1
|
Li X, Chen Y, Lan R, Liu P, Xiong K, Teng H, Tao L, Yu S, Han G. Transmembrane mucins in lung adenocarcinoma: understanding of current molecular mechanisms and clinical applications. Cell Death Discov 2025; 11:163. [PMID: 40210618 PMCID: PMC11985918 DOI: 10.1038/s41420-025-02455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
The mucin family is a group of highly glycosylated macromolecules widely present in human epithelial cells and with subtypes of secreted and membrane-associated forms. The membrane-associated mucins, known as transmembrane mucins, are not only involved in the formation of mucus barrier but also regulate cell signal transduction in physiological and pathological status. Transmembrane mucins could contribute to lung adenocarcinoma (LUAD) proliferation, apoptosis, angiogenesis, invasion, and metastasis, and remodel the immune microenvironment involved in immune escape. Furthermore, transmembrane mucins have been explored as potential LUAD indicators for diagnosis and prognosis. The development of targeted therapy and immunotherapeutic drugs targeting transmembrane mucins has also provided broad application prospects for clinic. In the following review, we summarize the characteristic structures of diverse transmembrane mucins, regulatory roles in promoting the progression of LUAD, and the current situation of diagnosis, prognosis, and therapeutic strategies based on transmembrane mucins.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Chen
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Lan
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Kai Xiong
- Department of Statistic, Inner Mongolia Forestry General Hospital, Yakeshi, China
| | - Hetai Teng
- Department of General Surgery, Inner Mongolia Forestry General Hospital, Yakeshi, China
| | - Lili Tao
- Department of Pathology, Peking University, Shenzhen Hospital, Shenzhen, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Mental Hospital, Harbin, China.
| | - Guiping Han
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Wen X, Qiu H, Ying L, Huang M, Xiao Y, Fan C. Diagnostic efficacy of combining diffusion-weighted magnetic resonance imaging with serum Mucin 1, Mucin 13, and Mucin 16 in distinguishing borderline from malignant epithelial ovarian tumors. Asia Pac J Clin Oncol 2025; 21:115-122. [PMID: 38221766 PMCID: PMC11733834 DOI: 10.1111/ajco.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/20/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
AIMS To enhance ovarian tumor diagnosis beyond conventional methods, this study explored combining diffusion-weighted magnetic resonance imaging (DWI-MRI) and serum biomarkers (Mucin 1 [MUC1], MUC13, and MUC16) for distinguishing borderline from malignant epithelial ovarian tumors. METHODS A total of 126 patients, including 71 diagnosed with borderline (BEOTs) and 55 with malignant epithelial ovarian tumors (MEOTs), underwent preoperative DWI-MRI. Region of interest (ROI) was manually drawn along the solid component's boundary of the largest tumor, focusing on areas with potentially the lowest apparent diffusion coefficient (ADC). For entirely cystic tumors, a free-form ROI enclosed the maximum number of septa while targeting the lowest ADC. Serum biomarkers were determined using enzyme-linked immunosorbent assay. RESULTS Basic morphological traits proved inadequate for malignancy diagnosis, warranting this investigation. BEOTs had an ADC mean of (1.670 ± 0.250) × 103 mm2/s, while MEOTs had a lower ADC mean of (1.332 ± 0.481) × 103 mm2/s, with a sensitivity of 63.6% and specificity of 90.1%. Median MUC1 (167.0 U/mL vs. 87.3 U/mL), MUC13 (12.44 ng/mL vs. 7.77 ng/mL), and MUC16 (180.6 U/mL vs. 36.1 U/mL) levels were higher in MEOTs patients. The biomarker performance was: MUC1, sensitivity 50.9%, specificity 100%; MUC13, sensitivity 56.4%, specificity 78.9%; MUC16, sensitivity 83.64%, specificity 100%. Combining serum biomarkers and ADC mean resulted in a sensitivity of 96.4% and specificity of 100%. CONCLUSION The integration of DWI-MRI with serum biomarkers (MUC1, MUC13, and MUC16) achieves exceptional diagnostic accuracy, offering a powerful tool for the precise differentiation between borderline and malignant epithelial ovarian tumors.
Collapse
Affiliation(s)
- Xiao‐Ting Wen
- Department of ObstetricsThe People's Hospital of PingYangWenzhouChina
| | - Hai‐Feng Qiu
- Department of RadiologyNingbo Yinzhou NO.2 HospitalNingboChina
| | - Ling‐Ling Ying
- Department of RadiologyNingbo Yinzhou NO.2 HospitalNingboChina
| | - Min Huang
- Department of ObstetricsThe People's Hospital of PingYangWenzhouChina
| | - Yun‐Zhou Xiao
- Department of RadiologyThe People's Hospital of PingYangWenzhouChina
| | - Chen‐Chen Fan
- Department of RadiologyNingbo Yinzhou NO.2 HospitalNingboChina
| |
Collapse
|
3
|
Cotan HT, Emilescu RA, Iaciu CI, Orlov-Slavu CM, Olaru MC, Popa AM, Jinga M, Nitipir C, Schreiner OD, Ciobanu RC. Prognostic and Predictive Determinants of Colorectal Cancer: A Comprehensive Review. Cancers (Basel) 2024; 16:3928. [PMID: 39682117 DOI: 10.3390/cancers16233928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health burden, necessitating a thorough understanding of prognostic and predictive factors to enhance patient outcomes. This systematic review aims to comprehensively evaluate prognostic and predictive determinants in CRC, encompassing both traditional and emerging biomarkers. A systematic search of major electronic databases was conducted to identify relevant studies published from 1995 up to 2024. Eligible articles were critically appraised, and data extraction was performed according to predefined criteria. The prognostic determinants examined included clinicopathological features such as tumor stage, grade, and lymph node involvement, as well as molecular biomarkers including RAS, BRAF, and MSI status. Predictive determinants encompassed biomarkers influencing response to targeted therapies and immunotherapy, such as HER2 and Immunoscore. The review also explores novel prognostic and predictive markers, including tumor microenvironment characteristics and liquid biopsy-based biomarkers. Synthesizing evidence from diverse studies, this review provides insights into the prognostic and predictive landscape of CRC, highlighting the potential clinical implications of identified determinants. Understanding the multifaceted nature of prognostic and predictive factors in CRC is imperative for the advancement of personalized treatment strategies and improvement of patient outcomes.
Collapse
Affiliation(s)
- Horia T Cotan
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Radu A Emilescu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cristian I Iaciu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cristina M Orlov-Slavu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Mihaela C Olaru
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Ana M Popa
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Mariana Jinga
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cornelia Nitipir
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Oliver Daniel Schreiner
- Regional Institute of Oncology Iasi, 2-4 General Henri Mathias Berthelot Street, 700483 Iasi, Romania
- Department 3-Medical Sciences, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania
| | - Romeo Cristian Ciobanu
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania
| |
Collapse
|
4
|
Yu Z, Sun Y, Guo C. Evaluating pretreatment serum CA-125 levels as prognostic biomarkers in endometrial cancer: a comprehensive meta-analysis. Front Oncol 2024; 14:1442814. [PMID: 39399178 PMCID: PMC11466722 DOI: 10.3389/fonc.2024.1442814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
Background In recent years, the incidence of endometrial cancer (EC) has been rising. This meta-analysis aims to clarify the prognostic significance of serum CA-125 levels in EC. Methods Articles up to March 1, 2024, were systematically searched in EMBASE, Cochrane Library, PubMed, and Web of Science. This analysis pooled hazard ratios (HR) and 95% confidence intervals (CI) from qualifying studies to evaluate the association of CA-125 levels with overall survival (OS), progression-free survival (PFS), disease-free/relapse-free survival (DFS/RFS), and disease-specific survival (DSS). Results 25 studies involving 7,716 patients were included. The analysis revealed that elevated CA-125 levels correlate with poorer OS (HR = 1.848, 95% CI: 1.571-2.175, p < 0.001). This association persisted across various study regions and sample sizes, and was notably strong in subgroups with a CA-125 cut-off value of less than 35 (HR = 2.07, 95% CI: 1.13-3.80, p = 0.019) and equal to 35 (HR = 2.04, 95% CI: 1.49-2.79, p < 0.001), and among type II pathology patients (HR = 1.72, 95% CI: 1.07-2.77, p = 0.025). Similarly, high CA-125 levels were linked to reduced PFS, particularly in subgroups with a CA-125 cut-off value less than 35 (HR = 1.87, 95% CI: 1.15-3.04, p = 0.012) and equal to 35 (HR = 4.94, 95% CI: 2.56-9.54, p < 0.001), and in endometrioid endometrial cancer patients (HR = 2.28, 95% CI: 1.18-4.40, p = 0.014). Elevated CA-125 levels were also indicative of worse DFS/RFS (HR = 2.17, 95% CI: 1.444-3.262, p < 0.001) and DSS (HR = 2.854; 95% CI: 1.970-4.133, p < 0.001). Conclusion Serum CA-125 levels before treatment was highly associated with prognosis of EC patients.
Collapse
Affiliation(s)
| | | | - Cuishan Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical
University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Gottwald J, Balke J, Stellmacher J, van Vorst K, Ghazisaeedi F, Fulde M, Alexiev U. Cy3-Based Nanoviscosity Determination of Mucus: Effect of Mucus Collection Methods and Antibiotics Treatment. Macromol Biosci 2024; 24:e2300437. [PMID: 38625085 DOI: 10.1002/mabi.202300437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/21/2023] [Indexed: 04/17/2024]
Abstract
The integrity of the protective mucus layer as a primary defense against pathogen invasion and microbial leakage into the intestinal epithelium can be compromised by the effects of antibiotics on the commensal microbiome. Changes in mucus integrity directly affect the solvent viscosity in the immediate vicinity of the mucin network, that is, the nanoviscosity, which in turn affects both biochemical reactions and selective transport. To assess mucus nanoviscosity, a reliable readout via the viscosity-dependent fluorescence lifetime of the molecular rotor dye cyanine 3 is established and nanoviscosities from porcine and murine ex vivo mucus are determined. To account for different mucin concentrations due to the removal of digestive residues during mucus collection, the power law dependence of mucin concentration on viscosity is used. The impact of antibiotics combinations (meropenem/vancomycin, gentamycin/ampicillin) on ex vivo intestinal mucus nanoviscosity is presented. The significant increase in viscosity of murine intestinal mucus after treatment suggests an effect of antibiotics on the microbiota that affects mucus integrity. This method will be a useful tool to assess how drugs, directly or indirectly, affect mucus integrity. Additionally, the method can be utilized to analyze the role of mucus nanoviscosity in health and disease, as well as in drug development.
Collapse
Affiliation(s)
- Jacqueline Gottwald
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Jens Balke
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Johannes Stellmacher
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Kira van Vorst
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany
| | - Fereshteh Ghazisaeedi
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany
| | - Marcus Fulde
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany
| | - Ulrike Alexiev
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| |
Collapse
|
6
|
Cai A, Chen Y, Wang LS, Cusick JK, Shi Y. Depicting Biomarkers for HER2-Inhibitor Resistance: Implication for Therapy in HER2-Positive Breast Cancer. Cancers (Basel) 2024; 16:2635. [PMID: 39123362 PMCID: PMC11311605 DOI: 10.3390/cancers16152635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
HER2 (human epidermal growth factor receptor 2) is highly expressed in a variety of cancers, including breast, lung, gastric, and pancreatic cancers. Its amplification is linked to poor clinical outcomes. At the genetic level, HER2 is encoded by the ERBB2 gene (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), which is frequently mutated or amplified in cancers, thus spurring extensive research into HER2 modulation and inhibition as viable anti-cancer strategies. An impressive body of FDA-approved drugs, including anti-HER2 monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and HER2-tyrosine kinase inhibitors (TKIs), have demonstrated success in enhancing overall survival (OS) and disease progression-free survival (PFS). Yet, drug resistance remains a persistent challenge and raises the risks of metastatic potential and tumor relapse. Research into alternative therapeutic options for HER2+ breast cancer therefore proves critical for adapting to this ever-evolving landscape. This review highlights current HER2-targeted therapies, discusses predictive biomarkers for drug resistance, and introduces promising emergent therapies-especially combination therapies-that are aimed at overcoming drug resistance in the context of HER2+ breast cancer.
Collapse
Affiliation(s)
- Alvan Cai
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Lily S. Wang
- University of California, Berkeley, CA 94720, USA;
| | - John K. Cusick
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA
| |
Collapse
|
7
|
Jacob R, Gorek LS. Intracellular galectin interactions in health and disease. Semin Immunopathol 2024; 46:4. [PMID: 38990375 PMCID: PMC11239732 DOI: 10.1007/s00281-024-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 07/12/2024]
Abstract
In the galectin family, a group of lectins is united by their evolutionarily conserved carbohydrate recognition domains. These polypeptides play a role in various cellular processes and are implicated in disease mechanisms such as cancer, fibrosis, infection, and inflammation. Following synthesis in the cytosol, manifold interactions of galectins have been described both extracellularly and intracellularly. Extracellular galectins frequently engage with glycoproteins or glycolipids in a carbohydrate-dependent manner. Intracellularly, galectins bind to non-glycosylated proteins situated in distinct cellular compartments, each with multiple cellular functions. This diversity complicates attempts to form a comprehensive understanding of the role of galectin molecules within the cell. This review enumerates intracellular galectin interaction partners and outlines their involvement in cellular processes. The intricate connections between galectin functions and pathomechanisms are illustrated through discussions of intracellular galectin assemblies in immune and cancer cells. This underscores the imperative need to fully comprehend the interplay of galectins with the cellular machinery and to devise therapeutic strategies aimed at counteracting the establishment of galectin-based disease mechanisms.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany.
| | - Lena-Sophie Gorek
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany
| |
Collapse
|
8
|
Radziejewska I. Tumor-associated carbohydrate antigens of MUC1 - Implication in cancer development. Biomed Pharmacother 2024; 174:116619. [PMID: 38643541 DOI: 10.1016/j.biopha.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
Glycosylation of cancerous epithelial MUC1 protein is specifically altered in comparison to that which is presented by healthy cells. One of such changes is appearing tumor-associated carbohydrate antigens (TACAs) which are rare in normal tissues and are highly correlated with poor clinical outcomes and cancer progression. This review summarizes and describes the role of Tn, T antigens, their sialylated forms as well as fucosylated Lewis epitopes in different aspects of tumor development, progression, and metastasis. Finally, applications of MUC1 glycan epitopes as potential targets for therapeutic strategy of cancers are notified. One of the novelties of this review is presentation of TACAs as inherently connected with MUC1 mucin.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2, Białystok 15-222, Poland.
| |
Collapse
|
9
|
Ueda A, Yuki S, Ando T, Hosokawa A, Nakada N, Kito Y, Motoo I, Ito K, Sakumura M, Nakayama Y, Ueda Y, Kajiura S, Nakashima K, Harada K, Kawamoto Y, Komatsu Y, Yasuda I. CA125 Kinetics as a Potential Biomarker for Peritoneal Metastasis Progression following Taxane-Plus-Ramucirumab Administration in Patients with Advanced Gastric Cancer. Cancers (Basel) 2024; 16:871. [PMID: 38473233 DOI: 10.3390/cancers16050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, no established marker exists for predicting peritoneal metastasis progression during chemotherapy, although they are major interruptive factors in sequential chemotherapy in patients with advanced gastric cancer (AGC). This multicenter retrospective study was conducted from June 2015 to July 2019, analyzing 73 patients with AGC who underwent taxane-plus-ramucirumab (TAX/RAM) therapy and had their serum carbohydrate antigen 125 (CA125) concentrations measured. Of 31 patients with elevated CA125 levels above a cutoff of 35 U/mL, 25 (80.6%) had peritoneal metastasis. The CA125 concentrations before TAX/RAM treatment were associated with ascites burden. The overall survival was significantly shorter in the CA125-elevated group. CA125 kinetics, measured at a median of 28 days after chemotherapy, were associated with the ascites response (complete or partial response: -1.86%/day; stable disease: 0.28%/day; progressive disease: 2.33%/day). Progression-free survival in the CA125-increased group, defined by an increase of 0.0067%/day using receiver operating characteristic curve analysis, was significantly poorer among patients with peritoneal metastases. In conclusion, this study highlights that CA125 kinetics can serve as an early predictor for the progression of peritoneal metastasis during TAX/RAM treatment.
Collapse
Affiliation(s)
- Akira Ueda
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Kita14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan
| | - Takayuki Ando
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ayumu Hosokawa
- Department of Clinical Oncology, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Naokatsu Nakada
- Department of Internal Medicine, Itoigawa Sogo Hospital, 457-1 Takegahana, Itoigawa 941-8502, Japan
| | - Yosuke Kito
- Department of Medical Oncology, Ishikawa Prefectural Central Hospital, 2-1 Kuratuki Higashi, Kanazawa 920-8530, Japan
| | - Iori Motoo
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ken Ito
- Department of Gastroenterology, Tomakomai City Hospital, 1-5-20 Shimizucho, Tomakomai 053-8567, Japan
| | - Miho Sakumura
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yurika Nakayama
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yuko Ueda
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shinya Kajiura
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Koji Nakashima
- Department of Clinical Oncology, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Kazuaki Harada
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Kita14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan
| | - Yasuyuki Kawamoto
- Division of Cancer Center, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan
| | - Yoshito Komatsu
- Division of Cancer Center, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan
| | - Ichiro Yasuda
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
10
|
Lee K, Perry K, Xu M, Veillard I, Kumar R, Rao TD, Rueda BR, Spriggs DR, Yeku OO. Structural basis for antibody recognition of the proximal MUC16 ectodomain. J Ovarian Res 2024; 17:41. [PMID: 38374055 PMCID: PMC10875768 DOI: 10.1186/s13048-024-01373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Mucin 16 (MUC16) overexpression is linked with cancer progression, metastasis, and therapy resistance in high grade serous ovarian cancer and other malignancies. The cleavage of MUC16 forms independent bimodular fragments, the shed tandem repeat sequence which circulates as a protein bearing the ovarian cancer biomarker (CA125) and a proximal membrane-bound component which is critical in MUC16 oncogenic behavior. A humanized, high affinity antibody targeting the proximal ectodomain represents a potential therapeutic agent against MUC16 with lower antigenic potential and restricted human tissue expression. RESULTS Here, we demonstrate the potential therapeutic versatility of the humanized antibody as a monoclonal antibody, antibody drug conjugate, and chimeric antigen receptor. We report the crystal structures of 4H11-scFv, derived from an antibody specifically targeting the MUC16 C-terminal region, alone and in complex with a 26-amino acid MUC16 segment resolved at 2.36 Å and 2.47 Å resolution, respectively. The scFv forms a robust interaction with an epitope consisting of two consecutive β-turns and a β-hairpin stabilized by 2 hydrogen bonds. The VH-VL interface within the 4H11-scFv is stabilized through an intricate network of 11 hydrogen bonds and a cation-π interaction. CONCLUSIONS Together, our studies offer insight into antibody-MUC16 ectodomain interaction and advance our ability to design agents with potentially improved therapeutic properties over anti-CA125 moiety antibodies.
Collapse
Affiliation(s)
- Kwangkook Lee
- Division of Hematology & Oncology, Department of Medicine, Massachusetts General Hospital-Harvard Medical School, Boston, MA, USA
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Kay Perry
- Department of Chemistry and Chemical Biology, Argonne National Laboratory, NE-CAT, Cornell University, Building 436E, 9700 S. Cass Avenue, Argonne, IL, 60439, USA
| | - Mengyao Xu
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Irva Veillard
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Raj Kumar
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Thapi Dharma Rao
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Bo R Rueda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - David R Spriggs
- Division of Hematology & Oncology, Department of Medicine, Massachusetts General Hospital-Harvard Medical School, Boston, MA, USA
| | - Oladapo O Yeku
- Division of Hematology & Oncology, Department of Medicine, Massachusetts General Hospital-Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Chen X, Sandrine IK, Yang M, Tu J, Yuan X. MUC1 and MUC16: critical for immune modulation in cancer therapeutics. Front Immunol 2024; 15:1356913. [PMID: 38361923 PMCID: PMC10867145 DOI: 10.3389/fimmu.2024.1356913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
The Mucin (MUC) family, a range of highly glycosylated macromolecules, is ubiquitously expressed in mammalian epithelial cells. Such molecules are pivotal in establishing protective mucosal barriers, serving as defenses against pathogenic assaults. Intriguingly, the aberrant expression of specific MUC proteins, notably Mucin 1 (MUC1) and Mucin 16 (MUC16), within tumor cells, is intimately associated with oncogenesis, proliferation, and metastasis. This association involves various mechanisms, including cellular proliferation, viability, apoptosis resistance, chemotherapeutic resilience, metabolic shifts, and immune surveillance evasion. Due to their distinctive biological roles and structural features in oncology, MUC proteins have attracted considerable attention as prospective targets and biomarkers in cancer therapy. The current review offers an exhaustive exploration of the roles of MUC1 and MUC16 in the context of cancer biomarkers, elucidating their critical contributions to the mechanisms of cellular signal transduction, regulation of immune responses, and the modulation of the tumor microenvironment. Additionally, the article evaluates the latest advances in therapeutic strategies targeting these mucins, focusing on innovations in immunotherapies and targeted drugs, aiming to enhance customization and accuracy in cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Tong X, Dong C, Liang S. Mucin1 as a potential molecule for cancer immunotherapy and targeted therapy. J Cancer 2024; 15:54-67. [PMID: 38164273 PMCID: PMC10751670 DOI: 10.7150/jca.88261] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024] Open
Abstract
Mucin1 is a highly glycosylated type 1 transmembrane mucin that ranks second among 75 tumor-related antigens published by the National Cancer Institute, and has been identified as a possible therapeutic target over the past 30 years. MUC1 plays an important role in malignant transformation and disease evolution, including cell proliferation, survival, self-renewal, and metastatic invasion. MUC1 has been shown to interact with diverse effectors such as β-catenin, receptor tyrosine kinases, and cellular-abelsongene, which are of importance in the pathogenesis of various malignant tumors. Targeting MUC1 has been shown to be an effective way to induce tumor cell death in vivo and in vitro models. In recent years, a number of therapeutic strategies targeting MUC1 have been developed and their value for tumor therapy have been demonstrated experimentally. This review summarizes recent findings on the structure of MUC1, its expression in different tumors and its involved mechanism pathways, with emphasis on new progress in cancer therapy which related MUC1 in the past decade and evaluates their therapeutic effect.
Collapse
Affiliation(s)
| | - Chunyan Dong
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shujing Liang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Shekarriz R, Jabbari H, Alikhani R, Alizadeh-Navaei R, Hashemi-Soteh MB. Association between MUC1 rs4072037 polymorphism and Helicobacter pylori in patients with gastric cancer. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:132-140. [PMID: 38463926 PMCID: PMC10921109 DOI: 10.22088/cjim.15.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/21/2023] [Accepted: 04/24/2023] [Indexed: 03/12/2024]
Abstract
Background The MUC1 gene encodes glycoproteins attached to cell membrane that play a protective role in gastric cancer and protect epithelial surfaces against external factors such as Helicobacter pylori. H. pylori infection can induce a cascade of innate and acquired immune responses in gastric mucosa. Relationship between rs4072037G>A polymorphism of MUC1 gene and increased susceptibility to H. pylori infection aimed to investigate in patients with gastric cancer in Mazandaran, northern Iran. Methods A case-control study was conducted on 99 patients with gastric cancer (H. pylori positive and negative) and 98 controls (H. pylori positive and negative) without gastric cancer (confirmed by pathological biopsy samples obtained during endoscopy). H. pylori infection was diagnosed by histological examination using Giemsa staining. Genomic DNA extracted from peripheral blood was analyzed by PCR-RFLP technique. Results Analysis of all genetic models showed no significant relationship between rs4072037G>A polymorphism and risk of gastric cancer (GC). The relationship between H. pylori infection and rs4072037G>A polymorphism showed an increased susceptibility to gastric cancer in both positive and negative H. pylori groups (including case and control groups). The genetic model of GA/GG and H. pylori- positive versus GA/GG and H. pylori-negative showed a significantly increased susceptibility to gastric cancer (OR=0.251, CI: 0.128-0.493, P=0.000). Conclusion These findings indicate that rs4072037G>A polymorphism may interact with H. pylori infection to increase the risk of GC.
Collapse
Affiliation(s)
- Ramin Shekarriz
- Department of Hematology and Oncology, Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Jabbari
- Department of Internal Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alikhani
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Bagher Hashemi-Soteh
- Immunogenetics Research Center, Cell and Molecular Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
Miyazaki K, Sasaki A, Mizuuchi H. Advances in the Evaluation of Gastrointestinal Absorption Considering the Mucus Layer. Pharmaceutics 2023; 15:2714. [PMID: 38140055 PMCID: PMC10747107 DOI: 10.3390/pharmaceutics15122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Because of the increasing sophistication of formulation technology and the increasing polymerization of compounds directed toward undruggable drug targets, the influence of the mucus layer on gastrointestinal drug absorption has received renewed attention. Therefore, understanding the complex structure of the mucus layer containing highly glycosylated glycoprotein mucins, lipids bound to the mucins, and water held by glycans interacting with each other is critical. Recent advances in cell culture and engineering techniques have led to the development of evaluation systems that closely mimic the ecological environment and have been applied to the evaluation of gastrointestinal drug absorption while considering the mucus layer. This review provides a better understanding of the mucus layer components and the gastrointestinal tract's biological defense barrier, selects an assessment system for drug absorption in the mucus layer based on evaluation objectives, and discusses the overview and features of each assessment system.
Collapse
Affiliation(s)
- Kaori Miyazaki
- DMPK Research Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida, Aoba-ku, Yokohama 227-0033, Japan; (A.S.); (H.M.)
| | | | | |
Collapse
|
15
|
Radziejewska I. Galectin-3 and Epithelial MUC1 Mucin-Interactions Supporting Cancer Development. Cancers (Basel) 2023; 15:2680. [PMID: 37345016 DOI: 10.3390/cancers15102680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Aberrant glycosylation of cell surface proteins is a very common feature of many cancers. One of the glycoproteins, which undergoes specific alterations in the glycosylation of tumor cells is epithelial MUC1 mucin, which is highly overexpressed in the malignant state. Such changes lead to the appearance of tumor associated carbohydrate antigens (TACAs) on MUC1, which are rarely seen in healthy cells. One of these structures is the Thomsen-Friedenreich disaccharide Galβ1-3GalNAc (T or TF antigen), which is typical for about 90% of cancers. It was revealed that increased expression of the T antigen has a big impact on promoting cancer progression and metastasis, among others, due to the interaction of this antigen with the β-galactose binding protein galectin-3 (Gal-3). In this review, we summarize current information about the interactions between the T antigen on MUC1 mucin and Gal-3, and their impact on cancer progression and metastasis.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland
| |
Collapse
|
16
|
Muilenburg KM, Isder CC, Radhakrishnan P, Batra SK, Ly QP, Carlson MA, Bouvet M, Hollingsworth MA, Mohs AM. Mucins as contrast agent targets for fluorescence-guided surgery of pancreatic cancer. Cancer Lett 2023; 561:216150. [PMID: 36997106 PMCID: PMC10150776 DOI: 10.1016/j.canlet.2023.216150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
Pancreatic cancer is difficult to resect due to its unique challenges, often leading to incomplete tumor resections. Fluorescence-guided surgery (FGS), also known as intraoperative molecular imaging and optical surgical navigation, is an intraoperative tool that can aid surgeons in complete tumor resection through an increased ability to detect the tumor. To target the tumor, FGS contrast agents rely on biomarkers aberrantly expressed in malignant tissue compared to normal tissue. These biomarkers allow clinicians to identify the tumor and its stage before surgical resection and provide a contrast agent target for intraoperative imaging. Mucins, a family of glycoproteins, are upregulated in malignant tissue compared to normal tissue. Therefore, these proteins may serve as biomarkers for surgical resection. Intraoperative imaging of mucin expression in pancreatic cancer can potentially increase the number of complete resections. While some mucins have been studied for FGS, the potential ability to function as a biomarker target extends to the entire mucin family. Therefore, mucins are attractive proteins to investigate more broadly as FGS biomarkers. This review summarizes the biomarker traits of mucins and their potential use in FGS for pancreatic cancer.
Collapse
Affiliation(s)
- Kathryn M Muilenburg
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Carly C Isder
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Prakash Radhakrishnan
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| | - Quan P Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Mark A Carlson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA; VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA.
| | - Michael A Hollingsworth
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| |
Collapse
|
17
|
Wilczak M, Surman M, Przybyło M. Altered Glycosylation in Progression and Management of Bladder Cancer. Molecules 2023; 28:molecules28083436. [PMID: 37110670 PMCID: PMC10146225 DOI: 10.3390/molecules28083436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Bladder cancer (BC) is the 10th most common malignancy worldwide, with an estimated 573,000 new cases and 213,000 deaths in 2020. Available therapeutic approaches are still unable to reduce the incidence of BC metastasis and the high mortality rates of BC patients. Therefore, there is a need to deepen our understanding of the molecular mechanisms underlying BC progression to develop new diagnostic and therapeutic tools. One such mechanism is protein glycosylation. Numerous studies reported changes in glycan biosynthesis during neoplastic transformation, resulting in the appearance of the so-called tumor-associated carbohydrate antigens (TACAs) on the cell surface. TACAs affect a wide range of key biological processes, including tumor cell survival and proliferation, invasion and metastasis, induction of chronic inflammation, angiogenesis, immune evasion, and insensitivity to apoptosis. The purpose of this review is to summarize the current information on how altered glycosylation of bladder cancer cells promotes disease progression and to present the potential use of glycans for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11 Street, 30-348 Krakow, Poland
| | - Magdalena Surman
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
| |
Collapse
|
18
|
Morleo M, Pezzella N, Franco B. Proteome balance in ciliopathies: the OFD1 protein example. Trends Mol Med 2023; 29:201-217. [PMID: 36494254 DOI: 10.1016/j.molmed.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
The balance of protein synthesis and degradation is finely regulated and influences cellular homeostasis and biological processes (e.g., embryonic development and neuronal plasticity). Recent data demonstrated that centrosomal/ciliary proteins enable proteome control in response to spatial or microenvironmental stimuli. Here, we discuss recent discoveries regarding the role in the balance of the proteome of centrosomal/ciliary proteins associated with genetic disorders known as ciliopathies. In particular, OFD1 was the first example of a ciliopathy protein controlling both protein expression and autophagic/proteasomal degradation. Understanding the role of proteome balance in the pathogenesis of the clinical manifestations of ciliopathies may pave the way to the identification of a wide range of putative novel therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples 'Federico II', Via Sergio Pansini, 80131, Naples, Italy.
| |
Collapse
|
19
|
Cox KE, Liu S, Lwin TM, Hoffman RM, Batra SK, Bouvet M. The Mucin Family of Proteins: Candidates as Potential Biomarkers for Colon Cancer. Cancers (Basel) 2023; 15:1491. [PMID: 36900282 PMCID: PMC10000725 DOI: 10.3390/cancers15051491] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Mucins (MUC1-MUC24) are a family of glycoproteins involved in cell signaling and barrier protection. They have been implicated in the progression of numerous malignancies including gastric, pancreatic, ovarian, breast, and lung cancer. Mucins have also been extensively studied with respect to colorectal cancer. They have been found to have diverse expression profiles amongst the normal colon, benign hyperplastic polyps, pre-malignant polyps, and colon cancers. Those expressed in the normal colon include MUC2, MUC3, MUC4, MUC11, MUC12, MUC13, MUC15 (at low levels), and MUC21. Whereas MUC5, MUC6, MUC16, and MUC20 are absent from the normal colon and are expressed in colorectal cancers. MUC1, MUC2, MUC4, MUC5AC, and MUC6 are currently the most widely covered in the literature regarding their role in the progression from normal colonic tissue to cancer.
Collapse
Affiliation(s)
- Kristin E. Cox
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Shanglei Liu
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | - Thinzar M. Lwin
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- VA San Diego Healthcare System, La Jolla, CA 92161, USA
- AntiCancer, Inc., San Diego, CA 92111, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- VA San Diego Healthcare System, La Jolla, CA 92161, USA
| |
Collapse
|
20
|
View from the Biological Property: Insight into the Functional Diversity and Complexity of the Gut Mucus. Int J Mol Sci 2023; 24:ijms24044227. [PMID: 36835646 PMCID: PMC9960128 DOI: 10.3390/ijms24044227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Due to mucin's important protective effect on epithelial tissue, it has garnered extensive attention. The role played by mucus in the digestive tract is undeniable. On the one hand, mucus forms "biofilm" structures that insulate harmful substances from direct contact with epithelial cells. On the other hand, a variety of immune molecules in mucus play a crucial role in the immune regulation of the digestive tract. Due to the enormous number of microorganisms in the gut, the biological properties of mucus and its protective actions are more complicated. Numerous pieces of research have hinted that the aberrant expression of intestinal mucus is closely related to impaired intestinal function. Therefore, this purposeful review aims to provide the highlights of the biological characteristics and functional categorization of mucus synthesis and secretion. In addition, we highlight a variety of the regulatory factors for mucus. Most importantly, we also summarize some of the changes and possible molecular mechanisms of mucus during certain disease processes. All these are beneficial to clinical practice, diagnosis, and treatment and can provide some potential theoretical bases. Admittedly, there are still some deficiencies or contradictory results in the current research on mucus, but none of this diminishes the importance of mucus in protective impacts.
Collapse
|
21
|
Ban B, Shang A, Shi J. Development and validation of a nomogram for predicting metachronous peritoneal metastasis in colorectal cancer: A retrospective study. World J Gastrointest Oncol 2023; 15:112-127. [PMID: 36684053 PMCID: PMC9850763 DOI: 10.4251/wjgo.v15.i1.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Peritoneal metastasis (PM) after primary surgery for colorectal cancer (CRC) has the worst prognosis. Prediction and early detection of metachronous PM (m-PM) have an important role in improving postoperative prognosis of CRC. However, commonly used imaging methods have limited sensitivity to detect PM early. We aimed to establish a nomogram model to evaluate the individual probability of m-PM to facilitate early interventions for high-risk patients.
AIM To establish and validate a nomogram model for predicting the occurrence of m-PM in CRC within 3 years after surgery.
METHODS We used the clinical data of 878 patients at the Second Hospital of Jilin University, between January 1, 2014 and January 31, 2019. The patients were randomly divided into training and validation cohorts at a ratio of 2:1. The least absolute shrinkage and selection operator (LASSO) regression was performed to identify the variables with nonzero coefficients to predict the risk of m-PM. Multivariate logistic regression was used to verify the selected variables and to develop the predictive nomogram model. Harrell’s concordance index, receiver operating characteristic curve, Brier score, and decision curve analysis (DCA) were used to evaluate discrimination, distinctiveness, validity, and clinical utility of this nomogram model. The model was verified internally using bootstrapping method and verified externally using validation cohort.
RESULTS LASSO regression analysis identified six potential risk factors with nonzero coefficients. Multivariate logistic regression confirmed the risk factors to be independent. Based on the results of two regression analyses, a nomogram model was established. The nomogram included six predictors: Tumor site, histological type, pathological T stage, carbohydrate antigen 125, v-raf murine sarcoma viral oncogene homolog B mutation and microsatellite instability status. The model achieved good predictive accuracy on both the training and validation datasets. The C-index, area under the curve, and Brier scores were 0.796, 0.796 [95% confidence interval (CI) 0.735-0.856], and 0.081 for the training cohort and 0.782, 0.782 (95%CI 0.690-0.874), and 0.089 for the validation cohort, respectively. DCA showed that when the threshold probability was between 0.01 and 0.90, using this model to predict m-PM achieved a net clinical benefit.
CONCLUSION We have established and validated a nomogram model to predict m-PM in patients undergoing curative surgery, which shows good discrimination and high accuracy.
Collapse
Affiliation(s)
- Bo Ban
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - An Shang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Jian Shi
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| |
Collapse
|
22
|
Zhou Y, Zhu J, Gu M, Gu K. Prognosis and Characterization of Microenvironment in Cervical Cancer Influenced by Fatty Acid Metabolism-Related Genes. JOURNAL OF ONCOLOGY 2023; 2023:6851036. [PMID: 36936374 PMCID: PMC10017219 DOI: 10.1155/2023/6851036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/13/2022] [Accepted: 02/08/2023] [Indexed: 03/21/2023]
Abstract
Increasing evidence suggests that diverse activation patterns of metabolic signalling pathways may lead to molecular diversity of cervical cancer (CC). But rare research focuses on the alternation of fatty acid metabolism (FAM) in CC. Therefore, we constructed and compared models based on the expression of FAM-related genes from the Cancer Genome Atlas by different machine learning algorithms. The most reliable model was built with 14 significant genes by LASSO-Cox regression, and the CC cohort was divided into low-/high-risk groups by the median of risk score. Then, a feasible nomogram was established and validated by C-index, calibration curve, net benefit, and decision curve analysis. Furthermore, the hub genes among differential expression genes were identified and the post-transcriptional and translational regulation networks were characterized. Moreover, the somatic mutation and copy number variation landscapes were depicted. Importantly, the specific mutation drivers and signatures of the FAM phenotypes were excavated. As a result, the high-risk samples were featured by activated de novo fatty acid synthesis, epithelial to mesenchymal transition, angiogenesis, and chronic inflammation response, which might be caused by mutations of oncogenic driver genes in RTK/RAS, PI3K, and NOTCH signalling pathways. Besides the hyperactivity of cytidine deaminase and deficiency of mismatch repair, the mutations of POLE might be partially responsible for the mutations in the high-risk group. Next, the antigenome including the neoantigen and cancer germline antigens was estimated. The decreasing expression of a series of cancer germline antigens was identified to be related to reduction of CD8 T cell infiltration in the high-risk group. Then, the comprehensive evaluation of connotations between the tumour microenvironment and FAM phenotypes demonstrated that the increasing risk score was related to the suppressive immune microenvironment. Finally, the prediction of therapy targets revealed that the patients with high risk might be sensitive to the RAF inhibitor AZ628. Our findings provide a novel insight for personalized treatment in CC.
Collapse
Affiliation(s)
- Yanjun Zhou
- 1Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Jiahao Zhu
- 2Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, China
| | - Mengxuan Gu
- 3Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Ke Gu
- 1Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| |
Collapse
|
23
|
Doddawad V, Shivananda S, Kalabharathi HL, Shetty A, Sowmya S, Sowmya HK. Matrix metalloproteinases in oral cancer: A catabolic activity on extracellular matrix components. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2023. [DOI: 10.4103/bbrj.bbrj_10_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
24
|
Paone P, Suriano F, Jian C, Korpela K, Delzenne NM, Van Hul M, Salonen A, Cani PD. Prebiotic oligofructose protects against high-fat diet-induced obesity by changing the gut microbiota, intestinal mucus production, glycosylation and secretion. Gut Microbes 2022; 14:2152307. [PMID: 36448728 PMCID: PMC9715274 DOI: 10.1080/19490976.2022.2152307] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Obesity is a major risk factor for the development of type 2 diabetes and cardiovascular diseases, and gut microbiota plays a key role in influencing the host energy homeostasis. Moreover, obese mice have a different gut microbiota composition, associated with an alteration of the intestinal mucus layer, which represents the interface between the bacteria and the host. We previously demonstrated that prebiotic treatment with oligofructose (FOS) counteracted the effects of diet-induced obesity, together with changes in the gut microbiota composition, but it is not known if the intestinal mucus layer could be involved. In this study, we found that, in addition to preventing high-fat diet (HFD) induced obesity in mice, the treatment with FOS increased the expression of numerous genes involved in mucus production, glycosylation and secretion, the expression of both secreted and transmembrane mucins, and the differentiation and number of goblet cells. These results were associated with significant changes in the gut microbiota composition, with FOS significantly increasing the relative and absolute abundance of the bacterial genera Odoribacter, Akkermansia, two unknown Muribaculaceae and an unknown Ruminococcaceae. Interestingly, all these bacterial genera had a negative association with metabolic parameters and a positive association with markers of the mucus layer. Our study shows that FOS treatment is able to prevent HFD-induced metabolic disorders, at least in part, by acting on all the processes of the mucus production. These data suggest that targeting the mucus and the gut microbiota by using prebiotics could help to prevent or mitigate obesity and related disorders.
Collapse
Affiliation(s)
- Paola Paone
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Francesco Suriano
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium,CONTACT Patrice D. Cani Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
25
|
Lu D, Hu W, Tian T, Wang M, Zhou M, Wu C. The Mechanism of Lipopolysaccharide's Effect on Secretion of Endometrial Mucins in Female Mice during Pregnancy. Int J Mol Sci 2022; 23:9972. [PMID: 36077364 PMCID: PMC9456203 DOI: 10.3390/ijms23179972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The main toxic component of endotoxins released from the death or dissolution of Gram-negative bacteria is lipopolysaccharide (LPS), which exists widely in the natural environment, and a large amount of endotoxin can significantly inhibit the reproductive performance of animals. A previous study showed that endotoxins mainly damaged the physiological function of mucins in the endometrium, but the mechanism is not clear. In this study, the PI3K/Akt signaling pathway was not activated, and the NF-κB signaling pathway was inhibited by LPS treatment; the expression of occludin and E-cadherin proteins were decreased and ZO-1 protein expression was increased, because LPS can lead to the mucous layer becoming thinner, so that the embryonic survival rate is significantly reduced in early pregnancy. In middle and late pregnancy, LPS translocated to the epithelial cells of the uterus and the expression of claudin-1, JAMA, and E-cadherin proteins were decreased; at this time, a large number of glycosaminoglycan particles were secreted by endometrial gland cells through the PI3K/Akt/NF-κB signaling pathway that was activated after LPS treatment, However, there was no significant difference between the survival rates of fetal mice in the LPS (+) and LPS (-) groups. Glycosaminoglycan particles and mucins are secreted by gland cells, which can protect and maintain the pregnancy in the middle and late gestational periods.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenchen Wu
- College of Animal Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
| |
Collapse
|
26
|
p-Coumaric acid, Kaempferol, Astragalin and Tiliroside Influence the Expression of Glycoforms in AGS Gastric Cancer Cells. Int J Mol Sci 2022; 23:ijms23158602. [PMID: 35955735 PMCID: PMC9369150 DOI: 10.3390/ijms23158602] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/06/2023] Open
Abstract
Abnormal glycosylation of cancer cells is considered a key factor of carcinogenesis related to growth, proliferation, migration and invasion of tumor cells. Many plant-based polyphenolic compounds reveal potential anti-cancer properties effecting cellular signaling systems. Herein, we assessed the effects of phenolic acid, p-coumaric acid and flavonoids such as kaempferol, astragalin or tiliroside on expression of selected cancer-related glycoforms and enzymes involved in their formation in AGS gastric cancer cells. The cells were treated with 80 and 160 µM of the compounds. RT-PCR, Western blotting and ELISA tests were performed to determine the influence of polyphenolics on analyzed factors. All the examined compounds inhibited the expression of MUC1, ST6GalNAcT2 and FUT4 mRNAs. C1GalT1, St3Gal-IV and FUT4 proteins as well as MUC1 domain, Tn and sialyl T antigen detected in cell lysates were also lowered. Both concentrations of kaempferol, astragalin and tiliroside also suppressed ppGalNAcT2 and C1GalT1 mRNAs. MUC1 cytoplasmic domain, sialyl Tn, T antigens in cell lysates and sialyl T in culture medium were inhibited only by kaempferol and tiliroside. Nuclear factor NF-κB mRNA expression decreased after treatment with both concentrations of kaempferol, astragalin and tiliroside. NF-κB protein expression was inhibited by kaempferol and tiliroside. The results indicate the rationality of application of examined polyphenolics as potential preventive agents against gastric cancer development.
Collapse
|
27
|
Guadagnin A, Fehlberg L, Thomas B, Sugimoto Y, Shinzato I, Cardoso F. Effect of feeding rumen-protected lysine through the transition period on postpartum uterine health of dairy cows. J Dairy Sci 2022; 105:7805-7819. [DOI: 10.3168/jds.2022-21934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
|
28
|
Taleb V, Liao Q, Narimatsu Y, García-García A, Compañón I, Borges RJ, González-Ramírez AM, Corzana F, Clausen H, Rovira C, Hurtado-Guerrero R. Structural and mechanistic insights into the cleavage of clustered O-glycan patches-containing glycoproteins by mucinases of the human gut. Nat Commun 2022; 13:4324. [PMID: 35882872 PMCID: PMC9325726 DOI: 10.1038/s41467-022-32021-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
Mucinases of human gut bacteria cleave peptide bonds in mucins strictly depending on the presence of neighboring O-glycans. The Akkermansia muciniphila AM0627 mucinase cleaves specifically in between contiguous (bis) O-glycans of defined truncated structures, suggesting that this enzyme may recognize clustered O-glycan patches. Here, we report the structure and molecular mechanism of AM0627 in complex with a glycopeptide containing a bis-T (Galβ1-3GalNAcα1-O-Ser/Thr) O-glycan, revealing that AM0627 recognizes both the sugar moieties and the peptide sequence. AM0627 exhibits preference for bis-T over bis-Tn (GalNAcα1-O-Ser/Thr) O-glycopeptide substrates, with the first GalNAc residue being essential for cleavage. AM0627 follows a mechanism relying on a nucleophilic water molecule and a catalytic base Glu residue. Structural comparison among mucinases identifies a conserved Tyr engaged in sugar-π interactions in both AM0627 and the Bacteroides thetaiotaomicron BT4244 mucinase as responsible for the common activity of these two mucinases with bis-T/Tn substrates. Our work illustrates how mucinases through tremendous flexibility adapt to the diversity in distribution and patterns of O-glycans on mucins. AM0627 is a bis-O-glycan mucinase that might work in the final steps of mucus degradation, thereby providing a carbon and nitrogen source for Akkermansia muciniphila. Here, the authors provide molecular insights into AM0627 function from X-ray crystallography and computer simulations.
Collapse
Affiliation(s)
- Víctor Taleb
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Qinghua Liao
- Departament de Química Inorgánica i Orgánica (Secció de Química Orgánica) and Institut de Química Teorica i Computacional (IQTCUB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ana García-García
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006, Logroño, Spain
| | - Rafael Junqueira Borges
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Andrés Manuel González-Ramírez
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006, Logroño, Spain
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Carme Rovira
- Departament de Química Inorgánica i Orgánica (Secció de Química Orgánica) and Institut de Química Teorica i Computacional (IQTCUB), Universitat de Barcelona, 08028, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avancats (ICREA), 08010, Barcelona, Spain.
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain. .,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark. .,Fundación ARAID, 50018, Zaragoza, Spain.
| |
Collapse
|
29
|
Kim JH, Park HS, Lee JY, Ko EJ, Kim YR, Cho HY, Lee WS, Ahn EH, Kim NK. Association Study between Mucin 4 ( MUC4) Polymorphisms and Idiopathic Recurrent Pregnancy Loss in a Korean Population. Genes (Basel) 2022; 13:937. [PMID: 35741699 PMCID: PMC9222798 DOI: 10.3390/genes13060937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is the loss of two or more consecutive pregnancies before 20 weeks of gestational age. Our study investigated whether mucin 4 (MUC4) polymorphisms are associated with RPL. MUC polymorphisms (rs882605 C>A, rs1104760 A>G, rs2688513 A>G, rs2258447 C>T, and rs2291652 A>G) were genotyped in 374 women with RPL and 239 controls of Korean ethnicity using polymerase chain reaction-restriction fragment length polymorphism analysis and the TaqMan probe SNP genotyping assay. Differences in genotype frequencies between cases of RPL and the controls were compared. MUC4 rs882605 C>A and rs1104760 A>G polymorphisms were associated with increased incidence of RPL in three and four or more pregnancy loss patients. The haplotype analyses showed a tendency for the allelic effect including the association of MUC4 rs882605 A and rs1104760 G alleles with increased incidence of RPL. In addition, the MUC4 rs882605 CA/MUC4 rs2258447 CC genotype combination was associated with increased RPL prevalence. The two exonic polymorphisms lead to amino acid changes of protein and may act as pathogenic variants for RPL. In conclusion, the MUC4 rs882605 C>A and MUC4 rs1104760 A>G polymorphisms were associated with the susceptibility of RPL and we considered them as potential biomarkers for RPL.
Collapse
Affiliation(s)
- Ji-Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (J.-H.K.); (Y.-R.K.)
| | - Han-Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.-S.P.); (J.-Y.L.); (E.-J.K.)
| | - Jeong-Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.-S.P.); (J.-Y.L.); (E.-J.K.)
| | - Eun-Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.-S.P.); (J.-Y.L.); (E.-J.K.)
| | - Young-Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (J.-H.K.); (Y.-R.K.)
| | - Hee-Young Cho
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea;
| | - Woo-Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea;
| | - Eun-Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (J.-H.K.); (Y.-R.K.)
| | - Nam-Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.-S.P.); (J.-Y.L.); (E.-J.K.)
| |
Collapse
|
30
|
Liu X, Xiao Y, Xiong X, Qi X. MUC21 controls melanoma progression via regulating SLITRK5 and hedgehog signaling pathway. Cell Biol Int 2022; 46:1458-1467. [PMID: 35579188 DOI: 10.1002/cbin.11817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/30/2022] [Accepted: 04/23/2022] [Indexed: 11/08/2022]
Abstract
Mucins are heavily glycosylated proteins secreted by various cell types, to protect the epithelial surface of the gastrointestinal tract from damage. Currently, increasing studies provided evidence to suggest that mucins play an essential role in regulating tumor progression. However, the role of mucins and the underpinning mechanism of how mucins drive melanoma progression remains elusive. In this study, we first demonstrated that mucin 21 (MUC21) expression was significantly upregulated in metastatic melanoma tissues, and a higher MUC21 expression resulted in poor overall survival in melanoma patients by The Cancer Genome Atlas database analysis. In vitro, MUC21 overexpression markedly promoted proliferative properties and aggressive behavior of melanoma cell A375 and A875, as assessed by Cell Counting Kit-8 and transwell assay. In mechanism, we proved that MUC21 suppressed expression of SLITRK5, an integral membrane protein, leading to activation of prosurvival hedgehog pathway and sustained melanoma development. More importantly, we found that combination of hedgehog pathway inhibitor cyclopamine and chemotherapy revealed an improved anticancer effect in MUC21 overexpression xenograft model. Altogether, our study described a novel role of MUC21 in regulating tumor progression, which offers a promising target for melanoma diagnosis and therapy.
Collapse
Affiliation(s)
- Xueping Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yajun Xiao
- Department of Geriatrics, The Third Hospital of Mianyang, Mianyang, Sichuan, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyi Qi
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
31
|
Autophagy and EMT in cancer and metastasis: Who controls whom? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166431. [PMID: 35533903 DOI: 10.1016/j.bbadis.2022.166431] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
Metastasis consists of hallmark events, including Epithelial-Mesenchymal Transition (EMT), angiogenesis, initiation of inflammatory tumor microenvironment, and malfunctions in apoptosis. Autophagy is known to play a pivotal role in the metastatic process. Autophagy has pulled researchers towards it in recent times because of its dual role in the maintenance of cancer cells. Evidence states that cells undergoing EMT need autophagy in order to survive during migration and dissemination. Additionally, it orchestrates EMT markers in certain cancers. On the other side of the coin, autophagy plays an oncosuppressive role in impeding early metastasis. This review aims to project the interrelationship between autophagy and EMT. Targeting EMT via autophagy as a useful strategy is discussed in this review. Furthermore, for the first time, we have covered the possible reciprocating roles of EMT and autophagy and its consequences in cancer metastasis.
Collapse
|
32
|
Li L, Holloway JW, Ewart S, Arshad SH, Relton CL, Karmaus W, Zhang H. Newborn DNA methylation and asthma acquisition across adolescence and early adulthood. Clin Exp Allergy 2022; 52:658-669. [PMID: 34995380 PMCID: PMC9050758 DOI: 10.1111/cea.14091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Little is known about the association of newborn DNA methylation (DNAm) with asthma acquisition across adolescence and early adult life. OBJECTIVE We aim to identify epigenetic biomarkers in newborns for asthma acquisition during adolescence or young adulthood. METHODS The Isle of Wight Birth Cohort (IOWBC) (n = 1456) data at ages 10, 18 and 26 years were assessed. To screen cytosine-phosphate-guanine site (CpGs) potentially associated with asthma acquisition, at the genome scale, we examined differentially methylated regions (DMR) using dmrff R package and individual CpG sites using linear regression on such associations. For CpGs that passed screening, we examined their enrichment in biological pathways using their mapping genes and tested their associations with asthma acquisitions using logistic regressions. Findings in IOWBC were tested in an independent cohort, the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. RESULTS In total, 2636 unique CpGs passed screening, based on which we identified one biological pathway linked to asthma acquisition during adolescence in females (FDR adjusted p-value = .003 in IOWBC). Via logistic regressions, for females, four CpGs were shown to be associated with asthma acquisition during adolescence, and another four CpGs with asthma acquisition in young adulthood (FDR adjusted p-value < .05 in IOWBC) and these eight CpGs were replicated in ALSPAC (all p-values < .05). DNAm at all the identified CpGs was shown to be temporally consistent, and at six of the CpGs was associated with expressions of adjacent or mapping genes in females (all p-values < .05). For males, 622 CpGs were identified in IOWBC (FDR = 0.01), but these were not tested in ALSPAC due to small sample sizes. CONCLUSION AND CLINICAL RELEVANCE Eight CpGs on LHX5, IL22RA2, SOX11, CBX4, ACPT, CFAP46, MUC4, and ATP1B2 genes have the potential to serve as candidate epigenetic biomarkers in newborns for asthma acquisition in females during adolescence or young adulthood.
Collapse
Affiliation(s)
- Liang Li
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - S. Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- The David Hide Asthma and Allergy Research Centre, St Mary’s, Hospital, Parkhurst Road, Newport, Isle of Wight PO30 5TG, UK
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| |
Collapse
|
33
|
Fu L, Yonemura A, Yasuda-Yoshihara N, Umemoto T, Zhang J, Yasuda T, Uchihara T, Akiyama T, Kitamura F, Yamashita K, Okamoto Y, Bu L, Wei F, Hu X, Liu Y, Ajani JA, Tan P, Baba H, Ishimoto T. Intracellular MUC20 variant 2 maintains mitochondrial calcium homeostasis and enhances drug resistance in gastric cancer. Gastric Cancer 2022; 25:542-557. [PMID: 35166958 DOI: 10.1007/s10120-022-01283-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Signet ring cell carcinoma (SRCC) is a particular histologic variant of gastric cancer (GC). However, the critical factor related to the aggressive characteristics of SRCC has not been determined. METHODS We collected surgically resected tissues from 360 GC patients in the Kumamoto University cohort and generated survival curves via the Kaplan-Meier method. In vitro, we identified the specific transcript variant of MUC20 in SRCC cells by direct sequencing and investigated the role of MUC20 in GC progression using GC cells with MUC20 silencing and forced expression. In vivo, we examined chemoresistance using MUC20 variant 2 (MUC20v2)-overexpressing non-SRCC cells to construct a xenograft mouse model. RESULTS We analyzed a comprehensive GC cell line database to identify the specifically expressed genes in gastric SRCC. We focused on MUC20 and investigated its role in GC progression. Survival analysis revealed that GC patients with high MUC20 expression exhibited a poor prognosis and that MUC20 expression was significantly correlated with SRCC histological type. Moreover, we found that gastric SRCC cells specifically expressed MUC20v2, which was dominantly expressed in the cytoplasm. Silencing MUC20v2 caused cell death with characteristic morphological changes in gastric SRCC cells. To further determine the types of cell death, we examined apoptosis, pyroptosis and ferroptosis by detecting cleaved PARP, gasdermin E-N-terminal (GSDME-N), and lipid reactive oxygen species (ROS) levels, respectively. We found that apoptosis and pyroptosis occurred in MUC20-silenced gastric SRCC cells. In addition, MUC20v2-overexpressing GC cells exhibited chemoresistance to cisplatin (CDDP) and paclitaxel (PTX). RNA sequencing revealed that the pathways involved in intracellular calcium regulation were significantly upregulated in MUC20v2-overexpressing GC cells. Notably, forced expression of MUC20v2 in the cytoplasm of GC cells led to the maintenance of mitochondrial calcium homeostasis and mitochondrial membrane potential (MMP), which promoted cell survival and chemoresistance by suppressing apoptosis and pyroptosis. Finally, we investigated the significance of MUC20v2 in a xenograft model treated with CDDP and showed that MUC20v2 overexpression caused chemoresistance by inhibiting cell death. CONCLUSION These findings highlight the novel functions of MUC20v2, which may confer cell survival and drug resistance in GC cells. SIGNIFICANCE MUC20v2 protects GC cells from apoptosis and pyroptosis by maintaining mitochondrial calcium levels and mitochondrial membrane potential and subsequently induces drug resistance.
Collapse
Affiliation(s)
- Lingfeng Fu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Atsuko Yonemura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Noriko Yasuda-Yoshihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Terumasa Umemoto
- Hematopoietic Stem Cell Engineering, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Jun Zhang
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Uchihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Takahiko Akiyama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Fumimasa Kitamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Kohei Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yuya Okamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Luke Bu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Feng Wei
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Xichen Hu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yang Liu
- Second Oncology Department, Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning, China
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
34
|
Verkerke H, Dias-Baruffi M, Cummings RD, Arthur CM, Stowell SR. Galectins: An Ancient Family of Carbohydrate Binding Proteins with Modern Functions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2442:1-40. [PMID: 35320517 DOI: 10.1007/978-1-0716-2055-7_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Galectins are a large family of carbohydrate binding proteins with members in nearly every lineage of multicellular life. Through tandem and en-mass genome duplications, over 15 known vertebrate galectins likely evolved from a single common ancestor extant in pre-chordate lineages. While galectins have divergently evolved numerous functions, some of which do not involve carbohydrate recognition, the vast majority of the galectins have retained the conserved ability to bind variably modified polylactosamine (polyLacNAc) residues on glycans that modify proteins and lipids on the surface of host cells and pathogens. In addition to their direct role in microbial killing, many proposed galectin functions in the immune system and cancer involve crosslinking glycosylated receptors and modifying signaling pathways or sensitivity to antigen from the outside in. However, a large body of work has uncovered intracellular galectin functions mediated by carbohydrate- and non-carbohydrate-dependent interactions. In the cytoplasm, galectins can tune intracellular kinase and G-protein-coupled signaling cascades important for nutrient sensing, cell cycle progression, and transformation. Particularly, but interconnected pathways, cytoplasmic galectins serve the innate immune system as sensors of endolysosomal damage, recruiting and assembling the components of autophagosomes during intracellular infection through carbohydrate-dependent and -independent activities. In the nucleus, galectins participate in pre-mRNA splicing perhaps through interactions with non-coding RNAs required for assembly of spliceosomes. Together, studies of galectin function paint a picture of a functionally dynamic protein family recruited during eons of evolution to regulate numerous essential cellular processes in the context of multicellular life.
Collapse
Affiliation(s)
- Hans Verkerke
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Xue B, Guo WM, Jia JD, Kadeerhan G, Liu HP, Bai T, Shao Y, Wang DW. MUC20 as a novel prognostic biomarker in ccRCC correlating with tumor immune microenvironment modulation. Am J Cancer Res 2022; 12:695-712. [PMID: 35261796 PMCID: PMC8899979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023] Open
Abstract
Tumor microenvironment (TME) broadly participates in genesis development of clear cell renal cell carcinoma (ccRCC). To recognize the immune and stromal modulation in TME, we screened the differentially expressed TME-related genes generated by the ESTIMATE algorithm in ccRCC specimens. Following the construction of protein-protein interaction (PPI) network and univariate COX regression, mucin 20 (MUC20) was judged to be a predictive factor. Further analysis, including immunohistochemistry (IHC) showed that MUC20 was positively correlated with survival and negatively correlated with the clinicopathologic characteristics (grade, clinical and TNM stages) in ccRCC patients. Gene Set Enrichment Analysis suggested that the low-expression MUC20 group was primarily enriched in immune-related activities, inflammation and epithelial-mesenchymal transition. Based on the CIBERSORT analysis for tumor-infiltrating immune cells (TICs), MUC20 was positively correlated with CD8+ T cells and resting mast cells and negatively correlated with activated CD4+ memory T cells, Treg cells, and plasma cells, implying that MUC20 may contribute to immune component in TME. Additionally, the patients with low MUC20 expression had better response to immune checkpoint blockades (ICBs) and 17 potential anticancer drugs were screened regarding calculating IC50 value. Thus, MUC20 may contain a value of prognosis assessment for ccRCC patients and indicate the immune modulation status of TME, which provided a novel insight for comprehensive immunotherapy.
Collapse
Affiliation(s)
- Bo Xue
- Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| | - Wen-Min Guo
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen 518116, Guangdong, China
| | - Jie-Dong Jia
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen 518116, Guangdong, China
| | - Gaohaer Kadeerhan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen 518116, Guangdong, China
| | - Hua-Ping Liu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen 518116, Guangdong, China
| | - Tao Bai
- Department of Pathology, First Hospital of Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| | - Yuan Shao
- Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| | - Dong-Wen Wang
- Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen 518116, Guangdong, China
| |
Collapse
|
36
|
Wu YH, Zhang Y, Fang DQ, Chen J, Wang JA, Jiang L, Lv ZF. Characterization of the Composition and Biological Activity of the Venom from Vespa bicolor Fabricius, a Wasp from South China. Toxins (Basel) 2022; 14:toxins14010059. [PMID: 35051036 PMCID: PMC8777732 DOI: 10.3390/toxins14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
We analyzed, for the first time, the major components and biological properties of the venom of Vespa bicolor, a wasp from South China. Using HPLC and SDS-PAGE, combined with LC–MS/MS, MALDI-TOF-MS, and NMR data to analyze V. bicolor venom (VBV), we found that VBV contains three proteins (hyaluronidase A, phospholipase A1 (two isoforms), and antigen 5 protein) with allergenic activity, two unreported proteins (proteins 5 and 6), and two active substances with large quantities (mastoparan-like peptide 12a (Vb-MLP 12a), and 5-hydroxytryptamine (5-HT)). In addition, the antimicrobial activity of VBV was determined, and results showed that it had a significant effect against anaerobic bacteria. The minimum inhibitory concentration and minimum bactericidal concentration for Propionibacterium acnes were 12.5 µg/mL. Unsurprisingly, VBV had strong antioxidant activity because of the abundance of 5-HT. Contrary to other Vespa venom, VBV showed significant anti-inflammatory activity, even at low concentrations (1 µg/mL), and we found that Vb-MLP 12a showed pro-inflammatory activity by promoting the proliferation of RAW 264.7 cells. Cytotoxicity studies showed that VBV had similar antiproliferative effects against all tested tumor cell lines (HepG2, Hela, MCF-7, A549, and SASJ-1), with HepG2 being the most susceptible. Overall, this study on VBV has high clinical importance and promotes the development of Vespa bicolor resources.
Collapse
Affiliation(s)
- Yong-Hua Wu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.-H.W.); (D.-Q.F.)
- Guangdong Technology Research Center for Advanced Chinese Medicine, Sun Yat-Sen University, Guangzhou 510006, China; (Y.Z.); (J.C.)
- Production and Research Base for Wasp Deinsectization, Guangdong Huxin Biotech Technology Co., Ltd., Jiangmen 529245, China;
| | - Yu Zhang
- Guangdong Technology Research Center for Advanced Chinese Medicine, Sun Yat-Sen University, Guangzhou 510006, China; (Y.Z.); (J.C.)
| | - Dan-Qiao Fang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.-H.W.); (D.-Q.F.)
| | - Jing Chen
- Guangdong Technology Research Center for Advanced Chinese Medicine, Sun Yat-Sen University, Guangzhou 510006, China; (Y.Z.); (J.C.)
| | - Jing-An Wang
- Production and Research Base for Wasp Deinsectization, Guangdong Huxin Biotech Technology Co., Ltd., Jiangmen 529245, China;
| | - Lin Jiang
- Guangdong Technology Research Center for Advanced Chinese Medicine, Sun Yat-Sen University, Guangzhou 510006, China; (Y.Z.); (J.C.)
- Correspondence: (L.J.); (Z.-F.L.)
| | - Zhu-Fen Lv
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.-H.W.); (D.-Q.F.)
- Correspondence: (L.J.); (Z.-F.L.)
| |
Collapse
|
37
|
Yu Y, Niu J, Zhang X, Wang X, Song H, Liu Y, Jiao X, Chen F. Identification and Validation of HOTAIRM1 as a Novel Biomarker for Oral Squamous Cell Carcinoma. Front Bioeng Biotechnol 2022; 9:798584. [PMID: 35087800 PMCID: PMC8787327 DOI: 10.3389/fbioe.2021.798584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
ORAL squamous cell carcinoma (OSCC) is a malignant tumor with the highest incidence among tumors involving the oral cavity maxillofacial region, and is notorious for its high recurrence and metastasis potential. Long non-coding RNAs (lncRNAs), which regulate the genesis and evolution of cancers, are potential prognostic biomarkers. This study identified HOTAIRM1 as a novel significantly upregulated lncRNA in OSCC, which is strongly associated with unfavorable prognosis of OSCC. Systematic bioinformatics analyses demonstrated that HOTAIRM1 was closely related to tumor stage, overall survival, genome instability, the tumor cell stemness, the tumor microenvironment, and immunocyte infiltration. Using biological function prediction methods, including Weighted gene co-expression network analysis (WGCNA), Gene set enrichment analysis (GSEA), and Gene set variation analysis (GSVA), HOTAIRM1 plays a pivotal role in OSCC cell proliferation, and is mainly involved in the regulation of the cell cycle. In vitro, cell loss-functional experiments confirmed that HOTAIRM1 knockdown significantly inhibited the proliferation of OSCC cells, and arrested the cell cycle in G1 phase. At the molecular level, PCNA and CyclinD1 were obviously reduced after HOTAIRM1 knockdown. The expression of p53 and p21 was upregulated while CDK4 and CDK6 expression was decreased by HOTAIRM1 knockdown. In vivo, knocking down HOTAIRM1 significantly inhibited tumor growth, including the tumor size, weight, volume, angiogenesis, and hardness, monitored by ultrasonic imaging and magnetic resonance imaging In summary, our study reports that HOTAIRM1 is closely associated with tumorigenesis of OSCC and promotes cell proliferation by regulating cell cycle. HOTAIRM1 could be a potential prognostic biomarker and a therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yixiu Yu
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamei Niu
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingwei Zhang
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Wang
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongquan Song
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingqun Liu
- Pediatric Dentistry Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohui Jiao
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaohui Jiao , ; Fuyang Chen,
| | - Fuyang Chen
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaohui Jiao , ; Fuyang Chen,
| |
Collapse
|
38
|
Kumar AR, Devan AR, Nair B, Nair RR, Nath LR. Biology, Significance and Immune Signaling of Mucin 1 in Hepatocellular Carcinoma. Curr Cancer Drug Targets 2022; 22:725-740. [PMID: 35301949 DOI: 10.2174/1568009622666220317090552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Mucin 1 (MUC 1) is a highly glycosylated tumor-associated antigen (TAA) overexpressed in hepatocellular carcinoma (HCC). This protein plays a critical role in various immune-mediated signaling pathways at its transcriptional and post-transcriptional levels, leading to immune evasion and metastasis in HCC. HCC cells maintain an immune-suppressive environment with the help of immunesuppressive tumor-associated antigens, resulting in a metastatic spread of the disease. The development of intense immunotherapeutic strategies to target tumor-associated antigen is critical to overcoming the progression of HCC. MUC 1 remains the most recognized tumor-associated antigen since its discovery over 30 years ago. A few promising immunotherapies targeting MUC 1 are currently under clinical trials, including CAR-T and CAR-pNK-mediated therapies. This review highlights the biosynthesis, significance, and clinical implication of MUC 1 as an immune target in HCC.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | | | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| |
Collapse
|
39
|
Son HY, Jeong HK, Apostolopoulos V, Kim CW. MUC1 expressing tumor growth was retarded after human mucin 1 (MUC1) plasmid DNA immunization. Int J Immunopathol Pharmacol 2022; 36:3946320221112358. [PMID: 35839304 PMCID: PMC9289905 DOI: 10.1177/03946320221112358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Naked DNA is one of the attractive tools for vaccination studies. We studied naked DNA vaccination against the human tumor antigen, mucin, which is encoded by the MUC1 gene. METHODS We constructed the pcDNA3.0-MUC1 (pcDNA-MUC1) plasmid expressing an underglycosylated MUC1 protein. BALB/c mice were immunized intradermally thrice at 2-weeks intervals with pcDNA-MUC1. Two weeks after the last immunization, tumor challenge experiments were performed using either the CT26 or TA3HA tumor cell lines, both of which transduce human MUC1. RESULTS Immune cell population monitoring from pcDNA-MUC1-immunized animals indicated that immune cell activation was induced by MUC1-specific immunization. Using intracellular fluorescence activated cell sorting and enzyme-linked immunosorbent spot assay, we reported that interferon-γ secreting CD8+ T cells were mainly involved in MUC1-specific immunization. In all mice immunized with MUC1 DNA, tumor growth inhibition was observed, whereas control mice developed tumors (p < 0.001). CONCLUSION Our results suggest that intradermal immunization with MUC1 DNA induces MUC1-specific CD8+ T cell infiltration into tumors, elicits tumor-specific Th1-type immune response, and inhibits tumor growth.
Collapse
Affiliation(s)
- Hye-Youn Son
- Department of Breast and Endocrine Surgery,
Center for Medical Innovation, Seoul National University Hospital, Seoul, South Korea
| | - Hwan-Kyu Jeong
- School of Biosystems and Biomedical
Sciences, Korea University, Seoul, South Korea
| | | | | |
Collapse
|
40
|
Argüeso P. Human ocular mucins: The endowed guardians of sight. Adv Drug Deliv Rev 2022; 180:114074. [PMID: 34875287 PMCID: PMC8724396 DOI: 10.1016/j.addr.2021.114074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/22/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
Mucins are an ancient group of glycoproteins that provide viscoelastic, lubricating and hydration properties to fluids bathing wet surfaced epithelia. They are involved in the protection of underlying tissues by forming a barrier with selective permeability properties. The expression, processing and spatial distribution of mucins are often determined by organ-specific requirements that in the eye involve protecting against environmental insult while allowing the passage of light. The human ocular surface epithelia have evolved to produce an extremely thin and watery tear film containing a distinct soluble mucin product secreted by goblet cells outside the visual axis. The adaptation to the ocular environment is notably evidenced by the significant contribution of transmembrane mucins to the tear film, where they can occupy up to one-quarter of its total thickness. This article reviews the tissue-specific properties of human ocular mucins, methods of isolation and detection, and current approaches to model mucin systems recapitulating the human ocular surface mucosa. This knowledge forms the fundamental basis to develop applications with a promising biological and clinical impact.
Collapse
Affiliation(s)
- Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
41
|
Abbaspour M, Akbari V. Cancer vaccines as a targeted immunotherapy approach for breast cancer: an update of clinical evidence. Expert Rev Vaccines 2021; 21:337-353. [PMID: 34932427 DOI: 10.1080/14760584.2022.2021884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the first common neoplastic malignancy and the second leading cause of death in women worldwide. Conventional treatments for BC are often associated with severe side effects and may even lead to late recurrence. For this reason, in recent years, cancer immunotherapy (e.g., cancer vaccines), a novel approach based on the specificity and amplification of acquired immune responses, has been considered as a potential candidate in particular to treat metastatic BC. AREAS COVERED In this review, we summarize and discuss the recent development of therapeutic vaccines for BC, use of specific BC cellular antigens, antigen selection, and probable causes for their insufficient effectiveness. EXPERT OPINION Despite development of several different BC vaccines strategies including protein/peptide, dendritic cell, and genetic vaccines, until now, no BC vaccine has been approved for clinical use. Most of the current BC vaccines themselves fail to bring clinical benefit to BC patients and are applied in combination with radiotherapy, chemotherapy, or targeted therapy. It is hoped that with advances in our knowledge about tumor microenvironment and the development of novel combination strategies, the tumor immunosuppressive mechanisms can be overcome and prolonged immunologic and effective anti-tumor response can be developed in patients.
Collapse
Affiliation(s)
- Maryam Abbaspour
- Department of pharmaceutical biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of pharmaceutical biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
42
|
Kshirsagar PG, Gulati M, Junker WM, Aithal A, Spagnol G, Das S, Mallya K, Gautam SK, Kumar S, Sorgen P, Pandey KK, Batra SK, Jain M. Characterization of recombinant β subunit of human MUC4 mucin (rMUC4β). Sci Rep 2021; 11:23730. [PMID: 34887447 PMCID: PMC8660890 DOI: 10.1038/s41598-021-02860-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
MUC4 is a transmembrane mucin expressed on various epithelial surfaces, including respiratory and gastrointestinal tracts, and helps in their lubrication and protection. MUC4 is also aberrantly overexpressed in various epithelial malignancies and functionally contributes to cancer development and progression. MUC4 is putatively cleaved at the GDPH site into a mucin-like α-subunit and a membrane-tethered growth factor-like β-subunit. Due to the presence of several functional domains, the characterization of MUC4β is critical for understanding MUC4 biology. We developed a method to produce and purify multi-milligram amounts of recombinant MUC4β (rMUC4β). Purified rMUC4β was characterized by Far-UV CD and I-TASSER-based protein structure prediction analyses, and its ability to interact with cellular proteins was determined by the affinity pull-down assay. Two of the three EGF-like domains exhibited typical β-fold, while the third EGF-like domain and vWD domain were predominantly random coils. We observed that rMUC4β physically interacts with Ezrin and EGFR family members. Overall, this study describes an efficient and simple strategy for the purification of biologically-active rMUC4β that can serve as a valuable reagent for a variety of biochemical and functional studies to elucidate MUC4 function and generating domain-specific antibodies and vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Prakash G Kshirsagar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Wade M Junker
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA.,Sanguine Diagnostics and Therapeutics, Omaha, NE, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Srustidhar Das
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Paul Sorgen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Krishan K Pandey
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, MO, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Sanguine Diagnostics and Therapeutics, Omaha, NE, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
43
|
Zhu J, Yuan Y, Wan X, Yin D, Li R, Chen W, Suo C, Song H. Immunotherapy (excluding checkpoint inhibitors) for stage I to III non-small cell lung cancer treated with surgery or radiotherapy with curative intent. Cochrane Database Syst Rev 2021; 12:CD011300. [PMID: 34870327 PMCID: PMC8647093 DOI: 10.1002/14651858.cd011300.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common lung cancer, accounting for approximately 80% to 85% of all cases. For people with localised NSCLC (stages I to III), it has been speculated that immunotherapy may be helpful for reducing postoperative recurrence rates, or improving the clinical outcomes of current treatment for unresectable tumours. This is an update of a Cochrane Review first published in 2017 and it includes two new randomised controlled trials (RCTs). OBJECTIVES To assess the effectiveness and safety of immunotherapy (excluding checkpoint inhibitors) among people with localised NSCLC of stages I to III who received curative intent of radiotherapy or surgery. SEARCH METHODS We searched the following databases (from inception to 19 May 2021): CENTRAL, MEDLINE, Embase, CINAHL, and five trial registers. We also searched conference proceedings and reference lists of included trials. SELECTION CRITERIA We included RCTs conducted in adults (≥ 18 years) diagnosed with NSCLC stage I to III after surgical resection, and those with unresectable locally advanced stage III NSCLC receiving radiotherapy with curative intent. We included participants who underwent primary surgical treatment, postoperative radiotherapy or chemoradiotherapy if the same strategy was provided for both intervention and control groups. DATA COLLECTION AND ANALYSIS Two review authors independently selected eligible trials, assessed risk of bias, and extracted data. We used survival analysis to pool time-to-event data, using hazard ratios (HRs). We used risk ratios (RRs) for dichotomous data, and mean differences (MDs) for continuous data, with 95% confidence intervals (CIs). Due to clinical heterogeneity (immunotherapeutic agents with different underlying mechanisms), we combined data by applying random-effects models. MAIN RESULTS We included 11 RCTs involving 5128 participants (this included 2 new trials with 188 participants since the last search dated 20 January 2017). Participants who underwent surgical resection or received curative radiotherapy were randomised to either an immunotherapy group or a control group. The immunological interventions were active immunotherapy Bacillus Calmette-Guérin (BCG) adoptive cell transfer (i.e. transfer factor (TF), tumour-infiltrating lymphocytes (TIL), dendritic cell/cytokine-induced killer (DC/CIK), antigen-specific cancer vaccines (melanoma-associated antigen 3 (MAGE-A3) and L-BLP25), and targeted natural killer (NK) cells. Seven trials were at high risk of bias for at least one of the risk of bias domains. Three trials were at low risk of bias across all domains and one small trial was at unclear risk of bias as it provided insufficient information. We included data from nine of the 11 trials in the meta-analyses involving 4863 participants. There was no evidence of a difference between the immunotherapy agents and the controls on any of the following outcomes: overall survival (HR 0.94, 95% CI 0.84 to 1.05; P = 0.27; 4 trials, 3848 participants; high-quality evidence), progression-free survival (HR 0.94, 95% CI 0.86 to 1.03; P = 0.19; moderate-quality evidence), adverse events (RR 1.12, 95% CI 0.97 to 1.28; P = 0.11; 4 trials, 4126 evaluated participants; low-quality evidence), and severe adverse events (RR 1.14, 95% CI 0.92 to 1.40; 6 trials, 4546 evaluated participants; low-quality evidence). Survival rates at different time points showed no evidence of a difference between immunotherapy agents and the controls. Survival rate at 1-year follow-up (RR 1.02, 95% CI 0.96 to 1.08; I2 = 57%; 7 trials, 4420 participants; low-quality evidence), 2-year follow-up (RR 1.02, 95% CI 0.93 to 1.12; 7 trials, 4420 participants; moderate-quality evidence), 3-year follow-up (RR 0.99, 95% CI 0.90 to 1.09; 7 trials, 4420 participants; I2 = 22%; moderate-quality evidence) and at 5-year follow-up (RR 0.98, 95% CI 0.86 to 1.12; I2 = 0%; 7 trials, 4389 participants; moderate-quality evidence). Only one trial reported overall response rates. Two trials provided health-related quality of life results with contradicting results. AUTHORS' CONCLUSIONS: Based on this updated review, the current literature does not provide evidence that suggests a survival benefit from adding immunotherapy (excluding checkpoint inhibitors) to conventional curative surgery or radiotherapy, for people with localised NSCLC (stages I to III). Several ongoing trials with immune checkpoints inhibitors (PD-1/PD-L1) might bring new insights into the role of immunotherapy for people with stages I to III NSCLC.
Collapse
Affiliation(s)
- Jianwei Zhu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Yuan
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Wan
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Yin
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Li
- Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenwen Chen
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Suo
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
| | - Huan Song
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
44
|
Mucin 1 as a Molecular Target of a Novel Diisoquinoline Derivative Combined with Anti-MUC1 Antibody in AGS Gastric Cancer Cells. Molecules 2021; 26:molecules26216504. [PMID: 34770912 PMCID: PMC8588261 DOI: 10.3390/molecules26216504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The aim of the study was to examine the molecular mechanism of the anticancer action of a monoclonal antibody against MUC1 and a diisoquinoline derivative (OM-86II) in human gastric cancer cells. METHODS The cell viability was measured by the MTT assay. The disruption of mitochondrial membrane potential and activity of caspase-8 and caspase-9 was performed by flow cytometry. Fluorescent microscopy was used to confirm the proapoptotic effect of compounds. LC3A, LC3B and Beclin-1 concentrations were analyzed to check the influence of the compounds on induction of autophagy. ELISA assessments were performed to measure the concentration of mTOR, sICAM1, MMP-2, MMP-9 and pro-apoptotic Bax. RESULTS The anti-MUC1 antibody with the diisoquinoline derivative (OM-86II) significantly reduced gastric cancer cells' viability. This was accompanied by an increase in caspase-8 and caspase-9 activity as well as high concentrations of pro-apoptotic Bax. We also proved that the anti-MUC1 antibody with OM-86II decreased the concentrations of MMP-9, sICAM1 and mTOR in gastric cancer cells. After 48 h of incubation with such a combination, we observed higher levels of the crucial component of autophagosomes (LC3) and Beclin-1. CONCLUSIONS Our study proved that the anti-MUC1 antibody sensitizes human gastric cancer cells to the novel diisoquinoline derivative (OM-86II) via induction of apoptosis and autophagy, and inhibition of selected proteins such as mTOR, sICAM1 and MMP-9.
Collapse
|
45
|
An open-label phase I dose-escalation study of the safety and pharmacokinetics of DMUC4064A in patients with platinum-resistant ovarian cancer. Gynecol Oncol 2021; 163:473-480. [PMID: 34627611 DOI: 10.1016/j.ygyno.2021.09.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES MUC16 is overexpressed in the majority of human epithelial ovarian cancers (OC). DMUC4064A is a humanized anti-MUC16 monoclonal antibody conjugated to the microtubule-disrupting agent monomethyl auristatin E. This trial assessed the safety, tolerability, pharmacokinetics, and preliminary activity of DMUC4064A in patients with platinum-resistant OC. METHODS DMUC4064A was administered once every 3 weeks to patients in 1.0-5.6 mg/kg dose escalation cohorts, followed by cohort expansion at the recommended Phase II dose (RP2D). RESULTS Sixty-five patients were enrolled and received a median of 5 cycles (range 1-20) of DMUC4064A. The maximum tolerated dose was not reached; 5.2 mg/kg was the RP2D based on the overall tolerability profile. The most common adverse events were fatigue, nausea, abdominal pain, constipation, blurred vision, diarrhea, and anemia. Sixteen patients (25%) experienced related grade ≥ 3 toxicities. Twenty-six patients (40%) experienced ocular toxicities. The exposure of acMMAE was dose proportional, with a half-life of ~6 days. Sixteen patients (25%) experienced confirmed objective partial response (PR or CR) starting at ≥3.2 mg/kg dose levels, while 23 (35%) patients had best responses of PR or CR. Overall, the clinical benefit rate was 42% (27 patients with a best response [confirmed and unconfirmed] of CR, or PR or SD lasting ≥6 months). Among the 54 patients with high MUC16 immunohistochemistry scores, the clinical benefit rate was 46% (25 patients). Median progression-free survival was 3.9 months overall. CONCLUSIONS In this Phase I study, DMUC4064A demonstrated a tolerable safety profile along with encouraging efficacy in the indication of platinum-resistant OC.
Collapse
|
46
|
Słotwiński R, Słotwińska SM. Pancreatic cancer and adaptive metabolism in a nutrient-deficient environment. Cent Eur J Immunol 2021; 46:388-394. [PMID: 34764812 PMCID: PMC8574117 DOI: 10.5114/ceji.2021.109693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
Despite tremendous progress in the treatment of many cancer types, leading to a significant increase in survival, pancreatic ductal adenocarcinoma (PDAC) is still burdened with high mortality rates (5-year survival rate < 9%) due to late diagnosis, aggressiveness, and a lack of more effective treatment methods. Early diagnosis and new therapeutic approaches based on the adaptive metabolism of the tumor in a nutrient-deficient environment are expected to improve the future treatment of PDAC patients. It was found that blocking selected metabolic pathways related to the local adaptive metabolic activity of pancreatic cancer cells, improving nutrient acquisition and metabolic crosstalk within the microenvironment to sustain proliferation, may inhibit cancer development, increase cancer cell death, and increase sensitivity to other forms of treatment (e.g., chemotherapy). The present review highlights selected metabolic signaling pathways and their regulators aimed at inhibiting the neoplastic process. Particular attention is paid to the adaptive metabolism of pancreatic cancer, including fatty acids, autophagy, macropinocytosis, and deregulated cell-surface glycoproteins, which promotes cancer cell development in an oxygen-deficient and nutrient-poor environment.
Collapse
Affiliation(s)
- Robert Słotwiński
- Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
47
|
Ijssennagger N, van Rooijen KS, Magnúsdóttir S, Ramos Pittol JM, Willemsen ECL, de Zoete MR, Baars MJD, Stege PB, Colliva C, Pellicciari R, Youssef SA, de Bruin A, Vercoulen Y, Kuipers F, van Mil SWC. Ablation of liver Fxr results in an increased colonic mucus barrier in mice. JHEP Rep 2021; 3:100344. [PMID: 34604725 PMCID: PMC8463863 DOI: 10.1016/j.jhepr.2021.100344] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background & Aims The interorgan crosstalk between the liver and the intestine has been the focus of intense research. Key in this crosstalk are bile acids, which are secreted from the liver into the intestine, interact with the microbiome, and upon absorption reach back to the liver. The bile acid-activated farnesoid X receptor (Fxr) is involved in the gut-to-liver axis. However, liver-to-gut communication and the roles of bile acids and Fxr remain elusive. Herein, we aim to get a better understanding of Fxr-mediated liver-to-gut communication, particularly in colon functioning. Methods Fxr floxed/floxed mice were crossed with cre-expressing mice to yield Fxr ablation in the intestine (Fxr-intKO), liver (Fxr-livKO), or total body (Fxr-totKO). The effects on colonic gene expression (RNA sequencing), the microbiome (16S sequencing), and mucus barrier function by ex vivo imaging were analysed. Results Despite relatively small changes in biliary bile acid concentration and composition, more genes were differentially expressed in the colons of Fxr-livKO mice than in those of Fxr-intKO and Fxr-totKO mice (3272, 731, and 1824, respectively). The colons of Fxr-livKO showed increased expression of antimicrobial genes, Toll-like receptors, inflammasome-related genes and genes belonging to the ‘Mucin-type O-glycan biosynthesis’ pathway. Fxr-livKO mice have a microbiome profile favourable for the protective capacity of the mucus barrier. The thickness of the inner sterile mucus layer was increased and colitis symptoms reduced in Fxr-livKO mice. Conclusions Targeting of FXR is at the forefront in the battle against metabolic diseases. We show that ablation of Fxr in the liver greatly impacts colonic gene expression and increased the colonic mucus barrier. Increasing the mucus barrier is of utmost importance to battle intestinal diseases such as inflammatory bowel disease, and we show that this might be done by antagonising FXR in the liver. Lay summary This study shows that the communication of the liver to the intestine is crucial for intestinal health. Bile acids are key players in this liver-to-gut communication, and when Fxr, the master regulator of bile acid homoeostasis, is ablated in the liver, colonic gene expression is largely affected, and the protective capacity of the mucus barrier is increased.
Fxr ablation in the mouse liver has a major impact on colonic gene expression. Fxr signalling is induced in the colons of liver Fxr knockout (Fxr-livKO) mice. In Fxr-livKO colons, expression of antimicrobial and mucus genes is increased. Microbiome of Fxr-livKO mice is indicative of enhanced mucus barrier function. Fxr-livKO mice have an increased mucus barrier.
Collapse
Key Words
- BAs, bile acids
- Colon
- DSS, dextran sodium sulfate
- FITC, fluorescein isothiocyanate
- Farnesoid X receptor
- Fgfr4, fibroblast growth factor receptor 4
- Fxr, farnesoid X receptor
- Fxr-intKO, intestine-specific Fxr knockout
- Fxr-livKO, liver-specific Fxr knockout
- Fxr-totKO, whole body Fxr knockout
- GO, Gene Ontology
- Gut microbiome
- HID, high-iron diamine
- IBD, inflammatory bowel disease
- Intestine-specific Fxr-KO mouse
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- Liver-specific Fxr-KO mouse
- Liver–gut axis
- Mucus layer
- RT qPCR, real-time quantitative PCR
- fpkm, fragments per kilobase of transcript per million mapped reads
Collapse
Affiliation(s)
- Noortje Ijssennagger
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kristel S van Rooijen
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefanía Magnúsdóttir
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - José M Ramos Pittol
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| | - Ellen C L Willemsen
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel R de Zoete
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthijs J D Baars
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul B Stege
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Sameh A Youssef
- Non-Clinical Safety, Department of Pathology, Janssen Pharmaceutica Research and Development, Beerse, Belgium
| | - Alain de Bruin
- Departments of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Yvonne Vercoulen
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Folkert Kuipers
- Departments of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Saskia W C van Mil
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
48
|
Isaka E, Sugiura T, Hashimoto K, Kikuta K, Anazawa U, Nomura T, Kameyama A. Characterization of tumor-associated MUC1 and its glycans expressed in mucoepidermoid carcinoma. Oncol Lett 2021; 22:702. [PMID: 34457057 PMCID: PMC8358622 DOI: 10.3892/ol.2021.12963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Mucoepidermoid carcinoma (MEC) is one of the most frequently misdiagnosed tumors. Glycans are modulated by malignant transformation. Mucin 1 (MUC1) is a mucin whose expression is upregulated in various tumors, including MEC, and it has previously been investigated as a diagnostic and prognostic tumor marker. The present study aimed to reveal the differences in the mucin glycans between MEC and normal salivary glands (NSGs) to discover novel diagnostic markers. Soluble fractions of salivary gland homogenate prepared from three MEC salivary glands and 7 NSGs were evaluated. Mucins in MEC and NSGs were separated using supported molecular matrix electrophoresis, and stained with Alcian blue and monoclonal antibodies. The glycans of the separated mucins were analyzed by mass spectrometry. MUC1 was found in MEC but not in NSGs, and almost all glycans of MUC1 in MEC were sialylated, whereas the glycans of mucins in NSGs were less sialylated. The core 2 type glycans, (Hex)2(HexNAc)2(NeuAc)1 and (Hex)2(HexNAc)2(NeuAc)2, were found to be significantly abundant glycans of MUC1 in MEC. MEC markedly produced MUC1 modified with sialylated core 2 glycans. These data were obtained from the soluble fractions of salivary gland homogenates. These findings provide a basis for the utilization of MUC1 as a serum diagnostic marker for the preoperative diagnosis of MEC.
Collapse
Affiliation(s)
- Eisaku Isaka
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Takanori Sugiura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Kazuhiko Hashimoto
- Department of Pathology and Laboratory Medicine, Ichikawa General Hospital, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Kazutaka Kikuta
- Department of Musculoskeletal Oncology and Orthopaedic Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Ukei Anazawa
- Department of Orthopaedic Surgery, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Takeshi Nomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan.,Oral Cancer Center, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
49
|
Abstract
Angiomatoid fibrous histiocytoma (AFH) is a rarely metastasizing neoplasm that typically occurs in the deep dermis and subcutis of the extremities of young patients, characterized by a t(2;22) translocation involving EWSR1 and CREB1. Because of its distinctive histologic features, the diagnosis of AFH is generally straightforward, although the immunohistochemistry (IHC) findings are relatively nonspecific. We recently encountered a case of primary cranial AFH that showed strong MUC4 IHC expression, which has not yet been reported previously. Prompted by this surprising finding, we investigated MUC4 expression in a series of AFH to evaluate this potential diagnostic pitfall. The expression of ALK by IHC, recently discovered in AFH, was also assessed in this study. We also analyzed EWSR1 rearrangement by fluorescence in situ hybridization using a dual color break-apart probe to confirm the diagnosis. The results showed MUC4 expression in 22.2% of AFH cases (4/18 cases), demonstrating a variable intensity of cytoplasmic staining. Most notably, one of the positive cases showed strong and diffuse expression. ALK IHC expression was observed in 17 of 18 cases (94.4%), usually in a diffuse and strong cytoplasmic pattern. EWSR1 rearrangement was demonstrated by fluorescence in situ hybridization in 81.2% of cases (13 of 16), including all the MUC4-positive cases. Our results indicate that although the significance of MUC4 expression in AFH is unknown, it is important to be aware that a subset of AFH can express the protein by IHC, expanding a variety of MUC4-positive mesenchymal tumors.
Collapse
|
50
|
Radziejewska I, Supruniuk K, Bielawska A. Anti-cancer effect of combined action of anti-MUC1 and rosmarinic acid in AGS gastric cancer cells. Eur J Pharmacol 2021; 902:174119. [PMID: 33930385 DOI: 10.1016/j.ejphar.2021.174119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
MUC1 seems to be promising target in cancer cells due to its abundant and specifically altered expression as well as differential distribution pattern relative to normal tissues. Rosmarinic acid (RA) is a natural, polyphenolic compound with pharmacological activities, including anti-cancer. Herein, we aim to explore the effect of combined action of anti-MUC1 and RA on selected cancer-related factors in AGS gastric cancer cells. Cancer cells were treated with 100, 200 μM rosmarinic acid, 5 μg/ml anti-MUC1 and acid together with antibody. Western blotting, ELISA and RT-PCR were used to assess the expression of MUC1, selected sugar antigens, enzymes participating in protein glycosylation, Gal-3, p53, pro- and anti-apoptotic factors, and caspases-3,-8,-9 in cancer cells. MUC1 mRNA was significantly suppressed by combined action of anti-MUC1 and RA. Such treatment markedly inhibited expression of cancer-related Tn, T, sialyl Tn, sialyl T, and fucosylated sugar antigens as well as mRNA expression of enzymes participating in their formation: ppGalNAcT2, C1GalT1, ST6GalNAcT2, ST3GalT1 and FUT4. C1GalT1 was suppressed also on protein level. Gal-3, factor likely participating in metastasis, was significantly suppressed on mRNA level by RA administrated with anti-MUC1. Pro-apoptotic Bax protein and Bad mRNA were significantly induced, and anti-apoptotic Bcl-2 mRNA expression was inhibited by such treatment. Combined action of mAb and RA markedly increased caspase-9 mRNA expression. Results of the study indicate that combined action of anti-MUC1 and RA is more effective than monotherapy in relation to examined cancer related factors. Such treatment can be considered as new, promising strategy in gastric cancer therapy.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222, Białystok, Poland.
| | - Katarzyna Supruniuk
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222, Białystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Białystok, ul. Kilińskiego 1, 15-089, Białystok, Poland
| |
Collapse
|