1
|
Matsukawa H, Shiba E, Kuroki R, Iwai Y, Ohguri T, Aoki T. Evaluation of Specific Contour Propagation Tool Accuracy for Lung Tumor Lesions. Cureus 2025; 17:e81913. [PMID: 40342484 PMCID: PMC12061514 DOI: 10.7759/cureus.81913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/11/2025] Open
Abstract
INTRODUCTION Adapt Anatomy is an automatic propagation tool installed in the Monaco® treatment planning system v. 5.5.1 (Elekta AB, Stockholm, Sweden). Few studies have reported the usefulness of Adapt Anatomy for adaptive radiation therapy (ART) in clinical cases. This study aimed to investigate the accuracy of Adapt Anatomy for lung tumor lesions. METHODS Ten patients with lung cancer were treated at our hospital, and treatment plans were formulated again during the radiotherapy course. Each patient's gross tumor volume (GTV), lung, cord, heart, and esophagus were contoured manually by radiation oncologists and automatically by Adapt Anatomy on replanning computed tomography (rCT) images. The structures were also contoured on cone-beam computed tomography (CBCT) images obtained on the same days as the rCT images, using Adapt Anatomy. The structural volumes contoured using Adapt Anatomy were compared with those contoured by the radiation oncologists. The dice similarity coefficient (DSC) and overlap index (OI) were calculated for each structure. Additionally, the DSC and OI calculated for the GTV on the CBCT images were compared with the values calculated from the rCT images. RESULTS The automatic contour volumes for all of the structures did not differ significantly from the manual contour volumes, except for heart and esophagus volumes. The DSC and OI values for all of the structures were >0.8, except for the esophagus. The DSC and OI values for the esophagus were 0.73±0.070 and 0.68±0.10, respectively. The DSC and OI values calculated for the CBCT images did not differ significantly from those calculated for the rCT ones (p=0.208, 0.401, respectively). CONCLUSION Adapt Anatomy showed sufficient accuracy compared to the other software solutions, and we concluded that there is a possibility that Adapt Anatomy may be useful for performing ART on CBCT images. However, careful reviews by radiation oncologists are warranted in clinical cases because its accuracy varies significantly in certain structures such as the esophagus.
Collapse
Affiliation(s)
- Hideaki Matsukawa
- Radiology, University of Occupational and Environmental Health Hospital, Kitakyushu, JPN
| | - Eiji Shiba
- Radiology, University of Occupational and Environmental Health Hospital, Kitakyushu, JPN
| | - Ryohei Kuroki
- Radiology, University of Occupational and Environmental Health Hospital, Kitakyushu, JPN
| | | | - Takayuki Ohguri
- Therapeutic Radiology, University of Occupational and Environmental Health Hospital, Kitakyushu, JPN
| | - Takatoshi Aoki
- Radiology, University of Occupational and Environmental Health Hospital, Kitakyushu, JPN
| |
Collapse
|
2
|
Wegener S, Weick S, Schindhelm R, Tamihardja J, Sauer OA, Razinskas G. Feasibility of Ethos adaptive treatments of lung tumors and associated quality assurance. J Appl Clin Med Phys 2024; 25:e14311. [PMID: 38386919 PMCID: PMC11244680 DOI: 10.1002/acm2.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
MOTIVATION Online adaptive radiotherapy with Ethos is based on the anatomy determined from daily cone beam computed tomography (CBCT) images. Dose optimization and computation are performed on the density map of a synthetic CT (sCT), a deformable registration of the initial planning CT (pCT) onto the current CBCT. Large density changes as present in the lung region are challenging the system. METHODS Treatment plans for Ethos were created and delivered for 1, 2, and 3 cm diameter lung lesions in an anthropomorphic phantom, combining different insets in the pCT and during adaptive and non-adaptive treatment sessions. Primary and secondary dose calculations as well as back-projected dose from portal images were evaluated. RESULTS Density changes due to changed insets were not considered in the sCTs. This resulted in errors in the dose; for example, -15.9% of the mean dose for a plan when changing from a 3 cm inset in the pCT to 1 cm at the time of treatment. Secondary dose calculation is based on the sCT and could therefore not reveal these dose errors. However, dose calculation on the CBCT, either as a recalculation in the treatment planning system or as pre-treatment quality assurance (QA) before the treatment, indicated the differences. EPID in-vivo QA also reported discrepancies between calculated and delivered dose distributions. CONCLUSIONS An incorrect density distribution in the sCT has an impact on the dose calculation accuracy in the adaptive treatment workflow with the Ethos system. Additional quality checks of the sCT can detect such errors.
Collapse
Affiliation(s)
- Sonja Wegener
- Department of Radiotherapy and Radiation OncologyUniversity of WurzburgWurzburgGermany
| | - Stefan Weick
- Department of Radiotherapy and Radiation OncologyUniversity of WurzburgWurzburgGermany
| | - Robert Schindhelm
- Department of Radiotherapy and Radiation OncologyUniversity of WurzburgWurzburgGermany
| | - Jörg Tamihardja
- Department of Radiotherapy and Radiation OncologyUniversity of WurzburgWurzburgGermany
| | - Otto A. Sauer
- Department of Radiotherapy and Radiation OncologyUniversity of WurzburgWurzburgGermany
| | - Gary Razinskas
- Department of Radiotherapy and Radiation OncologyUniversity of WurzburgWurzburgGermany
| |
Collapse
|
3
|
Kandler C, Elsayad K, Evers G, Siats J, Kittel C, Scobioala S, Bleckmann A, Eich HT. Reduction of tumor volume during radiotherapy in patients with small-cell lung cancer and its prognostic significance. Strahlenther Onkol 2023; 199:1011-1017. [PMID: 37733039 PMCID: PMC10598169 DOI: 10.1007/s00066-023-02146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/13/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Several studies have reported the potential prognostic significance of tumor volume reduction ratio (VRR) induced by radiotherapy (RT) in patients with non-small-cell lung cancer. However, there are no data yet on the prognostic significance of volumetric shrinkage in patients with small-cell lung cancer (SCLC). This study aimed to demonstrate the correlation between tumor volume reduction ratio and treatment outcomes. MATERIALS AND METHODS The study included 61 patients with SCLC treated with fractionated RT of the primary tumor at our institution between 2013 and 2020. The relationship between volumetric changes in gross tumor volume (GTV) during radiotherapy and outcomes were analyzed and reported. RESULTS The median radiation dose was 59.4 Gy (median fraction dose was 1.8 Gy). The median GTV before radiotherapy was 74 cm3, with a median GTV reduction of 48%. There was a higher VRR in patients receiving concurrent radiochemotherapy (p = 0.05). No volumetric parameters were identified as relevant predictors of outcome in the entire cohort. In multivariate analysis, only age had an impact on survival, while prophylactic whole-brain radiation influenced the progression-free survival significantly. CONCLUSION Concurrent chemotherapy was associated with a higher VRR than sequential chemotherapy. No significant impact of VRR on patients' outcome or survival was detected.
Collapse
Affiliation(s)
- Christian Kandler
- Department of Radiation Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany.
| | - Khaled Elsayad
- Department of Radiation Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Georg Evers
- Department of Medicine A (Hematology, Oncology, Hemostaseology and Pulmonology), University Hospital Muenster, Muenster, Germany
| | - Jan Siats
- Department of Radiation Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Christopher Kittel
- Department of Radiation Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Sergiu Scobioala
- Department of Radiation Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Annalen Bleckmann
- Department of Medicine A (Hematology, Oncology, Hemostaseology and Pulmonology), University Hospital Muenster, Muenster, Germany
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| |
Collapse
|
4
|
Zhong H, Garcia-Alvarez JA, Kainz K, Tai A, Ahunbay E, Erickson B, Schultz CJ, Li XA. Development of a multi-layer quality assurance program to evaluate the uncertainty of deformable dose accumulation in adaptive radiotherapy. Med Phys 2023; 50:1766-1778. [PMID: 36434751 PMCID: PMC10033340 DOI: 10.1002/mp.16137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/10/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Deformable dose accumulation (DDA) has uncertainties which impede the implementation of DDA-based adaptive radiotherapy (ART) in clinic. The purpose of this study is to develop a multi-layer quality assurance (MLQA) program to evaluate uncertainties in DDA. METHODS A computer program is developed to generate a pseudo-inverse displacement vector field (DVF) for each deformable image registration (DIR) performed in Accuray's PreciseART. The pseudo-inverse DVF is first used to calculate a pseudo-inverse consistency error (PICE) and then implemented in an energy and mass congruent mapping (EMCM) method to reconstruct a deformed dose. The PICE is taken as a metric to estimate DIR uncertainties. A pseudo-inverse dose agreement rate (PIDAR) is used to evaluate the consequence of the DIR uncertainties in DDA and the principle of energy conservation is used to validate the integrity of dose mappings. The developed MLQA program was tested using the data collected from five representative cancer patients treated with tomotherapy. RESULTS DIRs were performed in PreciseART to generate primary DVFs for the five patients. The fidelity index and PICE of these DVFs on average are equal to 0.028 mm and 0.169 mm, respectively. With the criteria of 3 mm/3% and 5 mm/5%, the PIDARs of the PreciseART-reconstructed doses are 73.9 ± 4.4% and 87.2 ± 3.3%, respectively. The PreciseART and EMCM-based dose reconstructions have their deposited energy changed by 5.6 ± 3.9% and 2.6 ± 1.5% in five GTVs, and by 9.2 ± 7.8% and 4.7 ± 3.6% in 30 OARs, respectively. CONCLUSIONS A pseudo-inverse map-based EMCM program has been developed to evaluate DIR and dose mapping uncertainties. This program could also be used as a sanity check tool for DDA-based ART.
Collapse
Affiliation(s)
- Hualiang Zhong
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Kristofer Kainz
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ergun Ahunbay
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
5
|
Hoppen L, Sarria GR, Kwok CS, Boda-Heggemann J, Buergy D, Ehmann M, Giordano FA, Fleckenstein J. Dosimetric benefits of adaptive radiation therapy for patients with stage III non-small cell lung cancer. Radiat Oncol 2023; 18:34. [PMID: 36814271 PMCID: PMC9945670 DOI: 10.1186/s13014-023-02222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Daily adaptive radiation therapy (ART) of patients with non-small cell lung cancer (NSCLC) lowers organs at risk exposure while maintaining the planning target volume (PTV) coverage. Thus, ART allows an isotoxic approach with increased doses to the PTV that could improve local tumor control. Herein we evaluate daily online ART strategies regarding their impact on relevant dose-volume metrics. METHODS Daily cone-beam CTs (1 × n = 28, 1 × n = 29, 11 × n = 30) of 13 stage III NSCLC patients were converted into synthetic CTs (sCTs). Treatment plans (TPs) were created retrospectively on the first-fraction sCTs (sCT1) and subsequently transferred unaltered to the sCTs of the remaining fractions of each patient (sCT2-n) (IGRT scenario). Two additional TPs were generated on sCT2-n: one minimizing the lung-dose while preserving the D95%(PTV) (isoeffective scenario), the other escalating the D95%(PTV) with a constant V20Gy(lungipsilateral) (isotoxic scenario). RESULTS Compared to the original TPs predicted dose, the median D95%(PTV) in the IGRT scenario decreased by 1.6 Gy ± 4.2 Gy while the V20Gy(lungipsilateral) increased in median by 1.1% ± 4.4%. The isoeffective scenario preserved the PTV coverage and reduced the median V20Gy(lungipsilateral) by 3.1% ± 3.6%. Furthermore, the median V5%(heart) decreased by 2.9% ± 6.4%. With an isotoxic prescription, a median dose-escalation to the gross target volume of 10.0 Gy ± 8.1 Gy without increasing the V20Gy(lungipsilateral) and V5%(heart) was feasible. CONCLUSIONS We demonstrated that even without reducing safety margins, ART can reduce lung-doses, while still reaching adequate target coverage or escalate target doses without increasing ipsilateral lung exposure. Clinical benefits by means of toxicity and local control of both strategies should be evaluated in prospective clinical trials.
Collapse
Affiliation(s)
- Lea Hoppen
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Gustavo R. Sarria
- grid.10388.320000 0001 2240 3300Department of Radiation Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Chung S. Kwok
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Judit Boda-Heggemann
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Daniel Buergy
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Michael Ehmann
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Frank A. Giordano
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Jens Fleckenstein
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
6
|
Pérez Haas Y, Ludwig R, Dal Bello R, Tanadini-Lang S, Unkelbach J. Adaptive fractionation at the MR-linac. Phys Med Biol 2023; 68. [PMID: 36596262 DOI: 10.1088/1361-6560/acafd4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Objective. Fractionated radiotherapy typically delivers the same dose in each fraction. Adaptive fractionation (AF) is an approach to exploit inter-fraction motion by increasing the dose on days when the distance of tumor and dose-limiting organs at risk (OAR) is large and decreasing the dose on unfavorable days. We develop an AF algorithm and evaluate the concept for patients with abdominal tumors previously treated at the MR-linac in 5 fractions.Approach. Given daily adapted treatment plans, inter-fractional changes are quantified by sparing factorsδtdefined as the OAR-to-tumor dose ratio. The key problem of AF is to decide on the dose to deliver in fractiont, givenδtand the dose delivered in previous fractions, but not knowing futureδts. Optimal doses that maximize the expected biologically effective dose in the tumor (BED10) while staying below a maximum OAR BED3constraint are computed using dynamic programming, assuming a normal distribution overδwith mean and variance estimated from previously observed patient-specificδts. The algorithm is evaluated for 16 MR-linac patients in whom tumor dose was compromised due to proximity of bowel, stomach, or duodenum.Main Results. In 14 out of the 16 patients, AF increased the tumor BED10compared to the reference treatment that delivers the same OAR dose in each fraction. However, in 11 of these 14 patients, the increase in BED10was below 1 Gy. Two patients with large sparing factor variation had a benefit of more than 10 Gy BED10increase. For one patient, AF led to a 5 Gy BED10decrease due to an unfavorable order of sparing factors.Significance. On average, AF provided only a small increase in tumor BED. However, AF may yield substantial benefits for individual patients with large variations in the geometry.
Collapse
Affiliation(s)
- Y Pérez Haas
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - R Ludwig
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - R Dal Bello
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - S Tanadini-Lang
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - J Unkelbach
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Zhou S, Meng Y, Sun X, Jin Z, Feng W, Yang H. The critical components for effective adaptive radiotherapy in patients with unresectable non-small-cell lung cancer: who, when and how. Future Oncol 2022; 18:3551-3562. [PMID: 36189758 DOI: 10.2217/fon-2022-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adaptive radiotherapy (ART) is a new radiotherapy technology based on image-guided radiation therapy technology, used to avoid radiation overexposure to residual tumors and the surrounding normal tissues. Tumors undergoing the same radiation doses and modes can occur unequal shrinkage due to the variation of response times to radiation doses in different patients. To perform ART effectively, eligible patients with a high probability of benefits from ART need to be identified. Confirming the precise timetable for ART in every patient is another urgent problem to be resolved. Moreover, the outcomes of ART are different depending on the various image guidance used. This review discusses 'who, when and how' as the three key factors involved in the most effective implementation for the management of ART.
Collapse
Affiliation(s)
- Suna Zhou
- Key Laboratory of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 317000, Zhejiang, PR China.,Department of Radiation Oncology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shanxi, 710018, PR China
| | - Yinnan Meng
- Key Laboratory of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 317000, Zhejiang, PR China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 317000, Zhejiang, PR China
| | - Xuefeng Sun
- Key Laboratory of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 317000, Zhejiang, PR China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 317000, Zhejiang, PR China
| | - Zhicheng Jin
- Key Laboratory of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 317000, Zhejiang, PR China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 317000, Zhejiang, PR China
| | - Wei Feng
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, PR China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 317000, Zhejiang, PR China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 317000, Zhejiang, PR China
| |
Collapse
|
8
|
Jia S, Chen J, Ma N, Zhao J, Mao J, Jiang G, Lu J, Wu K. Adaptive carbon ion radiotherapy for locally advanced non-small cell lung cancer: Organ-sparing potential and target coverage. Med Phys 2022; 49:3980-3989. [PMID: 35192194 PMCID: PMC9314958 DOI: 10.1002/mp.15563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The dose distribution of carbon ion radiotherapy (CIRT) for locally advanced non-small cell lung cancer (LANSCLC) is highly sensitive to anatomical changes. PURPOSE To demonstrate the dosimetric benefits of adaptive CIRT for LANSCLC and compare the differences between patients with and without adaptive plans based on dosimetry and clinical effect factors. MATERIALS AND METHODS Of the 98 patients with LANSCLC receiving CIRT, 31 patients underwent replanning following re-evaluations that revealed changes that would have compromised the dose coverage of the target volume or violated dose constraints. Dosimetric parameters and clinical factors were compared between patients with and without adaptive plans. Multivariate analysis identified factors influencing the adaptive planning. RESULTS The median number of fractions delivered using adaptive plans was eight (range: 2-18). Adaptive plans ensured target coverage, and the maximum spinal cord dose was significantly decreased (p = 0.02). The median reduction in the maximum spinal cord dose was 10.4 Gy (relative biological effectiveness). Patients with adaptive plans had larger tumor volumes (p < 0.001); the median initial internal gross tumor volumes (iGTVs) of patients with adaptive and nonadaptive plans were 125.9 and 49.79 cm3 , respectively. Tumor volumes of patients with adaptive plans were altered to a greater extent (p < 0.001); the median absolute percentage of volume changes in patients in the adaptive and in nonadaptive groups were 20.76% and 3.63%, respectively, while the median movements of iGTV centers were 5.75 and 2.44 mm, respectively. Binary logistic regression analysis revealed that the iGTV volume change and iGTV center movements were significantly different between the groups. CONCLUSIONS An adaptive plan can effectively ensure target area coverage and protect normal tissues, especially in patients with large tumor volumes and substantial changes. iGTV volume changes and iGTV center movements are the main factors influencing adaptive planning. Weekly simulation computed tomography scans are necessary for treatment evaluation in patients with LANSCLC treated with CIRT.
Collapse
Affiliation(s)
- Shubing Jia
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Shanghai Cancer CenterShanghaiChina
- Shanghai Key Laboratory of radiation oncology (20dz2261000)
| | - Jian Chen
- Department of Radiation OncologyShanghai Proton and Heavy Ion CenterShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
- Shanghai Key Laboratory of radiation oncology (20dz2261000)
| | - Ningyi Ma
- Department of Radiation OncologyShanghai Proton and Heavy Ion CenterShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
- Shanghai Key Laboratory of radiation oncology (20dz2261000)
| | - Jingfang Zhao
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
- Department of Medical Physics, Shanghai Proton and Heavy Ion CenterFudan University Shanghai Cancer CenterShanghaiChina
- Shanghai Key Laboratory of radiation oncology (20dz2261000)
| | - Jingfang Mao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Shanghai Cancer CenterShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
- Shanghai Key Laboratory of radiation oncology (20dz2261000)
| | - Guoliang Jiang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Shanghai Cancer CenterShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
- Shanghai Key Laboratory of radiation oncology (20dz2261000)
| | - Jiade Lu
- Department of Radiation OncologyShanghai Proton and Heavy Ion CenterShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
- Shanghai Key Laboratory of radiation oncology (20dz2261000)
| | - Kailiang Wu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Shanghai Cancer CenterShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
- Shanghai Key Laboratory of radiation oncology (20dz2261000)
| |
Collapse
|
9
|
Nierer L, Eze C, da Silva Mendes V, Braun J, Thum P, von Bestenbostel R, Kurz C, Landry G, Reiner M, Niyazi M, Belka C, Corradini S. Dosimetric benefit of MR-guided online adaptive radiotherapy in different tumor entities: liver, lung, abdominal lymph nodes, pancreas and prostate. Radiat Oncol 2022; 17:53. [PMID: 35279185 PMCID: PMC8917666 DOI: 10.1186/s13014-022-02021-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/27/2022] [Indexed: 01/18/2023] Open
Abstract
Background Hybrid magnetic resonance (MR)-Linac systems have recently been introduced into clinical practice. The systems allow online adaption of the treatment plan with the aim of compensating for interfractional anatomical changes. The aim of this study was to evaluate the dose volume histogram (DVH)-based dosimetric benefits of online adaptive MR-guided radiotherapy (oMRgRT) across different tumor entities and to investigate which subgroup of plans improved the most from adaption. Methods Fifty patients treated with oMRgRT for five different tumor entities (liver, lung, multiple abdominal lymph nodes, pancreas, and prostate) were included in this retrospective analysis. Various target volume (gross tumor volume GTV, clinical target volume CTV, and planning target volume PTV) and organs at risk (OAR) related DVH parameters were compared between the dose distributions before and after plan adaption. Results All subgroups clearly benefited from online plan adaption in terms of improved PTV coverage. For the liver, lung and abdominal lymph nodes cases, a consistent improvement in GTV coverage was found, while many fractions of the prostate subgroup showed acceptable CTV coverage even before plan adaption. The largest median improvements in GTV near-minimum dose (D98%) were found for the liver (6.3%, p < 0.001), lung (3.9%, p < 0.001), and abdominal lymph nodes (6.8%, p < 0.001) subgroups. Regarding OAR sparing, the largest median OAR dose reduction during plan adaption was found for the pancreas subgroup (-87.0%). However, in the pancreas subgroup an optimal GTV coverage was not always achieved because sparing of OARs was prioritized. Conclusion With online plan adaptation, it was possible to achieve significant improvements in target volume coverage and OAR sparing for various tumor entities and account for interfractional anatomical changes.
Collapse
|
10
|
Amugongo LM, Osorio EV, Green A, Cobben D, van Herk M, McWilliam A. Early prediction of tumour-response to radiotherapy in NSCLC patients. Phys Med Biol 2021; 66. [PMID: 34644691 DOI: 10.1088/1361-6560/ac2f88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Objective. In this study we developed an automatic method to predict tumour volume and shape in weeks 3 and 4 of radiotherapy (RT), using cone-beam computed tomography (CBCT) scans acquired up to week 2, allowing identification of large tumour changes.Approach. 240 non-small cell lung cancer (NSCLC) patients, treated with 55 Gy in 20 fractions, were collected. CBCTs were rigidly registered to the planning CT. Intensity values were extracted in each voxel of the planning target volume across all CBCT images from days 1, 2, 3, 7 and 14. For each patient and in each voxel, four regression models were fitted to voxel intensity; applying linear, Gaussian, quadratic and cubic methods. These models predicted the intensity value for each voxel in weeks 3 and 4, and the tumour volume found by thresholding. Each model was evaluated by computing the root mean square error in pixel value and structural similarity index metric (SSIM) for all patients. Finally, the sensitivity and specificity to predict a 30% change in volume were calculated for each model.Main results. The linear, Gaussian, quadratic and cubic models achieved a comparable similarity score, the average SSIM for all patients was 0.94, 0.94, 0.90, 0.83 in week 3, respectively. At week 3, a sensitivity of 84%, 53%, 90% and 88%, and specificity of 99%, 100%, 91% and 42% were observed for the linear, Gaussian, quadratic and cubic models respectively. Overall, the linear model performed best at predicting those patients that will benefit from RT adaptation. The linear model identified 21% and 23% of patients in our cohort with more than 30% tumour volume reduction to benefit from treatment adaptation in weeks 3 and 4 respectively.Significance. We have shown that it is feasible to predict the shape and volume of NSCLC tumours from routine CBCTs and effectively identify patients who will respond to treatment early.
Collapse
Affiliation(s)
- Lameck Mbangula Amugongo
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom.,Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom.,Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Andrew Green
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom.,Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - David Cobben
- The Clatterbridge Cancer Centre NHS Foundation Trust, United Kingdom
| | - Marcel van Herk
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom.,Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Alan McWilliam
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom.,Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
11
|
Amugongo LM, Green A, Cobben D, van Herk M, McWilliam A, Osorio EV. Identification of modes of tumor regression in non-small cell lung cancer patients during radiotherapy. Med Phys 2021; 49:370-381. [PMID: 34724228 DOI: 10.1002/mp.15320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Observed gross tumor volume (GTV) shrinkage during radiotherapy (RT) raises the question of whether to adapt treatment to changes observed on the acquired images. In the literature, two modes of tumor regression have been described: elastic and non-elastic. These modes of tumor regression will affect the safety of treatment adaptation. This study applies a novel approach, using routine cone-beam computed tomography (CBCT) and deformable image registration to automatically distinguish between elastic and non-elastic tumor regression. METHODS In this retrospective study, 150 locally advanced non-small cell lung cancer patients treated with 55 Gray of radiotherapy were included. First, the two modes of tumor regression were simulated. For each mode of tumor regression, one timepoint was simulated. Based on the results of simulated data, the approach used for analysis in real patients was developed. CBCTs were non-rigidly registered to the baseline CBCT using a cubic B-spline algorithm, NiftyReg. Next, the Jacobian determinants were computed from the deformation vector fields. To capture local volume changes, 10 Jacobian values were sampled perpendicular to the surface of the GTV, across the lung-tumor boundary. From the simulated data, we can distinguish elastic from non-elastic tumor regression by comparing the Jacobian values samples between 5 and 12.5 mm inside and 5 and 12.5 mm outside the planning GTV. Finally, morphometric results were compared between tumors of different histologies. RESULTS Most patients (92.3%) in our cohort showed stable disease in the first week of treatment and non-elastic shrinkage in the later weeks of treatment. At week 2, 125 patients (88%) showed stable disease, three patients (2.1%) disease progression, and 11 patients (8%) regression. By treatment completion, 91 patients (64%) had stable disease, one patient (0.7%) progression and 46 patients (32%) regression. A slight difference in the mode of tumor change was observed between tumors of different histologies. CONCLUSION Our novel approach shows that it may be possible to automatically quantify and identify global changes in lung cancer patients during RT, using routine CBCT images. Our results show that different regions of the tumor change in different ways. Therefore, careful consideration should be taken when adapting RT.
Collapse
Affiliation(s)
- Lameck Mbangula Amugongo
- Division of Cancer Sciences, University of Manchester, Manchester, UK.,Department of Radiotherapy Related Research, the Christie NHS Foundation Trust, Manchester, UK
| | - Andrew Green
- Division of Cancer Sciences, University of Manchester, Manchester, UK.,Department of Radiotherapy Related Research, the Christie NHS Foundation Trust, Manchester, UK
| | - David Cobben
- The Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Hospital, Birkenhead, UK
| | - Marcel van Herk
- Division of Cancer Sciences, University of Manchester, Manchester, UK.,Department of Radiotherapy Related Research, the Christie NHS Foundation Trust, Manchester, UK
| | - Alan McWilliam
- Division of Cancer Sciences, University of Manchester, Manchester, UK.,Department of Radiotherapy Related Research, the Christie NHS Foundation Trust, Manchester, UK
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, University of Manchester, Manchester, UK.,Department of Radiotherapy Related Research, the Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
12
|
Landman Y, Jacobi O, Kurman N, Yariv O, Peretz I, Rotem O, Dudnik E, Zer A, Allen AM. Durvalumab after concurrent chemotherapy and high-dose radiotherapy for locally advanced non-small cell lung cancer. Oncoimmunology 2021; 10:1959979. [PMID: 34408921 PMCID: PMC8366536 DOI: 10.1080/2162402x.2021.1959979] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The standard of care for stage III non-small cell lung cancer (NSCLC) is chemoradiotherapy (CRT) followed by durvalumab. Although doses higher than 66 Gy are standard in our center, they were used in only 6.9% of patients in the PACIFIC trial. We report our experience with durvalumab after high-dose radiotherapy. The database of a tertiary hospital for patients with stage III NSCLC who were treated with CRT and adjuvant durvalumab was evaluated. Progression-free survival (PFS), overall survival (OS), and local-regional failure (LRF) were measured from the administration of durvalumab. Thirty-nine patients were included. All were treated with intensity-modulated radiation (mean dose 69.9 Gy); Median follow-up time was 20.4 months (range 1–35.4). At 12 months, PFS was 49%, OS 79%, and LRF 14%. Intrathoracic failure at first progression was demonstrated in 8 (21%) patients. Adverse events requiring corticosteroids occurred in 10(25.6%) patients: pneumonitis – 6 (15.4%), hepatitis – 2 (5.1%), and arthralgia and pericarditis – 1 (2.6%). One patient (2.6%) died of pneumonitis. The occurrence of pneumonitis was significantly associated with lung V5 (55% vs. 42%, p = .04) and V20 (28% vs. 19%, p = .01) and mean lung dose (14.8 Gy vs.11.6 Gy, p = .05). The similar 12-month PFS and OS rates of our cohort and the PACIFIC trial support the use of high-dose radiotherapy in patients with stage III NSCLC. Treatment-related mortality was similar to the PACIFIC results. The intrathoracic failure rate in our cohort was lower than that reported from the PACIFIC trial, suggesting that radiation dose escalation may improve local control.
Collapse
Affiliation(s)
- Yosef Landman
- Thoracic Oncology Service, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Oded Jacobi
- Thoracic Oncology Service, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Noga Kurman
- Thoracic Oncology Service, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Orly Yariv
- Thoracic Oncology Service, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv; Israel
| | - Idit Peretz
- Thoracic Oncology Service, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Ofer Rotem
- Thoracic Oncology Service, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Elizabeth Dudnik
- Thoracic Oncology Service, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv; Israel
| | - Alona Zer
- Thoracic Oncology Service, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv; Israel
| | - Aaron M Allen
- Thoracic Oncology Service, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv; Israel
| |
Collapse
|
13
|
Bjaanæs MM, Sande EPS, Loe Ø, Ramberg C, Næss TM, Ottestad A, Rogg LV, Svestad JG, Haakensen VD. Improved adaptive radiotherapy to adjust for anatomical alterations during curative treatment for locally advanced lung cancer. Phys Imaging Radiat Oncol 2021; 18:51-54. [PMID: 34258408 PMCID: PMC8254190 DOI: 10.1016/j.phro.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
Anatomical changes during chemoradiation for lung cancer may decrease dose to the target or increase dose to organs at risk. To assess our ability to identify clinically significant anatomical alterations, we followed 67 lung cancer patients by daily cone-beam CT scans to ensure correct patient positioning and observe anatomical alterations. We also re-calculated the original dose distribution on a planned control CT scan obtained halfway during the treatment course to identify anatomical changes that potentially affected doses to the target or organs at risk. Of 66 patients who completed the treatment, 12 patients needed adaptation, two patients were adapted twice. We conclude that daily cone-beam CT and routines at the treatment machine discover relevant anatomical changes during curative radiotherapy for patients with lung cancer without additional imaging.
Collapse
Affiliation(s)
| | | | - Øyvind Loe
- Dept of Oncology, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Lotte V. Rogg
- Dept of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Vilde Drageset Haakensen
- Dept of Oncology, Oslo University Hospital, Oslo, Norway
- Dept of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Adaptive intensity-modulated radiotherapy with simultaneous integrated boost for stage III non-small cell lung cancer: Is a routine adaptation beneficial? Radiother Oncol 2021; 158:118-124. [PMID: 33636232 DOI: 10.1016/j.radonc.2021.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE Tumor and anatomical changes during radiotherapy have been observed in stage III non-small cell lung cancer (NSCLC) from many previous studies. We hypothesized that a routinely scheduled adaptive radiotherapy would have clinical important dose benefits to lower the risk of toxicities, without increasing the tumor recurrences. METHODS We retrospectively reviewed 92 consecutive patients with inoperable stage III NSCLC between November 2017 and March 2019. All eligible patients should received simultaneously integrated boost (SIB) using intensity-modulated radiation therapy (IMRT). A mid-treatment CT simulation and a new adapted plan were routinely given after the first 20 fractions. The organs at risk (OARs) were delineated per RTOG 1106 atlas. Dose-volume histograms were quantitatively compared between the initial and composite adaptive plans. Logistic regression was applied to analyze the dose-response relationship. Clinical endpoints included acute symptomatic radiation pneumonitis (RP2) and esophagitis (RE2), local and regional tumor control, and progression-free survival (PFS). RESULTS Sixty-four eligible patients received adaptive SIB-IMRT were consecutively included. The GTVs reduced by a median of -38.2% after 42 to 44 Gy in 20 fractions of radiotherapy. By adapting to tumor and anatomical changes, dosimetric parameters of OARs decreased significantly. The mean lung dose decreased by an average of -74.8 cGy, and mean esophagus dose was lower by 183.1 cGy. We found grade 2 or higher acute RP in 11 patients (17.2%), and RE2 in 28 patients (43.8%). Commonly used lung and esophagus dose metrics were significantly associated with RP2 and RE2. The adaptation could reduce RP2 probability by 3%, and RE2 risk by 5%. Subgroups with higher OARs dose or larger tumor shrinkage may get more dose and toxicities benefits. The estimated median PFS was 12.5 months from the start of radiotherapy. CONCLUSIONS We demonstrated that the routinely adaptive SIB-IMRT strategy could significantly reduce the dose to surrounding normal tissues, potentially lower the associated acute RP and RE, without increasing the risk of tumor recurrences.
Collapse
|
15
|
Hörner-Rieber J, Klüter S, Debus J, Adema G, Ansems M, Verheij M. MR-Guided Radiotherapy: The Perfect Partner for Immunotherapy? Front Oncol 2021; 10:615697. [PMID: 33604296 PMCID: PMC7884826 DOI: 10.3389/fonc.2020.615697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
During the last years, preclinical and clinical studies have emerged supporting the rationale to integrate radiotherapy and immunotherapy. Radiotherapy may enhance the effects of immunotherapy by improving tumor antigen release, antigen presentation, and T-cell infiltration. Recently, magnetic resonance guided radiotherapy (MRgRT) has become clinically available. Compared to conventional radiotherapy techniques, MRgRT firstly allows for daily on-table treatment adaptation, which enables both dose escalation for increasing tumor response and superior sparing of radiosensitive organs-at-risk for reducing toxicity. The current review focuses on the potential of combining MR-guided adaptive radiotherapy with immunotherapy by providing an overview on the current status of MRgRT, latest developments in preclinical and clinical radio-immunotherapy, and the unique opportunities and challenges for MR-guided radio-immunotherapy. MRgRT might especially assist in answering open questions in radio-immunotherapy regarding optimal radiation dose, fractionation, timing of immunotherapy, appropriate irradiation volumes, and response prediction.
Collapse
Affiliation(s)
- Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gosse Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marleen Ansems
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
16
|
Hoegen P, Lang C, Akbaba S, Häring P, Splinter M, Miltner A, Bachmann M, Stahl-Arnsberger C, Brechter T, El Shafie RA, Weykamp F, König L, Debus J, Hörner-Rieber J. Cone-Beam-CT Guided Adaptive Radiotherapy for Locally Advanced Non-small Cell Lung Cancer Enables Quality Assurance and Superior Sparing of Healthy Lung. Front Oncol 2020; 10:564857. [PMID: 33363005 PMCID: PMC7756078 DOI: 10.3389/fonc.2020.564857] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose To evaluate the potential of cone-beam-CT (CB-CT) guided adaptive radiotherapy (ART) for locally advanced non-small cell lung cancer (NSCLC) for sparing of surrounding organs-at-risk (OAR). Materials and Methods In 10 patients with locally advanced NSCLC, daily CB-CT imaging was acquired during radio- (n = 4) or radiochemotherapy (n = 6) for simulation of ART. Patients were treated with conventionally fractionated intensity-modulated radiotherapy (IMRT) with total doses of 60–66 Gy (pPlan) (311 fraction CB-CTs). OAR were segmented on every daily CB-CT and the tumor volumes were modified weekly depending on tumor changes. Doses actually delivered were recalculated on daily images (dPlan), and voxel-wise dose accumulation was performed using a deformable registration algorithm. For simulation of ART, treatment plans were adapted using the new contours and re-optimized weekly (aPlan). Results CB-CT showed continuous tumor regression of 1.1 ± 0.4% per day, leading to a residual gross tumor volume (GTV) of 65.3 ± 13.4% after 6 weeks of radiotherapy (p = 0.005). Corresponding PTVs decreased to 83.7 ± 7.8% (p = 0.005). In the actually delivered plans (dPlan), both conformity (p = 0.005) and homogeneity (p = 0.059) indices were impaired compared to the initial plans (pPlan). This resulted in higher actual lung doses than planned: V20Gy was 34.6 ± 6.8% instead of 32.8 ± 4.9% (p = 0.066), mean lung dose was 19.0 ± 3.1 Gy instead of 17.9 ± 2.5 Gy (p = 0.013). The generalized equivalent uniform dose (gEUD) of the lung was 18.9 ± 3.1 Gy instead of 17.8 ± 2.5 Gy (p = 0.013), leading to an increased lung normal tissue complication probability (NTCP) of 15.2 ± 13.9% instead of 9.6 ± 7.3% (p = 0.017). Weekly plan adaptation enabled decreased lung V20Gy of 31.6 ± 6.2% (−3.0%, p = 0.007), decreased mean lung dose of 17.7 ± 2.9 Gy (−1.3 Gy, p = 0.005), and decreased lung gEUD of 17.6 ± 2.9 Gy (−1.3 Gy, p = 0.005). Thus, resulting lung NTCP was reduced to 10.0 ± 9.5% (−5.2%, p = 0.005). Target volume coverage represented by conformity and homogeneity indices could be improved by weekly plan adaptation (CI: p = 0.007, HI: p = 0.114) and reached levels of the initial plan (CI: p = 0.721, HI: p = 0.333). Conclusion IGRT with CB-CT detects continuous GTV and PTV changes. CB-CT-guided ART for locally advanced NSCLC is feasible and enables superior sparing of healthy lung at high levels of plan conformity.
Collapse
Affiliation(s)
- Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clemens Lang
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Medical Physics in Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sati Akbaba
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Mainz University Hospital, Mainz, Germany
| | - Peter Häring
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Medical Physics in Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mona Splinter
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Medical Physics in Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annette Miltner
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marion Bachmann
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Thomas Brechter
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rami A El Shafie
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
17
|
Wang B, Wang DQ, Lin MS, Lu SP, Zhang J, Chen L, Li QW, Cheng ZK, Liu FJ, Guo JY, Liu H, Qiu B. Accumulation of the delivered dose based on cone-beam CT and deformable image registration for non-small cell lung cancer treated with hypofractionated radiotherapy. BMC Cancer 2020; 20:1112. [PMID: 33198676 PMCID: PMC7670776 DOI: 10.1186/s12885-020-07617-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022] Open
Abstract
Background This study aimed to quantify the dosimetric differences between the planned and delivered dose to tumor and normal organs in locally advanced non-small cell lung cancer (LANSCLC) treated with hypofractionated radiotherapy (HRT), and to explore the necessity and identify optimal candidates for adaptive radiotherapy (ART). Methods Twenty-seven patients with stage III NSCLC were enrolled. Planned radiation dose was 51Gy in 17 fractions with cone-beam CT (CBCT) acquired at each fraction. Virtual CT was generated by deformable image registration (DIR) of the planning CT to CBCT for dose calculation and accumulation. Dosimetric parameters were compared between original and accumulated plans using Wilcoxon signed rank test. Correlations between dosimetric differences and clinical variables were analyzed using Mann-Whitney U test or Chi-square test. Results Patients had varied gross tumor volume (GTV) reduction by HRT (median reduction rate 11.1%, range − 2.9-44.0%). The V51 of planning target volume for GTV (PTV-GTV) was similar between original and accumulated plans (mean, 88.2% vs. 87.6%, p = 0.452). Only 11.1% of patients had above 5% relative decrease in V51 of PTV-GTV in accumulated plans. Compared to the original plan, limited increase (median relative increase < 5%) was observed in doses of total lung (mean dose, V20 and V30), esophagus (mean dose, maximum dose) and heart (mean dose, V30 and V40) in accumulated plans. Less than 30% of patients had above 5% relative increase of lung or heart doses. Patients with quick tumor regression or baseline obstructive pneumonitis showed more notable increase in doses to normal structures. Patients with baseline obstructive atelectasis showed notable decrease (10.3%) in dose coverage of PTV-GTV. Conclusions LANSCLC patients treated with HRT had sufficient tumor dose coverage and acceptable normal tissue dose deviation. ART should be applied in patients with quick tumor regression and baseline obstructive pneumonitis/atelectasis to spare more normal structures. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12885-020-07617-3.
Collapse
Affiliation(s)
- Bin Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Da Quan Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Mao Sheng Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Shi Pei Lu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jun Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Li Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Qi Wen Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Zhang Kai Cheng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Fang Jie Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jin Yu Guo
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| | - Bo Qiu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Zhu X, Hou R, Li X, Jiang C, Xia W, Fu X. Predictive model of the first failure pattern in patients receiving definitive chemoradiotherapy for inoperable locally advanced non-small cell lung cancer (LA-NSCLC). Radiat Oncol 2020; 15:43. [PMID: 32070383 PMCID: PMC7029470 DOI: 10.1186/s13014-020-1467-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose To analyze patterns of failure in patients with LA-NSCLC who received definitive chemoradiotherapy (CRT) and to build a nomogram for predicting the failure patterns in this population of patients. Materials and methods Clinicopathological data of patients with LA-NSCLC who received definitive chemoradiotherapy and follow-up between 2013 and 2016 in our hospital were collected. The endpoint was the first failure after definitive chemoradiotherapy. With using elastic net regression and 5-fold nested cross-validation, the optimal model with better generalization ability was selected. Based on the selected model and corresponding features, a nomogram prediction model was built. This model was also validated by ROC curves, calibration curve and decision curve analysis (DCA). Results With a median follow-up of 28 months, 100 patients experienced failure. There were 46 and 54 patients who experience local failure and distant failure, respectively. Predictive model including 9 factors (smoking, pathology, location, EGFR mutation, age, tumor diameter, clinical N stage, consolidation chemotherapy and radiation dose) was finally built with the best performance. The average area under the ROC curve (AUC) with 5-fold nested cross-validation was 0.719, which was better than any factors alone. The calibration curve revealed a satisfactory consistency between the predicted distant failure rates and the actual observations. DCA showed most of the threshold probabilities in this model were with good net benefits. Conclusion Clinicopathological factors could collaboratively predict failure patterns in patients with LA-NSCLC who are receiving definitive chemoradiotherapy. A nomogram was built and validated based on these factors, showing a potential predictive value in clinical practice.
Collapse
Affiliation(s)
- Xueru Zhu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Runping Hou
- Department of Biomedical Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaoyang Li
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chang Jiang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wuyan Xia
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
19
|
Chin S, Eccles CL, McWilliam A, Chuter R, Walker E, Whitehurst P, Berresford J, Van Herk M, Hoskin PJ, Choudhury A. Magnetic resonance-guided radiation therapy: A review. J Med Imaging Radiat Oncol 2020; 64:163-177. [PMID: 31646742 DOI: 10.1111/1754-9485.12968] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
Magnetic resonance-guided radiation therapy (MRgRT) is a promising approach to improving clinical outcomes for patients treated with radiation therapy. The roles of image guidance, adaptive planning and magnetic resonance imaging in radiation therapy have been increasing over the last two decades. Technical advances have led to the feasible combination of magnetic resonance imaging and radiation therapy technologies, leading to improved soft-tissue visualisation, assessment of inter- and intrafraction motion, motion management, online adaptive radiation therapy and the incorporation of functional information into treatment. MRgRT can potentially transform radiation oncology by improving tumour control and quality of life after radiation therapy and increasing convenience of treatment by shortening treatment courses for patients. Multiple groups have developed clinical implementations of MRgRT predominantly in the abdomen and pelvis, with patients having been treated since 2014. While studies of MRgRT have primarily been dosimetric so far, an increasing number of trials are underway examining the potential clinical benefits of MRgRT, with coordinated efforts to rigorously evaluate the benefits of the promising technology. This review discusses the current implementations, studies, potential benefits and challenges of MRgRT.
Collapse
Affiliation(s)
- Stephen Chin
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Cynthia L Eccles
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Alan McWilliam
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Robert Chuter
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Emma Walker
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Philip Whitehurst
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Joseph Berresford
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Marcel Van Herk
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Peter J Hoskin
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Ananya Choudhury
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Shi L, Rong Y, Daly M, Dyer B, Benedict S, Qiu J, Yamamoto T. Cone-beam computed tomography-based delta-radiomics for early response assessment in radiotherapy for locally advanced lung cancer. ACTA ACUST UNITED AC 2020; 65:015009. [DOI: 10.1088/1361-6560/ab3247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Appel S, Bar J, Alezra D, Ben-Ayun M, Rabin-Alezra T, Honig N, Katzman T, Chatterji S, Symon Z, Lawrence YR. Image-guidance triggered adaptive replanning of radiation therapy for locally advanced lung cancer: an evaluation of cases requiring plan adaptation. Br J Radiol 2020; 93:20190743. [PMID: 31670581 PMCID: PMC6948072 DOI: 10.1259/bjr.20190743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/12/2019] [Accepted: 10/28/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Anatomic changes may occur during chemoradiation treatment for lung cancers, requiring adaptive replanning. Here we characterize these cases. METHODS We retrospectively studied lung cancer cases that underwent resimulation and adaptive replanning during 1/2016-3/2019. We compared first and second CT-simulation regarding tumor location, timing of change, tumor volume, anatomical alteration and change in simulation technique. We also compared dosimetric parameters between the plans, recorded local control, and overall survival outcomes. RESULTS Out of 281 patients, 58 underwent replanning (20.6%). Histology included small cell (22.4%) and non-small cell (77.6%). Stage III was in 91.4%. Mean radiation dose of 59.4 Gray (Gy) (range 50-66Gy).Tumor location was peribronchial in 53.5%. Timing of replanning was in the first, second and final third of the treatment course in 26%, 43% and 31% respectively. Changes in gross tumor volume were observed in 74%; mean gross tumor volume was 276.7cc vs 192.7 cc (first vs second simulation, p = 0.001). Anatomical changes were identified in 35.4% including pleural fluid accumulation, atelectasis or pneumothorax alteration. Change in simulation technique was performed in 25.9%, including breath-hold or continuous positive airway pressure.Changes in dosimetric parameters when the same technique was used: lung V20Gy 26% (standard deviation, SD 7.6) vs 25.3% (SD 6.6) (p = 0.36), mean lung dose 15.1 Gy (SD 3.7) vs 14.7Gy (SD 3.3) (p = 0.23), heart V40Gy 10.2% (SD13) vs 7.2% (SD 9.8) (p = 0.037). When simulation technique changed: lung V20Gy 30.8% (SD 8.2) vs 27.3% (SD 8) (p = 0.012), mean lung dose 17.3 Gy (SD 4.4) vs 15.3 Gy (SD 3.8) (p = 0.007), heart V40Gy 11.1% (SD 14.7) vs 6.5% (SD 6.7) (p = 0.014).2 year local control was 60.7% (95% confidence interval, 34.5-79.2%), and median overall survival was 19.7 months. CONCLUSION Adaptive replanning of radiation was performed in a fifth of locally advanced lung cancer patients. In most cases tumor volume decreased, or atelectasis resolved, causing mediastinal shifts, which, if unidentified and left uncorrected, may have led to local failure and increased toxicity. The heart V40Gy was reduced significantly in all cases, but significant reduction in lung doses was evident only if simulation technique was altered. ADVANCES IN KNOWLEDGE In locally advanced lung cancer image-guidance with cone beam CT can detect significant mediastinal shifts and gross tumor volume changes that raise the need for adaptive replanning. Image guidance-triggered adaptive replanning should be added to the armament of advanced radiation treatment planning in locally advanced lung cancer.
Collapse
Affiliation(s)
- Sarit Appel
- Radiation Oncology, Institute Of Oncology, Chaim Sheba Medical Center affiliated to Tel Aviv University, Sackler faculty of medicine, Ramat Gan, Israel
| | - Jair Bar
- Medical Oncology, Institute of Oncology, Chaim Sheba Medical Center, affiliated to Tel Aviv University, Sackler faculty of medicine, Ramat Gan, Israel
| | - Dror Alezra
- Radiation Oncology, Institute Of Oncology, Chaim Sheba Medical Center affiliated to Tel Aviv University, Sackler faculty of medicine, Ramat Gan, Israel
| | - Maoz Ben-Ayun
- Radiation Oncology, Institute Of Oncology, Chaim Sheba Medical Center affiliated to Tel Aviv University, Sackler faculty of medicine, Ramat Gan, Israel
| | | | - Nir Honig
- Radiation Oncology, Institute Of Oncology, Chaim Sheba Medical Center affiliated to Tel Aviv University, Sackler faculty of medicine, Ramat Gan, Israel
| | - Tamar Katzman
- Radiation Oncology, Institute Of Oncology, Chaim Sheba Medical Center affiliated to Tel Aviv University, Sackler faculty of medicine, Ramat Gan, Israel
| | - Sumit Chatterji
- Department of Pulmonology, Chaim Sheba Medical Center affiliated to Tel Aviv University, Sackler faculty of medicine, Israel, Ramat Gan, Israel
| | | | | |
Collapse
|
22
|
Briens A, Castelli J, Barateau A, Jaksic N, Gnep K, Simon A, De Crevoisier R. Radiothérapie adaptative : stratégies et bénéfices selon les localisations tumorales. Cancer Radiother 2019; 23:592-608. [DOI: 10.1016/j.canrad.2019.07.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
|
23
|
Kavanaugh J, Hugo G, Robinson CG, Roach MC. Anatomical Adaptation-Early Clinical Evidence of Benefit and Future Needs in Lung Cancer. Semin Radiat Oncol 2019; 29:274-283. [PMID: 31027644 DOI: 10.1016/j.semradonc.2019.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Definitive treatment of locally advanced non-small-cell lung cancer with radiation is challenging. During the course of treatment, anatomical changes such as tumor regression, tumor displacement/deformation, pleural effusion, and/or atelectasis can result in a deviation of the administered radiation dose from the intended prescribed treatment and thereby worsen local control and toxicity. Adaptive radiotherapy can help correct for these changes and can be generally categorized into 3 philosophical paradigms: (1) maintenance of prescribed dose to the initially defined target volume; (2) dose reduction to healthy organs while maintaining initial prescribed dose to a regressing tumor volume; or (3) dose escalation to a regressing tumor volume with isotoxicity to healthy organs. Numerous single institution studies have investigated these methods, and results from large prospective clinical trials will hopefully provide consensus on the method, utility, and efficacy of implementing adaptive radiation therapy (ART) in a clinical setting. Additional development into standardization and automation of the ART workflow, specifically in identifying when ART is warranted and in reducing the manual clinical effort needed to produce an adaptive plan, will be paramount to making ART feasible for the broader radiation therapy community.
Collapse
Affiliation(s)
- James Kavanaugh
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Geoffrey Hugo
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Cliff G Robinson
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Michael C Roach
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO.
| |
Collapse
|
24
|
Abstract
As deformable image registration makes its way into the clinical routine, the summation of doses from fractionated treatment regimens to evaluate cumulative doses to targets and healthy tissues is also becoming a frequently utilized tool in the context of image-guided adaptive radiotherapy. Accounting for daily geometric changes using deformable image registration and dose accumulation potentially enables a better understanding of dose-volume-effect relationships, with the goal of translation of this knowledge to personalization of treatment, to further enhance treatment outcomes. Treatment adaptation involving image deformation requires patient-specific quality assurance of the image registration and dose accumulation processes, to ensure that uncertainties in the 3D dose distributions are identified and appreciated from a clinical relevance perspective. While much research has been devoted to identifying and managing the uncertainties associated with deformable image registration and dose accumulation approaches, there are still many unanswered questions. Here, we provide a review of current deformable image registration and dose accumulation techniques, and related clinical application. We also discuss salient issues that need to be deliberated when applying deformable algorithms for dose mapping and accumulation in the context of adaptive radiotherapy and response assessment.
Collapse
|
25
|
Liu X, Wiersma RD. Optimization based trajectory planning for real-time 6DoF robotic patient motion compensation systems. PLoS One 2019; 14:e0210385. [PMID: 30633766 PMCID: PMC6329492 DOI: 10.1371/journal.pone.0210385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/21/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose Robotic stabilization of a therapeutic radiation beam with respect to a dynamically moving tumor target can be accomplished either by moving the radiation source, the patient, or both. As the treatment beam is on during this process, the primary goal is to minimize exposure of normal tissue to radiation as much as possible when moving the target back to the desired position. Due to the complex mechanical structure of 6 degree-of-freedom (6DoF) robots, it is not intuitive as to what 6 dimensional (6D) correction trajectory is optimal in achieving such a goal. With proportional-integrative-derivative (PID) and other controls, the potential exists that the controller may generate a trajectory that is highly curved, slow, or suboptimal in that it leads to unnecessary exposure of healthy tissue to radiation. This work investigates a novel feedback planning method that takes into account a robot’s mechanical joint structure, patient safety tolerances, and other system constraints, and performs real-time optimization to search the entire 6D trajectory space in each time cycle so it can respond with an optimal 6D correction trajectory. Methods Computer simulations were created for two 6DoF robotic patient support systems: a Stewart-Gough platform for moving a patient’s head in frameless maskless stereotactic radiosurgery, and a linear accelerator treatment table for moving a patient in prostate cancer radiation therapy. Motion planning was formulated as an optimization problem and solved at real-time speeds using the L-BFGS algorithm. Three planning methods were investigated, moving the platform as fast as possible (platform-D), moving the target along a straight-line (target-S), and moving the target based on the fastest descent of position error (target-D). Both synthetic motion and prior recorded human motion were used as input data and output results were analyzed. Results For randomly generated 6D step-like and sinusoidal synthetic input motion, target-D planning demonstrated the smallest net trajectory error in all cases. On average, optimal planning was found to have a 45% smaller target trajectory error than platform-D control, and a 44% smaller target trajectory error than target-S planning. For patient head motion compensation, only target-D planning was able to maintain a ≤0.5mm and ≤0.5deg clinical tolerance objective for 100% of the treatment time. For prostate motion, both target-S planning and target-D planning outperformed platform-D control. Conclusions A general 6D target trajectory optimization framework for robotic patient motion compensation systems was investigated. The method was found to be flexible as it allows control over various performance requirements such as mechanical limits, velocities, acceleration, or other system control objectives.
Collapse
Affiliation(s)
- Xinmin Liu
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, United States of America
| | - Rodney D. Wiersma
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, United States of America
- * E-mail:
| |
Collapse
|
26
|
Wang S, Zheng D, Lin C, Lei Y, Verma V, Smith A, Ma R, Enke CA, Zhou S. Technical Assessment of an Automated Treatment Planning on Dose Escalation of Pancreas Stereotactic Body Radiotherapy. Technol Cancer Res Treat 2019; 18:1533033819851520. [PMID: 31195891 PMCID: PMC6572905 DOI: 10.1177/1533033819851520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Stereotactic body radiotherapy has been suggested to provide high rates of local control for locally advanced pancreatic cancer. However, the close proximity of highly radiosensitive normal tissues usually causes the labor-intensive planning process and may impede further escalation of the prescription dose. PURPOSE The present study aims to evaluate the consistency and efficiency of Pinnacle Auto-Planning for pancreas stereotactic body radiotherapy with original prescription and escalated prescription. METHODS Twenty-four patients with pancreatic cancer treated with stereotactic body radiotherapy were studied retrospectively. The prescription is 40 Gy over 5 consecutive fractions. Most of patients (n = 21) also had 3 other different dose-level targets (6 Gy/fraction, 5 Gy/fraction, and 4 Gy/fraction). Two types of plans were generated by Pinnacle Auto-Planning with the original prescription (8 Gy/fraction, 6 Gy/fraction, 5 Gy/fraction, and 4 Gy/fraction) and escalated prescription (9 Gy/fraction, 7 Gy/fraction, 6 Gy/fraction, and 5 Gy/fraction), respectively. The same Auto-Planning template, including beam geometry, intensity-modulated radiotherapy objectives and intensity-modulated radiotherapy optimization parameters, were utilized for all the auto-plans in each prescription group. The intensity-modulated radiotherapy objectives do not include any manually created structures. Dosimetric parameters including percentage volume of PTV receiving 100% of the prescription dose, percentage volume of PTV receiving 93% of the prescription dose, and consistency of the dose-volume histograms of the target volumes were assessed. Dmax and D1 cc of highly radiosensitive organs were also evaluated. RESULTS For all the pancreas stereotactic body radiotherapy plans with the original or escalated prescriptions, auto-plans met institutional dose constraints for critical organs, such as the duodenum, small intestine, and stomach. Furthermore, auto-plans resulted in acceptable planning target volume coverage for all targets with different prescription levels. All the plans were generated in a one-attempt manner, and very little human intervention is necessary to achieve such plan quality. CONCLUSIONS Pinnacle3 Auto-Planning consistently and efficiently generate acceptable treatment plans for multitarget pancreas stereotactic body radiotherapy with or without dose escalation and may play a more important role in treatment planning in the future.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu Lei
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vivek Verma
- Allegheny General Hospital, Pittsburgh, PA, USA
| | - April Smith
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rongtao Ma
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Charles A. Enke
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
27
|
Patterns of Local-Regional Failure After Intensity Modulated Radiation Therapy or Passive Scattering Proton Therapy With Concurrent Chemotherapy for Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2019; 103:123-131. [DOI: 10.1016/j.ijrobp.2018.08.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
|
28
|
Phantom Verification of AAA and Acuros Dose Calculations for Lung Cancer: Do Tumor Size and Regression Matter? Pract Radiat Oncol 2019; 9:29-37. [DOI: 10.1016/j.prro.2018.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/22/2018] [Accepted: 06/10/2018] [Indexed: 12/14/2022]
|
29
|
Yamamoto T, Kabus S, Bal M, Bzdusek K, Keall PJ, Wright C, Benedict SH, Daly ME. Changes in Regional Ventilation During Treatment and Dosimetric Advantages of CT Ventilation Image Guided Radiation Therapy for Locally Advanced Lung Cancer. Int J Radiat Oncol Biol Phys 2018; 102:1366-1373. [PMID: 29891207 PMCID: PMC6443402 DOI: 10.1016/j.ijrobp.2018.04.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/23/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Lung functional image guided radiation therapy (RT) that avoids irradiating highly functional regions has potential to reduce pulmonary toxicity following RT. Tumor regression during RT is common, leading to recovery of lung function. We hypothesized that computed tomography (CT) ventilation image-guided treatment planning reduces the functional lung dose compared to standard anatomic image-guided planning in 2 different scenarios with or without plan adaptation. METHODS AND MATERIALS CT scans were acquired before RT and during RT at 2 time points (16-20 Gy and 30-34 Gy) for 14 patients with locally advanced lung cancer. Ventilation images were calculated by deformable image registration of four-dimensional CT image data sets and image analysis. We created 4 treatment plans at each time point for each patient: functional adapted, anatomic adapted, functional unadapted, and anatomic unadapted plans. Adaptation was performed at 2 time points. Deformable image registration was used for accumulating dose and calculating a composite of dose-weighted ventilation used to quantify the lung accumulated dose-function metrics. The functional plans were compared with the anatomic plans for each scenario separately to investigate the hypothesis at a significance level of 0.05. RESULTS Tumor volume was significantly reduced by 20% after 16 to 20 Gy (P = .02) and by 32% after 30 to 34 Gy (P < .01) on average. In both scenarios, the lung accumulated dose-function metrics were significantly lower in the functional plans than in the anatomic plans without compromising target volume coverage and adherence to constraints to critical structures. For example, functional planning significantly reduced the functional mean lung dose by 5.0% (P < .01) compared to anatomic planning in the adapted scenario and by 3.6% (P = .03) in the unadapted scenario. CONCLUSIONS This study demonstrated significant reductions in the accumulated dose to the functional lung with CT ventilation image-guided planning compared to anatomic image-guided planning for patients showing tumor regression and changes in regional ventilation during RT.
Collapse
Affiliation(s)
- Tokihiro Yamamoto
- Department of Radiation Oncology, University of California Davis, Sacramento, California.
| | - Sven Kabus
- Department of Digital Imaging, Philips Research, Hamburg, Germany
| | | | | | - Paul J Keall
- Radiation Physics Laboratory, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Cari Wright
- Department of Radiation Oncology, University of California Davis, Sacramento, California
| | - Stanley H Benedict
- Department of Radiation Oncology, University of California Davis, Sacramento, California
| | - Megan E Daly
- Department of Radiation Oncology, University of California Davis, Sacramento, California
| |
Collapse
|
30
|
Defraene G, La Fontaine M, van Kranen S, Reymen B, Belderbos J, Sonke JJ, De Ruysscher D. Radiation-Induced Lung Density Changes on CT Scan for NSCLC: No Impact of Dose-Escalation Level or Volume. Int J Radiat Oncol Biol Phys 2018; 102:642-650. [PMID: 30244882 DOI: 10.1016/j.ijrobp.2018.06.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/23/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Dose-escalation for patients with non-small cell lung cancer (NSCLC) in the positron emission tomography (PET)-boost trial (NCT01024829) exposes portions of normal lung tissue to high radiation doses. The relationship between lung parenchyma dose and density changes on computed tomography (CT) was analyzed. MATERIALS AND METHODS The CT scans of 59 patients with stage IB to III NSCLC, randomized between a boost to the whole primary tumor and an integrated boost to its 50% SUVmax (maximum standardized uptake value) volume. Patients were treated with concurrent or sequential chemoradiation or radiation only. Deformable registration mapped the 3-month follow-up CT to the planning CT. Hounsfield unit differences (ΔHU) were extracted to assess lung parenchyma density changes. Equivalent dose in 2 Gy fractions (EQD2)-ΔHU response was described sigmoidally, and regional response variation was studied by polar analysis. Prognostic factors of ΔHU were obtained through generalized linear modeling. RESULTS Saturation of ΔHU was observed above 60 Gy. No interaction was found between boost dose distribution (D1cc and V70Gy) and ΔHU at lower doses. ΔHU was lowest peripherally from the tumor and peaked posteriorly at 3 cm from the tumor border (3.1 HU/Gy). Right lung location was an independent risk factor for ΔHU (P = .02). CONCLUSIONS No apparent increase of lung density changes at 3-month follow-up was observed above 60 Gy EQD2 for patients with NSCLC treated with (concurrent or sequential chemo) radiation. The mild response observed peripherally in the lung parenchyma might be exploited in plan optimization routines minimizing lung damage.
Collapse
Affiliation(s)
- Gilles Defraene
- Department of Oncology, Experimental Radiation Oncology, KU Leuven-University of Leuven, Belgium.
| | - Matthew La Fontaine
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Simon van Kranen
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bart Reymen
- Maastricht University Medical Center, Maastricht, The Netherlands
| | - José Belderbos
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dirk De Ruysscher
- Department of Oncology, Experimental Radiation Oncology, KU Leuven-University of Leuven, Belgium; Maastricht University Medical Center, Maastricht, The Netherlands; Department of Radiation Oncology (Maastro Clinic), GROW School for Developmental Biology and Oncology, Maastricht, The Netherlands
| |
Collapse
|
31
|
Dose escalation to 84 Gy with concurrent chemotherapy in stage III NSCLC appears excessively toxic: Results from a prematurely terminated randomized phase II trial. Lung Cancer 2018; 122:180-186. [PMID: 30032828 DOI: 10.1016/j.lungcan.2018.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Concurrent chemoradiotherapy is the mainstay treatment for NSCLC stage III disease. To investigate whether radiation dose escalation based on individual normal tissue constraints can improve outcome, the Swedish lung cancer study group launched this randomized phase II trial. MATERIALS AND METHODS NSCLC patients with stage III disease, good performance status (0-1) and adequate lung function (FEV1 > 1.0 L and CO diffusion capacity > 40%) received three cycles of cisplatin (75 mg/m2 day 1) and vinorelbine (25 mg/m2 day 1 and 8) every third week. Radiotherapy started concurrently with the second cycle, with either 2 Gy daily, 5 days a week, to 68 Gy (A) or escalated therapy (B) based on constraints to the spinal cord, esophagus and lungs up to 84 Gy by adding an extra fraction of 2 Gy per week. RESULTS A pre-planned safety analysis revealed excessive toxicity and decreased survival in the escalated arm, and the study was stopped. Thirty-six patients were included during 2011-2013 (56% male, 78% with adenocarcinoma, 64% with PS 0 and 53% with stage IIIB). The median progression-free survival (PFS) and overall survival (OS) were 11 and 17 months in arm B compared to the encouraging results of 28 and 45 months in the standard arm. The 1- and 3-year survival rates were 56% and 33% (B) and 72% and 56% (A), respectively. There were seven toxicity-related deaths due to esophageal perforations and pneumonitis: five in the escalated group and two with standard treatment. CONCLUSION Dose-escalated concurrent chemoradiotherapy to 84 Gy to primary tumor and nodal disease is hazardous, with a high risk of excessive toxicity, whereas modern standard dose chemoradiotherapy with proper staging given in the control arm shows a promising outcome with a median survival of 45 months and a 3-year survival of 56% (NCT01664663).
Collapse
|
32
|
Grootjans W, de Geus-Oei LF, Bussink J. Image-guided adaptive radiotherapy in patients with locally advanced non-small cell lung cancer: the art of PET. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 62:369-384. [PMID: 29869486 DOI: 10.23736/s1824-4785.18.03084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With a worldwide annual incidence of 1.8 million cases, lung cancer is the most diagnosed form of cancer in men and the third most diagnosed form of cancer in women. Histologically, 80-85% of all lung cancers can be categorized as non-small cell lung cancer (NSCLC). For patients with locally advanced NSCLC, standard of care is fractionated radiotherapy combined with chemotherapy. With the aim of improving clinical outcome of patients with locally advanced NSCLC, combined and intensified treatment approaches are increasingly being used. However, given the heterogeneity of this patient group with respect to tumor biology and subsequent treatment response, a personalized treatment approach is required to optimize therapeutic effect and minimize treatment induced toxicity. Medical imaging, in particular positron emission tomography (PET), before and during the course radiotherapy is increasingly being used to personalize radiotherapy. In this setting, PET imaging can be used to improve delineation of target volumes, employ molecularly-guided dose painting strategies, early response monitoring, prediction and monitoring of treatment-related toxicity. The concept of PET image-guided adaptive radiotherapy (IGART) is an interesting approach to personalize radiotherapy for patients with locally advanced NSCLC, which might ultimately contribute to improved clinical outcomes and reductions in frequency of treatment-related adverse events in this patient group. In this review, we provide a comprehensive overview of available clinical data supporting the use of PET imaging for IGART in patients with locally advanced NSCLC.
Collapse
Affiliation(s)
- Willem Grootjans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands -
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Elsayad K, Samhouri L, Scobioala S, Haverkamp U, Eich HT. Is tumor volume reduction during radiotherapy prognostic relevant in patients with stage III non-small cell lung cancer? J Cancer Res Clin Oncol 2018; 144:1165-1171. [PMID: 29623466 DOI: 10.1007/s00432-018-2640-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE/OBJECTIVE(S) Lung cancer tumor volume reduction is common during radiation treatment (RT). The purpose of this study was to investigate tumor volume reduction ratio (VRR) and its correlation with outcomes in a cohort of patients with stage III non-small cell lung cancer (NSCLC) who underwent image-guided radiochemotherapy (RCTx). MATERIALS/METHODS Fifty patients with NSCLC treated with fractionated RT at our institution between 2013 and 2017 were included. The relationship between gross tumor volume (GTV) changes during RT (week 1 vs. week 5) and outcomes were evaluated. RESULTS The median radiation dose delivered was 59.4 Gy (median fraction dose, 1.8 Gy). The median GTV before treatment was 119 cm3, with a median GTV change of - 40%. Patients with more volume reduction had poorer tumor control. A VRR > 40% was associated with a poorer OS and PFS in patients with non-adenocarcinoma (non-ADC) histology. In multivariate analysis, VRR during RT, and chemotherapy (CTx) administration remained related to PFS and OS, while initial GTV remained a significant determinant for OS. In subgroup analyses, and CTx (p = 0.038) affected PFS among non-ADC patients, with initial GTV (p = 0.058) and VRR (p = 0.08) showing non-significant trends. Initial GTV (p = 0.023), VRR (p = 0.038), and CTx (p = 0.01) remained significant predictors for OS in the non-ADC group. CONCLUSION Worse tumor control and OS in non-ADC patients are observed with more marked RT-induced tumor shrinkage, supporting the development of response-adaptive treatment strategies, particularly in non-ADC NSCLC patients.
Collapse
Affiliation(s)
- Khaled Elsayad
- Radiation Oncology Department, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany.
| | - Laith Samhouri
- Radiation Oncology Department, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Sergiu Scobioala
- Radiation Oncology Department, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Uwe Haverkamp
- Radiation Oncology Department, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Hans Theodor Eich
- Radiation Oncology Department, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| |
Collapse
|
34
|
A multi-institutional study of secondary check of treatment planning using Clarkson-based dose calculation for three-dimensional radiotherapy. Phys Med 2018; 49:19-27. [DOI: 10.1016/j.ejmp.2018.04.394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/24/2022] Open
|
35
|
Hugo GD, Dial C, Siebers JV. In Regard to Zhong and Chetty. Int J Radiat Oncol Biol Phys 2018; 99:1308-1310. [PMID: 29165292 DOI: 10.1016/j.ijrobp.2017.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/30/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Geoffrey D Hugo
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Christian Dial
- Department of Radiation Oncology, UCHealth, Fort Collins, Colorado
| | - Jeffrey V Siebers
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
36
|
Guy CL, Weiss E, Christensen GE, Jan N, Hugo GD. CALIPER: A deformable image registration algorithm for large geometric changes during radiotherapy for locally advanced non-small cell lung cancer. Med Phys 2018; 45:2498-2508. [PMID: 29603277 DOI: 10.1002/mp.12891] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Locally advanced non-small cell lung cancer (NSCLC) patients may experience dramatic changes in anatomy during radiotherapy and could benefit from adaptive radiotherapy (ART). Deformable image registration (DIR) is necessary to accurately accumulate dose during plan adaptation, but current algorithms perform poorly in the presence of large geometric changes, namely atelectasis resolution. The goal of this work was to develop a DIR framework, named Consistent Anatomy in Lung Parametric imagE Registration (CALIPER), to handle large geometric changes in the thorax. METHODS Registrations were performed on pairs of baseline and mid-treatment CT datasets of NSCLC patients presenting with atelectasis at the start of treatment. Pairs were classified based on atelectasis volume change as either full, partial, or no resolution. The evaluated registration algorithms consisted of several combinations of a hybrid intensity- and feature-based similarity cost function to investigate the ability to simultaneously match healthy lung parenchyma and adjacent atelectasis. These components of the cost function included a mass-preserving intensity cost in the lung parenchyma, use of filters to enhance vascular structures in the lung parenchyma, manually delineated lung lobes as labels, and several intensity cost functions to model atelectasis change. Registration error was quantified with landmark-based target registration error and post-registration alignment of atelectatic lobes. RESULTS The registrations using both lobe labels and vasculature enhancement in addition to intensity of the CT images were found to have the highest accuracy. Of these registrations, the mean (SD) of mean landmark error across patients was 2.50 (1.16) mm, 2.80 (0.70) mm, and 2.04 (0.13) mm for no change, partial resolution, and full atelectasis resolution, respectively. The mean (SD) atelectatic lobe Dice similarity coefficient was 0.91 (0.08), 0.90 (0.08), and 0.89 (0.04), respectively, for the same groups. Registration accuracy was comparable to healthy lung registrations of current state-of-the-art algorithms reported in literature. CONCLUSIONS The CALIPER algorithm developed in this work achieves accurate image registration for challenging cases involving large geometric and topological changes in NSCLC patients, a requirement for enabling ART in this patient group.
Collapse
Affiliation(s)
- Christopher L Guy
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Gary E Christensen
- Department of Electrical and Computer Engineering and Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Nuzhat Jan
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Geoffrey D Hugo
- Department of Radiation Oncology, Washington University, St. Louis, MO, 63110, USA
| |
Collapse
|
37
|
Rohrer Bley C, Meier V, Schneider U. Dosimetric benefit of adaptive radiotherapy in the neoadjuvant management of canine and feline thymoma-An exploratory case series. Vet Comp Oncol 2018; 16:324-329. [PMID: 29316134 DOI: 10.1111/vco.12382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/10/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022]
Abstract
While surgery is the treatment of choice for thymomas, complete excision is not possible in a significant proportion of cases. For these patients, radiotherapy can be used as neoadjunctive, post-operative adjunctive or sole therapy. During radiotherapy, rapid biological clearance of tumour cells is often observed, requiring adaptation of the treatment plan. Adaptive radiation therapy (RT) is a dynamic process, whereby the treatment plan is altered throughout the treatment course due to changes in morphologic, functional or positioning changes. With the hypothesis, that individually adapted replanning will massively reduce the dose to organs at risk (OAR) in a fast-changing environment such as a rapidly responding thymoma, the dosimetric impact of adaptive treatment planning in 5 patients with large thymoma was measured. In all patients rapid tumour-shrinkage of the gross tumour volume was observed after 1 week of therapy, with a mean shrinkage of 31.0% ± 15.2%, or a tumour regression of 5.2% per day. In consequence, there was a considerable change in position of organs such as heart and lung, both of them moving cranially into the high dose area upon tumour regression. After mid-therapy replanning, the dose to OAR was significantly reduced, with -18.2% in the mean heart dose and -27.9% in the V20 lung dose. Adaptive planning led to a significantly reduced radiation dose and hence protection of OAR for these patients. It can be concluded that adaptive replanning should be considered for canine and feline thymoma patients receiving fractionated RT.
Collapse
Affiliation(s)
- C Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - V Meier
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - U Schneider
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.,Radiation Oncology, Hirslanden Clinic, Zurich, Switzerland
| |
Collapse
|
38
|
Jiang C, Han S, Chen W, Ying X, Wu H, Zhu Y, Shi G, Sun X, Xu Y. A retrospective study of shrinking field radiation therapy during chemoradiotherapy in stage III non-small cell lung cancer. Oncotarget 2018; 9:12443-12451. [PMID: 29552324 PMCID: PMC5844760 DOI: 10.18632/oncotarget.23849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/26/2017] [Indexed: 12/25/2022] Open
Abstract
Background and purpose: This retrospective study aimed to investigate the feasibility of shrinking field radiotherapy during chemoradiotherapy in non-small cell lung cancer (NSCLC). Patients and methods Ninety-seven patients with stage III NSCLC who achieved a good response to chemoradiation were analyzed. Computed tomography was performed after 40-50 Gy dose radiation to evaluate curative effect. Patients in the shrinking field group underwent resimulation CT scans and shrinking field radiotherapy. Acute symptomatic irradiation-induced pneumonia (ASIP), progression patterns and survival were assessed. Results Of the 97 patients who achieved response after a median total dose of 60 Gy, fifty patients received shrinking field radiotherapy. The incidence of acute symptomatic irradiation-induced pneumonia tended to be lower for the shrinking field group (18.0% vs. 23.4%, P = 0.51). The rate of disease progression was significantly higher in the non-shrinking than shrinking field group (95.7% vs. 66.0%, P < 0.001). Compared to the non-shrinking field group, the shrinking field group had similar overall survival (30.0 vs. 30.0 months, P = 0.58) but significantly better median progression-free survival (14.0 vs. 11.0 months, P = 0.006). Conclusions Shrinking field radiotherapy during chemoradiotherapy in stage III non-small cell lung cancer seems safe with acceptable toxicities and relapse, and potentially spares normal tissues and enables dose escalation. Prospective trials are warranted.
Collapse
Affiliation(s)
- Chenxue Jiang
- First Clinical Medical School, Wenzhou Medical University, Wenzhou, PR China.,Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Shuiyun Han
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Wucheng Chen
- First Clinical Medical School, Wenzhou Medical University, Wenzhou, PR China.,Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Xiaozhen Ying
- First Clinical Medical School, Wenzhou Medical University, Wenzhou, PR China.,Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - He Wu
- First Clinical Medical School, Wenzhou Medical University, Wenzhou, PR China.,Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Yaoyao Zhu
- First Clinical Medical School, Wenzhou Medical University, Wenzhou, PR China.,Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Guodong Shi
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Xiaojiang Sun
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Yaping Xu
- First Clinical Medical School, Wenzhou Medical University, Wenzhou, PR China.,Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| |
Collapse
|
39
|
Chetty IJ, Fontenot J. Adaptive Radiation Therapy: Off-Line, On-Line, and In-Line? Int J Radiat Oncol Biol Phys 2017; 99:689-691. [DOI: 10.1016/j.ijrobp.2017.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/23/2017] [Accepted: 07/13/2017] [Indexed: 10/18/2022]
|
40
|
Berkovic P, Paelinck L, Gulyban A, van Eijkeren M, Surmont V, Lievens Y, Vandecasteele K. Adaptive radiotherapy for locally advanced non-small cell lung cancer: dosimetric gain and treatment outcome prediction. Acta Oncol 2017; 56:1656-1659. [PMID: 28835160 DOI: 10.1080/0284186x.2017.1352103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Patrick Berkovic
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
- Department of Radiation Oncology, Liège University Hospital, Liège, Belgium
| | - Leen Paelinck
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Akos Gulyban
- Department of Radiation Oncology, Liège University Hospital, Liège, Belgium
| | - Marc van Eijkeren
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Veerle Surmont
- Department of Respiratory Medicine/Thoracic Oncology, Ghent University Hospital, Ghent, Belgium
| | - Yolande Lievens
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | | |
Collapse
|
41
|
Abdoli M, Van Kranen SR, Stankovic U, Rossi MMG, Belderbos JSA, Sonke JJ. Mitigating differential baseline shifts in locally advanced lung cancer patients using an average anatomy model. Med Phys 2017; 44:3570-3578. [DOI: 10.1002/mp.12271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/23/2016] [Accepted: 03/20/2017] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mehrsima Abdoli
- Department of Radiation Oncology; Netherlands Cancer Institute; Amsterdam 1066 CX The Netherlands
| | - Simon R. Van Kranen
- Department of Radiation Oncology; Netherlands Cancer Institute; Amsterdam 1066 CX The Netherlands
| | - Uros Stankovic
- Department of Radiation Oncology; Netherlands Cancer Institute; Amsterdam 1066 CX The Netherlands
| | - Maddalena M. G. Rossi
- Department of Radiation Oncology; Netherlands Cancer Institute; Amsterdam 1066 CX The Netherlands
| | - Jose S. A. Belderbos
- Department of Radiation Oncology; Netherlands Cancer Institute; Amsterdam 1066 CX The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology; Netherlands Cancer Institute; Amsterdam 1066 CX The Netherlands
| |
Collapse
|
42
|
Local Control and Toxicity of Adaptive Radiotherapy Using Weekly CT Imaging: Results from the LARTIA Trial in Stage III NSCLC. J Thorac Oncol 2017; 12:1122-1130. [PMID: 28428149 DOI: 10.1016/j.jtho.2017.03.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/14/2017] [Accepted: 03/30/2017] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Anatomical change of tumor during radiotherapy contributes to target missing. However, in the case of tumor shrinkage, adaptation of volume could result in an increased incidence of recurrence in the area of target reduction. This study aims to investigate the incidence of failure of the adaptive approach and, in particular, the risk for local recurrence in the area excluded after replanning. METHODS In this prospective study, patients with locally advanced NSCLC treated with concomitant chemoradiation underwent weekly chest computed tomography simulation during treatment. In the case of tumor shrinkage, a new tumor volume was delineated and a new treatment plan outlined (replanning). Toxicity was evaluated with the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer scale. Patterns of failures were classified as in field (dimensional and/or metabolic progression within the replanning planning target volume [PTV]), marginal (recurrence in initial the PTV excluded from the replanning PTV), and out of field (recurrence outside the initial PTV). RESULTS Replanning was outlined in 50 patients selected from a total of 217 patients subjected to weekly simulation computed tomography in our center from 2012 to 2014. With a median follow-up of 20.5 months, acute grade 3 or higher pulmonary and esophageal toxicity were reported in 2% and 4% of cases and late toxicity in 4% and 2%, respectively. Marginal relapse was recorded in 6% of patients, and 20% and 4% of patients experienced in-field and out-of-field local failure, respectively. CONCLUSIONS The reduced toxicity and the documented low rate of marginal failures make the adaptive approach a modern option for future randomized studies. The best scenario to confirm its application is probably in neoadjuvant chemoradiation trials.
Collapse
|
43
|
Jan N, Guy C, Reshko LB, Hugo GD, Weiss E. Lung and Heart Dose Variability During Radiation Therapy of Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2017; 98:683-690. [PMID: 28581410 DOI: 10.1016/j.ijrobp.2017.02.227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/16/2017] [Accepted: 02/28/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the hypothesis that positional and anatomic variations during radiation therapy induce changes in lung and heart volumes and associated radiation doses. METHODS AND MATERIALS In this longitudinal investigation, variations in lung and heart volumes and standard dose parameters of mean lung dose, lung V20Gy, mean heart dose, and heart V40Gy were analyzed on weekly 4-dimensional CT scans of 15 lung cancer patients during conventionally fractionated radiochemotherapy. Tumor, individual lung lobes, and heart were delineated on the mid-ventilation phase of weekly 4-dimensional CT scans. Lung lobes and heart were also contoured on individual breathing phases of pre-, mid-, and end-of-treatment scans. Planning dose was transferred to consecutive scans via rigid registration. Volume and dose variations were assessed relative to the initial planning scan. RESULTS Interfraction lung volume variability relative to week 0 was twice as large as tidal volume variability (8.0% ± 5.3% vs 4.0% ± 3.3%, P=.003). Interfraction lung volume variation ranged between 0.8% and 17.1% for individual patient means. Lower lung lobes had larger volume variability compared with upper lobes (13.5% ± 8.1% vs 7.0% ± 5.0%, P<.00001). Average mean lung dose variation was 0.5 Gy (range, 0.2-1.0 Gy for individual patient means) and average lung V20Gy variation 0.9% (range, 0.2%-1.6%). Average heart volume variation was 7.2% (range, 3.4%-12.6%). Average mean heart dose variation was 1.2 Gy (range, 0.1-3.0 Gy) and average heart V40Gy variation 1.4% (range, 0%-4.2%). CONCLUSIONS Anatomic and positional variations during radiation therapy induce changes in radiation doses to lung and heart. Repeated lung and heart dose assessment will provide a better estimate of the actual delivered dose and will improve prediction models for normal tissue toxicity, if assessed in larger cohorts.
Collapse
Affiliation(s)
- Nuzhat Jan
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Christopher Guy
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Leonid B Reshko
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Geoffrey D Hugo
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
44
|
Hugo GD, Weiss E, Sleeman WC, Balik S, Keall PJ, Lu J, Williamson JF. A longitudinal four-dimensional computed tomography and cone beam computed tomography dataset for image-guided radiation therapy research in lung cancer. Med Phys 2017; 44:762-771. [PMID: 27991677 DOI: 10.1002/mp.12059] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To describe in detail a dataset consisting of serial four-dimensional computed tomography (4DCT) and 4D cone beam CT (4DCBCT) images acquired during chemoradiotherapy of 20 locally advanced, nonsmall cell lung cancer patients we have collected at our institution and shared publicly with the research community. ACQUISITION AND VALIDATION METHODS As part of an NCI-sponsored research study 82 4DCT and 507 4DCBCT images were acquired in a population of 20 locally advanced nonsmall cell lung cancer patients undergoing radiation therapy. All subjects underwent concurrent radiochemotherapy to a total dose of 59.4-70.2 Gy using daily 1.8 or 2 Gy fractions. Audio-visual biofeedback was used to minimize breathing irregularity during all fractions, including acquisition of all 4DCT and 4DCBCT acquisitions in all subjects. Target, organs at risk, and implanted fiducial markers were delineated by a physician in the 4DCT images. Image coordinate system origins between 4DCT and 4DCBCT were manipulated in such a way that the images can be used to simulate initial patient setup in the treatment position. 4DCT images were acquired on a 16-slice helical CT simulator with 10 breathing phases and 3 mm slice thickness during simulation. In 13 of the 20 subjects, 4DCTs were also acquired on the same scanner weekly during therapy. Every day, 4DCBCT images were acquired on a commercial onboard CBCT scanner. An optically tracked external surrogate was synchronized with CBCT acquisition so that each CBCT projection was time stamped with the surrogate respiratory signal through in-house software and hardware tools. Approximately 2500 projections were acquired over a period of 8-10 minutes in half-fan mode with the half bow-tie filter. Using the external surrogate, the CBCT projections were sorted into 10 breathing phases and reconstructed with an in-house FDK reconstruction algorithm. Errors in respiration sorting, reconstruction, and acquisition were carefully identified and corrected. DATA FORMAT AND USAGE NOTES 4DCT and 4DCBCT images are available in DICOM format and structures through DICOM-RT RTSTRUCT format. All data are stored in the Cancer Imaging Archive (TCIA, http://www.cancerimagingarchive.net/) as collection 4D-Lung and are publicly available. DISCUSSION Due to high temporal frequency sampling, redundant (4DCT and 4DCBCT) data at similar timepoints, oversampled 4DCBCT, and fiducial markers, this dataset can support studies in image-guided and image-guided adaptive radiotherapy, assessment of 4D voxel trajectory variability, and development and validation of new tools for image registration and motion management.
Collapse
Affiliation(s)
- Geoffrey D Hugo
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - William C Sleeman
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | - Paul J Keall
- Radiation Physics Laboratory, The University of Sydney, Camperdown, NSW, Australia
| | - Jun Lu
- University of Mississippi Medical Center, Jackson, MS, 39213, USA
| | - Jeffrey F Williamson
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| |
Collapse
|
45
|
Late-Course Adaptive Adjustment Based on Metabolic Tumor Volume Changes during Radiotherapy May Reduce Radiation Toxicity in Patients with Non-Small Cell Lung Cancer. PLoS One 2017; 12:e0170901. [PMID: 28125698 PMCID: PMC5268643 DOI: 10.1371/journal.pone.0170901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
Abstract
To reduce the high risk of radiation toxicity and enhance the quality of life of patients with non-small cell lung cancer (NSCLC), we quantified the metabolic tumor volumes (MTVs) from baseline to the late-course of radiotherapy (RT) by fluorodeoxyglucose positron emission tomography computerized tomography (FDG PET-CT) and discussed the potential benefit of late-course adaptive plans rather than original plans by dose volume histogram (DVH) comparisons. Seventeen patients with stage II-III NSCLC who were treated with definitive conventionally fractionated RT were eligible for this prospective study. FDG PET-CT scans were acquired within 1 week before RT (pre-RT) and at approximately two-thirds of the total dose during-RT (approximately 40 Gy). MTVs were taken as gross tumor volumes (GTVs) that included the primary tumor and any involved hilar or mediastinal lymph nodes. An original plan based on the baseline MTVs and adaptive plans based on observations during-RT MTVs were generated for each patient. The DVHs for lung, heart, esophagus and spinal cord were compared between the original plans and composite plans at 66 Gy. At the time of approximately 40 Gy during-RT, MTVs were significantly reduced in patients with NSCLC (pre-RT 136.2±82.3 ml vs. during-RT 64.7±68.0 ml, p = 0.001). The composite plan of the original plan at 40 Gy plus the adaptive plan at 26 Gy resulted in better DVHs for all the organs at risk that were evaluated compared to the original plan at 66 Gy (p<0.05), including V5, V10, V15, V20, V25, V30 and the mean dose of total lung, V10, V20, V30, V40, V50, V60 and the mean dose of heart, V35, V40, V50, V55, V60, the maximum dose and mean dose of the esophagus, and the maximum dose of the spinal-cord. PET-MTVs were reduced significantly at the time of approximately 40 Gy during-RT. Late course adaptive radiotherapy may be an effective way to reduce the dose volume to the organs at risk, thus reducing radiation toxicity in patients with NSCLC.
Collapse
|
46
|
Zhong H, Siddiqui SM, Movsas B, Chetty IJ. Evaluation of adaptive treatment planning for patients with non-small cell lung cancer. Phys Med Biol 2017; 62:4346-4360. [PMID: 28072395 DOI: 10.1088/1361-6560/aa586f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to develop metrics to evaluate uncertainties in deformable dose accumulation for patients with non-small cell lung cancer (NSCLC). Initial treatment plans (primary) and cone-beam CT (CBCT) images were retrospectively processed for seven NSCLC patients, who showed significant tumor regression during the course of treatment. Each plan was developed with IMRT for 2 Gy × 33 fractions. A B-spline-based DIR algorithm was used to register weekly CBCT images to a reference image acquired at fraction 21 and the resultant displacement vector fields (DVFs) were then modified using a finite element method (FEM). The doses were calculated on each of these CBCT images and mapped to the reference image using a tri-linear dose interpolation method, based on the B-spline and FEM-generated DVFs. Contours propagated from the planning image were adjusted to the residual tumor and OARs on the reference image to develop a secondary plan. For iso-prescription adaptive plans (relative to initial plans), mean lung dose (MLD) was reduced, on average from 17.3 Gy (initial plan) to 15.2, 14.5 and 14.8 Gy for the plans adapted using the rigid, B-Spline and FEM-based registrations. Similarly, for iso-toxic adaptive plans (considering MLD relative to initial plans) using the rigid, B-Spline and FEM-based registrations, the average doses were 69.9 ± 6.8, 65.7 ± 5.1 and 67.2 ± 5.6 Gy in the initial volume (PTV1), and 81.5 ± 25.8, 77.7 ± 21.6, and 78.9 ± 22.5 Gy in the residual volume (PTV21), respectively. Tumor volume reduction was correlated with dose escalation (for isotoxic plans, correlation coefficient = 0.92), and with MLD reduction (for iso-fractional plans, correlation coefficient = 0.85). For the case of the iso-toxic dose escalation, plans adapted with the B-Spline and FEM DVFs differed from the primary plan adapted with rigid registration by 2.8 ± 1.0 Gy and 1.8 ± 0.9 Gy in PTV1, and the mean difference between doses accumulated using the B-spline and FEM DVF's was 1.1 ± 0.6 Gy. As a dose mapping-induced energy change, energy defect in the tumor volume was 20.8 ± 13.4% and 4.5 ± 2.4% for the B-spline and FEM-based dose accumulations, respectively. The energy defect of the B-Spline-based dose accumulation is significant in the tumor volume and highly correlated to the difference between the B-Spline and FEM-accumulated doses with their correlation coefficient equal to 0.79. Adaptive planning helps escalate target dose and spare normal tissue for patients with NSCLC, but deformable dose accumulation may have a significant loss of energy in regressed tumor volumes when using image intensity-based DIR algorithms. The metric of energy defect is a useful tool for evaluation of adaptive planning accuracy for lung cancer patients.
Collapse
|
47
|
Veiga C, Janssens G, Baudier T, Hotoiu L, Brousmiche S, McClelland J, Teng CL, Yin L, Royle G, Teo BKK. A comprehensive evaluation of the accuracy of CBCT and deformable registration based dose calculation in lung proton therapy. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/3/1/015003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
48
|
Agrawal S, Kumar S, Maurya AK. Potential for adaptive dose escalation in radiotherapy for patients with locally advanced non-small-cell lung cancer in a low mid income setting. Br J Radiol 2017; 90:20140234. [PMID: 27897060 DOI: 10.1259/bjr.20140234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To evaluate the effect of tumour volume regression on adaptive treatment planning, reduction in doses to organs at risk (OARs) and dose escalation. METHODS 20 patients undergoing radical chemoradiotherapy were imaged in the fifth week of radiotherapy (CT_45) to evaluate differences in tumour volume regression between concurrent and sequential chemoradiotherapy. Replanning was carried out in the CT_45 in those with >20% regression (n = 10) and evaluated for change in target coverage indices (the coverage index and external volume index) and doses to the OAR [mean lung dose, V20 and V5 of whole and ipsilateral lung (MLDWL, V20WL, V5WL, MLDIL, V20IL, V5IL); mean oesophagus dose, V50oesophagus; and maximum spinal cord doses]. The feasibility of maximum dose escalation was explored keeping the limit of the OAR below their tolerance limits. RESULTS Tumour regression was higher with concurrent chemoradiotherapy as compared with sequential chemoradiotherapy (p = 0.02). With the adaptive plan, the mean coverage index improved from 0.96 (±0.14) to 1.29 (±0.36), the mean external volume index changed from 1.39(±0.60) to 1.41(±0.56) and the reduction in doses to the OARs were MLDWL 10.6%, V20WL 1.3%, V5WL 1.2%, MLDIL 6.6%, V20IL 1.5%, V5IL 2.3%, mean oesophagus dose 7%, V50oesophagus 31% and maximum cord dose 0.35%. Dose escalation was possible in four patients in CT_45. CONCLUSION There is 35% reduction in tumour volume with chemoradiotherapy at 45 Gy which allows improvement in conformality, reduction in doses to the OARs and dose escalation in 40% of patients. Advances in knowledge: This article emphasizes that adaptive planning with a single diagnostic scan at 45 Gy has the potential for improvement of radiotherapy planning indices, dose escalation while respecting the dose to the OAR. This simple strategy can be helpful in radiotherapy planning upto 60 Gy in 40% of the patients of locally advanced non-small-cell lung cancer in countries with limited resources.
Collapse
Affiliation(s)
- Sushma Agrawal
- Department of Radiotherapy, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sunil Kumar
- Department of Radiotherapy, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Anil K Maurya
- Department of Radiotherapy, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
49
|
Dial C, Weiss E, Siebers JV, Hugo GD. Benefits of adaptive radiation therapy in lung cancer as a function of replanning frequency. Med Phys 2016; 43:1787. [PMID: 27036576 DOI: 10.1118/1.4943564] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To quantify the potential benefit associated with daily replanning in lung cancer in terms of normal tissue dose sparing and to characterize the tradeoff between adaptive benefit and replanning frequency. METHODS A set of synthetic images and contours, derived from weekly active breathing control images of 12 patients who underwent radiation therapy treatment for nonsmall cell lung cancer, is generated for each fraction of treatment using principal component analysis in a way that preserves temporal anatomical trends (e.g., tumor regression). Daily synthetic images and contours are used to simulate four different treatment scenarios: (1) a "no-adapt" scenario that simulates delivery of an initial plan throughout treatment, (2) a "midadapt" scenario that implements a single replan for fraction 18, (3) a "weekly adapt" scenario that simulates weekly adaptations, and (4) a "full-adapt" scenario that simulates daily replanning. An initial intensity modulated radiation therapy plan is created for each patient and replanning is carried out in an automated fashion by reoptimizing beam apertures and weights. Dose is calculated on each image and accumulated to the first in the series using deformable mappings utilized in synthetic image creation for comparison between simulated treatments. RESULTS Target coverage was maintained and cord tolerance was not exceeded for any of the adaptive simulations. Average reductions in mean lung dose (MLD) and volume of lung receiving 20 Gy or more (V20lung) were 65 ± 49 cGy (p = 0.000 01) and 1.1% ± 1.2% (p = 0.0006), respectively, for all patients. The largest reduction in MLD for a single patient was 162 cGy, which allowed an isotoxic escalation of the target dose of 1668 cGy. Average reductions in cord max dose, mean esophageal dose (MED), dose received by 66% of the heart (D66heart), and dose received by 33% of the heart (D33heart), were 158 ± 280, 117 ± 121, 37 ± 77, and 99 ± 120 cGy, respectively. Average incremental reductions in MLD for the midadapt, weekly adapt, and full-adapt treatments were 38, 18, and 8 cGy, respectively. Incremental reductions in MED for the same treatments were 57, 37, and 23 cGy. Reductions in MLD and MED for the full-adapt treatment were correlated with the absolute decrease in the planning target volume (r = 0.34 and r = 0.26). CONCLUSIONS Adaptive radiation therapy for lung cancer yields clinically relevant reductions in normal tissue doses for frequencies of adaptation ranging from a single replan up to daily replanning. Increased frequencies of adaptation result in additional benefit while magnitude of benefit decreases.
Collapse
Affiliation(s)
- Christian Dial
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Jeffrey V Siebers
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 and Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908
| | - Geoffrey D Hugo
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
50
|
Zhong H, Chetty IJ. Caution Must Be Exercised When Performing Deformable Dose Accumulation for Tumors Undergoing Mass Changes During Fractionated Radiation Therapy. Int J Radiat Oncol Biol Phys 2016; 97:182-183. [PMID: 27979447 DOI: 10.1016/j.ijrobp.2016.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/06/2016] [Accepted: 09/10/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Hualiang Zhong
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan.
| |
Collapse
|