Z, Tang C, Zhuang H, Xu W, Zhu H, Chen Y, Shang C. Pretreatment CT-based machine learning radiomics model predicts response in unresectable hepatocellular carcinoma treated with lenvatinib plus PD-1 inhibitors and interventional therapy. J Immunother Cancer 2024; 12:e008953. [PMID: 39029924 PMCID: PMC11261678 DOI: 10.1136/jitc-2024-008953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Lenvatinib plus PD-1 inhibitors and interventional (LPI) therapy have demonstrated promising treatment effects in unresectable hepatocellular carcinoma (HCC). However, biomarkers for predicting the response to LPI therapy remain to be further explored. We aimed to develop a radiomics model to noninvasively predict the efficacy of LPI therapy. METHODS Clinical data of patients with HCC receiving LPI therapy were collected in our institution. The clinical model was built with clinical information. Nine machine learning classifiers were tested and the multilayer perceptron classifier with optimal performance was used as the radiomics model. The clinical-radiomics model was constructed by integrating clinical and radiomics scores through logistic regression analysis. RESULTS 151 patients were enrolled in this study (2:1 randomization, 101 and 50 in the training and validation cohorts), of which three achieved complete response, 69 showed partial response, 46 showed stable disease, and 33 showed progressive disease. The objective response rate, disease control rate, and conversion resection rates were 47.7, 78.1 and 23.2%. 14 features were selected from the initially extracted 1223 for radiomics model construction. The area under the curves of the radiomics model (0.900 for training and 0.893 for validation) were comparable to that of the clinical-radiomics model (0.912 for training and 0.892 for validation), and both were superior to the clinical model (0.669 for training and 0.585 for validation). Meanwhile, the radiomics model can categorize participants into high-risk and low-risk groups for progression-free survival (PFS) and overall survival (OS) in the training (HR 1.913, 95% CI 1.121 to 3.265, p=0.016 for PFS; HR 4.252, 95% CI 2.051 to 8.816, p=0.001 for OS) and validation sets (HR 2.347, 95% CI 1.095 to 5.031, p=0.012 for PFS; HR 2.592, 95% CI 1.050 to 6.394, p=0.019 for OS). CONCLUSION The promising machine learning radiomics model was developed and validated to predict the efficacy of LPI therapy for patients with HCC and perform risk stratification, with comparable performance to clinical-radiomics model.
Collapse
Affiliation(s)
- Yonglin Hua
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhixian Sun
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huilong Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaowu Ma
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xuan Luo
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenliang Tan
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Central South University Xiangya School of Medicine, Zhuzhou, Hunan, China
| | - Zhiqin Xie
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Central South University Xiangya School of Medicine, Zhuzhou, Hunan, China
| | - Ziyu Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chenwei Tang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weikai Xu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Haihong Zhu
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Yajin Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|