1
|
Constanty F, Wu B, Wei KH, Lin IT, Dallmann J, Guenther S, Lautenschlaeger T, Priya R, Lai SL, Stainier DYR, Beisaw A. Border-zone cardiomyocytes and macrophages regulate extracellular matrix remodeling to promote cardiomyocyte protrusion during cardiac regeneration. Nat Commun 2025; 16:3823. [PMID: 40268967 PMCID: PMC12019606 DOI: 10.1038/s41467-025-59169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Despite numerous advances in our understanding of zebrafish cardiac regeneration, an aspect that remains less studied is how regenerating cardiomyocytes invade and replace the collagen-containing injured tissue. Here, we provide an in-depth analysis of the process of cardiomyocyte invasion. We observe close interactions between protruding border-zone cardiomyocytes and macrophages, and show that macrophages are essential for extracellular matrix remodeling at the wound border zone and cardiomyocyte protrusion into the injured area. Single-cell RNA-sequencing reveals the expression of mmp14b, encoding a membrane-anchored matrix metalloproteinase, in several cell types at the border zone. Genetic mmp14b mutation leads to decreased macrophage recruitment, collagen degradation, and subsequent cardiomyocyte protrusion into injured tissue. Furthermore, cardiomyocyte-specific overexpression of mmp14b is sufficient to enhance cardiomyocyte invasion into the injured tissue and along the apical surface of the wound. Altogether, our data provide important insights into the mechanisms underlying cardiomyocyte invasion of the collagen-containing injured tissue during cardiac regeneration.
Collapse
Affiliation(s)
- Florian Constanty
- Mechanisms of Cardiac Regeneration and Repair Lab, Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Bailin Wu
- Mechanisms of Cardiac Regeneration and Repair Lab, Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ke-Hsuan Wei
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - I-Ting Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Julia Dallmann
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Rhein/Main, Rhein/Main, Germany
| | - Till Lautenschlaeger
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Bad Nauheim, Germany
- The Francis Crick Institute, London, UK
| | - Shih-Lei Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Rhein/Main, Rhein/Main, Germany
- Cardio-Pulmonary Institute, Bad Nauheim, Germany
| | - Arica Beisaw
- Mechanisms of Cardiac Regeneration and Repair Lab, Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
2
|
Niland S, Eble JA. Decoding the MMP14 integrin link: Key player in the secretome landscape. Matrix Biol 2025; 136:36-51. [PMID: 39828138 DOI: 10.1016/j.matbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion. Integrins serve as mechanosensors that mediate the contact of cells with the scaffold of the extracellular matrix and are significantly involved in the precise positioning and activity control of the membrane-bound collagenase MMP14. As a secretome proteinase, MMP14 influences and modifies the secretome itself. While integrins and MT-MMPs are membrane bound, but can be released and are therefore border crossers between the cell surface and the secretome, the extracellular matrix is not constitutively cell-bound, but its binding to integrins and other cell receptors is a stringently regulated process. To understand the mutual interactions in detail, we first summarize the structure and function of MMP14 and how it is regulated at the enzymatic and cellular level. In particular, the mutual interactions between integrins and MMP14 include the proteolytic cleavage of integrins themselves by MMP14. We then review the biochemical, cell biological and physiological effects of MMP14 on the composition and associated functions in the tumor secretome when either bound to the cell membrane, or located on extracellular microvesicles, or as a proteolytically shed non-membrane-bound ectodomain. Novel methods of proteomics, including the analysis of extravesicular vesicles, and new methods for the quantification of MMP14 will provide new research and diagnostic tools. The proteolytic modification of the tumor secretome, especially by MMP14, may bring an additional aspect to tumor secretome studies and will have an impact on the diagnosis and most likely also on the therapy of cancer patients.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
3
|
Liu J, Li Y, Lian X, Zhang C, Feng J, Tao H, Wang Z. Potential target within the tumor microenvironment - MT1-MMP. Front Immunol 2025; 16:1517519. [PMID: 40196128 PMCID: PMC11973285 DOI: 10.3389/fimmu.2025.1517519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Matrix metalloproteinases are integral to the modification of the tumor microenvironment and facilitate tumor progression by degrading the extracellular matrix, releasing cytokines, and influencing the recruitment of immune cells. Among the matrix metalloproteinases, membrane-type matrix metalloproteinase 1 (MT1-MMP/MMP14) is the first identified membrane-type MMP and acts as an essential proteolytic enzyme that enables tumor infiltration and metastatic progression. Given the pivotal role of MT1-MMP in tumor progression and the correlation between its overexpression in tumors and unfavorable prognoses across multiple cancer types, a comprehensive understanding of the potential functional mechanisms of MT1-MMP is essential. This knowledge will aid in the advancement of diverse anti-tumor therapies aimed at targeting MT1-MMP. Although contemporary research has highlighted the considerable potential of MT1-MMP in targeted cancer therapy, studies pertaining to its application in cell therapy remain relatively limited. In this review, we delineate the structural characteristics and regulatory mechanisms of MT1-MMP expression, as well as its biological significance in tumorigenesis. Finally, we discussed the current status and prospects of anti-tumor therapies targeting MT1-MMP.
Collapse
Affiliation(s)
- Jinlong Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yijing Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueqi Lian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenglin Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianing Feng
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongfei Tao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhimin Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Sakamoto S, Inoue H, Takino T, Kohda Y, Yoshida J, Ohba S, Usami I, Suzuki T, Kawada M, Hatakeyama M. Claudin-11 Enhances Invasive and Metastatic Abilities of Small-Cell Lung Cancer Through MT1-MMP Activation. Cancer Sci 2025. [PMID: 40079504 DOI: 10.1111/cas.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 03/15/2025] Open
Abstract
Small-cell lung cancer (SCLC) is an aggressive tumor characterized by the frequent development of distant metastases. This study aimed to explore the mechanism of SCLC metastasis using an originally developed orthotopic transplantation model with DMS273 cells. An analysis of G3H cells, a highly metastatic subline of DMS273 cells, revealed that claudin-11 promotes the invasive and metastatic ability of the cells. Further analysis revealed that membrane type 1-matrix metalloproteinase (MT1-MMP), which degrades a wide range of extracellular matrix components, was coprecipitated with claudin-11. Gelatin zymography revealed that claudin-11 enhanced MT1-MMP activity, and MT1-MMP silencing suppressed the invasive and metastatic ability of G3H cells. Moreover, in MT1-MMP silencing DMS273 cells, the enhancement of invasion and metastatic potential induced by CLDN11 overexpression was abolished. These results demonstrate that claudin-11 enhances the invasive capacity of the cells by activating MT1-MMP, which promotes metastatic formation in the orthotopic transplantation model. Additionally, claudin-11 expression was detected in SCLC tumor samples, and higher expression of CLDN11 correlated with poor prognosis in patients with SCLC. These findings suggest that the claudin-11/MT1-MMP axis plays an important role in SCLC pathogenesis.
Collapse
Affiliation(s)
- Shuichi Sakamoto
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu, Japan
| | - Hiroyuki Inoue
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu, Japan
| | - Takahisa Takino
- Institute of Liberal Arts & Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yasuko Kohda
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu, Japan
| | - Junjiro Yoshida
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Shunichi Ohba
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu, Japan
| | - Ihomi Usami
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Masanori Hatakeyama
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Microbial Carcinogenesis, Microbial Chemistry Research Foundation, Tokyo, Japan
| |
Collapse
|
5
|
Andrieu C, Danesin C, Montigny A, Rey M, Baqué K, Bibonne A, Alfandari D, Theveneau E. Delamination of chick cephalic neural crest cells requires an MMP14-dependent downregulation of Cadherin-6B. Differentiation 2025; 142:100836. [PMID: 39828493 DOI: 10.1016/j.diff.2025.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Matrix Metalloproteinases (MMPs) are known for their role in matrix remodeling via their catalytic activities in the extracellular space. Interestingly, these enzymes can also play less expected roles in cell survival, polarity and motility via other substrates (e.g. receptors, chemokines), through an intracellular localization (e.g. the nucleus) or via non-catalytic functions. Most of these unconventional functions are yet to be functionally validated in a physiological context. Here, we used the delamination of the cephalic Neural Crest (NC) cells of the chicken embryo, a well described experimental model of epithelial-mesenchymal transition (EMT), to study the in vivo function of MMP14 (a.k.a MT1-MMP). MMP14 is a transmembrane MMP known for its importance in cell invasion and often associated with poor prognosis in cancer. We found that MMP14 is expressed and required for cephalic NC delamination. More specifically, MMP14 is necessary for the downregulation of Cadherin-6B and a co-inhibition of Cadherin-6B and MMP14 expressions is sufficient to restore NC delamination. Cadherin-6B is normally repressed by Snail2. Surprisingly, in MMP14 knockdown this lack of Cadherin-6B repression occurs in the context of a normal expression and nuclear import of Snail2. We further show that MMP14 is not detected in the nucleus and that Snail2 and MMP14 do not physically interact. These data reveals that a yet to be identified MMP14-dependent signaling event is required for the Snail2-dependent repression of Cadherin-6B. In conclusion, this work provides an in vivo example of atypical regulation of Cadherins by an MMP which emphasizes the importance and diversity of non-canonical functions of MMPs.
Collapse
Affiliation(s)
- Cyril Andrieu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Cathy Danesin
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Audrey Montigny
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Marie Rey
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Klara Baqué
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Anne Bibonne
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Dominique Alfandari
- University of Massachusetts Amherst, Dept. of Veterinary and Animal Sciences, Amherst, MA, 01003, USA
| | - Eric Theveneau
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
6
|
Blaszczyk K, Jedrzejak AP, Ziojla N, Shcheglova E, Szarafin K, Jankowski A, Beamish CA, Chmielowiec J, Sabek OM, Balasubramanyam A, Patel S, Borowiak M. SPOCK2 controls the proliferation and function of immature pancreatic β-cells through MMP2. Exp Mol Med 2025; 57:131-150. [PMID: 39741186 PMCID: PMC11799530 DOI: 10.1038/s12276-024-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 01/02/2025] Open
Abstract
Human pluripotent stem cell-derived β-cells (SC-β-cells) represent an alternative cell source for transplantation in diabetic patients. Although mitogens could in theory be used to expand β-cells, adult β-cells very rarely replicate. In contrast, newly formed β-cells, including SC-β-cells, display higher proliferative capacity and distinct transcriptional and functional profiles. Through bidirectional expression modulation and single-cell RNA-seq, we identified SPOCK2, an ECM protein, as an inhibitor of immature β-cell proliferation. Human β-cells lacking SPOCK2 presented elevated MMP2 expression and activity, leading to β-integrin-FAK-c-JUN pathway activation. Treatment with the MMP2 protein resulted in pronounced short- and long-term SC-β-cell expansion, significantly increasing glucose-stimulated insulin secretion in vitro and in vivo. These findings suggest that SPOCK2 mediates fetal β-cell proliferation and maturation. In summary, we identified a molecular mechanism that specifically regulates SC-β-cell proliferation and function, highlighting a unique signaling milieu of SC-β-cells with promise for the robust derivation of fully functional cells for transplantation.
Collapse
Affiliation(s)
- Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Anna P Jedrzejak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Natalia Ziojla
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Ekaterina Shcheglova
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Karolina Szarafin
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Artur Jankowski
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Christine A Beamish
- Department of Surgery, Methodist Research Institute, Houston, TX, 77030, USA
| | - Jolanta Chmielowiec
- Collegium Medicum, University of Warmia and Mazury, Aleja Warszawska 30, Olsztyn, 11-082, Poland
| | - Omaima M Sabek
- Department of Surgery, Methodist Research Institute, Houston, TX, 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sanjeet Patel
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland.
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Kelly H, Inada M, Itoh Y. The Diverse Pathways for Cell Surface MT1-MMP Localization in Migratory Cells. Cells 2025; 14:209. [PMID: 39937000 PMCID: PMC11816416 DOI: 10.3390/cells14030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Controlled cell migration is an essential biological process in health, while uncontrolled cell migration contributes to disease progression. For cells to migrate through tissue, they must first degrade the extracellular matrix (ECM), which acts as a physical barrier to cell migration. A type I transmembrane-type matrix metalloproteinase, MT1-MMP, is the key enzyme involved in this process. It has been extensively shown that MT1-MMP promotes the migration of different cell types in tissue, including fibroblasts, epithelial cells, endothelial cells, macrophages, mesenchymal stem cells, and cancer cells. MT1-MMP is tightly regulated at different levels, and its localization to leading-edge membrane structures is an essential process for MT1-MMP to promote cellular invasion. Different cells display different motility-associated membrane structures, which contribute to their invasive ability, and there are diverse mechanisms of MT1-MMP localization to these structures. In this article, we will discuss the current understanding of MT1-MMP regulation, in particular, localization mechanisms to these different motility-associated membrane structures.
Collapse
Affiliation(s)
- Hannah Kelly
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK;
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan;
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yoshifumi Itoh
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK;
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
8
|
Lu W, Wen J. The relationship among H 2S, neuroinflammation and MMP-9 in BBB injury following ischemic stroke. Int Immunopharmacol 2025; 146:113902. [PMID: 39724730 DOI: 10.1016/j.intimp.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Blood-brain barrier (BBB) is located at the interface between the central nervous system (CNS) and the circulatory system, which maintains the microenvironmental homeostasis of the CNS. BBB damage is a result of CNS diseases, including ischemic stroke, and is a cause of CNS deterioration. Cerebral ischemia unleashes a profound inflammatory response to remove the damaged tissue in the CNS and prepare the brain for repair. However, the excessive neuroinflammation following stroke onset is associated with BBB breakdown, resulting in neuronal injury and worse neurological outcomes. Additionally, matrix metalloproteinases (MMPs) are likewise responsible for the BBB injury and participate in the pathological processes of neuroinflammation following ischemic stroke. Hydrogen sulfide (H2S) is one of gaseous signaling and freely diffusing molecules. Low concentration of H2S yields the neuroprotection against BBB damage following stroke. This review discussed the current knowledge about the detrimental roles of neuroinflammation and MMPs in BBB injury following ischemic stroke. Specifically, we provided an updated overview of H2S in protecting against BBB injury following ischemic stroke via anti-neuroinflammation and inhibiting MMP-9.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Medical Branch, Hefei Technology College, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
9
|
Takatsuka R, Terashima M, Ishimura A, Suzuki T, Takino T. Iron regulates MT1-MMP-mediated proMMP-2 activation and cancer cell invasion. Biochem Biophys Res Commun 2025; 742:151124. [PMID: 39644603 DOI: 10.1016/j.bbrc.2024.151124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Cellular iron plays a crucial role in many crucial physiological processes. Excessive iron retention due to iron influx and efflux imbalance contributes to cancer development and proliferation, as well as malignant conversion. Membrane-type 1 matrix metalloproteinase (MT1-MMP) plays a crucial role in tumor invasion and metastasis, because this enzyme can degrade various extracellular matrix components and cleave membrane tethered proteins on the cell surface. Herein, we demonstrate that cellular iron regulates MT1-MMP-mediated proMMP-2 activation and thereby cancer cell invasion. Iron depletion downregulated MT1-MMP expression in cancer cells, accompanied by inhibition of proMMP-2 activation. Conversely, iron loading stimulated MT1-MMP expression and MT1-MMP-containing extracellular vesicle secretion, thereby promoting proMMP-2 activation, which was inhibited through antioxidant treatment. Iron chelator deferasirox suppressed cancer cell invasion but not fibroblasts. Thus, this study indicated that iron accumulation in cancer may contribute to not only cell proliferation but also invasion by activating the MT1-MMP-MMP-2 axis.
Collapse
Affiliation(s)
- Risa Takatsuka
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Minoru Terashima
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan; Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Akihiko Ishimura
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takahisa Takino
- Division of Education for Global Standard, Institute of Liberal Arts and Science, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
10
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Miyazaki K, Hoshino D, Kasajima R, Koizume S, Koshikawa N, Miyagi Y. Oncofetal morphogenesis similar to embryonic gut formation by a subpopulation of DLD-1 human colon cancer cells. Exp Cell Res 2024; 442:114188. [PMID: 39128553 DOI: 10.1016/j.yexcr.2024.114188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Cancer stem cells (CSC) are thought to be responsible for cancer phenotypes and cellular heterogeneity. Here we demonstrate that the human colon cancer cell line DLD1 contains two types of CSC-like cells that undergo distinct morphogenesis in the reconstituted basement membrane gel Matrigel. In our method with cancer cell spheroids, the parent cell line (DLD1-P) developed grape-like budding structures, whereas the other (DLD1-Wm) and its single-cell clones dynamically developed worm-like ones. Gene expression analysis suggested that the former mimicked intestinal crypt-villus morphogenesis, while the latter mimicked embryonic hindgut development. The organoids of DLD1-Wm cells rapidly extended in two opposite directions by expressing dipolar proteolytic activity. The invasive morphogenesis required the expression of MMP-2 and CD133 genes and ROCK activity. These cells also exhibited gastrula-like morphogenesis even in two-dimensional cultures without Matrigel. Moreover, the two DLD1 cell lines showed clear differences in cellular growth, tumor growth and susceptibility to paclitaxel. This study also provides a simple organoid culture method for human cancer cell lines. HT-29 and other cancer cell lines underwent characteristic morphogenesis in direct contact with normal fibroblasts. Such organoid cultures would be useful for investigating the nature of CSCs and for screening anti-cancer drugs. Our results lead to the hypothesis that CSC-like cells with both invasive activity and a fetal phenotype, i. e. oncofetal CSCs, are generated in some types of colon cancers.
Collapse
Affiliation(s)
- Kaoru Miyazaki
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan.
| | - Daisuke Hoshino
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan.
| | - Rika Kasajima
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan.
| | - Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan.
| | - Naohiko Koshikawa
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama, 226-8501, Japan.
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan.
| |
Collapse
|
12
|
Suenaga M, Mashima T, Kawata N, Dan S, Seimiya H, Yamaguchi K. Exploratory Study Identifies Matrix Metalloproteinase-14 and -9 as Potential Biomarkers of Regorafenib Efficacy in Metastatic Colorectal Cancer. Cancers (Basel) 2024; 16:2855. [PMID: 39199626 PMCID: PMC11352555 DOI: 10.3390/cancers16162855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
In identifying biomarkers for anticancer drugs, the lack of objectivity in selecting candidate factors makes interpretation difficult. We performed preclinical analysis and a translational validation study to identify candidate biomarkers for regorafenib efficacy in metastatic colorectal cancer (mCRC). Using in silico COMPARE analysis with a human cancer cell line panel, JFCR39, we selected candidate biomarkers whose expression correlates with regorafenib sensitivity. We validated predictive values in mCRC patients receiving regorafenib (discovery, n = 53) and FTD/TPI (control, n = 16). Blood samples were obtained at baseline (BL), before the second cycle (2nd), and at progressive disease (PD), and biomarker levels were measured using ELISA. Our analysis showed that high matrix metalloproteinase (MMP)-14 expression was associated with a high sensitivity to regorafenib. In the discovery cohort, high MMP-14 levels at BL and PD were correlated with tumor shrinkage and longer progression-free survival (PFS). A subsequent analysis of other related factors further indicated that the patients with decreased MMP-9 levels at the 2nd had higher disease control rates, tumor shrinkage, longer PFS, and overall survival than those with increased changes. These findings were not observed in the control cohort. Our study suggests MMP-14 and MMP-9 may serve as prognostic markers for regorafenib and provide insights into novel combination therapies with anti-MMP-9 agents or FTD/TPI.
Collapse
Affiliation(s)
- Mitsukuni Suenaga
- Gastroenterology Center, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan; (N.K.); (K.Y.)
- Department of Clinical Oncology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tetsuo Mashima
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan; (T.M.); (H.S.)
| | - Naomi Kawata
- Gastroenterology Center, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan; (N.K.); (K.Y.)
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan; (T.M.); (H.S.)
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan;
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan; (T.M.); (H.S.)
| | - Kensei Yamaguchi
- Gastroenterology Center, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan; (N.K.); (K.Y.)
| |
Collapse
|
13
|
Danalache M, Umrath F, Riester R, Schwitalle M, Guilak F, Hofmann UK. Proteolysis of the pericellular matrix: Pinpointing the role and involvement of matrix metalloproteinases in early osteoarthritic remodeling. Acta Biomater 2024; 181:297-307. [PMID: 38710401 DOI: 10.1016/j.actbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The pericellular matrix (PCM) serves a critical role in signal transduction and mechanoprotection in chondrocytes. Osteoarthritis (OA) leads to a gradual deterioration of the cartilage, marked by a shift in the spatial arrangement of chondrocytes from initially isolated strands to large cell clusters in end-stage degeneration. These changes coincide with progressive enzymatic breakdown of the PCM. This study aims to assess the role and involvement of specific matrix metalloproteinases (MMPs) in PCM degradation during OA. We selected cartilage samples from 148 OA patients based on the predominant spatial chondrocyte patterns. The presence of various MMPs (-1,-2,-3,-7,-8,-9,-10,-12,-13) was identified by multiplexed immunoassays. For each pattern and identified MMP, the levels and activation states (pro-form vs. active form) were measured by zymograms and western blots. The localization of these MMPs was determined using immunohistochemical labeling. To verify these results, healthy cartilage was exposed to purified MMPs, and the consecutive structural integrity of the PCM was analyzed through immunolabeling and proximity ligation assay. Screening showed elevated levels of MMP-1,-2,-3,-7, and -13, with their expression profile showing a clear dependency of the degeneration stage. MMP-2 and -7 were localized in the PCM, whereas MMP-1,-7, and -13 were predominantly intracellular. We found that MMP-2 and -3 directly disrupt collagen type VI, and MMP-3 and -7 destroy perlecan. MMP-2, -3, and -7 emerge as central players in early PCM degradation in OA. With the disease's initial stages already displaying elevated peaks in MMP expression, this insight may guide early targeted therapies to halt abnormal PCM remodeling. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) causes a gradual deterioration of the articular cartilage, accompanied by a progressive breakdown of the pericellular matrix (PCM). The PCM's crucial function in protecting and transmitting signals within chondrocytes is impaired in OA. By studying 148 OA-patient cartilage samples, the involvement of matrix metalloproteinases (MMPs) in PCM breakdown was explored. Findings highlighted elevated levels of certain MMPs linked to different stages of degeneration. Notably, MMP-2, -3, and -7 were identified as potent contributors to early PCM degradation, disrupting key components like collagen type VI and perlecan. Understanding these MMPs' roles in initiating OA progression, especially in its early stages, provides insights into potential targets for interventions to preserve PCM integrity and potentially impeding OA advancement.
Collapse
Affiliation(s)
- Marina Danalache
- Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany.
| | - Felix Umrath
- Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany; Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, D-72076 Tübingen, Germany
| | - Rosa Riester
- Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany
| | - Maik Schwitalle
- Winghofer Medicum, Röntgenstraße 38, D-72108 Rottenburg am Neckar, Germany
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA
| | - Ulf Krister Hofmann
- Department of Orthopedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, D-52074 Aachen, Germany
| |
Collapse
|
14
|
Zhou J, Le CQ, Zhang Y, Wells JA. A general approach for selection of epitope-directed binders to proteins. Proc Natl Acad Sci U S A 2024; 121:e2317307121. [PMID: 38683990 PMCID: PMC11087759 DOI: 10.1073/pnas.2317307121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Directing antibodies to a particular epitope among many possible on a target protein is a significant challenge. Here, we present a simple and general method for epitope-directed selection (EDS) using a differential phage selection strategy. This involves engineering the protein of interest (POI) with the epitope of interest (EOI) mutated using a systematic bioinformatics algorithm to guide the local design of an EOI decoy variant. Using several alternating rounds of negative selection with the EOI decoy variant followed by positive selection on the wild-type POI, we were able to identify highly specific and potent antibodies to five different EOI antigens that bind and functionally block known sites of proteolysis. Among these, we developed highly specific antibodies that target the proteolytic site on the CUB domain containing protein 1 (CDCP1) to prevent its proteolysis allowing us to study the cellular maturation of this event that triggers malignancy. We generated antibodies that recognize the junction between the pro- and catalytic domains for three different matrix metalloproteases (MMPs), MMP1, MMP3, and MMP9, that selectively block activation of each of these enzymes and impair cell migration. We targeted a proteolytic epitope on the cell surface receptor, EPH Receptor A2 (EphA2), that is known to transform it from a tumor suppressor to an oncoprotein. We believe that the EDS method greatly facilitates the generation of antibodies to specific EOIs on a wide range of proteins and enzymes for broad therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
| | - Chau Q. Le
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
| | - Yun Zhang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
- Chan Zuckerberg Biohub, San Francisco, CA94158
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA94158
| |
Collapse
|
15
|
Asthana P, Wong HLX. Preventing obesity, insulin resistance and type 2 diabetes by targeting MT1-MMP. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167081. [PMID: 38367902 DOI: 10.1016/j.bbadis.2024.167081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Obesity is one of the predominant risk factors for type 2 diabetes. Despite all the modern advances in medicine, an effective drug treatment for obesity without overt side effects has not yet been found. The discovery of growth and differentiation factor 15 (GDF15), an appetite-regulating hormone, created hopes for the treatment of obesity. However, an insufficient understanding of the physiological regulation of GDF15 has been a major obstacle to mitigating GDF15-centric treatment of obesity. Our recent studies revealed how a series of proteolytic events predominantly mediated by membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP14), a key cell-surface metalloproteinase involved in extracellular remodeling, contribute to the pathogenesis of metabolic disorders, including obesity and diabetes. The MT1-MMP-mediated cleavage of the GDNF family receptor-α-like (GFRAL), a key neuronal receptor of GDF15, controls the satiety center in the hindbrain, thereby regulating non-homeostatic appetite and bodyweight changes. Furthermore, increased activation of MT1-MMP does not only lead to increased risk of obesity, but also causes age-associated insulin resistance by cleaving Insulin Receptor in major metabolic tissues. Importantly, inhibition of MT1-MMP effectively protects against obesity and diabetes, revealing the therapeutic potential of targeting MT1-MMP for the management of metabolic disorders.
Collapse
Affiliation(s)
- Pallavi Asthana
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | | |
Collapse
|
16
|
Schevenels G, Cabochette P, America M, Vandenborne A, De Grande L, Guenther S, He L, Dieu M, Christou B, Vermeersch M, Germano RFV, Perez-Morga D, Renard P, Martin M, Vanlandewijck M, Betsholtz C, Vanhollebeke B. A brain-specific angiogenic mechanism enabled by tip cell specialization. Nature 2024; 628:863-871. [PMID: 38570687 PMCID: PMC11041701 DOI: 10.1038/s41586-024-07283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-β-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.
Collapse
Affiliation(s)
- Giel Schevenels
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Pauline Cabochette
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Michelle America
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Arnaud Vandenborne
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Line De Grande
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stefan Guenther
- Max Planck Institute for Heart and Lung Research, ECCPS Bioinformatics and Deep Sequencing Platform, Bad Nauheim, Germany
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Marc Dieu
- Mass Spectrometry Facility (MaSUN), University of Namur, Namur, Belgium
| | - Basile Christou
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Raoul F V Germano
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - David Perez-Morga
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Patricia Renard
- Mass Spectrometry Facility (MaSUN), University of Namur, Namur, Belgium
| | - Maud Martin
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium.
| |
Collapse
|
17
|
Constanty F, Wu B, Wei KH, Lin IT, Dallmann J, Guenther S, Lautenschlaeger T, Priya R, Lai SL, Stainier DYR, Beisaw A. Border-zone cardiomyocytes and macrophages contribute to remodeling of the extracellular matrix to promote cardiomyocyte invasion during zebrafish cardiac regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584570. [PMID: 38559277 PMCID: PMC10980021 DOI: 10.1101/2024.03.12.584570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite numerous advances in our understanding of zebrafish cardiac regeneration, an aspect that remains less studied is how regenerating cardiomyocytes invade, and eventually replace, the collagen-containing fibrotic tissue following injury. Here, we provide an in-depth analysis of the process of cardiomyocyte invasion using live-imaging and histological approaches. We observed close interactions between protruding cardiomyocytes and macrophages at the wound border zone, and macrophage-deficient irf8 mutant zebrafish exhibited defects in extracellular matrix (ECM) remodeling and cardiomyocyte protrusion into the injured area. Using a resident macrophage ablation model, we show that defects in ECM remodeling at the border zone and subsequent cardiomyocyte protrusion can be partly attributed to a population of resident macrophages. Single-cell RNA-sequencing analysis of cells at the wound border revealed a population of cardiomyocytes and macrophages with fibroblast-like gene expression signatures, including the expression of genes encoding ECM structural proteins and ECM-remodeling proteins. The expression of mmp14b , which encodes a membrane-anchored matrix metalloproteinase, was restricted to cells in the border zone, including cardiomyocytes, macrophages, fibroblasts, and endocardial/endothelial cells. Genetic deletion of mmp14b led to a decrease in 1) macrophage recruitment to the border zone, 2) collagen degradation at the border zone, and 3) subsequent cardiomyocyte invasion. Furthermore, cardiomyocyte-specific overexpression of mmp14b was sufficient to enhance cardiomyocyte invasion into the injured tissue and along the apical surface of the wound. Altogether, our data shed important insights into the process of cardiomyocyte invasion of the collagen-containing injured tissue during cardiac regeneration. They further suggest that cardiomyocytes and resident macrophages contribute to ECM remodeling at the border zone to promote cardiomyocyte replenishment of the fibrotic injured tissue.
Collapse
|
18
|
Wenzel EM, Pedersen NM, Elfmark LA, Wang L, Kjos I, Stang E, Malerød L, Brech A, Stenmark H, Raiborg C. Intercellular transfer of cancer cell invasiveness via endosome-mediated protease shedding. Nat Commun 2024; 15:1277. [PMID: 38341434 PMCID: PMC10858897 DOI: 10.1038/s41467-024-45558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Overexpression of the transmembrane matrix metalloproteinase MT1-MMP/MMP14 promotes cancer cell invasion. Here we show that MT1-MMP-positive cancer cells turn MT1-MMP-negative cells invasive by transferring a soluble catalytic ectodomain of MT1-MMP. Surprisingly, this effect depends on the presence of TKS4 and TKS5 in the donor cell, adaptor proteins previously implicated in invadopodia formation. In endosomes of the donor cell, TKS4/5 promote ADAM-mediated cleavage of MT1-MMP by bridging the two proteases, and cleavage is stimulated by the low intraluminal pH of endosomes. The bridging depends on the PX domains of TKS4/5, which coincidently interact with the cytosolic tail of MT1-MMP and endosomal phosphatidylinositol 3-phosphate. MT1-MMP recruits TKS4/5 into multivesicular endosomes for their subsequent co-secretion in extracellular vesicles, together with the enzymatically active ectodomain. The shed ectodomain converts non-invasive recipient cells into an invasive phenotype. Thus, TKS4/5 promote intercellular transfer of cancer cell invasiveness by facilitating ADAM-mediated shedding of MT1-MMP in acidic endosomes.
Collapse
Affiliation(s)
- Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nina Marie Pedersen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Liv Anker Elfmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ling Wang
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ingrid Kjos
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Espen Stang
- Laboratory for Molecular and Cellular Cancer Research, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Lene Malerød
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Section for Physiology and Cell Biology, Dept. of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
19
|
Fornieles G, Núñez MI, Expósito J. Matrix Metalloproteinases and Their Inhibitors as Potential Prognostic Biomarkers in Head and Neck Cancer after Radiotherapy. Int J Mol Sci 2023; 25:527. [PMID: 38203696 PMCID: PMC10778974 DOI: 10.3390/ijms25010527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Head and neck cancer (HNC) is among the ten most frequent tumours, with 5-year survival rates varying from 30% to 70% depending on the stage and location of the tumour. HNC is traditionally known as head and neck squamous cell carcinoma (HNSCC), since 90% arises from epithelial cells. Metastasis remains a major cause of mortality in patients with HNSCC. HNSCC patients with metastatic disease have an extremely poor prognosis with a survival rate of less than a year. Matrix metalloproteinases (MMPs) have been described as biomarkers that promote cell migration and invasion. Radiotherapy is widely used to treat HNSCC, being a determining factor in the alteration of the tumour's biology and microenvironment. This review focuses on analysing the current state of the scientific literature on this topic. Although few studies have focused on the role of these proteinases in HNC, some authors have concluded that radiotherapy alters the behaviour of MMPs and tissue inhibitors of metalloproteinases (TIMPs). Therefore, more research is needed to understand the roles played by MMPs and their inhibitors (TIMPs) as prognostic biomarkers in patients with HNC and their involvement in the response to radiotherapy.
Collapse
Affiliation(s)
- Gabriel Fornieles
- Doctoral Programme in Clinical Medicine and Public Health, University of Granada, 18012 Granada, Spain;
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| | - José Expósito
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain;
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- Radiation Oncology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| |
Collapse
|
20
|
Chen N, Wu RW, Lam Y, Chan WC, Chan D. Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep 2023; 19:101698. [PMID: 37485234 PMCID: PMC10359737 DOI: 10.1016/j.bonr.2023.101698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
Hypertrophic chondrocytes are found at unique locations at the junction of skeletal tissues, cartilage growth plate, articular cartilage, enthesis and intervertebral discs. Their role in the skeleton is best understood in the process of endochondral ossification in development and bone fracture healing. Chondrocyte hypertrophy occurs in degenerative conditions such as osteoarthritis. Thus, the role of hypertrophic chondrocytes in skeletal biology and pathology is context dependent. This review will focus on hypertrophic chondrocytes in endochondral ossification, in which they exist in a transient state, but acting as a central regulator of differentiation, mineralization, vascularization and conversion to bone. The amazing journey of a chondrocyte from being entrapped in the extracellular matrix environment to becoming proliferative then hypertrophic will be discussed. Recent studies on the dynamic changes and plasticity of hypertrophic chondrocytes have provided new insights into how we view these cells, not as terminally differentiated but as cells that can dedifferentiate to more progenitor-like cells in a transition to osteoblasts and adipocytes, as well as a source of skeletal stem and progenitor cells residing in the bone marrow. This will provide a foundation for studies of hypertrophic chondrocytes at other skeletal sites in development, tissue maintenance, pathology and therapy.
Collapse
Affiliation(s)
- Ning Chen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Robin W.H. Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yan Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson C.W. Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518053, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Yeung CYC, Garva R, Pickard A, Lu Y, Mallikarjun V, Swift J, Taylor SH, Rai J, Eyre DR, Chaturvedi M, Itoh Y, Meng QJ, Mauch C, Zigrino P, Kadler KE. Mmp14 is required for matrisome homeostasis and circadian rhythm in fibroblasts. Matrix Biol 2023; 124:8-22. [PMID: 37913834 DOI: 10.1016/j.matbio.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
The circadian clock in tendon regulates the daily rhythmic synthesis of collagen-I and the appearance and disappearance of small-diameter collagen fibrils in the extracellular matrix. How the fibrils are assembled and removed is not fully understood. Here, we first showed that the collagenase, membrane type I-matrix metalloproteinase (MT1-MMP, encoded by Mmp14), is regulated by the circadian clock in postnatal mouse tendon. Next, we generated tamoxifen-induced Col1a2-Cre-ERT2::Mmp14 KO mice (Mmp14 conditional knockout (CKO)). The CKO mice developed hind limb dorsiflexion and thickened tendons, which accumulated narrow-diameter collagen fibrils causing ultrastructural disorganization. Mass spectrometry of control tendons identified 1195 proteins of which 212 showed time-dependent abundance. In Mmp14 CKO mice 19 proteins had reversed temporal abundance and 176 proteins lost time dependency. Among these, the collagen crosslinking enzymes lysyl oxidase-like 1 (LOXL1) and lysyl hydroxylase 1 (LH1; encoded by Plod2) were elevated and had lost time-dependent regulation. High-pressure chromatography confirmed elevated levels of hydroxylysine aldehyde (pyridinoline) crosslinking of collagen in CKO tendons. As a result, collagen-I was refractory to extraction. We also showed that CRISPR-Cas9 deletion of Mmp14 from cultured fibroblasts resulted in loss of circadian clock rhythmicity of period 2 (PER2), and recombinant MT1-MMP was highly effective at cleaving soluble collagen-I but less effective at cleaving collagen pre-assembled into fibrils. In conclusion, our study shows that circadian clock-regulated Mmp14 controls the rhythmic synthesis of small diameter collagen fibrils, regulates collagen crosslinking, and its absence disrupts the circadian clock and matrisome in tendon fibroblasts.
Collapse
Affiliation(s)
- Ching-Yan Chloé Yeung
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK; Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark.
| | - Richa Garva
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Adam Pickard
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Yinhui Lu
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Venkatesh Mallikarjun
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Susan H Taylor
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Jyoti Rai
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - David R Eyre
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | | | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Cornelia Mauch
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Karl E Kadler
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
22
|
Schmidtmann M, D’Souza-Schorey C. Extracellular Vesicles: Biological Packages That Modulate Tumor Cell Invasion. Cancers (Basel) 2023; 15:5617. [PMID: 38067320 PMCID: PMC10705367 DOI: 10.3390/cancers15235617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 02/12/2024] Open
Abstract
Tumor progression, from early-stage invasion to the formation of distal metastases, relies on the capacity of tumor cells to modify the extracellular matrix (ECM) and communicate with the surrounding stroma. Extracellular vesicles (EVs) provide an important means to regulate cell invasion due to the selective inclusion of cargoes such as proteases and matrix proteins into EVs that can degrade or modify the ECM. EVs have also been shown to facilitate intercellular communication in the tumor microenvironment through paracrine signaling, which can impact ECM invasion by cancer cells. Here, we describe the current knowledge of EVs as facilitators of tumor invasion by virtue of their effects on proteolytic degradation and modification of the ECM, their ability to educate the stromal cells in the tumor microenvironment, and their role as mediators of long-range communication aiding in cell invasion and matrix remodeling at secondary sites.
Collapse
|
23
|
Sachan A, Aggarwal S, Pol MM, Singh A, Yadav R. Expression analysis of MMP14: Key enzyme action in modulating visceral adipose tissue plasticity in patients with obesity. Clin Obes 2023; 13:e12607. [PMID: 37340990 DOI: 10.1111/cob.12607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
Compromised adipose tissue plasticity is a hallmark finding of obesity orchestrated by the intricate interplay between various extracellular matrix components. Collagen6 (COL6) is well characterized in obese visceral adipose tissue (VAT), not much is known about MMP14 which is hypothesized to be the key player in matrix reorganization. Subjects with obesity (BMI ≥40; n = 50) aged 18-60 years undergoing bariatric surgery and their age-matched controls (BMI < 25; n = 30) were included. MMP14, Col6A3 and Tissue inhibitor of metalloproteinase 2 (TIMP2) mRNA expression was assessed in VAT and their serum levels along with endotrophin were estimated in both groups preoperatively and post-operatively in the obese group. The results were analysed statistically and correlated with anthropometric and glycaemic parameters, namely fasting glucose and insulin, HbA1c, HOMA-IR, HOMA-β and QUICKI. Circulating levels as well as mRNA expression profiling revealed significant differences between the individuals with and without obesity (p < .05), more so in individuals with diabetes and obesity (p < .05). Follow-up serum analysis revealed significantly raised MMP14 (p < .001), with decreased Col6A3, endotrophin and TIMP2 levels (p < .01, p < .001 and p < .01, respectively). A rise in serum MMP14 protein, simultaneous with post-surgical weight loss and decreased serum levels of associated extracellular matrix (ECM) remodellers, suggests its crucial role in modulating obesity-associated ECM fibrosis and pliability of VAT.
Collapse
Affiliation(s)
- Astha Sachan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Aggarwal
- Department of Surgical Disciplines, CMET, All India Institute of Medical Sciences, New Delhi, India
| | - Manjunath Maruti Pol
- Department of Surgical Disciplines, CMET, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rakhee Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
24
|
Wohlgemuth RP, Brashear SE, Smith LR. Alignment, cross linking, and beyond: a collagen architect's guide to the skeletal muscle extracellular matrix. Am J Physiol Cell Physiol 2023; 325:C1017-C1030. [PMID: 37661921 PMCID: PMC10635663 DOI: 10.1152/ajpcell.00287.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
The muscle extracellular matrix (ECM) forms a complex network of collagens, proteoglycans, and other proteins that produce a favorable environment for muscle regeneration, protect the sarcolemma from contraction-induced damage, and provide a pathway for the lateral transmission of contractile force. In each of these functions, the structure and organization of the muscle ECM play an important role. Many aspects of collagen architecture, including collagen alignment, cross linking, and packing density affect the regenerative capacity, passive mechanical properties, and contractile force transmission pathways of skeletal muscle. The balance between fortifying the muscle ECM and maintaining ECM turnover and compliance is highly dependent on the integrated organization, or architecture, of the muscle matrix, especially related to collagen. While muscle ECM remodeling patterns in response to exercise and disease are similar, in that collagen synthesis can increase in both cases, one outcome leads to a stronger muscle and the other leads to fibrosis. In this review, we provide a comprehensive analysis of the architectural features of each layer of muscle ECM: epimysium, perimysium, and endomysium. Further, we detail the importance of muscle ECM architecture to biomechanical function in the context of exercise or fibrosis, including disease, injury, and aging. We describe how collagen architecture is linked to active and passive muscle biomechanics and which architectural features are acutely dynamic and adapt over time. Future studies should investigate the significance of collagen architecture in muscle stiffness, ECM turnover, and lateral force transmission in the context of health and fibrosis.
Collapse
Affiliation(s)
- Ross P Wohlgemuth
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
| | - Sarah E Brashear
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
| | - Lucas R Smith
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
- Department of Physical Medicine and Rehabilitation, University of California, Davis, California, United States
| |
Collapse
|
25
|
Hartley B, Bassiouni W, Schulz R, Julien O. The roles of intracellular proteolysis in cardiac ischemia-reperfusion injury. Basic Res Cardiol 2023; 118:38. [PMID: 37768438 DOI: 10.1007/s00395-023-01007-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Ischemic heart disease remains a leading cause of human mortality worldwide. One form of ischemic heart disease is ischemia-reperfusion injury caused by the reintroduction of blood supply to ischemic cardiac muscle. The short and long-term damage that occurs due to ischemia-reperfusion injury is partly due to the proteolysis of diverse protein substrates inside and outside of cardiomyocytes. Ischemia-reperfusion activates several diverse intracellular proteases, including, but not limited to, matrix metalloproteinases, calpains, cathepsins, and caspases. This review will focus on the biological roles, intracellular localization, proteolytic targets, and inhibitors of these proteases in cardiomyocytes following ischemia-reperfusion injury. Recognition of the intracellular function of each of these proteases includes defining their activation, proteolytic targets, and their inhibitors during myocardial ischemia-reperfusion injury. This review is a step toward a better understanding of protease activation and involvement in ischemic heart disease and developing new therapeutic strategies for its treatment.
Collapse
Affiliation(s)
- Bridgette Hartley
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Wesam Bassiouni
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
26
|
Li YY, Zhang LY, Xiang YH, Li D, Zhang J. Matrix metalloproteinases and tissue inhibitors in multiple myeloma: promote or inhibit? Front Oncol 2023; 13:1127407. [PMID: 37823051 PMCID: PMC10562598 DOI: 10.3389/fonc.2023.1127407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) play a vital role in the pathogenesis of multiple myeloma (MM), especially for tumor invasion and osteolytic osteopathy. By breaking down extracellular matrix (ECM) components and releasing the proteins composing the ECM and growth factors, as well as their receptors, MMPs affect tissue integrity and promote cancer cell invasion and metastasis. A vital pathophysiological characteristic of MM is the progress of osteolytic lesions, which are brought on by interactions between myeloma cells and the bone marrow microenvironment. MMPs, certainly, are one of the fundamental causes of myeloma bone disease due to their ability to degrade various types of collagens. TIMPs, as important regulators of MMP hydrolysis or activation, also participate in the occurrence and evolution of MM and the formation of bone disease. This review focuses on the role of MMP-1, MMP-2, MMP-7, MMP-9, MMP-13, MMP-14, and MMP-15 and the four types of TIMPs in the invasion of myeloma cells, angiogenesis, osteolytic osteopathy, to offer some novel perspectives on the clinical diagnostics and therapeutics of MM.
Collapse
Affiliation(s)
- Yan-Ying Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liu-Yun Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun-Hui Xiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Juan Zhang
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
27
|
Tanaka N, Sakamoto T. MT1-MMP as a Key Regulator of Metastasis. Cells 2023; 12:2187. [PMID: 37681919 PMCID: PMC10486781 DOI: 10.3390/cells12172187] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Membrane type1-matrix metalloproteinase (MT1-MMP) is a member of metalloproteinases that is tethered to the transmembrane. Its major function in cancer progression is to directly degrade the extracellular matrix components, which are mainly type I-III collagen or indirectly type IV collagen through the activation of MMP-2 with a cooperative function of the tissue inhibitor of metalloproteinase-2 (TIMP-2). MT1-MMP is expressed as an inactive form (zymogen) within the endoplasmic reticulum (ER) and receives truncation processing via furin for its activation. Upon the appropriate trafficking of MT1-MMP from the ER, the Golgi apparatus to the cell surface membrane, MT1-MMP exhibits proteolytic activities to the surrounding molecules such as extracellular matrix components and cell surface molecules. MT1-MMP also retains a non-proteolytic ability to activate hypoxia-inducible factor 1 alpha (HIF-1A) via factors inhibiting the HIF-1 (FIH-1)-Mint3-HIF-1 axis, resulting in the upregulation of glucose metabolism and oxygen-independent ATP production. Through various functions of MT1-MMP, cancer cells gain motility on migration/invasion, thus causing metastasis. Despite the long-time efforts spent on the development of MT1-MMP interventions, none have been accomplished yet due to the side effects caused by off-target effects. Recently, MT1-MMP-specific small molecule inhibitors or an antibody have been reported and these inhibitors could potentially be novel agents for cancer treatment.
Collapse
Affiliation(s)
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan;
| |
Collapse
|
28
|
Chen K, Xu M, Lu F, He Y. Development of Matrix Metalloproteinases-Mediated Extracellular Matrix Remodeling in Regenerative Medicine: A Mini Review. Tissue Eng Regen Med 2023; 20:661-670. [PMID: 37160567 PMCID: PMC10352474 DOI: 10.1007/s13770-023-00536-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 05/11/2023] Open
Abstract
Extracellular matrix (ECM) components confer biomechanical properties, maintain cell phenotype and mediate tissue homeostasis. ECM remodeling is complex and plays a key role in both physiological and pathological processes. Matrix metalloproteinases (MMPs) are a group of enzymes responsible for ECM degradation and have been accepted as a key regulator in ECM remodeling. In this mini-review, we summarize MMPs categories, functions and the targeted substrates. We then discuss current understanding of the role of MMPs-mediated events, including inflammation reaction, angiogenesis, cellular activities, etc., in ECM remodeling in the context of regenerative medicine.
Collapse
Affiliation(s)
- Kaiqi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Mimi Xu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
29
|
An JK, Chung AS, Churchill DG. Nontoxic Levels of Se-Containing Compounds Increase Survival by Blocking Oxidative and Inflammatory Stresses via Signal Pathways Whereas High Levels of Se Induce Apoptosis. Molecules 2023; 28:5234. [PMID: 37446894 DOI: 10.3390/molecules28135234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Selenium is a main group element and an essential trace element in human health. It was discovered in selenocysteine (SeC) by Stadtman in 1974. SeC is an encoded natural amino acid hailed as the 21st naturally occurring amino acid (U) present in several enzymes and which exquisitely participates in redox biology. As it turns out, selenium bears a U-shaped toxicity curve wherein too little of the nutrient present in biology leads to disorders; concentrations that are too great, on the other hand, pose toxicity to biological systems. In light of many excellent previous reviews and the corpus of literature, we wanted to offer this current review, in which we present aspects of the clinical and biological literature and justify why we should further investigate Se-containing species in biological and medicinal contexts, especially small molecule-containing species in biomedical research and clinical medicine. Of central interest is how selenium participates in biological signaling pathways. Several clinical medical cases are recounted; these reports are mainly pertinent to human cancer and changes in pathology and cases in which the patients are often terminal. Selenium was an option chosen in light of earlier chemotherapeutic treatment courses which lost their effectiveness. We describe apoptosis, and also ferroptosis, and senescence clearly in the context of selenium. Other contemporary issues in research also compelled us to form this review: issues with CoV-2 SARS infection which abound in the literature, and we described findings with human patients in this context. Laboratory scientific studies and clinical studies dealing with two main divisions of selenium, organic (e.g., methyl selenol) or inorganic selenium (e.g., sodium selenite), are discussed. The future seems bright with the research and clinical possibilities of selenium as a trace element, whose recent experimental clinical treatments have so far involved dosing simply and inexpensively over a set of days, amounts, and time intervals.
Collapse
Affiliation(s)
- Jong-Keol An
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - An-Sik Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - David G Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Therapeutic Bioengineering Section, KAIST Institute for Health Science and Technology (KIHST), Daejeon 34141, Republic of Korea
| |
Collapse
|
30
|
Xie H, Hu J, Wang Y, Wang X. Identification of the matrix metalloproteinase (MMP) gene family in Japanese flounder (Paralichthys olivaceus): Involved in immune response regulation to temperature stress and Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2023:108878. [PMID: 37271328 DOI: 10.1016/j.fsi.2023.108878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
The Matrix metalloproteinase (MMP) gene family is responsible for regulating the degradation of Extra Cellular Matrix (ECM) proteins, which are important for physiological processes such as wound healing, tissue remodeling, and stress response. Although MMPs have been studied in many species, their role in immune response in Japanese flounder (Paralichthys olivaceus) is still not fully understood. This study conducted a comprehensive analysis of MMPs in flounder, including gene structures, evolutionary relationships, conserved domains, molecular evolution, and expression patterns. Analysis revealed that MMP genes could be grouped into 17 subfamilies and were evolutionarily conserved and functionally-constrained. Meanwhile, MMP genes were found to express in different embryonic and larval stages and might play the role of sentinel in healthy tissues. Furthermore, expression profiling showed that MMPs had diverse functions in environmental stress, with 60% (9/15) and 73% (11/15) of MMPs showing differential expression patterns under temperature stress and Edwardsiella tarda (E. tarda) infection, respectively. These findings provide a useful resource for understanding the immune functions of MMP genes in Japanese flounder.
Collapse
Affiliation(s)
- Huihui Xie
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China
| | - Jiabao Hu
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China; School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
| | - Yajun Wang
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| | - Xubo Wang
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
31
|
Nandadasa S, Martin D, Deshpande G, Robert KL, Stack MS, Itoh Y, Apte SS. Degradomic Identification of Membrane Type 1-Matrix Metalloproteinase as an ADAMTS9 and ADAMTS20 Substrate. Mol Cell Proteomics 2023; 22:100566. [PMID: 37169079 PMCID: PMC10267602 DOI: 10.1016/j.mcpro.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023] Open
Abstract
The secreted metalloproteases ADAMTS9 and ADAMTS20 are implicated in extracellular matrix proteolysis and primary cilium biogenesis. Here, we show that clonal gene-edited RPE-1 cells in which ADAMTS9 was inactivated, and which constitutively lack ADAMTS20 expression, have morphologic characteristics distinct from parental RPE-1 cells. To investigate underlying proteolytic mechanisms, a quantitative terminomics method, terminal amine isotopic labeling of substrates was used to compare the parental and gene-edited RPE-1 cells and their medium to identify ADAMTS9 substrates. Among differentially abundant neo-amino (N) terminal peptides arising from secreted and transmembrane proteins, a peptide with lower abundance in the medium of gene-edited cells suggested cleavage at the Tyr314-Gly315 bond in the ectodomain of the transmembrane metalloprotease membrane type 1-matrix metalloproteinase (MT1-MMP), whose mRNA was also reduced in gene-edited cells. This cleavage, occurring in the MT1-MMP hinge, that is, between the catalytic and hemopexin domains, was orthogonally validated both by lack of an MT1-MMP catalytic domain fragment in the medium of gene-edited cells and restoration of its release from the cell surface by reexpression of ADAMTS9 and ADAMTS20 and was dependent on hinge O-glycosylation. A C-terminally semitryptic MT1-MMP peptide with greater abundance in WT RPE-1 medium identified a second ADAMTS9 cleavage site in the MT1-MMP hemopexin domain. Consistent with greater retention of MT1-MMP on the surface of gene-edited cells, pro-MMP2 activation, which requires cell surface MT1-MMP, was increased. MT1-MMP knockdown in gene-edited ADAMTS9/20-deficient cells restored focal adhesions but not ciliogenesis. The findings expand the web of interacting proteases at the cell surface, suggest a role for ADAMTS9 and ADAMTS20 in regulating cell surface activity of MT1-MMP, and indicate that MT1-MMP shedding does not underlie their observed requirement in ciliogenesis.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Daniel Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Gauravi Deshpande
- Imaging Core Facility, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Karyn L Robert
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - M Sharon Stack
- Department of Chemistry and Biochemistry and Harper Cancer Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yoshifumi Itoh
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.
| |
Collapse
|
32
|
Jia Y, Huang X, Shi H, Wang M, Chen J, Zhang H, Hou D, Jing H, Du J, Han H, Zhang J. ADAMDEC1 induces EMT and promotes colorectal cancer cells metastasis by enhancing Wnt/β-catenin signaling via negative modulation of GSK3β. Exp Cell Res 2023:113629. [PMID: 37187249 DOI: 10.1016/j.yexcr.2023.113629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/18/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Abstract
Colorectal cancer (CRC) is a highly invasive malignant tumor, with a high proliferative capacity and is prone to epithelial-mesenchymal transition (EMT) and subsequent metastasis. A disintegrin and metalloproteinase domain-like decysin 1 (ADAMDEC1) is a proteolytically active metzincin metalloprotease that is invested in extracellular matrix remodeling, cell adhesion, invasion, and migration. However, the effects of ADAMDEC1 on CRC are unclear. The purpose of this research is to investigate the expression and biological role of ADAMDEC1 in CRC. We found that ADAMDEC1 was substantially elevated in both clinical samples and CRC cell lines. Likewise, ADAMDEC1 can enhance CRC cell proliferation, migration, and invasion while inhibiting apoptosis. Interestingly, we discovered that exogenous ADAMDEC1 overexpression triggered epithelial-mesenchymal transition (EMT) in CRC cells, as evidenced by alterations in E-cadherin, N-cadherin, and vimentin expression. In ADAMDEC1-knockdown or ADAMDEC1-overexpressing CRC cells, the Western blotting analysis revealed that downstream targets of Wnt signaling, along with β-catenin, Wnt 4, LEF1, Cyclin D1, and c-Myc, were down-regulated or up-regulated. Furthermore, inhibition of the Wnt/β-catenin pathway by FH535 negated the effect of ADAMDEC1 overexpression on EMT and CRC cell proliferation. Further mechanistic research revealed that ADAMDEC1 knockdown might up-regulate GSK3β and inactivate the Wnt/β-catenin pathway, accompanied by suppressing the expression of β-catenin. Additionally, the blockage of GSK3β by CHIR 99021 markedly abolished the inhibitory effect of ADAMDEC1 knockdown on Wnt/β-catenin signaling. In summary, our findings first indicate that ADAMDEC1 promotes CRC metastasis by negatively regulating GSK3β, activating the Wnt/β-catenin signaling pathway, and inducing EMT, suggesting its potential utility as a therapeutic target for the treatment of metastatic CRC.
Collapse
Affiliation(s)
- Yuna Jia
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Xiaoyong Huang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Haiyan Shi
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - MingMing Wang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Jie Chen
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Huahua Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Danyang Hou
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Hongmei Jing
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Juan Du
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China.
| | - Huihui Han
- Department of Obstetrics, Affiliated Hospital of Yan'an University, Yan'an, 716000, Shaanxi Province, China.
| | - Jing Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China.
| |
Collapse
|
33
|
Jian Y, Zhou X, Shan W, Chen C, Ge W, Cui J, Yi W, Sun Y. Crosstalk between macrophages and cardiac cells after myocardial infarction. Cell Commun Signal 2023; 21:109. [PMID: 37170235 PMCID: PMC10173491 DOI: 10.1186/s12964-023-01105-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/18/2023] [Indexed: 05/13/2023] Open
Abstract
Cardiovascular diseases, such as myocardial infarction (MI), are a leading cause of death worldwide. Acute MI (AMI) inflicts massive injury to the coronary microcirculation, causing large-scale cardiomyocyte death due to ischemia and hypoxia. Inflammatory cells such as monocytes and macrophages migrate to the damaged area to clear away dead cells post-MI. Macrophages are pleiotropic cells of the innate immune system, which play an essential role in the initial inflammatory response that occurs following MI, inducing subsequent damage and facilitating recovery. Besides their recognized role within the immune response, macrophages participate in crosstalk with other cells (including cardiomyocytes, fibroblasts, immune cells, and vascular endothelial cells) to coordinate post-MI processes within cardiac tissue. Macrophage-secreted exosomes have recently attracted increasing attention, which has led to a more elaborate understanding of macrophage function. Currently, the functional roles of macrophages in the microenvironment of the infarcted heart, particularly with regard to their interaction with surrounding cells, remain unclear. Understanding the specific mechanisms that mediate this crosstalk is essential in treating MI. In this review, we discuss the origin of macrophages, changes in their distribution post-MI, phenotypic and functional plasticity, as well as the specific signaling pathways involved, with a focus on the crosstalk with other cells in the heart. Thus, we provide a new perspective on the treatment of MI. Further in-depth research is required to elucidate the mechanisms underlying crosstalk between macrophages and other cells within cardiac tissue for the identification of potential therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Yuhong Jian
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng Chen
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Ge
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
34
|
Pung HS, Tye GJ, Leow CH, Ng WK, Lai NS. Generation of peptides using phage display technology for cancer diagnosis and molecular imaging. Mol Biol Rep 2023; 50:4653-4664. [PMID: 37014570 PMCID: PMC10072011 DOI: 10.1007/s11033-023-08380-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Cancer is one of the leading causes of mortality worldwide; nearly 10 million people died from it in 2020. The high mortality rate results from the lack of effective screening approaches where early detection cannot be achieved, reducing the chance of early intervention to prevent cancer development. Non-invasive and deep-tissue imaging is useful in cancer diagnosis, contributing to a visual presentation of anatomy and physiology in a rapid and safe manner. Its sensitivity and specificity can be enhanced with the application of targeting ligands with the conjugation of imaging probes. Phage display is a powerful technology to identify antibody- or peptide-based ligands with effective binding specificity against their target receptor. Tumour-targeting peptides exhibit promising results in molecular imaging, but the application is limited to animals only. Modern nanotechnology facilitates the combination of peptides with various nanoparticles due to their superior characteristics, rendering novel strategies in designing more potent imaging probes for cancer diagnosis and targeting therapy. In the end, a myriad of peptide candidates that aimed for different cancers diagnosis and imaging in various forms of research were reviewed.
Collapse
Affiliation(s)
- Hai Shin Pung
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Woei Kean Ng
- Faculty of Medicine, AIMST University, Bedong, Kedah, 08100, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
35
|
Sakurai I, Mayanagi G, Yamada S, Takahashi N. In situ detection of endogenous proteolytic activity and the effect of inhibitors on tooth root surface. J Dent 2023; 131:104471. [PMID: 36828151 DOI: 10.1016/j.jdent.2023.104471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVES The aim of this study was to clarify the distribution and activity of proteolytic enzymes and examine the inhibitory effects of various substances on this proteolytic activity on tooth root surfaces in situ. METHODS Disk-shaped bovine tooth root samples were partly pretreated in acid solution (50 mM lactic acid buffer, pH 4.0) for 48 h. The fluorescence intensity of samples was detected with fluorescent substrate solution for collagenase and gelatinase using a stereoscopic fluorescence microscope for 60 min. The acid-pretreated and non-acid-pretreated root samples were treated with chlorhexidine (CHX), sodium fluoride (NaF), epigallocatechin gallate (EGCG), and calcium hydroxide (Ca(OH)2) for 10 min, and silver diamine fluoride (SDF) for 10, 30, and 60 s. These samples were immersed in the fluorescence substrate solution at pH 7.0, and the fluorescence intensity of samples was detected. The fluorescence intensity was calculated using analysis software. RESULTS Gelatinase activity was detected in root samples. Gelatinase activity of the acid-pretreated side was significantly higher than that of the non-acid-pretreated side (1.63 times) at 60 min. CHX, EGCG, Ca(OH)2, and SDF decreased the gelatinase activity of root samples, while NaF had no effect. CONCLUSIONS Gelatinase activity was detected from the root in situ and it was increased by acid-pretreatment. CHX, EGCG, Ca(OH)2, and SDF inhibited gelatinase activity. CLINICAL SIGNIFICANCE Substances that inhibit proteolytic activity found in this research method will be useful for root caries prevention.
Collapse
Affiliation(s)
- Izumi Sakurai
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Japan; Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Gen Mayanagi
- Division for Advanced Education Development, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Japan
| | - Satoru Yamada
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
36
|
Vahedi MM, Shahini A, Mottahedi M, Garousi S, Shariat Razavi SA, Pouyamanesh G, Afshari AR, Ferns GA, Bahrami A. Harmaline exerts potentially anti-cancer effects on U-87 human malignant glioblastoma cells in vitro. Mol Biol Rep 2023; 50:4357-4366. [PMID: 36943605 DOI: 10.1007/s11033-023-08354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Harmaline is a β-carboline alkaloid that can be extracted from the seeds of Peganum harmala. Harmaline has been shown to exhibit a potent cytotoxic effect against tumor cells. In this study, the anti-glioblastoma activity of harmaline was investigated in vitro. METHODS AND RESULTS Cell viability, apoptosis, and cell cycle arrest were assessed in U-87 cells treated with harmaline at different doses. Reactive oxygen species (ROS) generation and the mRNA expression of apoptosis-associated genes were assessed. The anti-metastatic effect of harmaline on U-87 cells was evaluated by gelatin zymography assay where matrix metalloproteinase [MMP]-2/-9 enzymatic activity was measured, and the scratch assay was used to assess migratory responses. Flow cytometry demonstrated that harmaline could suppress the proliferation and induce sub-G1 cell cycle arrest and apoptotic cell death in glioblastoma cells. Harmaline treatment was also associated with an upregulation of the cell cycle-related genes, p21 and p53, and pro-apoptotic Bax, as well as the induction of ROS. The zymography assay indicated that the essential steps of metastasis were potently suppressed by harmaline through inhibiting the expression of MMP-2 and - 9. In addition, the migration of U-87 cells was significantly reduced after harmaline treatment. CONCLUSION Our data suggest a basis for further research of harmaline which has potential cytotoxic activities in glioblastoma cells; inducing cell cycle arrest and apoptosis, repression of migration, possibly invasion, and metastasis.
Collapse
Affiliation(s)
- Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ghazaleh Pouyamanesh
- Department of medical laboratory science, Mashhad branch, Islamic Azad University, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Afsane Bahrami
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Cytoplasmic Tail of MT1-MMP: A Hub of MT1-MMP Regulation and Function. Int J Mol Sci 2023; 24:ijms24065068. [PMID: 36982142 PMCID: PMC10049710 DOI: 10.3390/ijms24065068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
MT1-MMP (MMP-14) is a multifunctional protease that regulates ECM degradation, activation of other proteases, and a variety of cellular processes, including migration and viability in physiological and pathological contexts. Both the localization and signal transduction capabilities of MT1-MMP are dependent on its cytoplasmic domain that constitutes the final 20 C-terminal amino acids, while the rest of the protease is extracellular. In this review, we summarize the ways in which the cytoplasmic tail is involved in regulating and enacting the functions of MT1-MMP. We also provide an overview of known interactors of the MT1-MMP cytoplasmic tail and the functional significance of these interactions, as well as further insight into the mechanisms of cellular adhesion and invasion that are regulated by the cytoplasmic tail.
Collapse
|
38
|
Knapinska AM, Drotleff G, Chai C, Twohill D, Ernce A, Tokmina-Roszyk D, Grande I, Rodriguez M, Larson B, Fields GB. Screening MT1-MMP Activity and Inhibition in Three-Dimensional Tumor Spheroids. Biomedicines 2023; 11:biomedicines11020562. [PMID: 36831098 PMCID: PMC9953393 DOI: 10.3390/biomedicines11020562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Membrane type 1 matrix metalloproteinase (MT1-MMP) has been shown to be crucial for tumor angiogenesis, invasion, and metastasis, and thus MT1-MMP is a high priority target for potential cancer therapies. To properly evaluate MT1-MMP inhibitors, a screening protocol is desired by which enzyme activity can be quantified in a tumor microenvironment-like model system. In the present study, we applied a fluorogenic, collagen model triple-helical substrate to quantify MT1-MMP activity for tumor spheroids embedded in a collagen hydrogel. The substrate was designed to be MT1-MMP selective and to possess fluorescent properties compatible with cell-based assays. The proteolysis of the substrate correlated to glioma spheroid invasion. In turn, the application of either small molecule or protein-based MMP inhibitors reduced proteolytic activity and glioma spheroid invasion. The presence of MT1-MMP in glioma spheroids was confirmed by western blotting. Thus, spheroid invasion was dependent on MT1-MMP activity, and inhibitors of MT1-MMP and invasion could be conveniently screened in a high-throughput format. The combination of the fluorogenic, triple-helical substrate, the three-dimensional tumor spheroids embedded in collagen, and Hit-Pick software resulted in an easily adaptable in vivo-like tumor microenvironment for rapidly processing inhibitor potential for anti-cancer use.
Collapse
Affiliation(s)
- Anna M. Knapinska
- Alphazyme, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Gary Drotleff
- Alphazyme, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Cedric Chai
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Destiny Twohill
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Alexa Ernce
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Dorota Tokmina-Roszyk
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Isabella Grande
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Michelle Rodriguez
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Brad Larson
- Agilent Technologies, Raleigh, NC 27606, USA
| | - Gregg B. Fields
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
39
|
Tanaka N, Sakamoto T. Mint3 as a Potential Target for Cooling Down HIF-1α-Mediated Inflammation and Cancer Aggressiveness. Biomedicines 2023; 11:biomedicines11020549. [PMID: 36831085 PMCID: PMC9953510 DOI: 10.3390/biomedicines11020549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that plays a crucial role in cells adapting to a low-oxygen environment by facilitating a switch from oxygen-dependent ATP production to glycolysis. Mediated by membrane type-1 matrix metalloproteinase (MT1-MMP) expression, Munc-18-1 interacting protein 3 (Mint3) binds to the factor inhibiting HIF-1 (FIH-1) and inhibits its suppressive effect, leading to HIF-1α activation. Defects in Mint3 generally lead to improved acute inflammation, which is regulated by HIF-1α and subsequent glycolysis, as well as the suppression of the proliferation and metastasis of cancer cells directly through its expression in cancer cells and indirectly through its expression in macrophages or fibroblasts associated with cancer. Mint3 in inflammatory monocytes enhances the chemotaxis into metastatic sites and the production of vascular endothelial growth factors, which leads to the expression of E-selectin at the metastatic sites and the extravasation of cancer cells. Fibroblasts express L1 cell adhesion molecules in a Mint3-dependent manner and enhance integrin-mediated cancer progression. In pancreatic cancer cells, Mint3 directly promotes cancer progression. Naphthofluorescein, a Mint3 inhibitor, can disrupt the interaction between FIH-1 and Mint3 and potently suppress Mint3-mediated inflammation, cancer progression, and metastasis without causing marked adverse effects. In this review, we will introduce the potential of Mint3 as a therapeutic target for inflammatory diseases and cancers.
Collapse
|
40
|
Noda Y, Ishida M, Yamaka R, Ueno Y, Sakagami T, Fujisawa T, Iwai H, Tsuta K. MMP14 expression levels accurately predict the presence of extranodal extensions in oral squamous cell carcinoma: a retrospective cohort study. BMC Cancer 2023; 23:142. [PMID: 36765296 PMCID: PMC9921360 DOI: 10.1186/s12885-023-10595-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Extranodal extension (ENE) is an adverse prognostic factor for oral squamous cell carcinoma (OSCC), and patients with OSCC along with ENE require neck dissection. In this study, we developed a novel ENE histology-based pathological predictor using MMP14 expression patterns in small biopsy specimens. METHODS A total of 71 surgically resected tissue, 64 dissected lymph node (LN), and 46 biopsy specimens were collected from 71 patients with OSCC. Immunohistochemical analyses of total MMP14 expression in the tumour nest and cancer-associated fibroblasts (CAFs) were performed using the MMP14 co-scoring system (high- or low-risk). The association analysis of MMP14 expression in metastatic LNs was performed with respect to the presence and absence of ENE. Clinicopathological analyses and multivariate examinations were performed to assess the risks of metastasis and ENE presence. The predictive value of ENE and the impact of ENE and MMP14 expression on 5-year overall survival were examined. RESULTS High-risk MMP14 expression was detected in metastatic LN specimens with ENE. MMP14 expression in tumour nests and CAFs and its overexpression at the tumour-stromal interface significantly correlated with the presence of ENE. The MMP14 co-scoring system was an independent risk predictor for ENE, with sensitivity, specificity, and accuracy of over 80% in biopsy samples; patients with a high risk in the MMP14 co-scoring system had significantly worse prognoses in both resections and biopsies. CONCLUSION The MMP14 co-scoring system accurately predicted ENE presence and poor prognosis via immunohistochemical evaluation of small biopsies. This system is a simple, accurate, and inexpensive immunohistochemical approach that can be used in routine pathological diagnosis for effective treatment planning.
Collapse
Affiliation(s)
- Yuri Noda
- Department of Pathology and Laboratory Medicine, Kansai Medical University Hospital, 2-3-1 Shin-machi, 573-1191, Hirakata, Osaka, Japan. .,Department of Pathology, Kansai Medical University, 2-5-1 Shin-machi, 573- 1010, Hirakata, Osaka, Japan.
| | - Mitsuaki Ishida
- Department of Pathology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, 569-8686 Takatsuki, Osaka Japan
| | - Ryosuke Yamaka
- grid.410783.90000 0001 2172 5041Department of Pathology, Kansai Medical University, 2-5-1 Shin-machi, 573- 1010 Hirakata, Osaka Japan
| | - Yasuhiro Ueno
- grid.410783.90000 0001 2172 5041Department of Radiology, Kansai Medical University Hospital, 2-3-1 Shinmachi, 573-1191 Hirakata, Osaka Japan
| | - Tomofumi Sakagami
- grid.410783.90000 0001 2172 5041Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University Hospital, 2-3-1 Shinmachi, 573-1191 Hirakata, Osaka Japan
| | - Takuo Fujisawa
- grid.410783.90000 0001 2172 5041Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University Hospital, 2-3-1 Shinmachi, 573-1191 Hirakata, Osaka Japan
| | - Hiroshi Iwai
- grid.410783.90000 0001 2172 5041Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University Hospital, 2-3-1 Shinmachi, 573-1191 Hirakata, Osaka Japan
| | - Koji Tsuta
- grid.410783.90000 0001 2172 5041Department of Pathology and Laboratory Medicine, Kansai Medical University Hospital, 2-3-1 Shin-machi, 573-1191 Hirakata, Osaka Japan ,grid.410783.90000 0001 2172 5041Department of Pathology, Kansai Medical University, 2-5-1 Shin-machi, 573- 1010 Hirakata, Osaka Japan
| |
Collapse
|
41
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
42
|
Feng D, Liu L, Shi Y, Du P, Xu S, Zhu Z, Xu J, Yao H. Current development of bicyclic peptides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Anti-Gouty Arthritis and Anti-Hyperuricemia Properties of Sanghuangporus vaninii and Inonotus hispidus in Rodent Models. Nutrients 2022; 14:nu14204421. [PMID: 36297105 PMCID: PMC9608739 DOI: 10.3390/nu14204421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Acute inflammation and hyperuricemia are associated with gouty arthritis. As an edible and therapeutic mushroom, Sanghuangporus vaninii (SV) has an inhibitory effect on tumorigenesis, and Inonotus hispidus (IH) exhibits anti-tumor, anti-inflammatory, and antioxidant properties. In this study, uric acid (UA) and xanthine oxidase (XOD) levels in hyperuricemic mice were examined to determine the regulatory effects of SV and IH. SV and IH reversed the pathogenic state of elevated UA levels in the serum and reduced levels of XOD in the serum and liver of mice with hyperuricemia. SV and IH affected the inflammatory response in rats with acute gouty arthritis. Compared to vehicle-treated rats, monosodium urate crystals (MSU) increased the swelling ratio of the right ankle joints. SV and IH administration significantly reduced swelling and inflammatory cell infiltration. SV reduced the levels of interleukin-8 (IL-8) and chemokine ligand-2 (CCL-2), whereas IH reduced the levels of matrix metalloproteinase-9 (MMP-9), CCL-2, and tumor necrosis factor-α (TNF-α), which were confirmed in articular soft tissues by immunohistochemistry. In summary, our data provide experimental evidence for the applicability of SV and IH in gouty arthritis and hyperuricemia treatment.
Collapse
|
44
|
Silvestro M, Rivera CF, Alebrahim D, Vlahos J, Pratama MY, Lu C, Tang C, Harpel Z, Sleiman Tellaoui R, Zias AL, Maldonado DJ, Byrd D, Attur M, Mignatti P, Ramkhelawon B. The Nonproteolytic Intracellular Domain of Membrane-Type 1 Matrix Metalloproteinase Coordinately Modulates Abdominal Aortic Aneurysm and Atherosclerosis in Mice-Brief Report. Arterioscler Thromb Vasc Biol 2022; 42:1244-1253. [PMID: 36073351 PMCID: PMC9993845 DOI: 10.1161/atvbaha.122.317686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND MT1-MMP (membrane-type 1 matrix metalloproteinase, MMP-14) is a transmembrane-anchored protein with an extracellular proteinase domain and a cytoplasmic tail devoid of proteolytic functions but capable of mediating intracellular signaling that regulates tissue homeostasis. MT1-MMP extracellular proteolytic activity has been shown to regulate pathological remodeling in aortic aneurysm and atherosclerosis. However, the role of the nonproteolytic intracellular domain of MT1-MMP in vascular remodeling in abdominal aortic aneurysms (AAA) is unknown. METHODS We generated a mutant mouse that harbors a point mutation (Y573D) in the MT1-MMP cytoplasmic domain that abrogates the MT1-MMP signaling function without affecting its proteolytic activity. These mice and their control wild-type littermates were subjected to experimental AAA modeled by angiotensin II infusion combined with PCSK9 (proprotein convertase subtilisin/kexin type 9) overexpression and high-cholesterol feeding. RESULTS The mutant mice developed more severe AAA than the control mice, with concomitant generation of intraaneurysmal atherosclerotic lesions and dramatically increased macrophage infiltration and elastin degradation. Aortic lesion-associated and bone marrow-derived macrophages from the mutant mice exhibited an enhanced inflammatory state and expressed elevated levels of proinflammatory Netrin-1, a protein previously demonstrated to promote both atherosclerosis and AAA. CONCLUSIONS Our findings show that the cytoplasmic domain of MT1-MMP safeguards from AAA and atherosclerotic plaque development through a proteolysis-independent signaling mechanism associated with Netrin-1 expression. This unexpected function of MT1-MMP unveils a novel mechanism of synchronous onset of AAA and atherogenesis and highlights its importance in the control of vascular wall homeostasis.
Collapse
Affiliation(s)
- Michele Silvestro
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Cristobal F Rivera
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Dornazsadat Alebrahim
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - John Vlahos
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Muhammad Yogi Pratama
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Cuijie Lu
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.).,Division of Rheumatology, Department of Medicine (C.L., M.A., P.M.), New York University Langone Medical Center, New York
| | - Claudia Tang
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Zander Harpel
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Rayan Sleiman Tellaoui
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Ariadne L Zias
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Delphina J Maldonado
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Devon Byrd
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.)
| | - Mukundan Attur
- Division of Rheumatology, Department of Medicine (C.L., M.A., P.M.), New York University Langone Medical Center, New York
| | - Paolo Mignatti
- Division of Rheumatology, Department of Medicine (C.L., M.A., P.M.), New York University Langone Medical Center, New York.,Department of Cell Biology (P.M., B.R.), New York University Langone Medical Center, New York
| | - Bhama Ramkhelawon
- Division of Vascular and Endovascular Surgery, Department of Surgery (M.S., C.F.R., D.A., J.V., M.Y.P., C.T., Z.H., R.S.T., A.L.Z., D.J.M., D.B., B.R.).,Department of Cell Biology (P.M., B.R.), New York University Langone Medical Center, New York
| |
Collapse
|
45
|
Melanoma Mediated Disruption of Brain Endothelial Barrier Integrity Is Not Prevented by the Inhibition of Matrix Metalloproteinases and Proteases. BIOSENSORS 2022; 12:bios12080660. [PMID: 36005056 PMCID: PMC9405625 DOI: 10.3390/bios12080660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022]
Abstract
We have previously shown that human melanoma cells rapidly decrease human brain endothelial barrier strength. Our findings showed a fast mechanism of melanoma mediated barrier disruption, which was localised to the paracellular junctions of the brain endothelial cells. Melanoma cells are known to release molecules which cleave the surrounding matrix and allow traversal within and out of their metastatic niche. Enzymatic families, such as matrix metalloproteinases (MMPs) and proteases are heavily implicated in this process and their complex nature in vivo makes them an intriguing family to assess in melanoma metastasis. Herein, we assessed the expression of MMPs and other proteases in melanoma conditioned media. Our results showed evidence of a high expression of MMP-2, but not MMP-1, -3 or -9. Other proteases including Cathepsins D and B were also detected. Recombinant MMP-2 was added to the apical face of brain endothelial cells (hCMVECs), to measure the change in barrier integrity using biosensor technology. Surprisingly, this showed no decrease in barrier strength. The addition of potent MMP inhibitors (batimastat, marimastat, ONO4817) and other protease inhibitors (such as aprotinin, Pefabloc SC and bestatin) to the brain endothelial cells, in the presence of various melanoma lines, showed no reduction in the melanoma mediated barrier disruption. The inhibitors batimastat, Pefabloc SC, antipain and bestatin alone decreased the barrier strength. These results suggest that although some MMPs and proteases are released by melanoma cells, there is no direct evidence that they are substantially involved in the initial melanoma-mediated disruption of the brain endothelium.
Collapse
|
46
|
The Catalytic Domain Mediates Homomultimerization of MT1-MMP and the Prodomain Interferes with MT1-MMP Oligomeric Complex Assembly. Biomolecules 2022; 12:biom12081145. [PMID: 36009039 PMCID: PMC9406036 DOI: 10.3390/biom12081145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Homomultimerization of MT1-MMP (membrane type 1 matrix metalloproteinase) through the hemopexin, transmembrane, and cytoplasmic domains plays a very important role in the activation of proMMP-2 and the degradation of pericellular collagen. MT1-MMP is overexpressed in many types of cancers, and it is considered to be a key enzyme in facilitating cancer cell migration. Since the oligomerization of MT1-MMP is important for its proteolytic activity in promoting cancer invasion, we have further investigated the multimerization by using heterologously expressed MT1-MMP ectodomains in insect cells to gain additional mechanistic insight into this process. We show that the whole ectodomain of MT1-MMP can form dimers and higher-order oligomeric complexes. The enzyme is secreted in its active form and the multimeric complex assembly is mediated by the catalytic domain. Blocking the prodomain removal determines the enzyme to adopt the monomeric structure, suggesting that the prodomain prevents the MT1-MMP oligomerization process. The binding affinity of MT1-MMP to type I collagen is dependent on the oligomeric state. Thus, the monomers have the weakest affinity, while the binding strength increases proportionally with the complexity of the multimers. Collectively, our experimental results indicate that the catalytic domain of MT1-MMP is necessary and sufficient to mediate the formation of multimeric structures.
Collapse
|
47
|
Jo W, Kim M, Oh J, Kim CS, Park C, Yoon S, Lee C, Kim S, Nam D, Park J. MicroRNA-29 Ameliorates Fibro-Inflammation and Insulin Resistance in HIF1α-Deficient Obese Adipose Tissue by Inhibiting Endotrophin Generation. Diabetes 2022; 71:1746-1762. [PMID: 35167651 DOI: 10.2337/db21-0801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022]
Abstract
Dysregulation of extracellular matrix proteins in obese adipose tissue (AT) induces systemic insulin resistance. The metabolic roles of type VI collagen and its cleavage peptide endotrophin in obese AT are well established. However, the mechanisms regulating endotrophin generation remain elusive. Herein, we identified that several endotrophin-containing peptides (pre-endotrophins) were generated from the COL6A3 chain in a stepwise manner for the efficient production of mature endotrophin, partly through the action of hypoxia-induced matrix metalloproteinases (MMPs), including MMP2, MMP9, and MMP16. Hypoxia is an upstream regulator of COL6A3 expression and the proteolytic processing that regulates endotrophin generation. Hypoxia-inducible factor 1α (HIF1α) and the hypoxia-associated suppression of microRNA-29 (miR-29) cooperatively control the levels of COL6A3 and MMPs, which are responsible for endotrophin generation in hypoxic ATs. Adipocyte-specific Hif1α knock-out (APN-HIF1αKO) mice fed a chronic high-fat diet exhibited the significant amelioration of both local fibro-inflammation in AT and systemic insulin resistance compared with their control littermates, partly through the inhibition of endotrophin generation. Strikingly, adenovirus-mediated miR-29 overexpression in the ATs of APN-HIF1αKO mice in obesity significantly decreased endotrophin levels, suggesting that miR-29, combined with HIF1α inhibition in AT, could be a promising therapeutic strategy for treating obesity and related metabolic diseases.
Collapse
|
48
|
Pringle TA, Chan CD, Luli S, Blair HJ, Rankin KS, Knight JC. Synthesis and In Vivo Evaluation of a Site-specifically Labeled Radioimmunoconjugate for Dual-Modal (PET/NIRF) Imaging of MT1-MMP in Sarcomas. Bioconjug Chem 2022; 33:1564-1573. [PMID: 35867034 PMCID: PMC9389524 DOI: 10.1021/acs.bioconjchem.2c00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Bone sarcomas are devastating primary bone cancers that
mostly
affect children, young adults, and the elderly. These aggressive tumors
are associated with poor survival, and surgery remains the mainstay
of treatment. Surgical planning is increasingly informed by positron
emission tomography (PET), and tumor margin identification during
surgery is aided by near-infrared fluorescence (NIRF) imaging, yet
these investigations are confounded by probes that lack specificity
for sarcoma biomarkers. We report the development of a dual-modal
(PET/NIRF) immunoconjugate ([89Zr]Zr-DFO-anti-MT1-MMP-IRDye800CW)
that targets MT1-MMP, a matrix metalloproteinase overexpressed in
high-grade sarcomas. [89Zr]Zr-DFO-anti-MT1-MMP-IRDye800CW
was synthesized via site-specific chemoenzymatic
glycan modification, characterized, and isolated in high specific
activity and radiochemical purity. Saturation binding and immunoreactivity
assays indicated only minor perturbation of binding properties. A
novel mouse model of dedifferentiated chondrosarcoma based on intrafemoral
inoculation of HT1080 WT or KO cells (high and low MT1-MMP expression,
respectively) was used to evaluate target binding and biodistribution.
Fluorescence and Cerenkov luminescence images of [89Zr]Zr-DFO-anti-MT1-MMP-IRDye800CW
showed preferential uptake in HT1080 WT tumors. Ex vivo gamma counting revealed that uptake in MT1-MMP-positive tumors was
significantly higher than that in control groups. Taken together,
[89Zr]Zr-DFO-anti-MT1-MMP-IRDye800CW is a promising dual-modal
sarcoma imaging agent for pre-operative surgical planning and intraoperative
surgical guidance.
Collapse
Affiliation(s)
- Toni A Pringle
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| | - Corey D Chan
- North of England Bone and Soft Tissue Tumour Service, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle Upon Tyne NE7 7DN, U.K.,Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| | - Saimir Luli
- Preclinical In Vivo Imaging, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Helen J Blair
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K.,Wolfson Childhood Cancer Research Centre, Newcastle Upon Tyne NE1 7RY, U.K
| | - Kenneth S Rankin
- North of England Bone and Soft Tissue Tumour Service, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle Upon Tyne NE7 7DN, U.K.,Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| | - James C Knight
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K.,Newcastle Centre for Cancer, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| |
Collapse
|
49
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
50
|
Nagase Y, Hiramatsu K, Funauchi M, Shiomi M, Masuda T, Kakuda M, Nakagawa S, Miyoshi A, Matsuzaki S, Kobayashi E, Kimura T, Serada S, Ueda Y, Naka T, Kimura T. Anti-lipolysis-stimulated lipoprotein receptor monoclonal antibody as a novel therapeutic agent for endometrial cancer. BMC Cancer 2022; 22:679. [PMID: 35729527 PMCID: PMC9210735 DOI: 10.1186/s12885-022-09789-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/16/2022] [Indexed: 12/29/2022] Open
Abstract
Background Endometrial cancer (EC) is a common gynecologic malignancy and patients with advanced and recurrent EC have a poor prognosis. Although chemotherapy is administered for those patients, the efficacy of current chemotherapy is limited. Therefore, it is necessary to develop novel therapeutic agents for EC. In this study, we focused on lipolysis-stimulated lipoprotein receptor (LSR), a membrane protein highly expressed in EC cells, and developed a chimeric chicken–mouse anti-LSR monoclonal antibody (mAb). This study investigated the antitumor effect of an anti-LSR mAb and the function of LSR in EC. Methods We examined the expression of LSR in 228 patients with EC using immunohistochemistry and divided them into two groups: high-LSR (n = 153) and low-LSR groups (n = 75). We developed a novel anti-LSR mAb and assessed its antitumor activity in an EC cell xenograft mouse model. Pathway enrichment analysis was performed using protein expression data of EC samples. LSR-knockdown EC cell lines (HEC1 and HEC116) were generated by transfected with small interfering RNA and used for assays in vitro. Results High expression of LSR was associated with poor overall survival (hazard ratio: 3.53, 95% confidence interval: 1.35–9.24, p = 0.01), advanced stage disease (p = 0.045), deep myometrial invasion (p = 0.045), and distant metastasis (p < 0.01). In EC with deep myometrial invasion, matrix metalloproteinase (MMP) 2 was highly expressed along with LSR. Anti-LSR mAb significantly inhibited the tumor growth in EC cell xenograft mouse model (tumor volume, 407.1 mm3versus 726.3 mm3, p = 0.019). Pathway enrichment analysis identified the mitogen-activated protein kinase (MAPK) pathway as a signaling pathway associated with LSR expression. Anti-LSR mAb suppressed the activity of MAPK in vivo. In vitro assays using EC cell lines demonstrated that LSR regulated cell proliferation, invasion, and migration through MAPK signaling, particularly MEK/ERK signaling and membrane-type 1 MMP (MT1-MMP) and MMP2. Moreover, ERK1/2-knockdown suppressed cell proliferation, invasion, migration, and the expression of MT1-MMP and MMP2. Conclusions Our results suggest that LSR contributes to tumor growth, invasion, metastasis, and poor prognosis of EC through MAPK signaling. Anti-LSR mAb is a potential therapeutic agent for EC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09789-6.
Collapse
Affiliation(s)
- Yoshikazu Nagase
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kosuke Hiramatsu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masashi Funauchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Division of Clinical Immunology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan.,Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Iwate, Japan.,Department of Clinical Immunology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Mayu Shiomi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsuo Masuda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mamoru Kakuda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Nakagawa
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ai Miyoshi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinya Matsuzaki
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Gynecology, Osaka International Cancer Institute, Osaka, Japan
| | - Eiji Kobayashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihiro Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Serada
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Iwate, Japan.,Department of Clinical Immunology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tetsuji Naka
- Division of Clinical Immunology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan.,Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Iwate, Japan.,Department of Clinical Immunology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|