1
|
Griessinger J, Schwab J, Chen Q, Kühn A, Cotton J, Bowden G, Preibsch H, Reischl G, Quintanilla-Martinez L, Mori H, Dang AN, Kohlhofer U, Aina OH, Borowsky AD, Pichler BJ, Cardiff RD, Schmid AM. Intratumoral in vivo staging of breast cancer by multi-tracer PET and advanced analysis. NPJ Breast Cancer 2022; 8:41. [PMID: 35332139 PMCID: PMC8948294 DOI: 10.1038/s41523-022-00398-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
The staging and local management of breast cancer involves the evaluation of the extent and completeness of excision of both the invasive carcinoma component and also the intraductal component or ductal carcinoma in situ. When both invasive ductal carcinoma and coincident ductal carcinoma in situ are present, assessment of the extent and localization of both components is required for optimal therapeutic planning. We have used a mouse model of breast cancer to evaluate the feasibility of applying molecular imaging to assess the local status of cancers in vivo. Multi-tracer positron emission tomography (PET) and magnetic resonance imaging (MRI) characterize the transition from premalignancy to invasive carcinoma. PET tracers for glucose consumption, membrane synthesis, and neoangiogenesis in combination with a Gaussian mixture model-based analysis reveal image-derived thresholds to separate the different stages within the whole-lesion. Autoradiography, histology, and quantitative image analysis of immunohistochemistry further corroborate our in vivo findings. Finally, clinical data further support our conclusions and demonstrate translational potential. In summary, this preclinical model provides a platform for characterizing multistep tumor progression and provides proof of concept that supports the utilization of advanced protocols for PET/MRI in clinical breast cancer imaging.
Collapse
Affiliation(s)
- Jennifer Griessinger
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Julian Schwab
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Qian Chen
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA
| | - Anna Kühn
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Jonathan Cotton
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Gregory Bowden
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Heike Preibsch
- Department of Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT(EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Cluster of Excellence iFIT(EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.,Department of Pathology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Hidetoshi Mori
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA
| | - An Nguyen Dang
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA
| | - Ursula Kohlhofer
- Department of Pathology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Olulanu H Aina
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA.,Janssen Pharmaceutical, Spring House, PA, USA
| | - Alexander D Borowsky
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT(EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tuebingen; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert D Cardiff
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA
| | - Andreas M Schmid
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany. .,Cluster of Excellence iFIT(EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
2
|
Croce M, Damonte P, Morini M, Pigozzi S, Chiossone L, Vacca P, Bronte V, Barbieri O, Astigiano S. Increased Arginase1 expression in tumor microenvironment promotes mammary carcinogenesis via multiple mechanisms. Carcinogenesis 2021; 41:1695-1702. [PMID: 32614387 DOI: 10.1093/carcin/bgaa063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Arginine metabolism plays a significant role in regulating cell function, affecting tumor growth and metastatization. To study the effect of the arginine-catabolizing enzyme Arginase1 (ARG1) on tumor microenvironment, we generated a mouse model of mammary carcinogenesis by crossbreeding a transgenic mouse line overexpressing ARG1 in macrophages (FVBArg+/+) with the MMTV-Neu mouse line (FVBNeu+/+). This double transgenic line (FVBArg+/-;Neu+/+) showed a significant shortening in mammary tumor latency, and an increase in the number of mammary nodules. Transfer of tumor cells from FVBNeu+/+ into either FVB wild type or FVBArg+/+ mice resulted in increase regulatory T cells in the tumor infiltrate, suggestive of an impaired antitumor immune response. However, we also found increased frequency of tumor stem cells in tumors from FVBArg+/-;Neu+/+ transgenic compared with FVBNeu+/+ mice, suggesting that increased arginine metabolism in mammary tumor microenvironment may supports the cancer stem cells niche. We provide in vivo evidence of a novel, yet unexploited, mechanism through which ARG1 may contribute to tumor development.
Collapse
MESH Headings
- Animals
- Apoptosis
- Arginase/genetics
- Arginase/metabolism
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Female
- Humans
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic
- Tumor Cells, Cultured
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Michela Croce
- Department of Scientific Direction, IRCCS Ospedale Policlinico San Martino, L.go Rosanna Benzi 10, Genova, Italy
| | - Patrizia Damonte
- University of Genova, Department of Experimental Medicine, Via L.B. Alberti, Genova, Italy
| | - Monica Morini
- University of Genova, Department of Experimental Medicine, Via L.B. Alberti, Genova, Italy
| | - Simona Pigozzi
- University of Genova, Department of Surgical Science and Integrated Diagnostics, Genova, Italy
| | - Laura Chiossone
- University of Genova, Department of Experimental Medicine, Via L.B. Alberti, Genova, Italy
| | - Paola Vacca
- University of Genova, Department of Experimental Medicine, Via L.B. Alberti, Genova, Italy
| | - Vincenzo Bronte
- Verona University Hospital, Department of Medicine, Section of Immunology, Verona, Italy
| | - Ottavia Barbieri
- University of Genova, Department of Experimental Medicine, Via L.B. Alberti, Genova, Italy
| | - Simonetta Astigiano
- Department of Scientific Direction, IRCCS Ospedale Policlinico San Martino, L.go Rosanna Benzi 10, Genova, Italy
| |
Collapse
|
3
|
Prognostic role of immune infiltrates in breast ductal carcinoma in situ. Breast Cancer Res Treat 2019; 177:17-27. [PMID: 31134489 DOI: 10.1007/s10549-019-05272-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/06/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE Ductal carcinoma in situ (DCIS) of the breast is often regarded as a non-obligate precursor to invasive breast carcinoma but current diagnostic tools are unable to accurately predict the invasive potential of DCIS. Infiltration of immune cells into the tumour and its microenvironment is often an early event at the site of tumourigenesis. These immune infiltrates may be potential predictive and/or prognostic biomarkers for DCIS. This review aims to discuss recent findings pertaining to the potential prognostic significance of immune infiltrates as well as their evaluation in DCIS. METHODS A literature search on PubMed was conducted up to 28th January 2019. Search terms used were "DCIS", "ductal carcinoma in situ", "immune", "immunology", "TIL", "TIL assessment", and "tumour-infiltrating lymphocyte". Search filters for "Most Recent" and "English" were applied. Information from published papers related to the research topic were synthesised and summarised for this review. RESULTS Studies have revealed that immune infiltrates play a role in the biology and microenvironment of DCIS, as well as treatment response. There is currently no consensus on the evaluation of TILs in DCIS for clinical application. CONCLUSIONS This review highlights the recent findings on the potential influence and prognostic value of immunological processes on DCIS progression, as well as the evaluation of TILs in DCIS. Further characterisation of the immune milieu of DCIS is recommended to better understand the immune response in DCIS progression and recurrence.
Collapse
|
4
|
Reduced Basal Nitric Oxide Production Induces Precancerous Mammary Lesions via ERBB2 and TGFβ. Sci Rep 2019; 9:6688. [PMID: 31040372 PMCID: PMC6491486 DOI: 10.1038/s41598-019-43239-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 04/18/2019] [Indexed: 02/08/2023] Open
Abstract
One third of newly diagnosed breast cancers in the US are early-stage lesions. The etiological understanding and treatment of these lesions have become major clinical challenges. Because breast cancer risk factors are often linked to aberrant nitric oxide (NO) production, we hypothesized that abnormal NO levels might contribute to the formation of early-stage breast lesions. We recently reported that the basal level of NO in the normal breast epithelia plays crucial roles in tissue homeostasis, whereas its reduction contributes to the malignant phenotype of cancer cells. Here, we show that the basal level of NO in breast cells plummets during cancer progression due to reduction of the NO synthase cofactor, BH4, under oxidative stress. Importantly, pharmacological deprivation of NO in prepubertal to pubertal animals stiffens the extracellular matrix and induces precancerous lesions in the mammary tissues. These lesions overexpress a fibrogenic cytokine, TGFβ, and an oncogene, ERBB2, accompanied by the occurrence of senescence and stem cell-like phenotype. Consistently, normalization of NO levels in precancerous and cancerous breast cells downmodulates TGFβ and ERBB2 and ameliorates their proliferative phenotype. This study sheds new light on the etiological basis of precancerous breast lesions and their potential prevention by manipulating the basal NO level.
Collapse
|
5
|
An N, Zhao C, Yu Z, Yang X. Identification of prognostic genes in colorectal cancer through transcription profiling of multi-stage carcinogenesis. Oncol Lett 2018; 17:432-441. [PMID: 30655784 DOI: 10.3892/ol.2018.9632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/09/2018] [Indexed: 01/02/2023] Open
Abstract
Colorectal cancer is a complex multistage process following the adenoma-carcinoma sequence. Additional research on the basis of molecular dysregulations, particularly in the precancerous stage, may provide insight into the realization of potential biomarkers and therapeutic targets for the disease. In the present study, the expression profile of human multistage colorectal mucosa tissues, including healthy, adenoma and adenocarcinoma samples, was downloaded. Genes that were consistently differentially expressed in precancerous tissues and cancer samples were collected. Based on a merged biological network, the biggest connected component composed of these identified genes and their one-step neighbors were retrieved to conduct random walk with restart algorithm, in order to identify genes significantly affected during carcinogenesis. Therefore, 35 genes significantly affected by carcinogenic dysregulation were successfully identified. Survival and Cox analysis indicated that the expression of these genes was an independent prognostic factor confirmed by six cohorts. In summary, based on the transcription profile of multi-stage carcinogenesis and bioinformatics analysis, 35 genes significantly associated with patient survival were successfully identified, which may serve as promising therapeutic targets for the disease.
Collapse
Affiliation(s)
- Ning An
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chen Zhao
- Department of Anatomy, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zhuang Yu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xue Yang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
6
|
Piacente F, Caffa I, Ravera S, Sociali G, Passalacqua M, Vellone VG, Becherini P, Reverberi D, Monacelli F, Ballestrero A, Odetti P, Cagnetta A, Cea M, Nahimana A, Duchosal M, Bruzzone S, Nencioni A. Nicotinic Acid Phosphoribosyltransferase Regulates Cancer Cell Metabolism, Susceptibility to NAMPT Inhibitors, and DNA Repair. Cancer Res 2017; 77:3857-3869. [PMID: 28507103 DOI: 10.1158/0008-5472.can-16-3079] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/06/2017] [Accepted: 05/12/2017] [Indexed: 11/16/2022]
Abstract
In the last decade, substantial efforts have been made to identify NAD+ biosynthesis inhibitors, specifically against nicotinamide phosphoribosyltransferase (NAMPT), as preclinical studies indicate their potential efficacy as cancer drugs. However, the clinical activity of NAMPT inhibitors has proven limited, suggesting that alternative NAD+ production routes exploited by tumors confer resistance. Here, we show the gene encoding nicotinic acid phosphoribosyltransferase (NAPRT), a second NAD+-producing enzyme, is amplified and overexpressed in a subset of common types of cancer, including ovarian cancer, where NAPRT expression correlates with a BRCAness gene expression signature. Both NAPRT and NAMPT increased intracellular NAD+ levels. NAPRT silencing reduced energy status, protein synthesis, and cell size in ovarian and pancreatic cancer cells. NAPRT silencing sensitized cells to NAMPT inhibitors both in vitro and in vivo; similar results were obtained with the NAPRT inhibitor 2-hydroxynicotinic acid. Reducing NAPRT levels in a BRCA2-deficient cancer cell line exacerbated DNA damage in response to chemotherapeutics. In conclusion, NAPRT-dependent NAD+ biosynthesis contributes to cell metabolism and to the DNA repair process in a subset of tumors. This knowledge could be used to increase the efficacy of NAMPT inhibitors and chemotherapy. Cancer Res; 77(14); 3857-69. ©2017 AACR.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Pharmacy, Biochemistry Lab, Genoa, Italy
| | - Giovanna Sociali
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Valerio G Vellone
- Department of Integrated, Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Pamela Becherini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Daniele Reverberi
- Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Patrizio Odetti
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Antonia Cagnetta
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michel Duchosal
- Service and Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy. .,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| |
Collapse
|
7
|
Sckisel GD, Mirsoian A, Minnar CM, Crittenden M, Curti B, Chen JQ, Blazar BR, Borowsky AD, Monjazeb AM, Murphy WJ. Differential phenotypes of memory CD4 and CD8 T cells in the spleen and peripheral tissues following immunostimulatory therapy. J Immunother Cancer 2017; 5:33. [PMID: 28428882 PMCID: PMC5394626 DOI: 10.1186/s40425-017-0235-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/24/2017] [Indexed: 01/22/2023] Open
Abstract
Background Studies assessing immune parameters typically utilize human PBMCs or murine splenocytes to generate data that is interpreted as representative of immune status. Using splenocytes, we have shown memory CD4-T cells that expand following systemic immunostimulatory therapies undergo rapid IFNg-mediated activation induced cell death (AICD) resulting in a net loss of total CD4-T cells which correlates with elevated PD-1 expression. This is in contrast to CD8-T cells which expand with minimal PD-1 upregulation and apoptosis. In this study we expand upon our previous work by evaluating CD4 and CD8-T cell phenotype and distribution in peripheral organs which are more representative of immune responses occurring at metastatic sites following immunotherapy. Methods Phenotypic assessment of T cells in both lymphoid (spleen and LN) as well as peripheral organs (liver and lungs) in control and immunotherapy treated mice was performed to survey the impact of location on memory phenotype and activation marker status. Peripheral blood from patients undergoing systemic high dose IL-2 was also assessed for expression of PD-1 and memory phenotype. Results Here we reveal that, similar to what occurs in the spleen and lymph nodes, CD4-T cell numbers decreased while CD8-T cells expanded at these peripheral sites. In contrast to having differential expression of PD-1 as occurs in the spleen, both CD4 and CD8-T cells had significantly elevated levels of PD-1 in both the liver and lungs. Further analysis correlated PD-1 expression to CD62Llow (T effector/effector memory,TE/EM) expression which are more prevalent in CD4-T cells in general as well as CD8-T cells in peripheral organs. Similar elevated PD-1 expression on TE/EM cells was observed in patients undergoing systemic high-dose IL-2 therapy. Conclusions These data highlight PD-1 expressing and/or TE/EM subsets of T cells in circulation as more representative of cells at immune sites and underscore the importance of valuation both in lymphoid as well as target organs when making determinations about immune status. Trial registration ClinicalTrials.gov NCT01416831. Registered August 12, 2011. Electronic supplementary material The online version of this article (doi:10.1186/s40425-017-0235-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gail D Sckisel
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA USA
| | - Annie Mirsoian
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA USA
| | - Christine M Minnar
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA USA
| | - Marka Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213 USA.,The Oregon Clinic, 4805 NE Glisan St, Portland, OR 97220 USA
| | - Brendan Curti
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213 USA.,The Oregon Clinic, 4805 NE Glisan St, Portland, OR 97220 USA
| | - Jane Q Chen
- Department of Pathology and Laboratory Medicine, Center for Comparative Medicine, University of California, County Road 98 & Hutchison Drive, Davis, CA 95616 USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, MMC 366 Mayo, 8366A, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, Center for Comparative Medicine, University of California, County Road 98 & Hutchison Drive, Davis, CA 95616 USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, University of California, Davis School of Medicine, Comprehensive Cancer Center, 4501 X Street, G-140, Sacramento, CA CA 95817 USA
| | - William J Murphy
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA USA.,Department of Internal Medicine, University of California, Davis School of Medicine, Sacramento, CA USA
| |
Collapse
|
8
|
Yeong J, Thike AA, Tan PH, Iqbal J. Identifying progression predictors of breast ductal carcinoma in situ. J Clin Pathol 2016; 70:102-108. [PMID: 27864452 DOI: 10.1136/jclinpath-2016-204154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 01/08/2023]
Abstract
Ductal carcinoma in situ (DCIS) refers to neoplastic epithelial cells proliferating within the mammary ducts of the breast, which have not breached the basement membrane nor invaded surrounding tissues. Traditional thinking holds that DCIS represents an early step in a linear progression towards invasive ductal carcinoma (IDC). However, as only approximately half of DCIS cases progress to IDC, important questions around the key determinants of malignant progression need to be answered. Recent studies have revealed that molecular differences between DCIS and IDC cells are not found at the genomic level; instead, altered patterns of gene expression and post-translational regulation lead to distinct transcriptomic and proteomic profiles. Therefore, understanding malignant progression will require a different approach that takes into account the diverse tumour cell extrinsic factors driving changes in tumour cell gene expression necessary for the invasive phenotype. Here, we review the roles of the tumour stroma (including mesenchymal cells, immune cells and the extracellular matrix) and myoepithelial cells in malignant progression and make a case for a more integrated approach to the study and assessment of DCIS and its progression, or lack thereof, to invasive disease.
Collapse
Affiliation(s)
- Joe Yeong
- Division of Pathology, Singapore General Hospital, Singapore, Singapore.,Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Aye Aye Thike
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Jabed Iqbal
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
9
|
Lobo RC, Hubbard NE, Damonte P, Mori H, Pénzváltó Z, Pham C, Koehne AL, Go AC, Anderson SE, Cala PM, Borowsky AD. Glucose Uptake and Intracellular pH in a Mouse Model of Ductal Carcinoma In situ (DCIS) Suggests Metabolic Heterogeneity. Front Cell Dev Biol 2016; 4:93. [PMID: 27630987 PMCID: PMC5005977 DOI: 10.3389/fcell.2016.00093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/18/2016] [Indexed: 02/04/2023] Open
Abstract
Mechanisms for the progression of ductal carcinoma in situ (DCIS) to invasive breast carcinoma remain unclear. Previously we showed that the transition to invasiveness in the mammary intraepithelial neoplastic outgrowth (MINO) model of DCIS does not correlate with its serial acquisition of genetic mutations. We hypothesized instead that progression to invasiveness depends on a change in the microenvironment and that precancer cells might create a more tumor-permissive microenvironment secondary to changes in glucose uptake and metabolism. Immunostaining for glucose transporter 1 (GLUT1) and the hypoxia marker carbonic anhydrase 9 (CAIX) in tumor, normal mammary gland and MINO (precancer) tissue showed differences in expression. The uptake of the fluorescent glucose analog dye, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG), reflected differences in the cellular distributions of glucose uptake in normal mammary epithelial cells (nMEC), MINO, and Met1 cancer cells, with a broad distribution in the MINO population. The intracellular pH (pHi) measured using the fluorescent ratio dye 2',7'-bis(2-carboxyethyl)-5(6)-155 carboxyfluorescein (BCECF) revealed expected differences between normal and cancer cells (low and high, respectively), and a mixed distribution in the MINO cells, with a subset of cells in the MINO having an increased rate of acidification when proton efflux was inhibited. Invasive tumor cells had a more alkaline baseline pHi with high rates of proton production coupled with higher rates of proton export, compared with nMEC. MINO cells displayed considerable variation in baseline pHi that separated into two distinct populations: MINO high and MINO low. MINO high had a noticeably higher mean acidification rate compared with nMEC, but relatively high baseline pHi similar to tumor cells. MINO low cells also had an increased acidification rate compared with nMEC, but with a more acidic pHi similar to nMEC. These findings demonstrate that MINO is heterogeneous with respect to intracellular pH regulation which may be associated with an acidified regional microenvironment. A change in the pH of the microenvironment might contribute to a tumor-permissive or tumor-promoting progression. We are not aware of any previous work showing that a sub-population of cells in in situ precancer exhibits a higher than normal proton production and export rate.
Collapse
Affiliation(s)
- Rebecca C Lobo
- Center for Comparative Medicine, University of California at Davis Davis, CA, USA
| | - Neil E Hubbard
- Center for Comparative Medicine, University of California at Davis Davis, CA, USA
| | - Patrizia Damonte
- Center for Comparative Medicine, University of California at Davis Davis, CA, USA
| | - Hidetoshi Mori
- Center for Comparative Medicine, University of California at Davis Davis, CA, USA
| | - Zsófia Pénzváltó
- Center for Comparative Medicine, University of California at Davis Davis, CA, USA
| | - Cindy Pham
- Department of Human Physiology and Membrane Biology, University of California at Davis Davis, CA, USA
| | - Amanda L Koehne
- Center for Comparative Medicine, University of California at Davis Davis, CA, USA
| | - Aiza C Go
- Center for Comparative Medicine, University of California at Davis Davis, CA, USA
| | - Steve E Anderson
- Department of Human Physiology and Membrane Biology, University of California at Davis Davis, CA, USA
| | - Peter M Cala
- Department of Human Physiology and Membrane Biology, University of California at Davis Davis, CA, USA
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California at DavisDavis, CA, USA; Department of Pathology, School of Medicine, University of California at DavisSacramento, CA, USA
| |
Collapse
|
10
|
Lo PK, Wolfson B, Zhou Q. Cancer stem cells and early stage basal-like breast cancer. World J Obstet Gynecol 2016; 5:150-161. [PMID: 28239564 PMCID: PMC5321620 DOI: 10.5317/wjog.v5.i2.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/21/2015] [Accepted: 01/22/2016] [Indexed: 02/05/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is a category of early stage, non-invasive breast tumor defined by the intraductal proliferation of malignant breast epithelial cells. DCIS is a heterogeneous disease composed of multiple molecular subtypes including luminal, HER2 and basal-like types, which are characterized by immunohistochemical analyses and gene expression profiling. Following surgical and radiation therapies, patients with luminal-type, estrogen receptor-positive DCIS breast tumors can benefit from adjuvant endocrine-based treatment. However, there are no available targeted therapies for patients with basal-like DCIS (BL-DCIS) tumors due to their frequent lack of endocrine receptors and HER2 amplification, rendering them potentially susceptible to recurrence. Moreover, multiple lines of evidence suggest that DCIS is a non-obligate precursor of invasive breast carcinoma. This raises the possibility that targeting precursor BL-DCIS is a promising strategy to prevent BL-DCIS patients from the development of invasive basal-like breast cancer. An accumulating body of evidence demonstrates the existence of cancer stem-like cells (CSCs) in BL-DCIS, which potentially determine the features of BL-DCIS and their ability to progress into invasive cancer. This review encompasses the current knowledge in regard to the characteristics of BL-DCIS, identification of CSCs, and their biological properties in BL-DCIS. We summarize recently discovered relevant molecular signaling alterations that promote the generation of CSCs in BL-DCIS and the progression of BL-DCIS to invasive breast cancer, as well as the influence of the tissue microenvironment on CSCs and the invasive transition. Finally, we discuss the translational implications of these findings for the prognosis and prevention of BL-DCIS relapse and progression.
Collapse
|
11
|
Feng L, Tong R, Liu X, Zhang K, Wang G, Zhang L, An N, Cheng S. A network-based method for identifying prognostic gene modules in lung squamous carcinoma. Oncotarget 2016; 7:18006-20. [PMID: 26919109 PMCID: PMC4951267 DOI: 10.18632/oncotarget.7632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/13/2016] [Indexed: 12/23/2022] Open
Abstract
Similarities in gene expression between both developing embryonic and precancerous tissues and cancer tissues may help identify much-needed biomarkers and therapeutic targets in lung squamous carcinoma. In this study, human lung samples representing ten successive time points, from embryonic development to carcinogenesis, were used to construct global gene expression profiles. Differentially expressed genes with similar expression in precancerous and cancer samples were identified. Using a network-based greedy searching algorithm to analyze the training cohort (n = 69) and three independent testing cohorts, we successfully identified a significant 22-gene module in which expression levels were correlated with overall survival in lung squamous carcinoma patients.
Collapse
Affiliation(s)
- Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College and Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - Run Tong
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaohong Liu
- Department of Gynecology and Obstetrics, Maternal and Child Health Care Hospital of Haidian, Beijing, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College and Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - Guiqi Wang
- Department of Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Zhang
- Department of Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ning An
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College and Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College and Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Wong AW, Fite BZ, Liu Y, Kheirolomoom A, Seo JW, Watson KD, Mahakian LM, Tam SM, Zhang H, Foiret J, Borowsky AD, Ferrara KW. Ultrasound ablation enhances drug accumulation and survival in mammary carcinoma models. J Clin Invest 2015; 126:99-111. [PMID: 26595815 DOI: 10.1172/jci83312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/09/2015] [Indexed: 01/08/2023] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) facilitates noninvasive image-guided conformal thermal therapy of cancer. Yet in many scenarios, the sensitive tissues surrounding the tumor constrain the margins of ablation; therefore, augmentation of MRgFUS with chemotherapy may be required to destroy remaining tumor. Here, we used 64Cu-PET-CT, MRI, autoradiography, and fluorescence imaging to track the kinetics of long-circulating liposomes in immunocompetent mammary carcinoma-bearing FVB/n and BALB/c mice. We observed a 5-fold and 50-fold enhancement of liposome and drug concentration, respectively, within MRgFUS thermal ablation-treated tumors along with dense accumulation within the surrounding tissue rim. Ultrasound-enhanced drug accumulation was rapid and durable and greatly increased total tumor drug exposure over time. In addition, we found that the small molecule gadoteridol accumulates around and within ablated tissue. We further demonstrated that dilated vasculature, loss of vascular integrity resulting in extravasation of blood cells, stromal inflammation, and loss of cell-cell adhesion and tissue architecture all contribute to the enhanced accumulation of the liposomes and small molecule probe. The locally enhanced liposome accumulation was preserved even after a multiweek protocol of doxorubicin-loaded liposomes and partial ablation. Finally, by supplementing ablation with concurrent liposomal drug therapy, a complete and durable response was obtained using protocols for which a sub-mm rim of tumor remained after ablation.
Collapse
|
13
|
Bao L, Cardiff RD, Steinbach P, Messer KS, Ellies LG. Multipotent luminal mammary cancer stem cells model tumor heterogeneity. Breast Cancer Res 2015; 17:137. [PMID: 26467658 PMCID: PMC4606989 DOI: 10.1186/s13058-015-0615-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/14/2015] [Indexed: 01/06/2023] Open
Abstract
Introduction The diversity of human breast cancer subtypes has led to the hypothesis that breast cancer is actually a number of different diseases arising from cells at various stages of differentiation. The elusive nature of the cell(s) of origin thus hampers approaches to eradicate the disease. Methods Clonal cell lines were isolated from primary transgenic polyomavirus middle T (PyVmT) luminal tumors. Mammary cancer stem cell (MaCSC) properties were examined by immunofluorescence, flow cytometry, differentiation assays and in vivo tumorigenesis. Results Clonal cell lines isolated from primary PyVmT mouse mammary luminal tumors can differentiate into luminal, myoepithelial, alveolar and adipocyte lineages. Upon orthotopic injection, progeny of a single cell follow a pattern of progression from ductal carcinoma in situ, to adenoma, adenocarcinoma and epithelial metastasis that recapitulates the transgenic model. Tumors can evolve in vivo from hormone receptor-positive to hormone receptor-negative Her2-positive, or triple negative CD44hi basal-like and claudin-low tumors. Contrary to the current paradigm, we have defined a model in which multiple tumor subtypes can originate from a single multipotent cancer stem cell that undergoes genetic and/or epigenetic evolution during tumor progression. As in human tumors, the more aggressive tumor subtypes express nuclear p53. Tumor cell lines can also be derived from these more advanced tumor subtypes. Conclusions Since the majority of human tumors are of the luminal subtype, understanding the cell of origin of these tumors and how they relate to other tumor subtypes will impact cancer therapy. Analysis of clonal cell lines derived from different tumor subtypes suggests a developmental hierarchy of MaCSCs, which may provide insights into the progression of human breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0615-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Bao
- Bioinformatics and Biostatistics Shared Resource, Moores UCSD Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, 92093, USA.
| | - Robert D Cardiff
- Center for Comparative Medicine, University of California, 1 Shield Avenue, Davis, CA, 95616, USA.
| | - Paul Steinbach
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Karen S Messer
- Bioinformatics and Biostatistics Shared Resource, Moores UCSD Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, 92093, USA. .,Divison of Biostatistics and Bioinformatics, Department of Family and Preventive Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Lesley G Ellies
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA.
| |
Collapse
|
14
|
Drobysheva D, Smith BA, McDowell M, Guillen KP, Ekiz HA, Welm BE. Transformation of enriched mammary cell populations with polyomavirus middle T antigen influences tumor subtype and metastatic potential. Breast Cancer Res 2015; 17:132. [PMID: 26429062 PMCID: PMC4589945 DOI: 10.1186/s13058-015-0641-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 09/09/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Breast cancer exhibits significant molecular, histological, and pathological diversity. Factors that impact this heterogeneity are poorly understood; however, transformation of distinct normal cell populations of the breast may generate different tumor phenotypes. Our previous study demonstrated that the polyomavirus middle T antigen (PyMT) oncogene can establish diverse tumor subtypes when broadly expressed within mouse mammary epithelial cells. In the present study, we assessed the molecular, histological, and metastatic outcomes in distinct mammary cell populations transformed with the PyMT gene. METHODS Isolated mouse mammary epithelial cells were transduced with a lentivirus encoding PyMT during an overnight infection and then sorted into hormone receptor-positive luminal (CD133+), hormone receptor-negative luminal (CD133-), basal, and stem cell populations using the cell surface markers CD24, CD49f, and CD133. Each population was subsequently transplanted into syngeneic cleared mouse mammary fat pads to generate tumors. Tumors were classified by histology, estrogen receptor status, molecular subtype, and metastatic potential to investigate whether transformation of different enriched populations affects tumor phenotype. RESULTS Although enriched mammary epithelial cell populations showed no difference in either the ability to form tumors or tumor latency, differences in prevalence of solid adenocarcinomas and squamous, papillary, and sebaceous-like tumors were observed. In particular, squamous metaplasia was observed more frequently in tumors derived from basal and stem cells than in luminal cells. Interestingly, both molecularly basal and luminal tumors developed from luminal CD133+, basal, and stem cell populations; however, luminal CD133- cells gave rise exclusively to molecularly basal tumors. Tumors arising from the luminal CD133-, basal, and stem cell populations were highly metastatic; however, luminal CD133+ cells generated tumors that were significantly less metastatic, possibly due to an inability of these tumor cells to escape the primary tumor site. CONCLUSIONS Expression of PyMT within different mammary cell populations influences tumor histology, molecular subtype, and metastatic potential. The data demonstrate that luminal CD133+ cells give rise to less metastatic tumors, luminal CD133- cells preferentially establish basal tumors, and the cell of origin for squamous metaplasia likely resides in the basal and stem cell populations.
Collapse
Affiliation(s)
- Daria Drobysheva
- Department of Oncological Sciences, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Brittni Alise Smith
- Department of Oncological Sciences, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Maria McDowell
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK, 73104, USA.
| | - Katrin P Guillen
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK, 73104, USA.
| | - Huseyin Atakan Ekiz
- Department of Oncological Sciences, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Bryan E Welm
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK, 73104, USA. .,Current address: Department of Surgery, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
15
|
Bischel LL, Beebe DJ, Sung KE. Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure. BMC Cancer 2015; 15:12. [PMID: 25605670 PMCID: PMC4305264 DOI: 10.1186/s12885-015-1007-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/03/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer that is thought to be a precursor to most invasive and metastatic breast cancers. Understanding the mechanisms regulating the invasive transition of DCIS is critical in order to better understand how some types of DCIS become invasive. While significant insights have been gained using traditional in vivo and in vitro models, existing models do not adequately recapitulate key structure and functions of human DCIS well. In addition, existing models are time-consuming and costly, limiting their use in routine screens. Here, we present a microscale DCIS model that recapitulates key structures and functions of human DCIS, while enhancing the throughput capability of the system to simultaneously screen numerous molecules and drugs. METHODS Our microscale DCIS model is prepared in two steps. First, viscous finger patterning is used to generate mammary epithelial cell-lined lumens through extracellular matrix hydrogels. Next, DCIS cells are added to fill the mammary ducts to create a DCIS-like structure. For coculture experiments, human mammary fibroblasts (HMF) are added to the two side channels connected to the center channel containing DCIS. To validate the invasive transition of the DCIS model, the invasion of cancer cells and the loss of cell-cell junctions are then examined. A student t-test is conducted for statistical analysis. RESULTS We demonstrate that our DCIS model faithfully recapitulates key structures and functions of human mammary DCIS and can be employed to study the mechanisms involved in the invasive progression of DCIS. First, the formation of cell-cell junctions and cell polarity in the normal mammary duct, and the structure of the DCIS model are characterized. Second, coculture with HMF is shown to induce the invasion of DCIS. Third, multiple endpoint analyses are demonstrated to validate the invasion. CONCLUSIONS We have developed and characterized a novel in vitro model of normal and DCIS-inflicted mammary ducts with 3D lumen structures. These models will enable researchers to investigate the role of microenvironmental factors on the invasion of DCIS in more in vivo-like conditions.
Collapse
Affiliation(s)
- Lauren L Bischel
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI, USA.
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| | - David J Beebe
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI, USA.
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| | - Kyung E Sung
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI, USA.
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
16
|
Espina V, Edmiston KH, Liotta LA. Non-enzymatic, serum-free tissue culture of pre-invasive breast lesions for spontaneous generation of mammospheres. J Vis Exp 2014:e51926. [PMID: 25406584 DOI: 10.3791/51926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Breast ductal carcinoma in situ (DCIS), by definition, is proliferation of neoplastic epithelial cells within the confines of the breast duct, without breaching the collagenous basement membrane. While DCIS is a non-obligate precursor to invasive breast cancers, the molecular mechanisms and cell populations that permit progression to invasive cancer are not fully known. To determine if progenitor cells capable of invasion existed within the DCIS cell population, we developed a methodology for collecting and culturing sterile human breast tissue at the time of surgery, without enzymatic disruption of tissue. Sterile breast tissue containing ductal segments is harvested from surgically excised breast tissue following routine pathological examination. Tissue containing DCIS is placed in nutrient rich, antibiotic-containing, serum free medium, and transported to the tissue culture laboratory. The breast tissue is further dissected to isolate the calcified areas. Multiple breast tissue pieces (organoids) are placed in a minimal volume of serum free medium in a flask with a removable lid and cultured in a humidified CO₂ incubator. Epithelial and fibroblast cell populations emerge from the organoid after 10 - 14 days. Mammospheres spontaneously form on and around the epithelial cell monolayer. Specific cell populations can be harvested directly from the flask without disrupting neighboring cells. Our non-enzymatic tissue culture system reliably reveals cytogenetically abnormal, invasive progenitor cells from fresh human DCIS lesions.
Collapse
Affiliation(s)
- Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University;
| | | | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University
| |
Collapse
|
17
|
Carraro DM, Elias EV, Andrade VP. Ductal carcinoma in situ of the breast: morphological and molecular features implicated in progression. Biosci Rep 2014; 34:e00090. [PMID: 27919043 PMCID: PMC3894794 DOI: 10.1042/bsr20130077] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/29/2013] [Accepted: 11/20/2013] [Indexed: 12/21/2022] Open
Abstract
The spread of mammographic screening programmes around the world, including in developing countries, has substantially contributed to the diagnosis of small non-palpable lesions, which has increased the detection rate of DCIS (ductal carcinoma in situ). DCIS is heterogeneous in several ways, such as its clinical presentation, morphology and genomic profile. Excellent outcomes have been reported; however, many questions remain unanswered. For example, which patients groups are overtreated and could instead benefit from minimal intervention and which patient groups require a more traditional multidisciplinary approach. The development of a comprehensive integrated analysis that includes the radiological, morphological and genetic aspects of DCIS is necessary to answer these questions. This review focuses on discussing the significant findings about the morphological and molecular features of DCIS and its progression that have helped to uncover the biological and genetic heterogeneity of this disease. The knowledge gained in recent years might allow the development of tailored clinical management for women with DCIS in the future.
Collapse
Affiliation(s)
- Dirce M Carraro
- Laboratory of Genomics and Molecular Biology, International Center of Research, A.C. Camargo Cancer Center, São Paulo, SP 01509-900, Brazil
- National Institute of Science and Technology in Oncogenomics (INCITO), São Paulo, SP 01509-900, Brazil
| | - Eliana V Elias
- Laboratory of Genomics and Molecular Biology, International Center of Research, A.C. Camargo Cancer Center, São Paulo, SP 01509-900, Brazil
| | - Victor P Andrade
- Department of Anatomical Pathology, A.C. Camargo Cancer Center, São Paulo, S.P. 01509-900, Brazil
| |
Collapse
|
18
|
Shi X, Zhang Y, Cao B, Lu N, Feng L, Di X, Han N, Luo C, Wang G, Cheng S, Zhang K. Genes involved in the transition from normal epithelium to intraepithelial neoplasia are associated with colorectal cancer patient survival. Biochem Biophys Res Commun 2013; 435:282-8. [PMID: 23628414 DOI: 10.1016/j.bbrc.2013.04.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/18/2013] [Indexed: 01/31/2023]
Abstract
Whether the heterogeneity in tumor cell morphology and behavior is the consequence of a progressive accumulation of genetic alterations or an intrinsic property of cancer-initiating cells established at initiation remains controversial. The hypothesis of biological predetermination in human cancer was proposed many years ago and states that the biological potency of cancer cells is predestinated in the precancerous stage. The present study aimed to investigate whether the aberrant molecular events occurring in initial cancer stages could eventually influence colorectal cancer (CRC) progression. We analyzed the mRNA and miRNA expression profiles of colorectal normal mucosa, low-grade intraepithelial neoplasia (LIN), high-grade intraepithelial neoplasia (HIN), and adenocarcinoma tissues. Compared with the transitions from LIN to HIN to invasive carcinoma, the transition from normal epithelium to LIN appeared to be associated with greater changes in the number and expression levels of mRNAs and miRNAs, with a differential expression of 2322 mRNAs and 71 miRNAs detected. Utilizing these early molecular changes, a miRNA-hub network analysis showed that 166 genes were identified as targets regulated by 30 miRNAs. Among these genes, a 55-gene signature regulated by 5 miRNAs was shown to be associated with overall survival or disease-free survival in three independent sample sets. Thus, the molecular changes in the transcriptome associated with the transition from normal to intraepithelial neoplasm may influence CRC progression.
Collapse
Affiliation(s)
- Xiaoyu Shi
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shtilbans V. Role of stromal-epithelial interaction in the formation and development of cancer cells. CANCER MICROENVIRONMENT 2013; 6:193-202. [PMID: 23430817 DOI: 10.1007/s12307-013-0131-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/06/2013] [Indexed: 12/31/2022]
Abstract
Identification of gene expression mechanisms began with works on embryonic induction. The same mechanism of cell-cell interactions also contributes to the process of oncogenesis. Damage to epithelial cells' genetic apparatus turns them into precancerous stem cells that are not yet capable of tumor growth. They can be transformed into cancer stem cells and undergo further progression as a result of epigenetic effects of apocrine secretion by surrounding activated stromal cells (mostly myofibroblasts). These factors may activate the damaged genetic information. On the contrary, the level of malignancy can be decreased by adding culture medium from non-activated stromal cells. One must not exclude the possibility that in a number of cases genetically altered bone marrow may migrate to damaged or inflamed tissues and become there a source of stromal cells, as well as of parenchymal stem cells in a damaged organ, where they may give rise to changed epithelial (precancerous) stem cells or to activated stromal cells, thus leading to malignant tumor growth. Cancer treatment should also affect activated stromal cells. It may prevent emergence and progression of cancerous stem cells.
Collapse
Affiliation(s)
- Viktor Shtilbans
- Division of Immunohistochemistry, Specialty Testing Group, Integrated Oncology, LabCorp, 521 West 57 Str, 6th Fl., New York, NY, 10029, USA,
| |
Collapse
|
20
|
Pandey PR, Xing F, Sharma S, Watabe M, Pai SK, Iiizumi-Gairani M, Fukuda K, Hirota S, Mo YY, Watabe K. Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer. Oncogene 2012. [PMID: 23208501 DOI: 10.1038/onc.2012.519] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upregulation of lipogenesis is a hallmark of cancer and blocking the lipogenic pathway is known to cause tumor cell death by apoptosis. However, the exact role of lipogenesis in tumor initiation is as yet poorly understood. We examined the expression profile of key lipogenic genes in clinical samples of ductal carcinoma in situ (DCIS) of breast cancer and found that these genes were significantly upregulated in DCIS. We also isolated cancer stem-like cells (CSCs) from DCIS.com cell line using cell surface markers (CS24(-)CD44(+)ESA(+)) and found that this cell population has significantly higher tumor-initiating ability to generate DCIS compared with the non-stem-like population. Furthermore, the CSCs showed significantly higher level of expression of all lipogenic genes than the counterpart population from non-tumorigenic breast cancer cell line, MCF10A. Importantly, ectopic expression of SREBP1, the master regulator of lipogenic genes, in MCF10A significantly enhanced lipogenesis in stem-like cells and promoted cell growth as well as mammosphere formation. Moreover, SREBP1 expression significantly increased the ability of cell survival of CSCs from MCF10AT, another cell line that is capable of generating DCIS, in mouse and in cell culture. These results indicate that upregulation of lipogenesis is a pre-requisite for DCIS formation by endowing the ability of cell survival. We have also shown that resveratrol was capable of blocking the lipogenic gene expression in CSCs and significantly suppressed their ability to generate DCIS in animals, which provides us with a strong rationale to use this agent for chemoprevention against DCIS.
Collapse
Affiliation(s)
- P R Pandey
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boucher DL, Chen JQ, Cherry SR, Borowsky AD. Establishment of clonal MIN-O transplant lines for molecular imaging via lentiviral transduction & in vitro culture. PLoS One 2012; 7:e39350. [PMID: 22745739 PMCID: PMC3379971 DOI: 10.1371/journal.pone.0039350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/24/2012] [Indexed: 01/04/2023] Open
Abstract
As the field of molecular imaging evolves and increasingly is asked to fill the discovery and validation space between basic science and clinical applications, careful consideration should be given to the models in which studies are conducted. The MIN-O mouse model series is an established in vivo model of human mammary precancer ductal carcinoma in situ with progression to invasive carcinoma. This series of transplant lines is propagated in vivo and experiments utilizing this model can be completed in non-engineered immune intact FVB/n wild type mice thereby modeling the tumor microenvironment with biological relevance superior to traditional tumor cell xenografts. Unfortunately, the same qualities that make this and many other transplant lines more biologically relevant than standard cell lines for molecular imaging studies present a significant obstacle as somatic genetic re-engineering modifications common to many imaging applications can be technically challenging. Here, we describe a protocol for the efficient lentiviral transduction of cell slurries derived from precancerous MIN-O lesions, in vitro culture of “MIN-O-spheres” derived from single cell clones, and the subsequent transplantation of these spheres to produce transduced sublines suitable for optical imaging applications. These lines retain the physiologic and pathologic properties, including multilineage differentiation, and complex microanatomic interaction with the host stroma characteristic of the MIN-O model. We also present the in vivo imaging and immunohistochemical analysis of serial transplantation of one such subline and detail the progressive multifocal loss of the transgene in successive generations.
Collapse
Affiliation(s)
- David L. Boucher
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Jane Qian Chen
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Simon R. Cherry
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Alexander D. Borowsky
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Down-regulation of ANAPC13 and CLTCL1: Early Events in the Progression of Preinvasive Ductal Carcinoma of the Breast. Transl Oncol 2012; 5:113-23. [PMID: 22496928 DOI: 10.1593/tlo.11280] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 12/21/2022] Open
Abstract
Alterations in the gene expression profile in epithelial cells during breast ductal carcinoma (DC) progression have been shown to occur mainly between pure ductal carcinoma in situ (DCIS) to the in situ component of a lesion with coexisting invasive ductal carcinoma (DCIS-IDC) implying that the molecular program for invasion is already established in the preinvasive lesion. For assessing early molecular alterations in epithelial cells that trigger tumorigenesis and testing them as prognostic markers for breast ductal carcinoma progression, we analyzed, by reverse transcription-quantitative polymerase chain reaction, eight genes previously identified as differentially expressed between epithelial tumor cells populations captured from preinvasive lesions with distinct malignant potential, pure DCIS and the in situ component of DCIS-IDC. ANAPC13 and CLTCL1 down-regulation revealed to be early events of DC progression that anticipated the invasiveness manifestation. Further down-regulation of ANAPC13 also occurred after invasion appearance and the presence of the protein in invasive tumor samples was associated with higher rates of overall and disease-free survival in breast cancer patients. Furthermore, tumors with low levels of ANAPC13 displayed increased copy number alterations, with significant gains at 1q (1q23.1-1q32.1), 8q, and 17q (17q24.2), regions that display common imbalances in breast tumors, suggesting that down-regulation of ANAPC13 contributes to genomic instability in this disease.
Collapse
|
23
|
Weng D, Penzner JH, Song B, Koido S, Calderwood SK, Gong J. Metastasis is an early event in mouse mammary carcinomas and is associated with cells bearing stem cell markers. Breast Cancer Res 2012; 14:R18. [PMID: 22277639 PMCID: PMC3496135 DOI: 10.1186/bcr3102] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 12/22/2011] [Accepted: 01/25/2012] [Indexed: 12/21/2022] Open
Abstract
Introduction It is still uncertain whether metastasis is predominantly an early or late event in tumor progression. The detection of early metastases and cells responsible for the dissemination may therefore have significant clinical implications. Methods Lung dissemination and/or metastasis were investigated in mice carrying the polyomavirus middle-T oncogene (PyMT) during different stages of mammary tumorigenesis using the colony forming assay. Immunocytochemical or immunohistochemical staining was used to identify subpopulations of cells responsible for lung dissemination and metastasis. Histological examination was used to show primary and metastatic tumors. The tumor-initiating and metastatic capacity of cells expressing stem cell markers was assessed in syngeneic wild-type (WT) mice whose mammary fat pads were injected with these cells. Results Metastatic mammary epithelial cells were detected in the lungs of mice carrying the PyMT oncogene (MMT mice). These cells were observed early in breast tumorigenesis when the mammary tree appeared by histological inspection to be normal (or at a premalignant stage), suggesting the possession of disseminating and metastatic capacity even before full malignant transformation. Some of the disseminated cells and lung metastases displayed surface stem cell markers. These findings suggest that stem cells from apparently precancerous primary lesions could be a source of metastasis. Indeed, injection of lung tissue cells from MMT mice into syngeneic WT mice resulted in the formation of mammary tumors. These tumors resembled their parent mammary tumors in the MMT donors as well as grafted tumors derived from mammary tumor cells. Furthermore, when we injected lung tissue cells from GFP MMT mice into the fat pads of recipient WT mice, disseminated or metastatic GFP-expressing cells were detected in the lungs, lymph nodes and blood of the recipient WT mice. We finally identified a subpopulation of mammary epithelial/tumor cells expressing CD44 and Sca1 that was largely responsible for dissemination and metastasis in MMT mice. Conclusions The tumorigenic and metastatic potential of a subpopulation of mammary epithelial/tumor cells in MMT mice is endowed relatively early in mammary neoplasms and suggests a potential role for cancer stem cell sub-populations in metastasis.
Collapse
Affiliation(s)
- Desheng Weng
- Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Cardiff RD, Couto S, Bolon B. Three interrelated themes in current breast cancer research: gene addiction, phenotypic plasticity, and cancer stem cells. Breast Cancer Res 2011; 13:216. [PMID: 22067349 PMCID: PMC3262190 DOI: 10.1186/bcr2887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent efforts to understand breast cancer biology involve three interrelated themes that are founded on a combination of clinical and experimental observations. The central concept is gene addiction. The clinical dilemma is the escape from gene addiction, which is mediated, in part, by phenotypic plasticity as exemplified by epithelial-to-mesenchymal transition and mesenchymal-to-epithelial transition. Finally, cancer stem cells are now recognized as the basis for minimal residual disease and malignant progression over time. These themes cooperate in breast cancer, as induction of epithelial-to-mesenchymal transition enhances self-renewal and expression of cancer stem cells, which are believed to facilitate tumor resistance.
Collapse
Affiliation(s)
- Robert D Cardiff
- Department of Pathology, Center for Comparative Medicine, University of California, Davis, County Road 98 and Hutchison Drive, Davis, CA 95616, USA
| | - Suzana Couto
- Pathology Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Brad Bolon
- GEMpath, Inc., 2867 Humboldt Cir., Longmont, CO 80503, USA
| |
Collapse
|
25
|
Liu HG, Chen C, Yang H, Pan YF, Zhang XH. Cancer stem cell subsets and their relationships. J Transl Med 2011; 9:50. [PMID: 21542915 PMCID: PMC3096925 DOI: 10.1186/1479-5876-9-50] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/04/2011] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that cancer stem cells account for the initiation and progression of cancer. While many types of cancer stem cells with specific markers have been isolated and identified, a variety of differences among them began to be appreciated. Cancer stem cells are hierarchical populations that consist of precancerous stem cells, primary cancer stem cells, migrating cancer stem cells and chemoradioresistant cancer stem cells, playing different roles in cancer initiation and progression. Here we propose a new concept "horizontal hierarchy of cancer stem cells" to distinguish them from vertical hierarchy cancer stem cells, cancer transient-amplifying cells and cancer differentiated cells, and summarize our current understanding of these subsets of cancer stem cells with the aim to open up novel therapeutic strategies for cancer based on this understanding.
Collapse
Affiliation(s)
- Hai-Guang Liu
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou 325000, China
| | | | | | | | | |
Collapse
|
26
|
Su Y, Shankar K, Rahal O, Simmen RCM. Bidirectional signaling of mammary epithelium and stroma: implications for breast cancer--preventive actions of dietary factors. J Nutr Biochem 2011; 22:605-11. [PMID: 21292471 DOI: 10.1016/j.jnutbio.2010.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 09/18/2010] [Indexed: 12/28/2022]
Abstract
The mammary gland is composed of two major cellular compartments: a highly dynamic epithelium that undergoes cycles of proliferation, differentiation and apoptosis in response to local and endocrine signals and the underlying stroma comprised of fibroblasts, endothelial cells and adipocytes, which collectively form the mammary fat pad. Breast cancer originates from subversions of normal growth regulatory pathways in mammary epithelial cells due to genetic mutations and epigenetic modifications in tumor suppressors, oncogenes and DNA repair genes. Diet is considered a highly modifiable determinant of breast cancer risk; thus, considerable efforts are focused on understanding how certain dietary factors may promote resistance of mammary epithelial cells to growth dysregulation. The recent indications that stromal cells contribute to the maintenance of the mammary epithelial 'niche' and the increasing appreciation for adipose tissue as an endocrine organ with a complex secretome have led to the novel paradigm that the mammary stromal compartment is itself a relevant target of bioactive dietary factors. In this review, we address the potential influence of dietary factors on mammary epithelial-stromal bidirectional signaling to provide mechanistic insights into how dietary factors may promote early mammary epithelial differentiation to decrease adult breast cancer risk.
Collapse
Affiliation(s)
- Ying Su
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | |
Collapse
|
27
|
Abstract
The association of cancer with preceding parasitic infections has been observed for over 200 years. Some such cancers arise from infection of tissue stem cells by viruses with insertion of viral oncogenes into the host DNA (mouse polyoma virus, mouse mammary tumor virus). In other cases the virus does not insert its DNA into the host cells, but rather commandeers the metabolism of the infected cells, so that the cells continue to proliferate and do not differentiate (human papilloma virus and cervical cancer). Cytoplasmic Epstein Barr virus infection is associated with a specific gene translocation (Ig/c-myc) that activates proliferation of affected cells (Burkitt lymphoma). In chronic osteomyelitis an inflammatory reaction to the infection appears to act through production of inflammatory cytokines and oxygen radical formation to induce epithelial cancers. Infection with Helicobacter pylori leads to epigenetic changes in methylation and infection by a parasite. Clonorchis sinensis also acts as a promoter of cancer of the bile ducts of the liver (cholaniocarcinoma). The common thread among these diverse pathways is that the infections act to alter tissue stem cell signaling with continued proliferation of tumor transit amplifying cells.
Collapse
Affiliation(s)
- S Sell
- Wadsworth Center and Ordway Research Institute, Empire State Plaza, Albany, NY 12201, USA.
| |
Collapse
|
28
|
Abstract
Invasive, genetically abnormal carcinoma progenitor cells have been propagated from human and mouse breast ductal carcinoma in situ (DCIS) lesions, providing new insights into breast cancer progression. The survival of DCIS cells in the hypoxic, nutrient-deprived intraductal niche could promote genetic instability and the derepression of the invasive phenotype. Understanding potential survival mechanisms, such as autophagy, that might be functioning in DCIS lesions provides strategies for arresting invasion at the pre-malignant stage. A new, open trial of neoadjuvant therapy for patients with DCIS constitutes a model for testing investigational agents that target malignant progenitor cells in the intraductal niche.
Collapse
Affiliation(s)
- Virginia Espina
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia 20110, USA
| | | |
Collapse
|
29
|
Rygh CB, Qin S, Seo JW, Mahakian LM, Zhang H, Adamson R, Chen JQ, Borowsky AD, Cardiff RD, Reed RK, Curry FRE, Ferrara KW. Longitudinal investigation of permeability and distribution of macromolecules in mouse malignant transformation using PET. Clin Cancer Res 2010; 17:550-9. [PMID: 21106723 DOI: 10.1158/1078-0432.ccr-10-2049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE We apply positron emission tomography (PET) to elucidate changes in nanocarrier extravasation during the transition from premalignant to malignant cancer, providing insight into the use of imaging to characterize early cancerous lesions and the utility of nanoparticles in early disease. EXPERIMENTAL DESIGN Albumin and liposomes were labeled with (64)Cu (half-life 12.7 hours), and longitudinal PET and CT imaging studies were conducted in a mouse model of ductal carcinoma in situ. A pharmacokinetic model was applied to estimate the tumor vascular volume and permeability. RESULTS From early time points characterized by disseminated hyperproliferation, the enhanced vascular permeability facilitated lesion detection. During disease progression, the vascular volume fraction increased 1.6-fold and the apparent vascular permeability to albumin and liposomes increased ∼2.5-fold to 6.6 × 10(-8) and 1.3 × 10(-8) cm/s, respectively, with the accumulation of albumin increasing earlier in the disease process. In the malignant tumor, both tracers reached similar mean intratumoral concentrations of ∼6% ID/cc but the distribution of liposomes was more heterogeneous, ranging from 1% to 18% ID/cc compared with 1% to 9% ID/cc for albumin. The tumor-to-muscle ratio was 17.9 ± 8.1 and 7.1 ± 0.5 for liposomes and albumin, respectively, indicating a more specific delivery of liposomes than with albumin. CONCLUSIONS PET imaging of radiolabeled particles, validated by confocal imaging and histology, detected the transition from premalignant to malignant lesions and effectively quantified the associated changes in vascular permeability.
Collapse
Affiliation(s)
- Cecilie B Rygh
- Department of Physiology and Membrane Biology, University of California Davis, California, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ye Y, Yin DT, Chen L, Zhou Q, Shen R, He G, Yan Q, Tong Z, Issekutz AC, Shapiro CL, Barsky SH, Lin H, Li JJ, Gao JX. Identification of Piwil2-like (PL2L) proteins that promote tumorigenesis. PLoS One 2010; 5:e13406. [PMID: 20975993 PMCID: PMC2958115 DOI: 10.1371/journal.pone.0013406] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 09/09/2010] [Indexed: 11/19/2022] Open
Abstract
PIWIL2, a member of PIWI/AGO gene family, is expressed in the germline stem cells (GSCs) of testis for gametogenesis but not in adult somatic and stem cells. It has been implicated to play an important role in tumor development. We have previously reported that precancerous stem cells (pCSCs) constitutively express Piwil2 transcripts to promote their proliferation. Here we show that these transcripts de facto represent Piwil2-like (PL2L) proteins. We have identified several PL2L proteins including PL2L80, PL2L60, PL2L50 and PL2L40, using combined methods of Gene-Exon-Mapping Reverse Transcription Polymerase Chain Reaction (GEM RT-PCR), bioinformatics and a group of novel monoclonal antibodies. Among them, PL2L60 rather than Piwil2 and other PL2L proteins is predominantly expressed in various types of human and mouse tumor cells. It promotes tumor cell survival and proliferation in vitro through up-regulation of Stat3 and Bcl2 gene expressions, the cell cycle entry from G(0/1) into S-phase, and the nuclear expression of NF-κB, which contribute to the tumorigenicity of tumor cells in vivo. Consistently, PL2L proteins rather than Piwil2 are predominantly expressed in the cytoplasm or cytoplasm and nucleus of euchromatin-enriched tumor cells in human primary and metastatic cancers, such as breast and cervical cancers. Moreover, nuclear PL2L proteins are always co-expressed with nuclear NF-κB. These results reveal that PL2L60 can coordinate with NF-κB to promote tumorigenesis and might mediate a common pathway for tumor development without tissue restriction. The identification of PL2L proteins provides a novel insight into the mechanisms of cancer development as well as a novel bridge linking cancer diagnostics and anticancer drug development.
Collapse
Affiliation(s)
- Yin Ye
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - De-Tao Yin
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of General Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Chen
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Rulong Shen
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Gang He
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Qingtao Yan
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Zhenyu Tong
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Andrew C. Issekutz
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Charles L. Shapiro
- Department of Internal Medicine, Ohio State University Medical Center, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Sanford H. Barsky
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Haifan Lin
- Department of Cell Biology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jian-Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, California, United States of America
| | - Jian-Xin Gao
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University Medical Center, Columbus, Ohio, United States of America
| |
Collapse
|
31
|
Espina V, Mariani BD, Gallagher RI, Tran K, Banks S, Wiedemann J, Huryk H, Mueller C, Adamo L, Deng J, Petricoin EF, Pastore L, Zaman S, Menezes G, Mize J, Johal J, Edmiston K, Liotta LA. Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS One 2010; 5:e10240. [PMID: 20421921 PMCID: PMC2857649 DOI: 10.1371/journal.pone.0010240] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/26/2010] [Indexed: 12/18/2022] Open
Abstract
Background While it is accepted that a majority of invasive breast cancer progresses from a ductal carcinoma in situ (DCIS) precursor stage, very little is known about the factors that promote survival of DCIS neoplastic cells within the hypoxic, nutrient deprived intraductal microenvironment. Methodology and Principal Findings We examined the hypothesis that fresh human DCIS lesions contain pre-existing carcinoma precursor cells. We characterized these cells by full genome molecular cytogenetics (Illumina HumanCytoSNP profile), and signal pathway profiling (Reverse Phase Protein Microarray, 59 endpoints), and demonstrated that autophagy is required for survival and anchorage independent growth of the cytogenetically abnormal tumorigenic DCIS cells. Ex vivo organoid culture of fresh human DCIS lesions, without enzymatic treatment or sorting, induced the emergence of neoplastic epithelial cells exhibiting the following characteristics: a) spontaneous generation of hundreds of spheroids and duct-like 3-D structures in culture within 2–4 weeks; b) tumorigenicity in NOD/SCID mice; c) cytogenetically abnormal (copy number loss or gain in chromosomes including 1, 5, 6, 8, 13, 17) compared to the normal karyotype of the non-neoplastic cells in the source patient's breast tissue; d) in vitro migration and invasion of autologous breast stroma; and e) up-regulation of signal pathways linked to, and components of, cellular autophagy. Multiple autophagy markers were present in the patient's original DCIS lesion and the mouse xenograft. We tested whether autophagy was necessary for survival of cytogenetically abnormal DCIS cells. The lysosomotropic inhibitor (chloroquine phosphate) of autophagy completely suppressed the generation of DCIS spheroids/3-D structures, suppressed ex vivo invasion of autologous stroma, induced apoptosis, suppressed autophagy associated proteins including Atg5, AKT/PI3 Kinase and mTOR, eliminated cytogenetically abnormal spheroid forming cells from the organ culture, and abrogated xenograft tumor formation. Conclusions Cytogenetically abnormal spheroid forming, tumorigenic, and invasive neoplastic epithelial cells pre-exist in human DCIS and require cellular autophagy for survival.
Collapse
Affiliation(s)
- Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Recognition of focal morphological intraepithelial lesions associated with the eventual development of invasive cancer has long been the sine qua non of precancer. Empirically, precancers are associated with a morphological continuum from atypia to dysplasia and invasive neoplasia. Such lesions are used as early indicators of cancers and have dramatically reduced mortality from cancers of the colon, uterine cervix, and breast. Progression has been modeled as a linear, stepwise process. Some molecular evidence supports a linear model. However, clinical studies now suggest that preexisting cofactors such as human papilloma virus (HPV) in cervical cancer determines the cell fate. Other clinical studies such as bladder, prostate, and breast suggest that many intraepithelial lesions do not progress to malignancy. The more recent experimental analyses reveal that the key molecular and genetic events even predate the emergence of visible lesions. Thus, a new nonlinear, parallel model is proposed. The parallel model suggests an origin in a putative progenitor cell that expands and invades. The clinical outcome is thus predetermined. If correct, this model suggests that "progression" to malignancy is epigenetic. Further, future assessment of biological potential will involve identification and genetic analysis of the progenitor cell populations.
Collapse
|
33
|
Fluck MM, Schaffhausen BS. Lessons in signaling and tumorigenesis from polyomavirus middle T antigen. Microbiol Mol Biol Rev 2009; 73:542-63, Table of Contents. [PMID: 19721090 PMCID: PMC2738132 DOI: 10.1128/mmbr.00009-09] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The small DNA tumor viruses have provided a very long-lived source of insights into many aspects of the life cycle of eukaryotic cells. In recent years, the emphasis has been on cancer-related signaling. Here we review murine polyomavirus middle T antigen, its mechanisms, and its downstream pathways of transformation. We concentrate on the MMTV-PyMT transgenic mouse, one of the most studied models of breast cancer, which permits the examination of in situ tumor progression from hyperplasia to metastasis.
Collapse
Affiliation(s)
- Michele M Fluck
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|