1
|
McIntire-Ray HJ, Rose ES, Krick S, Barnes JW. Simple and accessible methods for quantifying isolated mucins for further evaluation. MethodsX 2025; 14:103267. [PMID: 40207064 PMCID: PMC11981757 DOI: 10.1016/j.mex.2025.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
In this study, we present a detailed workflow for the isolation, quantitation, and evaluation of mucin proteins. These methods are applicable to a variety of biological, mucin-containing samples from the airways and other mucosal organ systems. While this report focuses on the salivary MUC5B protein from the respiratory system, the presented methodologies can be applied to other mucins, contributing to a broader application of these techniques. We used a simplified isopycnic centrifugation to purify and enrich MUC5B from human saliva. Isolated MUC5B was then subjected to a Bradford protein assay using a bovine submaxillary mucin (BSM) standard, which more accurately reflects the mucin concentration in our samples compared to a bovine serum albumin (BSA) standard. Additionally, we compare the mucin levels following quantitation using agarose polyacrylamide gel electrophoresis. Our findings show a near 2-fold increase in quantitation from the more representative, BSM standard, suggesting its importance for mucin studies. These methods support a wide range of experimental applications looking to assess mucins, thereby contributing to the broader field of mucin studies and advancing our understanding of the implications of mucins in health and disease.•A streamlined, one-step isopycnic ultracentrifugation to isolate MUC5B from human saliva•A Mucin Bradford assay that is modified from existing Bradford assay techniques to better quantitate mucin for mucin studies•An agarose-polyacrylamide gel electrophoresis method used to visualize and confirm the isolation and quantitation of mucin.
Collapse
Affiliation(s)
- Hannah J. McIntire-Ray
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elex S. Rose
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarrod W. Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Xiao K, Rangamani P. Glycocalyx-induced formation of membrane tubes. Biophys J 2025; 124:1631-1642. [PMID: 40219606 DOI: 10.1016/j.bpj.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/12/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Tubular membrane structures are ubiquitous in cells and in the membranes of intracellular organelles such as the Golgi complex and the endoplasmic reticulum. Tubulation plays essential roles in numerous biological processes, including filopodia growth, trafficking, ion transport, and cellular motility. Understanding the fundamental mechanism of the formation of membrane tubes is thus an important problem in the fields of biology and biophysics. Although extensive studies have shown that tubes can be formed due to localized forces acting on the membrane or by the spontaneous curvature induced by membrane-bound proteins, little is known about how membrane tubes are induced by glycocalyx, a sugar-rich layer at the cell surface. In this work, we develop a biophysical model that combines polymer physics theory and the Canham-Helfrich membrane theory to investigate how the glycocalyx generates cylindrical tubular protrusions on the cell membrane. Our results show that the glycocalyx alone can induce the formation of tubular membrane structures. This tube formation involves a first-order shape transition without any externally applied force or other curvature-inducing mechanisms. We also find there exist critical values of glycocalyx grafting density and glycopolymer length needed to induce the formation of tubular structures. The presence of a vertical actin force, line tension, and spontaneous curvature reduce this critical grafting density and length of polymer that triggers the formation of membrane tube, which suggests that the glycocalyx makes tube formation energetically more favorable when combined with an actin force, line tension, and spontaneous curvature.
Collapse
Affiliation(s)
- Ke Xiao
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California; Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California.
| |
Collapse
|
3
|
Du X, Liu M, Li J, Liu Y, Ge S, Gao H, Zhang M. Bifidobacterium animalis Supplementation Improves Intestinal Barrier Function and Alleviates Antibiotic-Associated Diarrhea in Mice. Foods 2025; 14:1704. [PMID: 40428484 PMCID: PMC12110814 DOI: 10.3390/foods14101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Probiotics have gained increasing recognition for their potential to mitigate antibiotic-associated diarrhea (AAD). However, the precise mechanisms underlying their effects remain unclear. This study developed a mouse model of AAD using ceftriaxone to investigate the alleviating effects and mechanisms of Bifidobacterium animalis A6 (A6). The findings indicated that A6 supplementation effectively attenuated ceftriaxone-associated diarrhea in mice. The morphological damage to the villi and crypts was partially restored and more neatly reorganized following the A6 intervention. Additionally, intestinal morphology observations revealed a significant increase in the thickness of the mucus layer in the A6-treated group. Further examination of key regulatory genes associated with mucus secretion demonstrated that the A6 intervention effectively upregulated the expression of mucin1, thereby reinforcing the mucus layer. Concurrently, the A6 intervention upregulated the expression of the AQP4 and SLC26A3 genes in the intestine, which is responsible for restoring water absorption capacity in AAD mice. Additionally, the A6 treatment reduced ceftriaxone-induced harm to the intestinal microbiota of the mice, boosting beneficial bacteria like Bacteroidales, Akkermansia, Bifidobacterium, and Lactobacillus. Overall, this study offers valuable insights into the potential therapeutic role of A6 in restoring intestinal homeostasis and alleviating symptoms associated with AAD.
Collapse
Affiliation(s)
- Xiaoyu Du
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Mingkun Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Jingyu Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shaoyang Ge
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Haina Gao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Cull J, Pink RC, Samuel P, Brooks SA. Myriad mechanisms: factors regulating the synthesis of aberrant mucin-type O-glycosylation found on cancer cells. Glycobiology 2025; 35:cwaf023. [PMID: 40247681 DOI: 10.1093/glycob/cwaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
Mucin-type O-linked glycosylation is initiated by the transfer of a single N-acetyl-D-galactosamine (GalNAc) to the hydroxyl group of either a serine (Ser) or threonine (Thr) residue. This process is catalysed by a portfolio of twenty isoenzymes, the UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts, GalNAc-Ts or GALNTs) to create the Thomsen nouvelle (Tn) antigen (GalNAcα1-O-Ser/Thr ). In healthy adult cells, Tn antigen is further elaborated by the action of specific glycosyltransferases to either form one of eight core structures, which themselves can be extended to form more complex glycans, or into sialyl Tn or sialyl core 1 (sialyl T), where sialylation terminates chain extension. These O-glycans, produced through mucin-type O-linked glycosylation, are a feature of many secreted and membrane-bound proteins, and are fundamental in a wide range of biological functions. Dysregulation of this process, often resulting in the exposure of usually cryptic truncated O-glycans including Tn antigen, is important in a wide range of pathologies and has been implicated in cancer metastasis. The regulation of mucin-type O-linked glycosylation, in health and disease, is highly complex and not fully understood. It is determined by a myriad of mechanisms, from transcriptional control, mutation, posttranslational control, stability of transferases, their relocation within the secretory pathway, and changes in the fundamental structure and environment of the Golgi apparatus. This review presents an overview of the evidence for these potential regulatory steps in the synthesis of truncated mucin-type O-linked glycans in cancer.
Collapse
Affiliation(s)
- Joanna Cull
- School of Biological & Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom
| | - Ryan C Pink
- School of Biological & Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom
| | - Priya Samuel
- School of Biological & Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom
| | - Susan A Brooks
- School of Biological & Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
5
|
Li X, Chen Y, Lan R, Liu P, Xiong K, Teng H, Tao L, Yu S, Han G. Transmembrane mucins in lung adenocarcinoma: understanding of current molecular mechanisms and clinical applications. Cell Death Discov 2025; 11:163. [PMID: 40210618 PMCID: PMC11985918 DOI: 10.1038/s41420-025-02455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
The mucin family is a group of highly glycosylated macromolecules widely present in human epithelial cells and with subtypes of secreted and membrane-associated forms. The membrane-associated mucins, known as transmembrane mucins, are not only involved in the formation of mucus barrier but also regulate cell signal transduction in physiological and pathological status. Transmembrane mucins could contribute to lung adenocarcinoma (LUAD) proliferation, apoptosis, angiogenesis, invasion, and metastasis, and remodel the immune microenvironment involved in immune escape. Furthermore, transmembrane mucins have been explored as potential LUAD indicators for diagnosis and prognosis. The development of targeted therapy and immunotherapeutic drugs targeting transmembrane mucins has also provided broad application prospects for clinic. In the following review, we summarize the characteristic structures of diverse transmembrane mucins, regulatory roles in promoting the progression of LUAD, and the current situation of diagnosis, prognosis, and therapeutic strategies based on transmembrane mucins.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Chen
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Lan
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Kai Xiong
- Department of Statistic, Inner Mongolia Forestry General Hospital, Yakeshi, China
| | - Hetai Teng
- Department of General Surgery, Inner Mongolia Forestry General Hospital, Yakeshi, China
| | - Lili Tao
- Department of Pathology, Peking University, Shenzhen Hospital, Shenzhen, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Mental Hospital, Harbin, China.
| | - Guiping Han
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Santos G, Delgado E, Silva B, Braz BS, Gonçalves L. Topical Ocular Drug Delivery: The Impact of Permeation Enhancers. Pharmaceutics 2025; 17:447. [PMID: 40284442 PMCID: PMC12030643 DOI: 10.3390/pharmaceutics17040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Topical ophthalmic drug delivery targeting the posterior segment of the eye has become a key area of interest due to its non-invasive nature, safety, ease of application, patient compliance, and cost-effectiveness. However, achievement of effective drug bioavailability in the posterior ocular segment is a significant challenge due to unique ocular barriers, including precorneal factors and anatomical barriers, like the cornea, the conjunctiva, and the sclera. Successful ocular drug delivery systems require increased precorneal residence time and improved corneal penetration to enhance intraocular bioavailability. A promising strategy to overcome these barriers is incorporating drug penetration enhancers (DPEs) into formulations. These compounds facilitate drug delivery by improving permeability across otherwise impermeable or poorly permeable membranes. At the ocular level, they act through three primary mechanisms: breaking tear film stability by interfering with the mucous layer; disrupting membrane components such as phospholipids and proteins; and loosening epithelial cellular junctions. DPEs offer significant potential to improve bioavailability and therapeutic outcomes, particularly for drugs targeting the posterior segment of the eye. This review is focused on analyzing the current literature regarding the use of penetration enhancers in topical ocular drug delivery, highlighting their mechanisms of action and potential to revolutionize ophthalmic treatments.
Collapse
Affiliation(s)
- Gonçalo Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Esmeralda Delgado
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Beatriz Silva
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Berta São Braz
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
7
|
Arras W, Breugelmans T, Oosterlinck B, De Man JG, Malhotra-Kumar S, Abrams S, Van Laere S, Macken E, Somers M, Jauregui-Amezaga A, De Winter BY, Smet A. The Intestinal Mucin Isoform Landscape Reveals Region-Specific Biomarker Panels for Inflammatory Bowel Disease Patient Stratification. J Crohns Colitis 2025; 19:jjae155. [PMID: 39330996 PMCID: PMC11945306 DOI: 10.1093/ecco-jcc/jjae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND AIMS Mucosal healing is considered a key therapeutic endpoint in inflammatory bowel diseases (IBD) and comprises endoscopic improvement of inflammation without taking barrier healing into account. Mucins are critical components of the mucosal barrier function that give rise to structurally diverse isoforms. Unraveling disease-associated mucin isoforms that could act as an indication for barrier function would greatly enhance IBD management. METHODS We present the intestinal mucin RNA isoform landscape in IBD and control patients using a targeted mucin isoform sequencing approach on a discovery cohort (n = 106). Random Forest modeling (n = 1683 samples) with external validation (n = 130 samples) identified unique mucin RNA isoform panels that accurately stratified IBD patients in multiple subpopulations based on inflammation, IBD subtype (Crohn's disease [CD], ulcerative colitis [UC]), and anatomical location of the intestinal tract (i.e. ileum, proximal colon, distal colon, and rectum). RESULTS Particularly, the mucin RNA isoform panels obtained from the inflamed UC and CD distal colon showed high performance in distinguishing inflamed biopsies from their control counterparts (AUC of 93.3% and 91.1% in the training, 95.0% and 96.0% in the test, and 89.5% and 78.3% in the external validation datasets, respectively). Furthermore, the differentially expressed MUC4 (PB.1238.363), MUC5AC (PB.2811.15), MUC16 (ENST00000397910.8), and MUC1 (ENST00000462317.5 and ENST00000620103.4) RNA isoforms frequently occurred throughout the different panels highlighting their role in IBD pathogenesis. CONCLUSIONS We unveiled region-specific mucin RNA isoform panels capturing the heterogeneity of the IBD patient population and showing great potential to indicate barrier function in IBD patients.
Collapse
Affiliation(s)
- Wout Arras
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Tom Breugelmans
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Baptiste Oosterlinck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Steven Abrams
- Global Health Institute, Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
- Data Science Institute, Interuniversity Institute for Biostatistics and statistical Bioinformatics, University of Hasselt, Diepenbeek, Belgium
| | - Steven Van Laere
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Antwerp, Belgium
| | - Elisabeth Macken
- Division of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Michaël Somers
- Division of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | | | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Stevens MJA, Barmettler K, Kelbert L, Stephan R, Nüesch-Inderbinen M. Genome based characterization of Yersinia enterocolitica from different food matrices in Switzerland in 2024. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 128:105719. [PMID: 39884520 DOI: 10.1016/j.meegid.2025.105719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Yersinia enterocolitica causes food-borne gastroenteritis. However, little is known about the genetic diversity and pathogenic potential of Y. enterocolitica in different food commodities. In this study, presumptive Y. enterocolitica strains were isolated from 32 of 100 pork samples, from 25 of 100 chicken meat samples, and from 22 of 97 produce samples (fresh herbs and salads), all collected at retail level in Switzerland in 2024. All isolates underwent whole-genome sequencing (WGS). One isolate was re-classified as Y. hibernica. Three strains belonged to biotype (BT) 4, all from pork, and 86 strains to BT 1A. The isolates belonged to 45 sequence types (STs). A total of 76 putative plasmids were detected. Each BT 4 isolate carried a pYV-like plasmid harbouring 44 virulence factors (VFs). Plasmids from the same type were identified in different ST, showing that genetic exchange between ST occurs. Twelve isolates from poultry meat carried plasmids harbouring the msrAB operon which is linked to oxidative stress tolerance. Nine isolates from pork and poultry meat contained plasmids carrying the cag pathogenicity island associated with cytotoxicity, and four isolates from produce carried plasmids harbouring a heat labile enterotoxin. None of the isolates harboured plasmid-mediated antimicrobial resistance (AMR) genes. Y. enterocolitica BT 4 (n = 3) and BT 1A (n = 3) were clonal to Y. enterocolitica previously isolated from Swiss human cases. Our data provide valuable insights into the occurrence and genomic characteristics of Y. enterocolitica in food, their relatedness to human strains, and their adaptation to food matrices.
Collapse
Affiliation(s)
- Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Karen Barmettler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Lucien Kelbert
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
9
|
Li D, Andaloori L, Crowe M, Lin S, Hong J, Zaidi N, Ho M. Development of CAR-T Therapies and Personalized Vaccines for the Treatment of Cholangiocarcinoma: Current Progress, Mechanisms of Action, and Challenges. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:453-469. [PMID: 39675505 PMCID: PMC11983698 DOI: 10.1016/j.ajpath.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024]
Abstract
Cholangiocarcinoma (CCA) is a highly fatal malignancy with an increasing prevalence, a high mortality rate, poor overall survival, and limited responsiveness to conventional chemoradiotherapy. Targeted therapies addressing specific gene mutations have expanded treatment options for some patient populations. The introduction of chimeric antigen receptor-modified T-cell (CAR-T) immunotherapy and personalized vaccines have opened up a new avenue for managing various cancers. Considerable efforts have been dedicated to preclinical research and ongoing clinical trials of immunotherapeutic approaches including CAR-T therapy, vaccines, and antibody-based therapies such as antibody drug conjugates. However, the potential of CAR-T therapy and vaccines in treating advanced unresectable/metastatic cholangiocarcinoma remains largely unexplored. This article offers an overview of the current landscape of antibody-based immunotherapy, particularly CAR-T therapy and vaccines in the context of cholangiocarcinoma treatment. It outlines a framework for selecting CAR-T and vaccine targets and delves into the biology of promising targetable antigens, as well as potential future therapeutic targets.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lalitya Andaloori
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Matthew Crowe
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Shaoli Lin
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland.
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
10
|
Xiao K, Park S, Stachowiak JC, Rangamani P. Biophysical modeling of membrane curvature generation and curvature sensing by the glycocalyx. Proc Natl Acad Sci U S A 2025; 122:e2418357122. [PMID: 39969997 PMCID: PMC11873937 DOI: 10.1073/pnas.2418357122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/11/2025] [Indexed: 02/21/2025] Open
Abstract
Generation of membrane curvature is fundamental to cellular function. Recent studies have established that the glycocalyx, a sugar-rich polymer layer at the cell surface, can generate membrane curvature. While there have been some theoretical efforts to understand the interplay between the glycocalyx and membrane bending, there remain open questions about how the properties of the glycocalyx affect membrane bending. For example, the relationship between membrane curvature and the density of glycosylated proteins on its surface remains unclear. In this work, we use polymer brush theory to develop a detailed biophysical model of the energetic interactions of the glycocalyx with the membrane. Using this model, we identify the conditions under which the glycocalyx can both generate and sense curvature. Our model predicts that the extent of membrane curvature generated depends on the grafting density of the glycocalyx and the backbone length of the polymers constituting the glycocalyx. Furthermore, when coupled with the intrinsic membrane properties such as spontaneous curvature and a line tension along the membrane, the curvature generation properties of the glycocalyx are enhanced. These predictions were tested experimentally by examining the propensity of glycosylated transmembrane proteins to drive the assembly of highly curved filopodial protrusions at the plasma membrane of adherent mammalian cells. Our model also predicts that the glycocalyx has curvature-sensing capabilities, in agreement with the results of our experiments. Thus, our study develops a quantitative framework for mapping the properties of the glycocalyx to the curvature generation capability of the membrane.
Collapse
Affiliation(s)
- Ke Xiao
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA92093
| | - Sujeong Park
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX78712
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX78712
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX78712
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA92093
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
11
|
Saleem W, Aslam A, Tariq M, Nauwynck H. Intestinal mucus: the unsung hero in the battle against viral gastroenteritis. Gut Pathog 2025; 17:11. [PMID: 39972475 PMCID: PMC11841282 DOI: 10.1186/s13099-025-00684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
Intestinal mucus plays a crucial role in defending against enteric infections by protecting the vulnerable intestinal epithelial cells both physically and through its various constituents. Despite this, numerous gastroenteritis-causing viruses, such as rotavirus, coronavirus, adenovirus, astrovirus, calicivirus, and enterovirus, continue to pose significant threats to humans and animals. While several studies have examined the interactions between these viruses and intestinal mucus, significant gaps remain in understanding the full protective potential of intestinal mucus against these pathogens. This review aims to elucidate the protective role of intestinal mucus in viral gastroenteritis. It begins with a comprehensive literature overview of (i) intestinal mucus, (ii) enteric viruses of medical and veterinary importance, and (iii) the known interactions between various enteric viruses and intestinal mucus. Following this, a case study is presented to highlight the age-dependent blocking effect of porcine intestinal mucus against transmissible gastroenteritis virus, a porcine coronavirus. Finally, the review discusses future investigation directions to further explore the potential of intestinal mucus as a defense mechanism against viral gastroenteritis to stimulate further research in this dynamic and critical area.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium.
| | - Ateeqa Aslam
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium
| | - Mehlayl Tariq
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, 53-114, Poland
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium
| |
Collapse
|
12
|
Wan MLY, Co VA, Turner PC, Nagendra SP, El‐Nezami H. Deoxynivalenol modulated mucin expression and proinflammatory cytokine production, affecting susceptibility to enteroinvasive Escherichia coli infection in intestinal epithelial cells. J Food Sci 2025; 90:e70079. [PMID: 39980277 PMCID: PMC11842951 DOI: 10.1111/1750-3841.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/22/2025]
Abstract
Deoxynivalenol (DON) is a common mycotoxin in crops that could induce intestinal inflammation, affecting the susceptibility of intestinal epithelial cells (IECs) to pathogen infection. This study aimed to investigate DON's effects on mucin and cytokine production as part of the local immune system and how it affected intestinal susceptibility to pathogen infection. Caco-2 cells were exposed to DON followed by acute enteroinvasive Escherichia coli (EIEC) infection. An increase in EIEC attachment to DON-exposed cells was observed, probably in part, mediated by secretory MUC5AC mucins and membrane-bound MUC4 and MUC17 mucins. Additionally, DON with EIEC posttreatment led to significant changes in the gene expression of several proinflammatory cytokines (IL1α, IL1β, IL6, IL8, TNFα, and MCP-1), which may be in part, mediated by NK-κB and/or MAPK signaling pathways. These data suggested DON may exert immunomodulatory effects on IECs, altering the IEC susceptibility to bacterial infection. PRACTICAL APPLICATION: The results suggested that DON might modulate immune responses by affecting mucus and cytokine production, which may affect the susceptibility of intestinal epithelial cells to pathogen infection.
Collapse
Affiliation(s)
- Murphy Lam Yim Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
- Department of Laboratory Medicine, Division of MicrobiologyImmunology and Glycobiology, Lund UniversityLundSweden
- School of Medicine, Pharmacy and Biomedical Sciences, Faculty of Science and HealthUniversity of PortsmouthPortsmouthUK
| | - Vanessa Anna Co
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
| | - Paul C Turner
- Maryland Institute for Applied Environmental Health, School of Public HealthUniversity of MarylandCollege ParkMarylandUSA
| | - Shah P Nagendra
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
| | - Hani El‐Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
13
|
Wang BH, Yu KY, Zhang XN, Sun XH, Tang LL, Shi XL. Fu Tu Sheng Jin Rehabilitation Formula Mitigate Airway Inflammation, Mucus Secretion and Immune Dysfunction Induced by SARS-CoV-2 Spike Protein. J Inflamm Res 2025; 18:1053-1065. [PMID: 39871960 PMCID: PMC11771161 DOI: 10.2147/jir.s480112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/27/2024] [Indexed: 01/29/2025] Open
Abstract
Objective To evaluate the effects of Fu Tu Sheng Jin Rehabilitation Formula (FTSJRF) on airway inflammation, mucus secretion, and immunoreaction in a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein-induced mouse model. Methods Forty-two mice were randomly divided into seven groups: normal, D1, D3, D10, D10H, D10M and D10L, according to the days of modeling and different dosages of FTSJRF. D1, D3, D10, D10H, D10M and D10L group mice were intratracheally administered with 15 µg SARS-CoV-2 spike protein; mice in the D10H, D10M, and D10L groups were intragastrically administered FTSJRF (46, 23 and 11.5 g/kg, respectively). Observe the pathological changes in lung tissues, expression of inflammatory factors, and mucins in different groups of mice using HE and PAS staining methods, as well as ELISA and RT-qPCR. Flow cytometry was used to detect T helper 17 (Th17)/regulatory T (Treg) cells and T helper 1(Th1)/T helper 2 (Th2) lymphocyte ratios and the proportions of conventional myeloid dendritic cells (cDCs), plasma cell-like DCs, CD80 and CD86 cells in mouse spleens. Results HE and PAS staining showed that, compared to that in the normal group, the lung tissue of the D1 group mice showed a significant inflammatory damage response, whereas the D3 and D10 groups showed a gradual recovery trend. Groups D1 and D3 showed mild mucus secretion, whereas the D10 group had excessive mucus secretion. The D10 group of mice displayed increased levels of IL-4, TNF-α, IL-33 and mucin genes such as MUC1, MUC4, etc, and FTSJRF inhibited the expression of these molecules, mucus secretion and lung damage in SARS-CoV-2 spike protein-induced mouse model. Flow cytometry results showed a decrease in the number of cDCs and an abnormal recovery of DC mature cells in the D10 group. FTSJRF increased the number of cDCs and promoted DC maturation. A higher Th17/Treg ratio was observed in the D3 and D10 groups than in the normal group, whereas this ratio decreases under the effect of FTSJRF. D10 had significantly lower Th1/Th2 ratio than normal, D1 and D3 groups, and high doses of FTSJRF increased it. Conclusion FTSJRF mitigates airway inflammation and mucus secretion induced by SARS-CoV-2 spike protein. Additionally, FTSJRF regulates immune functions by promoting DC maturation and Th17/Treg and Th1/Th2 cell homeostasis.
Collapse
Affiliation(s)
- Bo-Han Wang
- NanJing JiangNing Hospital of Chinese Medicine/Affiliated jiangning Hospital of Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Ke-Yao Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Xiao-Na Zhang
- Nanjing Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Xian-Hong Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Ling-Ling Tang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Xiao-Lu Shi
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| |
Collapse
|
14
|
Zhang XY, Hong LL, Ling ZQ. MUC16/CA125 in cancer: new advances. Clin Chim Acta 2025; 565:119981. [PMID: 39368688 DOI: 10.1016/j.cca.2024.119981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
MUC16/CA125 is a common diagnostic marker for many types of cancer. However, due to the widespread expression of MUC16 in cancer, its specificity and sensitivity as a target are poor, which severely limits its clinical application. In recent years, various studies have shown that the clinical application potential of MUC16/CA125 has been greatly improved. The update of detection technology improves the accuracy and range of detection, and improves the early diagnosis rate of cancer. Targeting MUC16/CA125 is an important strategy for tumor therapy. Targeting residual amino acids, n-glycoylation structures or other targets on the surface of MUC16 cells can greatly improve the accuracy of detection and therapy. The new drug delivery method broke through the original technical shackles, targeted MUC16 positive cells more specifically and improved the drug efficacy. In this paper, the technological advances in detecting and identifying MUC16 targets and the great progress in cancer screening and treatment based on MUC16 as a target are described in detail, revealing the great potential of MUC16 as a target in cancer screening and treatment, and illustrating the potential clinical application value of MUC16.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No. 1 Banshan East Rd., Gongshu District, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; The Second Clinical Medical College of Zhejiang Chinese Medicine University, Hangzhou 310053, People's Republic of China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No. 1 Banshan East Rd., Gongshu District, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No. 1 Banshan East Rd., Gongshu District, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
15
|
Venkatraman A, Morelli JJ, Sampath V. Guardian of the gut: butyrate-regulated FUT2 protects against experimental NEC. Pediatr Res 2025; 97:25-26. [PMID: 39210051 DOI: 10.1038/s41390-024-03522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Aparna Venkatraman
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - John J Morelli
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
16
|
Mariana SM, Brenda RP, Heriberto PG, Cristina L, David B, Guadalupe ÁL. GPER1 activation by estrogenic compounds in the inflammatory profile of breast cancer cells. J Steroid Biochem Mol Biol 2025; 245:106639. [PMID: 39571822 DOI: 10.1016/j.jsbmb.2024.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Breast cancer (BC) is the most frequent female neoplasm worldwide. Its establishment and development have been related to inflammatory cytokine expression. Steroid hormones such as estradiol (E2) can regulate proinflammatory cytokine secretion through interaction with its nuclear receptors. However, little is known regarding the activation of its membrane estrogen receptor (GPER1) and the inflammatory cytokine environment in BC. We have studied the synthesis and biological effects of molecules analogs to E2 for hormone replacement therapy (HRT), such as pentolame. Nevertheless, its interaction with GPER1 and the modulation of inflammatory cytokines in different BC types has been barely studied and deserves deeper investigation. In this research, the role of GPER1 in the proliferation and modulation of inflammatory cytokines involved in carcinogenesis and metastatic processes in different BC cell lines was assessed by binding to various compounds. To achieve this goal, the presence of GPER1 was identified in different BC cell lines. Subsequently, cell proliferation after exposure to E2, pentolame and GPER1 agonist, G1, was subsequently determined alone or in combination with the GPER1 antagonist, G15. Finally, the pro-inflammatory cytokine secretion derived from the supernatants of BC cells exposed to the previous treatments was also assessed. Interestingly, GPER1 activation or inhibition has significant effects on the cytokine regulation associated with invasion in BC. Notably, pentolame did not induce cell proliferation or increase the proinflammatory cytokine expression compared to E2 in BC cell lines. In addition, pentolame did not induce the presence of the cell adhesion molecule PECAM-1. In contrast, E2 treatment weakly induced the expression of PECAM-1 in MCF-7 and HCC1937 cells, and G1 treatment showed this effect only in MCF-7 cells. The results suggest that GPER1 might be a significant inflammatory modulator with angiogenic-related effects in BC cells. In addition, pentolame might represent an HRT alternative in patients with BC predisposition.
Collapse
Affiliation(s)
- Segovia-Mendoza Mariana
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Reyes-Plata Brenda
- Facultad de Estudios Superiores Zaragoza. Universidad Nacional Autónoma de México,Ciudad de México, Mexico
| | - Prado-Garcia Heriberto
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas" Calzada de Tlalpan 4502, Col. Sección XVI, Ciudad de México 14080, Mexico
| | - Lemini Cristina
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Barrera David
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Ciudad de México 14080, Mexico
| | - Ángeles-López Guadalupe
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
17
|
Manrique-Caballero CL, Barasch J, Zaidi SK, Bates CM, Ray EC, Kleyman TR, Al-Bataineh MM. Expression and distribution of MUC1 in the developing and adult kidney. Am J Physiol Renal Physiol 2025; 328:F107-F120. [PMID: 39588770 PMCID: PMC11918333 DOI: 10.1152/ajprenal.00206.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
Mucin 1 (or MUC1) is a heterodimeric transmembrane glycoprotein expressed on the apical surface of polarized epithelial cells in several tissues including the kidney. Recent studies have revealed several novel roles of MUC1 in the kidney, potentially including bacterial infection, mineral balance, and genetic interstitial kidney disease, even though MUC1 levels are reduced not only in the kidney but also in all tissues due to MUC1 mutations. A careful localization of MUC1 in discrete segments of the nephron is the first step in understanding the multiple functional roles of MUC1 in the kidney. Most published reports of MUC1 expression to date have been largely confined to cultured cells, tumor tissues, and selective nephron segments of experimental rodents, and very few studies have been performed using human kidney tissues. Given the rising attention to the role of MUC1 in differing components of renal physiology, we carefully examined the kidney distribution of MUC1 in both human and mouse kidney sections using well-defined markers for different nephron segments or cell types. We further extended our investigation to include sections of early stages of mouse kidney development and upon injury in humans. We included staining for MUC1 in urothelial cells, the highly specialized epithelial cells lining the renal pelvis and bladder. These data implicate a role for MUC1 in antimicrobial defense. Our study provides the groundwork to test the physiological relevance of MUC1 in the urinary tract.NEW & NOTEWORTHY MUC1 is a transmembrane glycoprotein expressed on the apical surface of polarized epithelial tissues and most carcinomas. MUC1 may play novel roles in the kidney including defense against infections. Here, we examine the expression of MUC1 in mouse and human kidneys. We show that the distal nephron and the urinary system are the predominant sites of expression of both message and protein, implicating segment-specific roles including distal nephron defense against ascending bacteria.
Collapse
Affiliation(s)
- Carlos L Manrique-Caballero
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Jonathan Barasch
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States
| | - Syed K Zaidi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Carlton M Bates
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Evan C Ray
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Mohammad M Al-Bataineh
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
18
|
Kobayashi Y, Hanh CH, Yagi N, Le NKT, Yun Y, Shimamura A, Fukui K, Mitani A, Suzuki K, Kanda A, Iwai H. CCL4 Affects Eosinophil Survival via the Shedding of the MUC1 N-Terminal Domain in Airway Inflammation. Cells 2024; 14:33. [PMID: 39791734 PMCID: PMC11719767 DOI: 10.3390/cells14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Eosinophilic chronic rhinosinusitis (ECRS), a CRS with nasal polyps (CRSwNP), is characterized by eosinophilic infiltration with type 2 inflammation and is highly associated with bronchial asthma. Intractable ECRS with poorly controlled asthma is recognized as a difficult-to-treat eosinophilic airway inflammation. Although eosinophils are activated and coincubation with airway epithelial cells prolongs their survival, the interaction mechanism between eosinophils and epithelial cells is unclear. This study examined the effect of eosinophils on mucin glycoprotein 1 (MUC1), a member of membrane-bound mucin, in the airway epithelial cells, to elucidate the mechanisms of the eosinophil-airway epithelial cell interaction. Nasal polyp samples from patients with CRSwNP and BEAS-2B airway epithelial cells, coincubated with purified eosinophils, were stained with two MUC1 antibodies. To confirm the involvement of CCL4, an anti-CCL4 neutralizing antibody or recombinant CCL4 was used as needed. The immunofluorescence results revealed a negative correlation between the expression of full-length MUC1 and eosinophil count in nasal polyps. In BEAS-2B coincubated with eosinophils, full-length MUC1, but not the C-terminal domain, was reduced, and eosinophil survival was prolonged, which was concomitant with CCL4 increase, whereas the anti-CCL4 neutralizing antibody decreased these reactions. The survival of eosinophils that contacted recombinant MUC1 without the N-terminal domain was prolonged, and recombinant CCL4 increased the expression of metalloproteases. Increased CCL4 induces the contact between eosinophils and airway epithelial cells by shedding the MUC1 N-terminal domain and enhances eosinophil survival in eosinophilic airway inflammation. This novel mechanism may be a therapeutic target for difficult-to-treat eosinophilic airway inflammation.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Osaka 573-1010, Japan
| | - Chu Hong Hanh
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Naoto Yagi
- Third Department of Internal Medicine, Kansai Medical University, Osaka 573-1010, Japan;
| | - Nhi Kieu Thi Le
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Yasutaka Yun
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Osaka 573-1010, Japan
| | - Akihiro Shimamura
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Kenta Fukui
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Akitoshi Mitani
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Kensuke Suzuki
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Akira Kanda
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Osaka 573-1010, Japan
| | - Hiroshi Iwai
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| |
Collapse
|
19
|
Lu Y, Su Y, Wang N, Li D, Zhang H, Xu H. Identification of O-glycosylation related genes and subtypes in ulcerative colitis based on machine learning. PLoS One 2024; 19:e0311495. [PMID: 39739658 DOI: 10.1371/journal.pone.0311495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/17/2024] [Indexed: 01/02/2025] Open
Abstract
Ulcerative colitis (UC) is an immune-related inflammatory bowel disease, with its underlying mechanisms being a central area of clinical research. O-GlcNAcylation plays a critical role in regulating immunity progression and the occurrence of inflammatory diseases and tumors. Yet, the mechanism of O-GlcNAc-associated colitis remains to be elucidated. To this end, the transcriptional and clinical data of GSE75214 and GSE92415 from the GEO database was hereby examined, and genes MUC1, ADAMTS1, GXYLT2, and SEMA5A were found to be significantly related to O-GlcNAcylation using machine learning methods. Based on the four hub genes, two UC subtypes were built. Notably, subtype B might be prone to developing colitis-associated colorectal cancer (CAC). This study delved into the role of intestinal glycosylation changes, especially the O-GlcNAcylation, and forged a foundation for further research on the occurrence and development of UC. Overall, understanding the role of O-GlcNAcylation in UC could have significant implications for diagnosis and treatment, offering valuable insights into the disease's progression.
Collapse
Affiliation(s)
- Yue Lu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Su
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Nan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongyue Li
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huichao Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongyu Xu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
20
|
Ammam I, Pailler-Mattéi C, Ouillon L, Nivet C, Vargiolu R, Neiers F, Canon F, Zahouani H. Exploring the role of the MUC1 mucin in human oral lubrication by tribological in vitro studies. Sci Rep 2024; 14:31019. [PMID: 39730813 DOI: 10.1038/s41598-024-82176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
In the context of the oral cavity, an organic layer known as the mucosal pellicle (MP) adheres to the surface of the oral epithelium, playing a pivotal role in lubricating and safeguarding oral tissues. The formation of the MP is driven by interactions between a transmembrane mucin known as MUC1, located on the oral epithelium, and salivary secreted mucin, namely MUC5B and MUC7. This study aimed to investigate the function of MUC1 and the influence of its structure on MP lubrication properties. We proposed a novel methodology to study oral lubrication based on four different models of oral epithelium on which we conducted in vitro tribological studies. These models expressed varying forms of MUC1, each possessing on of the distinct domain constituting the mucin. Mechanical parameters were used as indicators of lubrication efficiency and, consequently, of the role played by MUC1 in oral lubrication. The results from the tribological tests revealed that the presence of full MUC1 resulted in enhanced lubrication. Furthermore, the structure of MUC1 protein drive the lubrication. In conclusion, the mechanical tests conducted on our epithelium models demonstrated that MUC1 actively participates in epithelium lubrication by facilitating the formation of the MP.
Collapse
Affiliation(s)
- Ianis Ammam
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, Ecully, UMR5513, 69130, France.
- Guy de Collongue, Laboratoire de Tribologie et Dynamique des Systèmes, Ecole Centrale de Lyon, Université de Lyon, UMR-CNRS 5513, Ecully, 69134, France.
| | | | - Lucas Ouillon
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, Ecully, UMR5513, 69130, France
| | - Clément Nivet
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRAE, UMR6265 CNRS Université de Bourgogne, Institut Agro Dijon, Dijon, F-21000, France
| | - Roberto Vargiolu
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, Ecully, UMR5513, 69130, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRAE, UMR6265 CNRS Université de Bourgogne, Institut Agro Dijon, Dijon, F-21000, France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRAE, UMR6265 CNRS Université de Bourgogne, Institut Agro Dijon, Dijon, F-21000, France
| | - Hassan Zahouani
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, Ecully, UMR5513, 69130, France
| |
Collapse
|
21
|
Martin J, Rittersberger R, Treitler S, Kopp P, Ibraimi A, Koslowski G, Sickinger M, Dabbars A, Schindowski K. Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. IN VITRO MODELS 2024; 3:183-203. [PMID: 39872698 PMCID: PMC11756470 DOI: 10.1007/s44164-024-00079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 01/30/2025]
Abstract
Purpose For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies. Methods Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650. The in vitro models were characterized for different epithelial markers by real-time quantitative polymerase chain reaction, which provides insight into the cellular composition of each model. For a few selected markers, the results from RT-qPCR were confirmed via immunofluorescence. Barrier integrity was assessed by transepithelial electrical resistance measurements and FITC-dextran permeability. Results Primary cell models retain key features of the respiratory epithelium, e.g., the formation of a tight epithelial barrier, mucin production, and the presence of club/basal cells. Furthermore, the expression of Fc receptors in the primary cell models closely resembles that in respiratory mucosal tissue, an essential parameter to consider when developing therapeutic antibodies for inhalation. Conclusion The study underlines the importance of selecting wisely appropriate in vitro models. Despite the greater effort and variability in cultivating primary airway cells, they are far superior to permanent cells and a suitable model for drug development. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-024-00079-y.
Collapse
Affiliation(s)
- Janik Martin
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Rebecca Rittersberger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Simon Treitler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Patrick Kopp
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Anit Ibraimi
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Justus-Von-Liebig-Schule, Von-Kilian-Straße 5, 79762 Waldshut-Tiengen, Germany
| | - Gabriel Koslowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Max Sickinger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Annabelle Dabbars
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| |
Collapse
|
22
|
Xiao K, Rangamani P. Glycocalyx-induced formation of membrane tubes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625577. [PMID: 39651189 PMCID: PMC11623602 DOI: 10.1101/2024.11.27.625577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Tubular membrane structures are ubiquitous in cells and in the membranes of intracellular organelles such as the Golgi complex and the endoplasmic reticulum. Tubulation plays essential roles in numerous biological processes, including filopodia growth, trafficking, ion transport, and cellular motility. Understanding the fundamental mechanism of the formation of membrane tubes is thus an important problem in the fields of biology and biophysics. Though extensive studies have shown that tubes can be formed due to localized forces acting on the membrane or by the curvature induced by membrane-bound proteins, little is known about how membrane tubes are induced by glycocalyx, a sugar-rich layer at the cell surface. In this work, we develop a biophysical model that combines polymer physics theory and the Canham-Helfrich membrane theory to investigate how the glycocalyx generates cylindrical tubular protrusions on the cell membrane. Our results show that the glycocalyx alone can induce the formation of tubular membrane structures. This tube formation involves a first-order shape transition without any externally applied force or other curvature-inducing mechanisms. We also find that critical values of glycocalyx grafting density and glycopolymer length are needed to induce the formation of tubular structures. The presence of vertical actin force, line tension, and spontaneous curvature reduces the critical grafting density and length of polymer that triggers the formation of membrane tube, which suggests that the glycocalyx makes tube formation energetically more favorable when combined with an actin force, line tension, and spontaneous curvature. Significance Statement In many cells, the existence of glycocalyx, a thick layer of polymer meshwork comprising proteins and complex sugar chains coating the outside of the cell membrane, regulates the formation of membrane tubes. Here, we propose a theoretical model that combines polymer physics theory and the Canham-Helfrich membrane theory to study the formation of cylindrical tubular protrusions induced by the glycocalyx. Our findings indicate that glycocalyx plays an important role in the formation of membrane tubes. We find that there exists critical grafting density and length of polymer that triggers the formation of membrane tubes, and the glycocalyx-induced tube formation is facilitated when combined with actin forces, line tension, and spontaneous curvature. Our theoretical model has implications for understanding how biological membranes may form tubular structures.
Collapse
|
23
|
Sun H, Huang D, Pang Y, Chen J, Kang C, Zhao M, Yang B. Key roles of two-component systems in intestinal signal sensing and virulence regulation in enterohemorrhagic Escherichia coli. FEMS Microbiol Rev 2024; 48:fuae028. [PMID: 39537200 PMCID: PMC11644481 DOI: 10.1093/femsre/fuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that infects humans by colonizing the large intestine. Upon reaching the large intestine, EHEC mediates local signal recognition and the transcriptional regulation of virulence genes to promote adherence and colonization in a highly site-specific manner. Two-component systems (TCSs) represent an important strategy used by EHEC to couple external stimuli with the regulation of gene expression, thereby allowing EHEC to rapidly adapt to changing environmental conditions. An increasing number of studies published in recent years have shown that EHEC senses a variety of host- and microbiota-derived signals present in the human intestinal tract and coordinates the expression of virulence genes via multiple TCS-mediated signal transduction pathways to initiate the disease-causing process. Here, we summarize how EHEC detects a wide range of intestinal signals and precisely regulates virulence gene expression through multiple signal transduction pathways during the initial stages of infection, with a particular emphasis on the key roles of TCSs. This review provides valuable insights into the importance of TCSs in EHEC pathogenesis, which has relevant implications for the development of antibacterial therapies against EHEC infection.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Mengjie Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| |
Collapse
|
24
|
Raj A, Chandran C S, Dua K, Kamath V, Alex AT. Targeting overexpressed surface proteins: A new strategy to manage the recalcitrant triple-negative breast cancer. Eur J Pharmacol 2024; 981:176914. [PMID: 39154820 DOI: 10.1016/j.ejphar.2024.176914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous cancer that lacks all three molecular markers, Estrogen, Progesterone, and Human Epidermal Growth Factor Receptor 2 (HER2). This unique characteristic of TNBC makes it more resistant to hormonal therapy; hence, chemotherapy and surgery are preferred. Active targeting with nanoparticles is more effective in managing TNBC than a passive approach. The surface of TNBC cells overexpresses several cell-specific proteins, which can be explored for diagnostic and therapeutic purposes. Immunohistochemical analysis has revealed that TNBC cells overexpress αVβ3 integrin, Intercellular Adhesion Molecule 1 (ICAM-1), Glucose Transporter 5 (GLUT5), Transmembrane Glycoprotein Mucin 1 (MUC-1), and Epidermal Growth Factor Receptor (EGFR). These surface proteins can be targeted using ligands, such as aptamers, antibodies, and sugar molecules. Targeting the surface proteins of TNBC with ligands helps harmonize treatment and improve patient compliance. In this review, we discuss the proteins expressed, which are limited to αVβ3 integrin proteins, ICAM-1, GLUT-5, MUC1, and EGFR, on the surface of TNBC, the challenges associated with the preclinical setup of breast cancer for targeted nanoformulations, internalization techniques and their challenges, suggestions to overcome the limitations of successful translation of nanoparticles, and the possibility of ligand-conjugated nanoparticles targeting these surface receptors for a better therapeutic outcome.
Collapse
Affiliation(s)
- Alan Raj
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| | - Sarath Chandran C
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Government Medical College Kannur, Pariyaram, Kerala, India, 670 503; Kerala University of Health Sciences, Thrissur, Kerala, India - 680 596.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, Faculty of Health, University of Technology Sydney, Sydney, Australia-2007; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, Australia-2007.
| | - Venkatesh Kamath
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| |
Collapse
|
25
|
Dyachenko EI, Bel’skaya LV. Salivary Transmembrane Mucins of the MUC1 Family (CA 15-3, CA 27.29, MCA) in Breast Cancer: The Effect of Human Epidermal Growth Factor Receptor 2 (HER2). Cancers (Basel) 2024; 16:3461. [PMID: 39456554 PMCID: PMC11506585 DOI: 10.3390/cancers16203461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The MUC1 family of transmembrane glycoproteins (CA 15-3, CA 27.29, MCA) is aberrantly expressed among patients with breast cancer. Objectives: to measure the level of degradation products of MUC1, including CA 15-3, CA 27.29, and MCA, in the saliva of breast cancer patients and to describe the biochemical processes that influence their expression and the regulation of their biological functions. Methods: The case-control study included three groups (breast cancer, fibroadenomas, and healthy controls). All study participants provided saliva samples strictly before starting treatment. The levels of MUC1, including CA 15-3, CA 27.29, and MCA, free progesterone and estradiol, cytokines (MCP-1, VEGF, TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18), and amino acids (Asp, Gln, Gly, His, Leu + Ile, Orn, Phe, Pro, Tyr) were determined. Results: It was shown that the levels of the MUC1 family in the saliva of patients with HER2-positive breast cancer were significantly lower compared to the control group. The level of pro-inflammatory cytokines and the level of free estradiol affected the expression of MUC1. We obtained a reliable relationship between the aggressive nature of tumor growth, an increased level of pro-inflammatory cytokines, a low level of free estradiol, and the suppressed expression of salivary MUC1. Conclusions: Among patients with aggressive breast cancer, a high level of pro-inflammatory cytokines, and a low level of free estradiol, there was an inhibition of the expression of pathologically unchanged glycoprotein MUC1 in saliva.
Collapse
Affiliation(s)
| | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| |
Collapse
|
26
|
Yao Y, Fan D. Advances in MUC1 resistance to chemotherapy in pancreatic cancer. J Chemother 2024; 36:449-456. [PMID: 38006297 DOI: 10.1080/1120009x.2023.2282839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
The incidence of pancreatic cancer (PC), a highly fatal malignancy, is increasing every year. Chemotherapy is an important treatment for it in addition to surgery, yet most patients become resistant to chemotherapeutic agents within a few weeks of treatment initiation. MUC1 is a highly glycosylated transmembrane protein, and studies have shown that aberrantly glycosylated overexpression of MUC1 is involved in regulating the biology of chemoresistance in cancer cells. This article summarizes the mechanism of MUC1 in PC chemoresistance and reviews MUC1-based targeted therapies.
Collapse
Affiliation(s)
- Youhao Yao
- The Fifth Clinical Medical College of Shanxi Medical University, Shanxi, PR China
- Surgery Department, Shanxi Provincial People's Hospital, Taiyuan, PR China
| | - Daguang Fan
- Surgery Department, Shanxi Provincial People's Hospital, Taiyuan, PR China
| |
Collapse
|
27
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. Collagen Mineralization Decreases NK Cell-Mediated Cytotoxicity of Breast Cancer Cells via Increased Glycocalyx Thickness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311505. [PMID: 38279892 PMCID: PMC11471288 DOI: 10.1002/adma.202311505] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry are utilized to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. These results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increases their glycocalyx thickness while enhancing resistance to attack by natural killer (NK) cells. These changes are functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, these results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
28
|
Lillehoj EP, Yu Y, Verceles AC, Imamura A, Ishida H, Piepenbrink KH, Goldblum SE. Stenotrophomonas maltophilia provokes NEU1-mediated release of a flagellin-binding decoy receptor that protects against lethal infection. iScience 2024; 27:110866. [PMID: 39314239 PMCID: PMC11418149 DOI: 10.1016/j.isci.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/03/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Stenotrophomonas maltophilia (Sm), a multidrug-resistant pathogen often isolated from immunocompromised individuals, presents its flagellin to multimeric tandem repeats within the ectodomain of mucin-1 (MUC1-ED), expressed on airway epithelia. Flagellated Sm increases neuraminidase-1 (NEU1) sialidase association with and desialylation of MUC1-ED. This NEU1-mediated MUC1-ED desialylation unmasks cryptic binding sites for Sm flagellin, increasing flagellin and Sm binding to airway epithelia. MUC1 overexpression increases receptor number whereas NEU1 overexpression elevates receptor binding affinity. Silencing of either MUC1 or NEU1 reduces the flagellin-MUC1 interaction. Sm/flagellin provokes MUC1-ED autoproteolysis at a juxtamembranous glycine-serine peptide bond. MUC1-ED shedding from the epithelium not only occurs in vitro, but in the bronchoalveolar compartments of Sm/flagellin-challenged mice and patients with ventilator-associated Sm pneumonia. Finally, the soluble flagellin-targeting, MUC1-ED decoy receptor dose-dependently inhibits multiple Sm flagellin-driven pathogenic processes, in vitro, including motility, biofilm formation, adhesion, and proinflammatory cytokine production, and protects against lethal Sm lung infection, in vivo.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
| | - Avelino C. Verceles
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Akihiro Imamura
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Hideharu Ishida
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Kurt H. Piepenbrink
- Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Simeon E. Goldblum
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Malik S, Sikander M, Wahid M, Dhasmana A, Sarwat M, Khan S, Cobos E, Yallapu MM, Jaggi M, Chauhan SC. Deciphering cellular and molecular mechanism of MUC13 mucin involved in cancer cell plasticity and drug resistance. Cancer Metastasis Rev 2024; 43:981-999. [PMID: 38498072 DOI: 10.1007/s10555-024-10177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
There has been a surge of interest in recent years in understanding the intricate mechanisms underlying cancer progression and treatment resistance. One molecule that has recently emerged in these mechanisms is MUC13 mucin, a transmembrane glycoprotein. Researchers have begun to unravel the molecular complexity of MUC13 and its impact on cancer biology. Studies have shown that MUC13 overexpression can disrupt normal cellular polarity, leading to the acquisition of malignant traits. Furthermore, MUC13 has been associated with increased cancer plasticity, allowing cells to undergo epithelial-mesenchymal transition (EMT) and metastasize. Notably, MUC13 has also been implicated in the development of chemoresistance, rendering cancer cells less responsive to traditional treatment options. Understanding the precise role of MUC13 in cellular plasticity, and chemoresistance could pave the way for the development of targeted therapies to combat cancer progression and enhance treatment efficacy.
Collapse
Affiliation(s)
- Shabnam Malik
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Mohammed Sikander
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Mohd Wahid
- Unit of Research and Scientific Studies, College of Nursing and Allied Health Sciences, University of Jazan, Jizan, Saudi Arabia
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Everardo Cobos
- Department of Medicine, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA.
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
30
|
Boese AS, Warner BM, McQueen P, Vendramelli R, Tailor N, Griffin BD, Chan M, Audet J, Leung A, McCorrister S, Grant C, Westmacott G, Kobasa D. SARS-CoV-2 infection results in a unique lung proteome long after virus resolution in the hamster. NPJ VIRUSES 2024; 2:40. [PMID: 40295670 PMCID: PMC11721347 DOI: 10.1038/s44298-024-00049-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/20/2024] [Indexed: 04/30/2025]
Abstract
Long COVID or post-acute sequelae of COVID-19 (PASC) remains an ongoing public health issue that causes impairment for those afflicted and diminishes their ability to contribute to society. To address the host response underpinning respiratory PASC, we used the Golden Syrian hamster model infected with ancestral SARS-CoV-2 and examined its lung proteome in a longitudinal experiment. We infected young 6-week old male and female hamsters with 105 TCID50 of virus via the intranasal route and sampled the lung at 1, 3, 5, and 31 days post infection (dpi). We compared the infected lung proteome to that of uninfected sex-matched controls. We found almost no differences in protein levels at 1 dpi, with hundreds at 3 dpi, and thousands at 5 dpi. Many overlapping differential protein levels and pathways were seen in both sexes at 3 and 5 dpi including the Coagulation and Complement cascades. Notably, we found differences between the sexes at 31 dpi which included many targets with decreased levels of protein in the males. We also noted an increase in 7 proteins in both sexes at 31 dpi including proteins responsible for airway mucosal layer integrity such as Mucin 5B and Calcium-activated chloride channel regulator 1. Longitudinally, 38 proteins were changed in levels across more than one timepoint in the males but only three proteins were in the females, Secretoglobin family 1 A member 1, Poly [ADP-ribose] polymerase, and Apolipoprotein D. Overall, we show that there are changes to the lung proteome at 31 dpi, a time when no SARS-CoV-2 remains, and that there are sex differences in that proteome after infection with the ancestral strain. We conclude that biological sex should be examined as a variable when testing medical countermeasures for PASC in the Golden Syrian hamster due to host differences between the sexes.
Collapse
Affiliation(s)
- Amrit S Boese
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.
| | - Bryce M Warner
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Peter McQueen
- Mass Spectrometry and Proteomics Core, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Robert Vendramelli
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Nikesh Tailor
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Bryan D Griffin
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Mable Chan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jonathan Audet
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Anders Leung
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Stuart McCorrister
- Mass Spectrometry and Proteomics Core, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Chris Grant
- Mass Spectrometry and Proteomics Core, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Garrett Westmacott
- Mass Spectrometry and Proteomics Core, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
31
|
Mohammed H, Karhib MM, Al-Fahad KSJ, Atef AM, Eskandrani A, Darwish AAE, Sary AA, Elwakil BH, Bakr BA, Eldrieny AM. Newly synthesized chitosan nanoparticles loaded with caffeine/moringa leaf extracts Halt Her2, BRCA1, and BRCA2 expressions. Sci Rep 2024; 14:18118. [PMID: 39103402 PMCID: PMC11300450 DOI: 10.1038/s41598-024-67599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/12/2024] [Indexed: 08/07/2024] Open
Abstract
Breast cancer is among the highest morbidity and mortality rates in women around the world. In the present investigation we aimed to synthesis novel nanosystem combining two naturally important anticancer agents with different mechanism of action namely Moringa oleifera and caffeine. Firstly, chemical analysis of Moringa oleifera extract and caffeine was done by gas chromatography-mass spectroscopy (GC-MS) in order to assess the main chemical compounds present and correlate between them and the possible anticancer effect. The novel nanosystem was characterized through dynamic light scattering techniques which revealed the stability and homogeneity of the prepared M. oleifera leaves extract/Caffeine loaded chitosan nanoparticles, while FTIR and transmission electron microscope (TEM) proved the shape and the successful incorporation of M. oleifera leaves extract/Caffeine onto the nanochitosan carrier. Our initial step was to assess the anticancer effect in vitro in cancer cell line MCF-7 which proved the significant enhanced effect of M. oleifera leaves extract/Caffeine nanosystem compared to M. oleifera leaves extract or caffeine loaded nanoparticles. Further studies were conducted in vivo namely tumor biomarkers, tumor volume, bioluminescence imaging, molecular and histopathological investigations. The present study proved the potent anticancer effect of the synthesized M. oleifera leaves extract/Caffeine loaded chitosan nanoparticles. Mo/Caf/CsNPs exhibited a large number of apoptotic cells within the tumor mass while the adipose tissue regeneration was higher compared to the positive control. The prepared nanoparticles downregulated the expression of Her2, BRCA1 and BRCA2 while mTOR expression was upregulated. The aforementioned data demonstrated the successful synergistic impact of Moringa and caffeine in decreasing the carcinoma grade.
Collapse
Affiliation(s)
- Hanaa Mohammed
- Human Anatomy and Embryology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mustafa M Karhib
- Department of Medical Laboratory Techniques, College of Health and Medical Technologies, Al-Mustaqbal University, Hillah, Babylon, 51001, Iraq
| | | | - Atef Mohamed Atef
- Faculty of Medical Applied Science, Irbid National University, Irbid, Jordan
| | - Areej Eskandrani
- College of Science, Taibah University, 30002, Madinah, Kingdom of Saudi Arabia
| | - Amira Abd-Elfattah Darwish
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt
| | - Ahmed Abdallah Sary
- Faculty of Physical Therapy, Pharos University in Alexandria, Alexandria, 21526, Egypt
| | - Bassma H Elwakil
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt.
| | - Basant A Bakr
- Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Ahmed M Eldrieny
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt
| |
Collapse
|
32
|
Harita Y. Urinary extracellular vesicles in childhood kidney diseases. Pediatr Nephrol 2024; 39:2293-2300. [PMID: 38093081 PMCID: PMC11199279 DOI: 10.1007/s00467-023-06243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 06/26/2024]
Abstract
Most biological fluids contain extracellular vesicles (EVs). EVs are surrounded by a lipid bilayer and contain biological macromolecules such as proteins, lipids, RNA, and DNA. They lack a functioning nucleus and are incapable of replicating. The physiological characteristics and molecular composition of EVs in body fluids provide valuable information about the status of originating cells. Consequently, they could be effectively utilized for diagnostic and prognostic applications. Urine contains a heterogeneous population of EVs. To date, these urinary extracellular vesicles (uEVs) have been ignored in the standard urinalysis. In recent years, knowledge has accumulated on how uEVs should be separated and analyzed. It has become clear how uEVs reflect the expression of each molecule in cells in nephron segments and how they are altered in disease states such as glomerular/tubular disorders, rare congenital diseases, acute kidney injury (AKI), and chronic kidney disease (CKD). Significant promise exists for the molecular expression signature of uEVs detected by simple techniques such as enzyme-linked immunosorbent assay (ELISA), making them more applicable in clinical settings. This review presents the current understanding regarding uEVs, emphasizing the potential for non-invasive diagnostics, especially for childhood kidney diseases.
Collapse
Affiliation(s)
- Yutaka Harita
- Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
33
|
Martins YA, Guerra-Gomes IC, Rodrigues TS, Tapparel C, Lopez RFV. Enhancing pulmonary delivery and immunomodulation of respiratory diseases through virus-mimicking nanoparticles. J Control Release 2024; 372:417-432. [PMID: 38908758 DOI: 10.1016/j.jconrel.2024.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
This study introduces the nanobromhexine lipid particle (NBL) platform designed for effective pulmonary drug delivery. Inspired by respiratory virus transport mechanisms, NBL address challenges associated with mucus permeation and inflammation in pulmonary diseases. Composed of low molecular weight polyethylene glycol-coated lipid nanoparticles with bromhexine hydrochloride, NBL exhibit a size of 118 ± 24 nm, a neutral zeta potential, osmolarity of 358 ± 28 mOsmol/kg, and a pH of 6.5. Nebulizing without leakage and showing no toxicity to epithelial cells, NBL display mucoadhesive properties with a 60% mucin-binding efficiency. They effectively traverse the dense mucus layer of Calu-3 cultures in an air-liquid interface, as supported by a 55% decrease in MUC5AC density and a 29% increase in nanoparticles internalization compared to non-exposed cells. In assessing immunomodulatory effects, NBL treatment in SARS-CoV-2-infected lung cells leads to a 40-fold increase in anti-inflammatory MUC1 gene expression, a proportional reduction in pro-inflammatory IL-6 expression, and elevated anti-inflammatory IL-10 expression. These findings suggest a potential mechanism to regulate the excessive IL-6 expression triggered by virus infection. Therefore, the NBL platform demonstrates promising potential for efficient pulmonary drug delivery and immunomodulation, offering a novel approach to addressing mucus permeation and inflammation in pulmonary diseases.
Collapse
Affiliation(s)
- Yugo Araújo Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Isabel Cristina Guerra-Gomes
- Fundação Oswaldo Cruz - FIOCRUZ, Bi-Institutional Translational Medicine Plataform, Ribeirão Preto, SP 14040-030, Brazil
| | - Tamara Silva Rodrigues
- Department of Biochemistry and Imumunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Renata Fonseca Vianna Lopez
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil.
| |
Collapse
|
34
|
Harris ES, McIntire HJ, Mazur M, Schulz-Hildebrandt H, Leung HM, Tearney GJ, Krick S, Rowe SM, Barnes JW. Reduced sialylation of airway mucin impairs mucus transport by altering the biophysical properties of mucin. Sci Rep 2024; 14:16568. [PMID: 39019950 PMCID: PMC11255327 DOI: 10.1038/s41598-024-66510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.
Collapse
Affiliation(s)
- Elex S Harris
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah J McIntire
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
| | | | - Hui Min Leung
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Guillermo J Tearney
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jarrod W Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
35
|
He ZJ, Huang B, Cai LH. Bottlebrush Polyethylene Glycol Nanocarriers Translocate across Human Airway Epithelium via Molecular Architecture-Enhanced Endocytosis. ACS NANO 2024; 18:17586-17599. [PMID: 38932624 PMCID: PMC11238595 DOI: 10.1021/acsnano.4c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Pulmonary drug delivery is critical for the treatment of respiratory diseases. However, the human airway surface presents multiple barriers to efficient drug delivery. Here, we report a bottlebrush poly(ethylene glycol) (PEG-BB) nanocarrier that can translocate across all barriers within the human airway surface. Guided by a molecular theory, we design a PEG-BB molecule consisting of a linear backbone densely grafted by many (∼1000) low molecular weight (∼1000 g/mol) polyethylene glycol (PEG) chains; this results in a highly anisotropic, wormlike nanocarrier featuring a contour length of ∼250 nm, a cross-section of ∼20 nm, and a hydrodynamic diameter of ∼40 nm. Using the classic air-liquid-interface culture system to recapitulate essential biological features of the human airway surface, we show that PEG-BB rapidly penetrates through endogenous airway mucus and periciliary brush layer (mesh size of 20-40 nm) to be internalized by cells across the whole epithelium. By quantifying the cellular uptake of polymeric carriers of various molecular architectures and manipulating cell proliferation and endocytosis pathways, we show that the translocation of PEG-BB across the epithelium is driven by bottlebrush architecture-enhanced endocytosis. Our results demonstrate that large, wormlike bottlebrush PEG polymers, if properly designed, can be used as a carrier for pulmonary and mucosal drug delivery.
Collapse
Affiliation(s)
- Zhi-Jian He
- Department
of Biomedical Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Baiqiang Huang
- Soft
Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Li-Heng Cai
- Soft
Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Biomedical Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
36
|
Eiras S, de la Espriella R, Fu X, Iglesias-Álvarez D, Basdas R, Núñez-Caamaño JR, Martínez-Cereijo JM, Reija L, Fernández AL, Sánchez-López D, Miñana G, Núñez J, González-Juanatey JR. Carbohydrate antigen 125 on epicardial fat and its association with local inflammation and fibrosis-related markers. J Transl Med 2024; 22:619. [PMID: 38961436 PMCID: PMC11223376 DOI: 10.1186/s12967-024-05351-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Carbohydrate antigen 125 (CA125) is a proteolytic fragment of MUC-16 that is increased in heart failure (HF) and associated with inflammation, fluid overload, and worse adverse events. Our main objective was to study the expression of CA125 on epicardium and its association with inflammation, adipogenesis, and fibrosis. METHODS Epicardial fat biopsies and blood were obtained from 151 non-selected patients undergoing open heart surgery. Immunohistochemistry, ELISA, or real-time PCR were used for analyzing protein or mRNA expression levels of CA125 and markers of inflammatory cells, fibroblasts, and adipocytes. Epithelial or stromal cells from epicardium were isolated and cultured to identify CA125 and its association with the adipogenesis and fibrosis pathways, respectively. RESULTS The median age was 71 (63-74) years, 106 patients (70%) were male, and 62 (41%) had an established diagnosis of HF before surgery. The slice of epicardial fat biopsy determined a positive and colorimetric staining on the epithelial layer after incubating with the CA125 M11 antibody, providing the first description of CA125 expression in the human epicardium. Epicardial CA125 showed a strong and positive correlation with markers of inflammation and fibrosis in the epicardial fat tissue while exhibiting a negative correlation with markers of the adipogenesis pathway. This relationship remained significant after adjusting for potential confounders such as a prior HF diagnosis and plasma CA125 levels. CONCLUSION Epicardial cells express CA125, which is positively associated with inflammatory and fibroblast markers in epicardial adipose tissue. These results suggest that CA125 may be biologically involved in HF progression (transition from adipogenesis to fibrosis).
Collapse
Affiliation(s)
- Sonia Eiras
- Translational Cardiology Group, Health Research Institute, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Rafael de la Espriella
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital Clínico Universitario de Valencia (INCLIVA), Avda. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - Xiaoran Fu
- Translational Cardiology Group, Health Research Institute, Santiago de Compostela, Spain
| | - Diego Iglesias-Álvarez
- Coronary Unit. Cardiovascular Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Cardiology Group, Health Research Institute, Choupana, S/N, 15706, Santiago de Compostela, Spain
| | - Rumeysa Basdas
- Translational Cardiology Group, Health Research Institute, Santiago de Compostela, Spain
| | - J R Núñez-Caamaño
- Translational Cardiology Group, Health Research Institute, Santiago de Compostela, Spain
| | - J M Martínez-Cereijo
- Heart Surgery Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - L Reija
- Heart Surgery Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - A L Fernández
- Heart Surgery Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- University of Santiago de Compostela, Santiago de Compostela, Spain
| | - David Sánchez-López
- Translational Cardiology Group, Health Research Institute, Santiago de Compostela, Spain
| | - Gema Miñana
- Department of Cardiology, Hospital Clínico Universitario de Valencia (INCLIVA), Avda. Blasco Ibáñez 17, 46010, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Julio Núñez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Department of Cardiology, Hospital Clínico Universitario de Valencia (INCLIVA), Avda. Blasco Ibáñez 17, 46010, Valencia, Spain.
- Department of Medicine, Universitat de València, Valencia, Spain.
| | - José R González-Juanatey
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Coronary Unit. Cardiovascular Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain.
- Cardiology Group, Health Research Institute, Choupana, S/N, 15706, Santiago de Compostela, Spain.
- University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
37
|
Harris ES, McIntire HJ, Mazur M, Schulz-Hildebrandt H, Leung HM, Tearney GJ, Krick S, Rowe SM, Barnes JW. Reduced Sialylation of Airway Mucin Impairs Mucus Transport by Altering the Biophysical Properties of Mucin. RESEARCH SQUARE 2024:rs.3.rs-4421613. [PMID: 38853971 PMCID: PMC11160914 DOI: 10.21203/rs.3.rs-4421613/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.
Collapse
Affiliation(s)
- Elex S Harris
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah J McIntire
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarrod W Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
38
|
Fadıloğlu M, Bozkurt AS, Akarsu E, Yilmaz ŞG, Sayiner ZA, Ulusal H. Evaluation of mucin-1, nuclear factor κB, and hemoglobin A1c levels in obese and non-obese individuals. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231214. [PMID: 38716942 PMCID: PMC11068388 DOI: 10.1590/1806-9282.20231214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/04/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE Obesity is a chronic multisystem disease associated with increased morbidity and mortality. Obesity, which is a complex, multifactorial, and heterogeneous condition, is thought to result from the interaction of environmental, physiological, and genetic factors. In this study, the relationship between serum levels of hemoglobin A1c, mucin-1, and nuclear factor κB in obese and healthy cohorts was evaluated along with biochemical and gene expressions and with demographic and clinical covariates, and their effects on obesity were evaluated. METHODS This case-control study included a total of 80 individuals, 40 healthy controls and 40 obesity patients, consisting of female and male aged between 18 and 63 years. Hemoglobin A1c, mucin-1, and nuclear factor κB levels were determined by ELISA in serum samples obtained from patients. In addition, aspartate aminotransferase, alanine transaminase, low density lipoprotein, and glucose values were measured. The gene expressions of the same markers were analyzed by quantitative real-time polymerase chain reaction, and their regulation status was defined. RESULTS Serum levels of hemoglobin A1c, mucin-1, and nuclear factor κB were found to be high in obese individuals (p<0.05). The gene expression of these serum markers was found to be upregulated. Of the anthropometric measurements, waist circumference and body mass index were correlated with both serum markers and gene expressions (p<0.05). CONCLUSION In addition to the known association of hemoglobin A1c and nuclear factor κB with obesity, serum levels of mucin-1 as well as upregulation of genes point to its modifier effect on obesity. These parameters can be the powerful markers in the diagnosis of obesity.
Collapse
Affiliation(s)
- Müjde Fadıloğlu
- Gaziantep University, Medicine Faculty, Department of Physiology – Gaziantep, Turkey
| | - Ahmet Sarper Bozkurt
- Gaziantep University, Medicine Faculty, Department of Physiology – Gaziantep, Turkey
| | - Ersin Akarsu
- Gaziantep University, Medicine Faculty, Department of Endocrinology and Metabolism – Gaziantep, Turkey
| | - Şenay Görücü Yilmaz
- Gaziantep University, Faculty of Health Sciences, Department of Nutrition and Dietetics – Gaziantep, Turkey
| | - Zeynel Abidin Sayiner
- Gaziantep University, Medicine Faculty, Department of Endocrinology and Metabolism – Gaziantep, Turkey
| | - Hasan Ulusal
- Gaziantep University, Faculty of Medicine, Department of Medical Biochemistry – Gaziantep, Turkey
| |
Collapse
|
39
|
Thomas P, Peele EE, Yopak KE, Sulikowski JA, Kinsey ST. Lectin binding to pectoral fin of neonate little skates reared under ambient and projected-end-of-century temperature regimes. J Morphol 2024; 285:e21698. [PMID: 38669130 PMCID: PMC11064730 DOI: 10.1002/jmor.21698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The glycosylation of macromolecules can vary both among tissue structural components and by adverse conditions, potentially providing an alternative marker of stress in organisms. Lectins are proteins that bind carbohydrate moieties and lectin histochemistry is a common method to visualize microstructures in biological specimens and diagnose pathophysiological states in human tissues known to alter glycan profiles. However, this technique is not commonly used to assess broad-spectrum changes in cellular glycosylation in response to environmental stressors. In addition, the binding of various lectins has not been studied in elasmobranchs (sharks, skates, and rays). We surveyed the binding tissue structure specificity of 14 plant-derived lectins, using both immunoblotting and immunofluorescence, in the pectoral fins of neonate little skates (Leucoraja erinacea). Skates were reared under present-day or elevated (+5°C above ambient) temperature regimes and evaluated for lectin binding as an indicator of changing cellular glycosylation and tissue structure. Lectin labeling was highly tissue and microstructure specific. Dot blots revealed no significant changes in lectin binding between temperature regimes. In addition, lectins only detected in the elevated temperature treatment were Canavalia ensiformis lectin (Concanavalin A) in spindle cells of muscle and Ricinus communis agglutinin in muscle capillaries. These results provide a reference for lectin labeling in elasmobranch tissue that may aid future investigations.
Collapse
Affiliation(s)
- Peyton Thomas
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| | - Emily E. Peele
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| | - Kara E. Yopak
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| | - James A. Sulikowski
- 2030 SE Marine Science Drive, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97365, USA
| | - Stephen T. Kinsey
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| |
Collapse
|
40
|
Morikawa H, Oba T, Kitazawa A, Iji R, Kiyosawa N, Amitani M, Shimizu T, Kanai T, Uehara T, Ito KI. CA19-9 producing locally advanced papillary thyroid carcinoma: a case report. Surg Case Rep 2024; 10:83. [PMID: 38598167 PMCID: PMC11006640 DOI: 10.1186/s40792-024-01887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND CA19-9 is a tumor marker for gastrointestinal and biliary-pancreatic adenocarcinomas; however, its association with thyroid cancer is unknown. Here, we report a case of CA19-9 producing locally advanced papillary thyroid carcinoma (PTC). CASE PRESENTATION A 66-year-old woman who was identified with a thyroid tumor after a close examination of an elevated serum CA19-9 level, which was detected at health screening, was referred to our hospital. Ultrasonography revealed a 34 × 31 mm hypoechoic lesion in the lower pole of the left thyroid lobe. Computed tomography revealed a solid thyroid tumor with tracheal invasion without any distant metastases. Bronchoscopy revealed tumor exposure into the tracheal lumen on the left side of the trachea. Fine-needle aspiration cytology led to a diagnosis of papillary thyroid carcinoma (PTC). The patient underwent a total thyroidectomy, tracheal sleeve resection with end-to-end anastomosis, and lymph node dissection in the left cervical and superior mediastinal regions (D3c) with a reversed T-shaped upper sternotomy down to the third intercostal level. Histopathological analysis confirmed the diagnosis of PTC with tracheal invasion and no lymph node metastases (pT4a Ex2 N0). Immunohistochemical staining showed the expression of CA19-9 in cancer cells. Postoperatively, the serum CA19-9 level of the patient decreased to within the normal range. CONCLUSIONS Some PTCs produce CA19-9, although less frequently. When elevated serum CA19-9 levels are observed, PTC should be included in the differential diagnosis for further investigation.
Collapse
Affiliation(s)
- Hiroki Morikawa
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Takaaki Oba
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan.
| | - Ayaka Kitazawa
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Ryoko Iji
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Nami Kiyosawa
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Masatsugu Amitani
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Tadafumi Shimizu
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Toshiharu Kanai
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Takeshi Uehara
- Division of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Ken-Ichi Ito
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| |
Collapse
|
41
|
Ayyalasomayajula R, Cudic M. Targeting Siglec-Sialylated MUC1 Immune Axis in Cancer. Cancers (Basel) 2024; 16:1334. [PMID: 38611013 PMCID: PMC11011055 DOI: 10.3390/cancers16071334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Siglecs play a key role in mediating cell-cell interactions via the recognition of different sialylated glycoconjugates, including tumor-associated MUC1, which can lead to the activation or inhibition of the immune response. The activation occurs through the signaling of Siglecs with the cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins, while the inhibition signal is a result of the interaction of intracellular immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptors. The interaction of tumor-associated MUC1 sialylated glycans with Siglecs via ITIM motifs decreases antitumor immunity. Consequently, these interactions are expected to play a key role in tumor evasion. Efforts to modulate the response of immune cells by blocking the immune-suppressive effects of inhibitory Siglecs, driving immune-activating Siglecs, and/or altering the synthesis and expression of the sialic acid glycocalyx are new therapeutic strategies deserving further investigation. We will highlight the role of Siglec's family receptors in immune evasion through interactions with glycan ligands in their natural context, presented on the protein such as MUC1, factors affecting their fine binding specificities, such as the role of multivalency either at the ligand or receptor side, their spatial organization, and finally the current and future therapeutic interventions targeting the Siglec-sialylated MUC1 immune axis in cancer.
Collapse
Affiliation(s)
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA;
| |
Collapse
|
42
|
Wang Y, Wu S, Yang Y, Yang Y, Liu H, Chen Y, Ju H. In situ SERS imaging of protein-specific glycan oxidation on living cells to quantitatively visualize pathogen-cell interactions. Chem Sci 2024; 15:3901-3906. [PMID: 38487245 PMCID: PMC10935716 DOI: 10.1039/d4sc00157e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 03/17/2024] Open
Abstract
Glycan oxidation on the cell surface occurs in many specific life processes including pathogen-cell interactions. This work develops a surface-enhanced Raman scattering (SERS) imaging strategy for in situ quantitative monitoring of protein-specific glycan oxidation mediated pathogen-cell interactions by utilizing Raman reporter DTNB and aptamer co-assembled platinum shelled gold nanoparticles (Au@Pt-DTNB/Apt). Using Fusarium graminearum (FG) and MCF-7 cells as models, Au@Pt-DTNB/Apt can specifically bind to MUC1 protein on the cell surface containing heavy galactose (Gal) and N-acetylgalactosamine (GalNAc) modification. When FG interacts with cells, the secreted galactose oxidase (GO) can oxidize Gal/GalNAc, and the generated reactive oxygen species (ROS) further oxidizes DTNB to produce TNB for greatly enhancing the SERS signal. This strategy can quantitatively visualize for the first time both the protein-specific glycan oxidation and the mediated pathogen-cell interactions, thus providing key quantitative information to distinguish and explore the pathogen-resistance and pharmacological mechanisms of different drugs.
Collapse
Affiliation(s)
- Yuru Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yuhui Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Huipu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
43
|
Wang J, Platz-Baudin E, Noetzel E, Offenhäusser A, Maybeck V. Expressing Optogenetic Actuators Fused to N-terminal Mucin Motifs Delivers Targets to Specific Subcellular Compartments in Polarized Cells. Adv Biol (Weinh) 2024; 8:e2300428. [PMID: 38015104 DOI: 10.1002/adbi.202300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Optogenetics is a powerful approach in neuroscience research. However, other tissues of the body may benefit from controlled ion currents and neuroscience may benefit from more precise optogenetic expression. The present work constructs three subcellularly-targeted optogenetic actuators based on the channelrhodopsin ChR2-XXL, utilizing 5, 10, or 15 tandem repeats (TR) from mucin as N-terminal targeting motifs and evaluates expression in several polarized and non-polarized cell types. The modified channelrhodopsin maintains its electrophysiological properties, which can be used to produce continuous membrane depolarization, despite the expected size of the repeats. This work then shows that these actuators are subcellularly localized in polarized cells. In polarized epithelial cells, all three actuators localize to just the lateral membrane. The TR-tagged constructs also express subcellularly in cortical neurons, where TR5-ChR2XXL and TR10-ChR2XXL mainly target the somatodendrites. Moreover, the transfection efficiencies are shown to be dependent on cell type and tandem repeat length. Overall, this work verifies that the targeting motifs from epithelial cells can be used to localize optogenetic actuators in both epithelia and neurons, opening epithelia processes to optogenetic manipulation and providing new possibilities to target optogenetic tools.
Collapse
Affiliation(s)
- Jiali Wang
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062, Aachen, Germany
| | - Eric Platz-Baudin
- Institute of Biological Information Processing IBI-2, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Erik Noetzel
- Institute of Biological Information Processing IBI-2, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062, Aachen, Germany
| | - Vanessa Maybeck
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| |
Collapse
|
44
|
Lee K, Perry K, Xu M, Veillard I, Kumar R, Rao TD, Rueda BR, Spriggs DR, Yeku OO. Structural basis for antibody recognition of the proximal MUC16 ectodomain. J Ovarian Res 2024; 17:41. [PMID: 38374055 PMCID: PMC10875768 DOI: 10.1186/s13048-024-01373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Mucin 16 (MUC16) overexpression is linked with cancer progression, metastasis, and therapy resistance in high grade serous ovarian cancer and other malignancies. The cleavage of MUC16 forms independent bimodular fragments, the shed tandem repeat sequence which circulates as a protein bearing the ovarian cancer biomarker (CA125) and a proximal membrane-bound component which is critical in MUC16 oncogenic behavior. A humanized, high affinity antibody targeting the proximal ectodomain represents a potential therapeutic agent against MUC16 with lower antigenic potential and restricted human tissue expression. RESULTS Here, we demonstrate the potential therapeutic versatility of the humanized antibody as a monoclonal antibody, antibody drug conjugate, and chimeric antigen receptor. We report the crystal structures of 4H11-scFv, derived from an antibody specifically targeting the MUC16 C-terminal region, alone and in complex with a 26-amino acid MUC16 segment resolved at 2.36 Å and 2.47 Å resolution, respectively. The scFv forms a robust interaction with an epitope consisting of two consecutive β-turns and a β-hairpin stabilized by 2 hydrogen bonds. The VH-VL interface within the 4H11-scFv is stabilized through an intricate network of 11 hydrogen bonds and a cation-π interaction. CONCLUSIONS Together, our studies offer insight into antibody-MUC16 ectodomain interaction and advance our ability to design agents with potentially improved therapeutic properties over anti-CA125 moiety antibodies.
Collapse
Affiliation(s)
- Kwangkook Lee
- Division of Hematology & Oncology, Department of Medicine, Massachusetts General Hospital-Harvard Medical School, Boston, MA, USA
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Kay Perry
- Department of Chemistry and Chemical Biology, Argonne National Laboratory, NE-CAT, Cornell University, Building 436E, 9700 S. Cass Avenue, Argonne, IL, 60439, USA
| | - Mengyao Xu
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Irva Veillard
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Raj Kumar
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Thapi Dharma Rao
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Bo R Rueda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - David R Spriggs
- Division of Hematology & Oncology, Department of Medicine, Massachusetts General Hospital-Harvard Medical School, Boston, MA, USA
| | - Oladapo O Yeku
- Division of Hematology & Oncology, Department of Medicine, Massachusetts General Hospital-Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
He ZJ, Huang B, Cai LH. Bottlebrush polyethylene glycol nanocarriers translocate across human airway epithelium via molecular architecture enhanced endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580508. [PMID: 38405944 PMCID: PMC10888750 DOI: 10.1101/2024.02.15.580508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Pulmonary drug delivery is critical to the treatment of respiratory diseases. However, the human airway surface presents multiscale barriers to efficient drug delivery. Here we report a bottlebrush polyethylene glycol (PEG-BB) nanocarrier that can translocate across all barriers within the human airway surface. Guided by the molecular theory, we design a PEG-BB molecule consisting of a linear backbone densely grafted by many (∼1,000) low molecular weight (∼1000 g/mol) PEG chains; this results in a highly anisotropic, wormlike nanocarrier featuring a contour length of ∼250 nm, a cross-section of ∼20 nm, and a hydrodynamic diameter of ∼40 nm. Using the classic air-liquid-interface culture system to recapitulate essential biological features of the human airway surface, we show that PEG-BB rapidly penetrates through endogenous airway mucus and periciliary brush layer (mesh size of 20-40 nm) to be internalized by cells across the whole epithelium. By quantifying the cellular uptake of polymeric carriers of various molecular architectures and manipulating cell proliferation and endocytosis pathways, we show that the translocation of PEG-BB across the epithelium is driven by bottlebrush architecture enhanced endocytosis. Our results demonstrate that large, wormlike bottlebrush PEG polymers, if properly designed, can be used as a novel carrier for pulmonary and mucosal drug delivery. Table of Contents
Collapse
|
46
|
Chen X, Sandrine IK, Yang M, Tu J, Yuan X. MUC1 and MUC16: critical for immune modulation in cancer therapeutics. Front Immunol 2024; 15:1356913. [PMID: 38361923 PMCID: PMC10867145 DOI: 10.3389/fimmu.2024.1356913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
The Mucin (MUC) family, a range of highly glycosylated macromolecules, is ubiquitously expressed in mammalian epithelial cells. Such molecules are pivotal in establishing protective mucosal barriers, serving as defenses against pathogenic assaults. Intriguingly, the aberrant expression of specific MUC proteins, notably Mucin 1 (MUC1) and Mucin 16 (MUC16), within tumor cells, is intimately associated with oncogenesis, proliferation, and metastasis. This association involves various mechanisms, including cellular proliferation, viability, apoptosis resistance, chemotherapeutic resilience, metabolic shifts, and immune surveillance evasion. Due to their distinctive biological roles and structural features in oncology, MUC proteins have attracted considerable attention as prospective targets and biomarkers in cancer therapy. The current review offers an exhaustive exploration of the roles of MUC1 and MUC16 in the context of cancer biomarkers, elucidating their critical contributions to the mechanisms of cellular signal transduction, regulation of immune responses, and the modulation of the tumor microenvironment. Additionally, the article evaluates the latest advances in therapeutic strategies targeting these mucins, focusing on innovations in immunotherapies and targeted drugs, aiming to enhance customization and accuracy in cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
47
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. COLLAGEN MINERALIZATION DECREASES NK CELL-MEDIATED CYTOTOXICITY OF BREAST CANCER CELLS VIA INCREASED GLYCOCALYX THICKNESS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576377. [PMID: 38328161 PMCID: PMC10849468 DOI: 10.1101/2024.01.20.576377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer, and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow, but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, we have utilized a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. Our results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increased their glycocalyx thickness while enhancing resistance to attack by Natural Killer (NK) cells. These changes were functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, our results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
48
|
Drexhage LZ, Zhang S, Dupont M, Ragaller F, Sjule E, Cabezas-Caballero J, Deimel LP, Robertson H, Russell RA, Dushek O, Sezgin E, Karaji N, Sattentau QJ. Apoptosis-mediated ADAM10 activation removes a mucin barrier promoting T cell efferocytosis. Nat Commun 2024; 15:541. [PMID: 38225245 PMCID: PMC10789802 DOI: 10.1038/s41467-023-44619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
Efferocytic clearance of apoptotic cells in general, and T cells in particular, is required for tissue and immune homeostasis. Transmembrane mucins are extended glycoproteins highly expressed in the cell glycocalyx that function as a barrier to phagocytosis. Whether and how mucins may be regulated during cell death to facilitate efferocytic corpse clearance is not well understood. Here we show that normal and transformed human T cells express a subset of mucins which are rapidly and selectively removed from the cell surface during apoptosis. This process is mediated by the ADAM10 sheddase, the activity of which is associated with XKR8-catalyzed flipping of phosphatidylserine to the outer leaflet of the plasma membrane. Mucin clearance enhances uptake of apoptotic T cells by macrophages, confirming mucins as an enzymatically-modulatable barrier to efferocytosis. Together these findings demonstrate a glycocalyx regulatory pathway with implications for therapeutic intervention in the clearance of normal and transformed apoptotic T cells.
Collapse
Affiliation(s)
- Linnea Z Drexhage
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
| | - Shengpan Zhang
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
| | - Maeva Dupont
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
- Immunocore Ltd., 92 Park Dr, Milton, Abingdon, OX14 4RY, UK
| | - Franziska Ragaller
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165, Solna, Sweden
| | - Ellen Sjule
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165, Solna, Sweden
| | | | - Lachlan P Deimel
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
| | - Helen Robertson
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
| | - Rebecca A Russell
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
- SpyBiotech Ltd.; 7600 Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK
| | - Omer Dushek
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165, Solna, Sweden
| | - Niloofar Karaji
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK.
- Oxford Biomedica plc.; Windrush Court, Transport Way, Oxford, OX4 6LT, UK.
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin-Buch, 13125, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.
| |
Collapse
|
49
|
Carpenter J, Kesimer M. Isolation of Membrane Bound Mucins from Human Bronchial Epithelial Cells. Methods Mol Biol 2024; 2763:51-59. [PMID: 38347399 PMCID: PMC11149713 DOI: 10.1007/978-1-0716-3670-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Membrane-bound mucins constitute a large portion of the periciliary layer of lung epithelial surfaces, and thus play an important role in many aspects of innate defense. The biophysical and biochemical properties of the membrane-bound mucins have important implications for mucociliary clearance, viral penetration, and potential therapeutics delivered to the airway surface. Hence, isolating them and determining these properties is important in understanding airways disease and ultimately in developing treatments. Here, we describe a method using isopycnic centrifugation to enrich and isolate shed membrane-bound mucins from the washings of human bronchial epithelial cell cultures.
Collapse
Affiliation(s)
- Jerome Carpenter
- Department of Pathology and Laboratory Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Mehmet Kesimer
- Department of Pathology and Laboratory Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
50
|
van Horik C, Zuidweg MJP, Boerema-de Munck A, Buscop-van Kempen M, Brosens E, Vahrmeijer AL, von der Thüsen JH, Wijnen RMH, Rottier RJ, Tummers WSFJ, Schnater JM. Selection of potential targets for stratifying congenital pulmonary airway malformation patients with molecular imaging: is MUC1 the one? Eur Respir Rev 2023; 32:230217. [PMID: 38123235 PMCID: PMC10754420 DOI: 10.1183/16000617.0217-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
Currently there is a global lack of consensus about the best treatment for asymptomatic congenital pulmonary airway malformation (CPAM) patients. The somatic KRAS mutations commonly found in adult lung cancer combined with mucinous proliferations are sometimes found in CPAM. For this risk of developing malignancy, 70% of paediatric surgeons perform a resection for asymptomatic CPAM. In order to stratify these patients into high- and low-risk groups for developing malignancy, a minimally invasive diagnostic method is needed, for example targeted molecular imaging. A prerequisite for this technique is a cell membrane bound target. The aim of this study was to review the literature to identify potential targets for molecular imaging in CPAM patients and perform a first step to validate these findings.A systematic search was conducted to identify possible targets in CPAM and adenocarcinoma in situ (AIS) patients. The most interesting targets were evaluated with immunofluorescent staining in adjacent lung tissue, KRAS+ CPAM tissue and KRAS- CPAM tissue.In 185 included studies, 143 possible targets were described, of which 20 targets were upregulated and membrane-bound. Six of them were also upregulated in lung AIS tissue (CEACAM5, E-cadherin, EGFR, ERBB2, ITGA2 and MUC1) and as such of possible interest. Validating studies showed that MUC1 is a potential interesting target.This study provides an extensive overview of all known potential targets in CPAM that might identify those patients at risk for malignancy and conducted the first step towards validation, identifying MUC1 as the most promising target.
Collapse
Affiliation(s)
- Cathy van Horik
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
- Both authors contributed equally
| | - Marius J P Zuidweg
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
- Both authors contributed equally
| | - Anne Boerema-de Munck
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marjon Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | - René M H Wijnen
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Willemieke S F J Tummers
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Both authors contributed equally
| | - J Marco Schnater
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
- Both authors contributed equally
| |
Collapse
|