1
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
2
|
Misfolded protein oligomers induce an increase of intracellular Ca 2+ causing an escalation of reactive oxidative species. Cell Mol Life Sci 2022; 79:500. [PMID: 36030306 PMCID: PMC9420098 DOI: 10.1007/s00018-022-04513-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease is characterized by the accumulation in the brain of the amyloid β (Aβ) peptide in the form of senile plaques. According to the amyloid hypothesis, the aggregation process of Aβ also generates smaller soluble misfolded oligomers that contribute to disease progression. One of the mechanisms of Aβ oligomer cytotoxicity is the aberrant interaction of these species with the phospholipid bilayer of cell membranes, with a consequent increase in cytosolic Ca2+ levels, flowing from the extracellular space, and production of reactive oxygen species (ROS). Here we investigated the relationship between the increase in Ca2+ and ROS levels immediately after the exposure to misfolded protein oligomers, asking whether they are simultaneous or instead one precedes the other. Using Aβ42-derived diffusible ligands (ADDLs) and type A HypF-N model oligomers (OAs), we followed the kinetics of ROS production and Ca2+ influx in human neuroblastoma SH-SY5Y cells and rat primary cortical neurons in a variety of conditions. In all cases we found a faster increase of intracellular Ca2+ than ROS levels, and a lag phase in the latter process. A Ca2+-deprived cell medium prevented the increase of intracellular Ca2+ ions and abolished ROS production. By contrast, treatment with antioxidant agents prevented ROS formation, did not prevent the initial Ca2+ flux, but allowed the cells to react to the initial calcium dyshomeostasis, restoring later the normal levels of the ions. These results reveal a mechanism in which the entry of Ca2+ causes the production of ROS in cells challenged by aberrant protein oligomers.
Collapse
|
3
|
Errico S, Ramshini H, Capitini C, Canale C, Spaziano M, Barbut D, Calamai M, Zasloff M, Oropesa-Nuñez R, Vendruscolo M, Chiti F. Quantitative Measurement of the Affinity of Toxic and Nontoxic Misfolded Protein Oligomers for Lipid Bilayers and of its Modulation by Lipid Composition and Trodusquemine. ACS Chem Neurosci 2021; 12:3189-3202. [PMID: 34382791 PMCID: PMC8414483 DOI: 10.1021/acschemneuro.1c00327] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Many neurodegenerative diseases are associated with the self-assembly of peptides and proteins into fibrillar aggregates. Soluble misfolded oligomers formed during the aggregation process, or released by mature fibrils, play a relevant role in neurodegenerative processes through their interactions with neuronal membranes. However, the determinants of the cytotoxicity of these oligomers are still unclear. Here we used liposomes and toxic and nontoxic oligomers formed by the same protein to measure quantitatively the affinity of the two oligomeric species for lipid membranes. To this aim, we quantified the perturbation to the lipid membranes caused by the two oligomers by using the fluorescence quenching of two probes embedded in the polar and apolar regions of the lipid membranes and a well-defined protein-oligomer binding assay using fluorescently labeled oligomers to determine the Stern-Volmer and dissociation constants, respectively. With both approaches, we found that the toxic oligomers have a membrane affinity 20-25 times higher than that of nontoxic oligomers. Circular dichroism, intrinsic fluorescence, and FRET indicated that neither oligomer type changes its structure upon membrane interaction. Using liposomes enriched with trodusquemine, a potential small molecule drug known to penetrate lipid membranes and make them refractory to toxic oligomers, we found that the membrane affinity of the oligomers was remarkably lower. At protective concentrations of the small molecule, the binding of the oligomers to the lipid membranes was fully prevented. Furthermore, the affinity of the toxic oligomers for the lipid membranes was found to increase and slightly decrease with GM1 ganglioside and cholesterol content, respectively, indicating that physicochemical properties of lipid membranes modulate their affinity for misfolded oligomeric species.
Collapse
Affiliation(s)
- Silvia Errico
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Hassan Ramshini
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
- Department
of Biology, Payame Noor University, Tehran 19395-4697, Islamic Republic of Iran
| | - Claudia Capitini
- European
Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- Department
of Physics and Astronomy, University of
Florence, Sesto
Fiorentino 50019, Italy
| | - Claudio Canale
- Department
of Physics, University of Genoa, Genoa 16146, Italy
| | - Martina Spaziano
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Denise Barbut
- Enterin
Inc., 2005 Market Street, Philadelphia, Pennsylvania 19103, United States
| | - Martino Calamai
- European
Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- National
Institute of Optics, National Research Council
of Italy (CNR), Florence 50125, Italy
| | - Michael Zasloff
- Enterin
Inc., 2005 Market Street, Philadelphia, Pennsylvania 19103, United States
- MedStar-Georgetown
Transplant Institute, Georgetown University
School of Medicine, Washington D.C. 20007, United States
| | - Reinier Oropesa-Nuñez
- Department
of Materials Science and Engineering, Uppsala
University, Uppsala SE-751 03, Sweden
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Fabrizio Chiti
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| |
Collapse
|
4
|
Perni M, Mannini B, Xu CK, Kumita JR, Dobson CM, Chiti F, Vendruscolo M. Exogenous misfolded protein oligomers can cross the intestinal barrier and cause a disease phenotype in C. elegans. Sci Rep 2021; 11:14391. [PMID: 34257326 PMCID: PMC8277765 DOI: 10.1038/s41598-021-93527-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Misfolded protein oligomers are increasingly recognized as highly cytotoxic agents in a wide range of human disorders associated with protein aggregation. In this study, we assessed the possible uptake and resulting toxic effects of model protein oligomers administered to C. elegans through the culture medium. We used an automated machine-vision, high-throughput screening procedure to monitor the phenotypic changes in the worms, in combination with confocal microscopy to monitor the diffusion of the oligomers, and oxidative stress assays to detect their toxic effects. Our results suggest that the oligomers can diffuse from the intestinal lumen to other tissues, resulting in a disease phenotype. We also observed that pre-incubation of the oligomers with a molecular chaperone (αB-crystallin) or a small molecule inhibitor of protein aggregation (squalamine), reduced the oligomer absorption. These results indicate that exogenous misfolded protein oligomers can be taken up by the worms from their environment and spread across tissues, giving rise to pathological effects in regions distant from their place of absorbance.
Collapse
Affiliation(s)
- Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Catherine K Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Janet R Kumita
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
5
|
Diociaiuti M, Bonanni R, Cariati I, Frank C, D’Arcangelo G. Amyloid Prefibrillar Oligomers: The Surprising Commonalities in Their Structure and Activity. Int J Mol Sci 2021; 22:ijms22126435. [PMID: 34208561 PMCID: PMC8235680 DOI: 10.3390/ijms22126435] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
It has been proposed that a “common core” of pathologic pathways exists for the large family of amyloid-associated neurodegenerations, including Alzheimer’s, Parkinson’s, type II diabetes and Creutzfeldt–Jacob’s Disease. Aggregates of the involved proteins, independently from their primary sequence, induced neuron membrane permeabilization able to trigger an abnormal Ca2+ influx leading to synaptotoxicity, resulting in reduced expression of synaptic proteins and impaired synaptic transmission. Emerging evidence is now focusing on low-molecular-weight prefibrillar oligomers (PFOs), which mimic bacterial pore-forming toxins that form well-ordered oligomeric membrane-spanning pores. At the same time, the neuron membrane composition and its chemical microenvironment seem to play a pivotal role. In fact, the brain of AD patients contains increased fractions of anionic lipids able to favor cationic influx. However, up to now the existence of a specific “common structure” of the toxic aggregate, and a “common mechanism” by which it induces neuronal damage, synaptotoxicity and impaired synaptic transmission, is still an open hypothesis. In this review, we gathered information concerning this hypothesis, focusing on the proteins linked to several amyloid diseases. We noted commonalities in their structure and membrane activity, and their ability to induce Ca2+ influx, neurotoxicity, synaptotoxicity and impaired synaptic transmission.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Correspondence:
| | - Roberto Bonanni
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
| | - Ida Cariati
- PhD in Medical-Surgical Biotechnologies and Translational Medicine, Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
6
|
Cascella R, Cecchi C. Calcium Dyshomeostasis in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22094914. [PMID: 34066371 PMCID: PMC8124842 DOI: 10.3390/ijms22094914] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder that is characterized by amyloid β-protein deposition in senile plaques, neurofibrillary tangles consisting of abnormally phosphorylated tau protein, and neuronal loss leading to cognitive decline and dementia. Despite extensive research, the exact mechanisms underlying AD remain unknown and effective treatment is not available. Many hypotheses have been proposed to explain AD pathophysiology; however, there is general consensus that the abnormal aggregation of the amyloid β peptide (Aβ) is the initial event triggering a pathogenic cascade of degenerating events in cholinergic neurons. The dysregulation of calcium homeostasis has been studied considerably to clarify the mechanisms of neurodegeneration induced by Aβ. Intracellular calcium acts as a second messenger and plays a key role in the regulation of neuronal functions, such as neural growth and differentiation, action potential, and synaptic plasticity. The calcium hypothesis of AD posits that activation of the amyloidogenic pathway affects neuronal Ca2+ homeostasis and the mechanisms responsible for learning and memory. Aβ can disrupt Ca2+ signaling through several mechanisms, by increasing the influx of Ca2+ from the extracellular space and by activating its release from intracellular stores. Here, we review the different molecular mechanisms and receptors involved in calcium dysregulation in AD and possible therapeutic strategies for improving the treatment.
Collapse
|
7
|
Iuchi K, Takai T, Hisatomi H. Cell Death via Lipid Peroxidation and Protein Aggregation Diseases. BIOLOGY 2021; 10:399. [PMID: 34064409 PMCID: PMC8147787 DOI: 10.3390/biology10050399] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Lipid peroxidation of cellular membranes is a complicated cellular event, and it is both the cause and result of various diseases, such as ischemia-reperfusion injury, neurodegenerative diseases, and atherosclerosis. Lipid peroxidation causes non-apoptotic cell death, which is associated with cell fate determination: survival or cell death. During the radical chain reaction of lipid peroxidation, various oxidized lipid products accumulate in cells, followed by organelle dysfunction and the induction of non-apoptotic cell death. Highly reactive oxidized products from unsaturated fatty acids are detected under pathological conditions. Pathological protein aggregation is the general cause of these diseases. The cellular response to misfolded proteins is well-known as the unfolded protein response (UPR) and it is partially concomitant with the response to lipid peroxidation. Moreover, the association between protein aggregation and non-apoptotic cell death by lipid peroxidation is attracting attention. The link between lipid peroxidation and protein aggregation is a matter of concern in biomedical fields. Here, we focus on lethal protein aggregation in non-apoptotic cell death via lipid peroxidation. We reviewed the roles of protein aggregation in the initiation and execution of non-apoptotic cell death. We also considered the relationship between protein aggregation and oxidized lipid production. We provide an overview of non-apoptotic cell death with a focus on lipid peroxidation for therapeutic targeting during protein aggregation diseases.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo 180-8633, Japan; (T.T.); (H.H.)
| | | | | |
Collapse
|
8
|
Cascella R, Chen SW, Bigi A, Camino JD, Xu CK, Dobson CM, Chiti F, Cremades N, Cecchi C. The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells. Nat Commun 2021; 12:1814. [PMID: 33753734 PMCID: PMC7985515 DOI: 10.1038/s41467-021-21937-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
The self-assembly of α-synuclein (αS) into intraneuronal inclusion bodies is a key characteristic of Parkinson's disease. To define the nature of the species giving rise to neuronal damage, we have investigated the mechanism of action of the main αS populations that have been observed to form progressively during fibril growth. The αS fibrils release soluble prefibrillar oligomeric species with cross-β structure and solvent-exposed hydrophobic clusters. αS prefibrillar oligomers are efficient in crossing and permeabilize neuronal membranes, causing cellular insults. Short fibrils are more neurotoxic than long fibrils due to the higher proportion of fibrillar ends, resulting in a rapid release of oligomers. The kinetics of released αS oligomers match the observed kinetics of toxicity in cellular systems. In addition to previous evidence that αS fibrils can spread in different brain areas, our in vitro results reveal that αS fibrils can also release oligomeric species responsible for an immediate dysfunction of the neurons in the vicinity of these species.
Collapse
Affiliation(s)
- Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Serene W Chen
- Department of Life Science, Imperial College London, London, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - José D Camino
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-Institute of Physical Chemistry "Rocasolano" (CSIC), University of Zaragoza, Zaragoza, Spain
| | - Catherine K Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Nunilo Cremades
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-Institute of Physical Chemistry "Rocasolano" (CSIC), University of Zaragoza, Zaragoza, Spain.
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy.
| |
Collapse
|
9
|
Gonzalez-Garcia M, Fusco G, De Simone A. Membrane Interactions and Toxicity by Misfolded Protein Oligomers. Front Cell Dev Biol 2021; 9:642623. [PMID: 33791300 PMCID: PMC8006268 DOI: 10.3389/fcell.2021.642623] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 01/13/2023] Open
Abstract
The conversion of otherwise soluble proteins into insoluble amyloid aggregates is associated with a range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases, as well as non-neuropathic conditions such as type II diabetes and systemic amyloidoses. It is increasingly evident that the most pernicious species among those forming during protein aggregation are small prefibrillar oligomers. In this review, we describe the recent progress in the characterization of the cellular and molecular interactions by toxic misfolded protein oligomers. A fundamental interaction by these aggregates involves biological membranes, resulting in two major model mechanisms at the onset of the cellular toxicity. These include the membrane disruption model, resulting in calcium imbalance, mitochondrial dysfunction and intracellular reactive oxygen species, and the direct interaction with membrane proteins, leading to the alteration of their native function. A key challenge remains in the characterization of transient interactions involving heterogeneous protein aggregates. Solving this task is crucial in the quest of identifying suitable therapeutic approaches to suppress the cellular toxicity in protein misfolding diseases.
Collapse
Affiliation(s)
- Mario Gonzalez-Garcia
- Department of Life Sciences, Imperial College London, South Kensington, United Kingdom
| | - Giuliana Fusco
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Fani G, Mannini B, Vecchi G, Cascella R, Cecchi C, Dobson CM, Vendruscolo M, Chiti F. Aβ Oligomers Dysregulate Calcium Homeostasis by Mechanosensitive Activation of AMPA and NMDA Receptors. ACS Chem Neurosci 2021; 12:766-781. [PMID: 33538575 PMCID: PMC7898266 DOI: 10.1021/acschemneuro.0c00811] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease, which is the most common form of dementia, is characterized by the aggregation of the amyloid β peptide (Aβ) and by an impairment of calcium homeostasis caused by excessive activation of glutamatergic receptors (excitotoxicity). Here, we studied the effects on calcium homeostasis caused by the formation of Aβ oligomeric assemblies. We found that Aβ oligomers cause a rapid influx of calcium ions (Ca2+) across the cell membrane by rapidly activating extrasynaptic N-methyl-d-aspartate (NMDA) receptors and, to a lower extent, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. We also observed, however, that misfolded oligomers do not interact directly with these receptors. Further experiments with lysophosphatidylcholine and arachidonic acid, which cause membrane compression and stretch, respectively, indicated that these receptors are activated through a change in membrane tension induced by the oligomers and transmitted mechanically to the receptors via the lipid bilayer. Indeed, lysophosphatidylcholine is able to neutralize the oligomer-induced activation of the NMDA receptors, whereas arachidonic acid activates the receptors similarly to the oligomers with no additive effects. An increased rotational freedom observed for a fluorescent probe embedded within the membrane in the presence of the oligomers also indicates a membrane stretch. These results reveal a mechanism of toxicity of Aβ oligomers in Alzheimer's disease through the perturbation of the mechanical properties of lipid membranes sensed by NMDA and AMPA receptors.
Collapse
Affiliation(s)
- Giulia Fani
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Benedetta Mannini
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Giulia Vecchi
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Roberta Cascella
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Cristina Cecchi
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Christopher M. Dobson
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Fabrizio Chiti
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
11
|
The docking of synaptic vesicles on the presynaptic membrane induced by α-synuclein is modulated by lipid composition. Nat Commun 2021; 12:927. [PMID: 33568632 PMCID: PMC7876145 DOI: 10.1038/s41467-021-21027-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
α-Synuclein (αS) is a presynaptic disordered protein whose aberrant aggregation is associated with Parkinson’s disease. The functional role of αS is still debated, although it has been involved in the regulation of neurotransmitter release via the interaction with synaptic vesicles (SVs). We report here a detailed characterisation of the conformational properties of αS bound to the inner and outer leaflets of the presynaptic plasma membrane (PM), using small unilamellar vesicles. Our results suggest that αS preferentially binds the inner PM leaflet. On the basis of these studies we characterise in vitro a mechanism by which αS stabilises, in a concentration-dependent manner, the docking of SVs on the PM by establishing a dynamic link between the two membranes. The study then provides evidence that changes in the lipid composition of the PM, typically associated with neurodegenerative diseases, alter the modes of binding of αS, specifically in a segment of the sequence overlapping with the non-amyloid component region. Taken together, these results reveal how lipid composition modulates the interaction of αS with the PM and underlie its functional and pathological behaviours in vitro. α-Synuclein is a presynaptic protein whose aberrant aggregation is associated with Parkinson’s disease. Here, the authors show how αSynuclein-induced docking of synaptic vesicles is modulated by the lipid composition changes typically observed in neurodegeneration using an in vitro system.
Collapse
|
12
|
Grigolato F, Arosio P. The role of surfaces on amyloid formation. Biophys Chem 2021; 270:106533. [PMID: 33529995 DOI: 10.1016/j.bpc.2020.106533] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023]
Abstract
Interfaces can strongly accelerate or inhibit protein aggregation, destabilizing proteins that are stable in solution or, conversely, stabilizing proteins that are aggregation-prone. Although this behaviour is well-known, our understanding of the molecular mechanisms underlying surface-induced protein aggregation is still largely incomplete. A major challenge is represented by the high number of physico-chemical parameters involved, which are highly specific to the considered combination of protein, surface properties, and solution conditions. The key aspect determining the role of interfaces is the relative propensity of the protein to aggregate at the surface with respect to bulk. In this review, we discuss the multiple molecular determinants that regulate this balance. We summarize current experimental techniques aimed at characterizing protein aggregation at interfaces, and highlight the need to complement experimental analysis with theoretical modelling. In particular, we illustrate how chemical kinetic analysis can be combined with experimental methods to provide insights into the molecular mechanisms underlying surface-induced protein aggregation, under both stagnant and agitation conditions. We summarize recent progress in the study of important amyloids systems, focusing on selected relevant interfaces.
Collapse
Affiliation(s)
- Fulvio Grigolato
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich 8093, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
13
|
Errico S, Lucchesi G, Odino D, Muscat S, Capitini C, Bugelli C, Canale C, Ferrando R, Grasso G, Barbut D, Calamai M, Danani A, Zasloff M, Relini A, Caminati G, Vendruscolo M, Chiti F. Making biological membrane resistant to the toxicity of misfolded protein oligomers: a lesson from trodusquemine. NANOSCALE 2020; 12:22596-22614. [PMID: 33150350 DOI: 10.1039/d0nr05285j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trodusquemine is an aminosterol known to prevent the binding of misfolded protein oligomers to cell membranes and to reduce their toxicity in a wide range of neurodegenerative diseases. Its precise mechanism of action, however, remains unclear. To investigate this mechanism, we performed confocal microscopy, fluorescence resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) measurements, which revealed a strong binding of trodusquemine to large unilamellar vesicles (LUVs) and neuroblastoma cell membranes. Then, by combining quartz crystal microbalance (QCM), fluorescence quenching and anisotropy, and molecular dynamics (MD) simulations, we found that trodusquemine localises within, and penetrates, the polar region of lipid bilayer. This binding behaviour causes a decrease of the negative charge of the bilayer, as observed through ζ potential measurements, an increment in the mechanical resistance of the bilayer, as revealed by measurements of the breakthrough force applied with AFM and ζ potential measurements at high temperature, and a rearrangement of the spatial distances between ganglioside and cholesterol molecules in the LUVs, as determined by FRET measurements. These physicochemical changes are all known to impair the interaction of misfolded oligomers with cell membranes, protecting them from their toxicity. Taken together, our results illustrate how the incorporation in cell membranes of sterol molecules modified by the addition of polyamine tails leads to the modulation of physicochemical properties of the cell membranes themselves, making them more resistant to protein aggregates associated with neurodegeneration. More generally, they suggest that therapeutic strategies can be developed to reinforce cell membranes against protein misfolded assemblies.
Collapse
Affiliation(s)
- Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Farrugia MY, Caruana M, Ghio S, Camilleri A, Farrugia C, Cauchi RJ, Cappelli S, Chiti F, Vassallo N. Toxic oligomers of the amyloidogenic HypF-N protein form pores in mitochondrial membranes. Sci Rep 2020; 10:17733. [PMID: 33082392 PMCID: PMC7575562 DOI: 10.1038/s41598-020-74841-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/06/2020] [Indexed: 12/30/2022] Open
Abstract
Studies on the amyloidogenic N-terminal domain of the E. coli HypF protein (HypF-N) have contributed significantly to a detailed understanding of the pathogenic mechanisms in neurodegenerative diseases characterised by the formation of misfolded oligomers, by proteins such as amyloid-β, α-synuclein and tau. Given that both cell membranes and mitochondria are increasingly recognised as key targets of oligomer toxicity, we investigated the damaging effects of aggregates of HypF-N on mitochondrial membranes. Essentially, we found that HypF-N oligomers characterised by high surface hydrophobicity (type A) were able to trigger a robust permeabilisation of mito-mimetic liposomes possessing cardiolipin-rich membranes and dysfunction of isolated mitochondria, as demonstrated by a combination of mitochondrial shrinking, lowering of mitochondrial membrane potential and cytochrome c release. Furthermore, using single-channel electrophysiology recordings we obtained evidence that the type A aggregates induced currents reflecting formation of ion-conducting pores in mito-mimetic planar phospholipid bilayers, with multi-level conductances ranging in the hundreds of pS at negative membrane voltages. Conversely, HypF-N oligomers with low surface hydrophobicity (type B) could not permeabilise or porate mitochondrial membranes. These results suggest an inherent toxicity of membrane-active aggregates of amyloid-forming proteins to mitochondria, and that targeting of oligomer-mitochondrial membrane interactions might therefore afford protection against such damage.
Collapse
Affiliation(s)
- Maria Ylenia Farrugia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Mario Caruana
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Stephanie Ghio
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Angelique Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | | | - Ruben J Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Sara Cappelli
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.
| |
Collapse
|
15
|
Rezvani Boroujeni E, Hosseini SM, Fani G, Cecchi C, Chiti F. Soluble Prion Peptide 107-120 Protects Neuroblastoma SH-SY5Y Cells against Oligomers Associated with Alzheimer's Disease. Int J Mol Sci 2020; 21:E7273. [PMID: 33019683 PMCID: PMC7582777 DOI: 10.3390/ijms21197273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and soluble amyloid β (Aβ) oligomers are thought to play a critical role in AD pathogenesis. Cellular prion protein (PrPC) is a high-affinity receptor for Aβ oligomers and mediates some of their toxic effects. The N-terminal region of PrPC can interact with Aβ, particularly the region encompassing residues 95-110. In this study, we identified a soluble and unstructured prion-derived peptide (PrP107-120) that is external to this region of the sequence and was found to successfully reduce the mitochondrial impairment, intracellular ROS generation and cytosolic Ca2+ uptake induced by oligomeric Aβ42 ADDLs in neuroblastoma SH-SY5Y cells. PrP107-120 was also found to rescue SH-SY5Y cells from Aβ42 ADDL internalization. The peptide did not change the structure and aggregation pathway of Aβ42 ADDLs, did not show co-localization with Aβ42 ADDLs in the cells and showed a partial colocalization with the endogenous cellular PrPC. As a sequence region that is not involved in Aβ binding but in PrP self-recognition, the peptide was suggested to protect against the toxicity of Aβ42 oligomers by interfering with cellular PrPC and/or activating a signaling that protected the cells. These results strongly suggest that PrP107-120 has therapeutic potential for AD.
Collapse
Affiliation(s)
- Elham Rezvani Boroujeni
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran;
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B Morgagni 50, 50134 Florence, Italy; (G.F.); (C.C.)
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - Giulia Fani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B Morgagni 50, 50134 Florence, Italy; (G.F.); (C.C.)
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B Morgagni 50, 50134 Florence, Italy; (G.F.); (C.C.)
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B Morgagni 50, 50134 Florence, Italy; (G.F.); (C.C.)
| |
Collapse
|
16
|
Polypeptides derived from α-Synuclein binding partners to prevent α-Synuclein fibrils interaction with and take-up by cells. PLoS One 2020; 15:e0237328. [PMID: 32790707 PMCID: PMC7425896 DOI: 10.1371/journal.pone.0237328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/23/2020] [Indexed: 11/24/2022] Open
Abstract
α-Synuclein (αSyn) fibrils spread from one neuronal cell to another. This prion-like phenomenon is believed to contribute to the progression of the pathology in Parkinson’s disease and other synucleinopathies. The binding of αSyn fibrils originating from affected cells to the plasma membrane of naïve cells is key in their prion-like propagation propensity. To interfere with this process, we designed polypeptides derived from proteins we previously showed to interact with αSyn fibrils, namely the molecular chaperone Hsc70 and the sodium/potassium pump NaK-ATPase and assessed their capacity to bind αSyn fibrils and/or interfere with their take-up by cells of neuronal origin. We demonstrate here that polypeptides that coat αSyn fibrils surfaces in such a way that they are changed affect αSyn fibrils binding to the plasma membrane components and/or their take-up by cells. Altogether our observations suggest that the rationale design of αSyn fibrils polypeptide binders that interfere with their propagation between neuronal cells holds therapeutic potential.
Collapse
|
17
|
Limbocker R, Mannini B, Ruggeri FS, Cascella R, Xu CK, Perni M, Chia S, Chen SW, Habchi J, Bigi A, Kreiser RP, Wright AK, Albright JA, Kartanas T, Kumita JR, Cremades N, Zasloff M, Cecchi C, Knowles TPJ, Chiti F, Vendruscolo M, Dobson CM. Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism. Commun Biol 2020; 3:435. [PMID: 32792544 PMCID: PMC7426408 DOI: 10.1038/s42003-020-01140-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
The onset and progression of numerous protein misfolding diseases are associated with the presence of oligomers formed during the aberrant aggregation of several different proteins, including amyloid-β (Aβ) in Alzheimer’s disease and α-synuclein (αS) in Parkinson’s disease. These small, soluble aggregates are currently major targets for drug discovery. In this study, we show that trodusquemine, a naturally-occurring aminosterol, markedly reduces the cytotoxicity of αS, Aβ and HypF-N oligomers to human neuroblastoma cells by displacing the oligomers from cell membranes in the absence of any substantial morphological and structural changes to the oligomers. These results indicate that the reduced toxicity results from a mechanism that is common to oligomers from different proteins, shed light on the origin of the toxicity of the most deleterious species associated with protein aggregation and suggest that aminosterols have the therapeutically-relevant potential to protect cells from the oligomer-induced cytotoxicity associated with numerous protein misfolding diseases. Limbocker et al. show that trodusquemine, an aminosterol, reduces the cytotoxicity of protein misfolded oligomers by displacing them from cell membranes in the absence of any overt structural/ morphological changes in them. This mechanism appears to be general, as they test it for oligomers of αS, Aβ and the model protein HypF-N to human neuroblastoma cells.
Collapse
Affiliation(s)
- Ryan Limbocker
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.,Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Francesco S Ruggeri
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Science, University of Florence, 50134, Florence, Italy
| | - Catherine K Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sean Chia
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Serene W Chen
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Johnny Habchi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Science, University of Florence, 50134, Florence, Italy
| | - Ryan P Kreiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA
| | - Aidan K Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA
| | - J Alex Albright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA
| | - Tadas Kartanas
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Janet R Kumita
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nunilo Cremades
- Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, 50018, Zaragoza, Spain
| | - Michael Zasloff
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, 20010, USA
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Science, University of Florence, 50134, Florence, Italy
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.,Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Science, University of Florence, 50134, Florence, Italy.
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| |
Collapse
|
18
|
Limbocker R, Mannini B, Cataldi R, Chhangur S, Wright AK, Kreiser RP, Albright JA, Chia S, Habchi J, Sormanni P, Kumita JR, Ruggeri FS, Dobson CM, Chiti F, Aprile FA, Vendruscolo M. Rationally Designed Antibodies as Research Tools to Study the Structure-Toxicity Relationship of Amyloid-β Oligomers. Int J Mol Sci 2020; 21:E4542. [PMID: 32630615 PMCID: PMC7352524 DOI: 10.3390/ijms21124542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease is associated with the aggregation of the amyloid-β peptide (Aβ), resulting in the deposition of amyloid plaques in brain tissue. Recent scrutiny of the mechanisms by which Aβ aggregates induce neuronal dysfunction has highlighted the importance of the Aβ oligomers of this protein fragment. Because of the transient and heterogeneous nature of these oligomers, however, it has been challenging to investigate the detailed mechanisms by which these species exert cytotoxicity. To address this problem, we demonstrate here the use of rationally designed single-domain antibodies (DesAbs) to characterize the structure-toxicity relationship of Aβ oligomers. For this purpose, we use Zn2+-stabilized oligomers of the 40-residue form of Aβ (Aβ40) as models of brain Aβ oligomers and two single-domain antibodies (DesAb18-24 and DesAb34-40), designed to bind to epitopes at residues 18-24 and 34-40 of Aβ40, respectively. We found that the DesAbs induce a change in structure of the Zn2+-stabilized Aβ40 oligomers, generating a simultaneous increase in their size and solvent-exposed hydrophobicity. We then observed that these increments in both the size and hydrophobicity of the oligomers neutralize each other in terms of their effects on cytotoxicity, as predicted by a recently proposed general structure-toxicity relationship, and observed experimentally. These results illustrate the use of the DesAbs as research tools to investigate the biophysical and cytotoxicity properties of Aβ oligomers.
Collapse
Affiliation(s)
- Ryan Limbocker
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (B.M.); (R.C.); (S.C.); (S.C.); (J.H.); (P.S.); (J.R.K.); (F.S.R.); (C.M.D.)
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (A.K.W.); (R.P.K.); (J.A.A.)
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (B.M.); (R.C.); (S.C.); (S.C.); (J.H.); (P.S.); (J.R.K.); (F.S.R.); (C.M.D.)
| | - Rodrigo Cataldi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (B.M.); (R.C.); (S.C.); (S.C.); (J.H.); (P.S.); (J.R.K.); (F.S.R.); (C.M.D.)
| | - Shianne Chhangur
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (B.M.); (R.C.); (S.C.); (S.C.); (J.H.); (P.S.); (J.R.K.); (F.S.R.); (C.M.D.)
| | - Aidan K. Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (A.K.W.); (R.P.K.); (J.A.A.)
| | - Ryan P. Kreiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (A.K.W.); (R.P.K.); (J.A.A.)
| | - J. Alex Albright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (A.K.W.); (R.P.K.); (J.A.A.)
| | - Sean Chia
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (B.M.); (R.C.); (S.C.); (S.C.); (J.H.); (P.S.); (J.R.K.); (F.S.R.); (C.M.D.)
| | - Johnny Habchi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (B.M.); (R.C.); (S.C.); (S.C.); (J.H.); (P.S.); (J.R.K.); (F.S.R.); (C.M.D.)
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (B.M.); (R.C.); (S.C.); (S.C.); (J.H.); (P.S.); (J.R.K.); (F.S.R.); (C.M.D.)
| | - Janet R. Kumita
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (B.M.); (R.C.); (S.C.); (S.C.); (J.H.); (P.S.); (J.R.K.); (F.S.R.); (C.M.D.)
| | - Francesco S. Ruggeri
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (B.M.); (R.C.); (S.C.); (S.C.); (J.H.); (P.S.); (J.R.K.); (F.S.R.); (C.M.D.)
| | - Christopher M. Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (B.M.); (R.C.); (S.C.); (S.C.); (J.H.); (P.S.); (J.R.K.); (F.S.R.); (C.M.D.)
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Science, University of Florence, 50134 Florence, Italy;
| | - Francesco A. Aprile
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (B.M.); (R.C.); (S.C.); (S.C.); (J.H.); (P.S.); (J.R.K.); (F.S.R.); (C.M.D.)
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (B.M.); (R.C.); (S.C.); (S.C.); (J.H.); (P.S.); (J.R.K.); (F.S.R.); (C.M.D.)
| |
Collapse
|
19
|
Muraoka S, DeLeo AM, Sethi MK, Yukawa‐Takamatsu K, Yang Z, Ko J, Hogan JD, Ruan Z, You Y, Wang Y, Medalla M, Ikezu S, Chen M, Xia W, Gorantla S, Gendelman HE, Issadore D, Zaia J, Ikezu T. Proteomic and biological profiling of extracellular vesicles from Alzheimer's disease human brain tissues. Alzheimers Dement 2020; 16:896-907. [PMID: 32301581 PMCID: PMC7293582 DOI: 10.1002/alz.12089] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/05/2019] [Accepted: 01/15/2020] [Indexed: 12/31/2022]
Abstract
Introduction Extracellular vesicles (EVs) from human Alzheimer's disease (AD) biospecimens contain amyloid beta (Aβ) peptide and tau. While AD EVs are known to affect brain disease pathobiology, their biochemical and molecular characterizations remain ill defined. Methods EVs were isolated from the cortical gray matter of 20 AD and 18 control brains. Tau and Aβ levels were measured by immunoassay. Differentially expressed EV proteins were assessed by quantitative proteomics and machine learning. Results Levels of pS396 tau and Aβ1–42 were significantly elevated in AD EVs. High levels of neuron‐ and glia‐specific factors are detected in control and AD EVs, respectively. Machine learning identified ANXA5, VGF, GPM6A, and ACTZ in AD EV compared to controls. They distinguished AD EVs from controls in the test sets with 88% accuracy. Discussion In addition to Aβ and tau, ANXA5, VGF, GPM6A, and ACTZ are new signature proteins in AD EVs.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Pharmacology and Experimental TherapeuticsBoston University School of Medicine Boston Massachusetts USA
| | - Annina M. DeLeo
- Department of Pharmacology and Experimental TherapeuticsBoston University School of Medicine Boston Massachusetts USA
| | - Manveen K. Sethi
- Department of BiochemistryBoston University School of Medicine Boston Massachusetts USA
| | - Kayo Yukawa‐Takamatsu
- Department of Pharmacology and Experimental TherapeuticsBoston University School of Medicine Boston Massachusetts USA
| | - Zijian Yang
- Department of BioengineeringUniversity of Pennsylvania Philadelphia Pennsylvania USA
| | - Jina Ko
- Department of BioengineeringUniversity of Pennsylvania Philadelphia Pennsylvania USA
| | - John D. Hogan
- Program in BioinformaticsBoston University Boston Massachusetts USA
| | - Zhi Ruan
- Department of Pharmacology and Experimental TherapeuticsBoston University School of Medicine Boston Massachusetts USA
| | - Yang You
- Department of Pharmacology and Experimental TherapeuticsBoston University School of Medicine Boston Massachusetts USA
| | - Yuzhi Wang
- Department of Pharmacology and Experimental TherapeuticsBoston University School of Medicine Boston Massachusetts USA
| | - Maria Medalla
- Department of Anatomy and NeurobiologyBoston University School of Medicine Boston Massachusetts USA
| | - Seiko Ikezu
- Department of Pharmacology and Experimental TherapeuticsBoston University School of Medicine Boston Massachusetts USA
| | - Mei Chen
- Geriatric ResearchEducation and Clinical CenterEdith Nourse Rogers Memorial Veterans Hospital Bedford Massachusetts USA
| | - Weiming Xia
- Department of Pharmacology and Experimental TherapeuticsBoston University School of Medicine Boston Massachusetts USA
- Geriatric ResearchEducation and Clinical CenterEdith Nourse Rogers Memorial Veterans Hospital Bedford Massachusetts USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental NeurosciencesUniversity of Nebraska Medical Center Omaha Nebraska USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental NeurosciencesUniversity of Nebraska Medical Center Omaha Nebraska USA
| | - David Issadore
- Department of BioengineeringUniversity of Pennsylvania Philadelphia Pennsylvania USA
| | - Joseph Zaia
- Department of BiochemistryBoston University School of Medicine Boston Massachusetts USA
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental TherapeuticsBoston University School of Medicine Boston Massachusetts USA
- Department of NeurologyBoston University School of Medicine Boston Massachusetts USA
- Center for Systems NeuroscienceBoston University Boston Massachusetts USA
| |
Collapse
|
20
|
Ghadami SA, Chia S, Ruggeri FS, Meisl G, Bemporad F, Habchi J, Cascella R, Dobson CM, Vendruscolo M, Knowles TPJ, Chiti F. Transthyretin Inhibits Primary and Secondary Nucleations of Amyloid-β Peptide Aggregation and Reduces the Toxicity of Its Oligomers. Biomacromolecules 2020; 21:1112-1125. [PMID: 32011129 PMCID: PMC7997117 DOI: 10.1021/acs.biomac.9b01475] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Alzheimer’s
disease is associated with the deposition of
the amyloid-β peptide (Aβ) into extracellular senile plaques
in the brain. In vitro and in vivo observations have indicated that
transthyretin (TTR) acts as an Aβ scavenger in the brain, but
the mechanism has not been fully resolved. We have monitored the aggregation
process of Aβ40 by thioflavin T fluorescence, in
the presence or absence of different concentrations of preformed seed
aggregates of Aβ40, of wild-type tetrameric TTR (WT-TTR),
and of a variant engineered to be stable as a monomer (M-TTR). Both
WT-TTR and M-TTR were found to inhibit specific steps of the process
of Aβ40 fibril formation, which are primary and secondary
nucleations, without affecting the elongation of the resulting fibrils.
Moreover, the analysis shows that both WT-TTR and M-TTR bind to Aβ40 oligomers formed in the aggregation reaction and inhibit
their conversion into the shortest fibrils able to elongate. Using
biophysical methods, TTR was found to change some aspects of its overall
structure following such interactions with Aβ40 oligomers,
as well as with oligomers of Aβ42, while maintaining
its overall topology. Hence, it is likely that the predominant mechanism
by which TTR exerts its protective role lies in the binding of TTR
to the Aβ oligomers and in inhibiting primary and secondary
nucleation processes, which limits both the toxicity of Aβ oligomers
and the ability of the fibrils to proliferate.
Collapse
Affiliation(s)
- Seyyed Abolghasem Ghadami
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Sean Chia
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Francesco Simone Ruggeri
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Georg Meisl
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Francesco Bemporad
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Johnny Habchi
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Christopher M Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tuomas P J Knowles
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K.,Department of Physics, Cavendish Laboratory, 19 J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| |
Collapse
|
21
|
Banchelli M, Cascella R, D'Andrea C, Cabaj L, Osticioli I, Ciofini D, Li MS, Skupień K, de Angelis M, Siano S, Cecchi C, Pini R, La Penna G, Chiti F, Matteini P. Nanoscopic insights into the surface conformation of neurotoxic amyloid β oligomers. RSC Adv 2020; 10:21907-21913. [PMID: 35516647 PMCID: PMC9054531 DOI: 10.1039/d0ra03799k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/01/2020] [Indexed: 11/21/2022] Open
Abstract
Raman spectroscopy assisted by localized plasmon resonances generating effective hot spots at the gaps between intertwined silver nanowires is herein adopted to unravel characteristic molecular motifs on the surface of Aβ42 misfolded oligomers that are critical in driving intermolecular interactions in neurodegeneration. Unraveling characteristic structural determinants at the basis of Aβ42 oligomers' neurotoxicity by a sub-molecular SERS investigation of their surface.![]()
Collapse
|
22
|
Mannini B, Vecchi G, Labrador-Garrido A, Fabre B, Fani G, Franco JM, Lilley K, Pozo D, Vendruscolo M, Chiti F, Dobson CM, Roodveldt C. Differential Interactome and Innate Immune Response Activation of Two Structurally Distinct Misfolded Protein Oligomers. ACS Chem Neurosci 2019; 10:3464-3478. [PMID: 31313906 DOI: 10.1021/acschemneuro.9b00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation of misfolded protein oligomers during early stages of amyloid aggregation and the activation of neuroinflammatory responses are two key events associated with neurodegenerative diseases. Although it has been established that misfolded oligomers are involved in the neuroinflammatory process, the links between their structural features and their functional effects on the immune response remain unknown. To explore such links, we took advantage of two structurally distinct soluble oligomers (type A and B) of protein HypF-N and compared the elicited microglial inflammatory responses. By using confocal microscopy, protein pull-down, and high-throughput mass spectrometry, we found that, even though both types bound to a common pool of microglial proteins, type B oligomers-with a lower solvent-exposed hydrophobicity-showed enhanced protein binding, correlating with the observed inflammatory response. Furthermore, the interactome associated with inflammatory-mediated neurodegeneration revealed previously unidentified receptors and signaling molecules likely to be involved in the oligomer-elicited innate immune response.
Collapse
Affiliation(s)
- Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Giulia Vecchi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Adahir Labrador-Garrido
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) - Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, 41092 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41092 Seville, Spain
| | - Bertrand Fabre
- Cambridge Centre for Proteomics, Systems Biology Centre, Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, U.K
| | - Giulia Fani
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Jaime M. Franco
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) - Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, 41092 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41092 Seville, Spain
| | - Kathryn Lilley
- Cambridge Centre for Proteomics, Systems Biology Centre, Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, U.K
| | - David Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) - Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, 41092 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41092 Seville, Spain
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Christopher M. Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Cintia Roodveldt
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) - Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, 41092 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41092 Seville, Spain
| |
Collapse
|
23
|
Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. Int J Mol Sci 2019; 20:ijms20092167. [PMID: 31052427 PMCID: PMC6540057 DOI: 10.3390/ijms20092167] [Citation(s) in RCA: 471] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Biological membranes are key elements for the maintenance of cell architecture and physiology. Beyond a pure barrier separating the inner space of the cell from the outer, the plasma membrane is a scaffold and player in cell-to-cell communication and the initiation of intracellular signals among other functions. Critical to this function is the plasma membrane compartmentalization in lipid microdomains that control the localization and productive interactions of proteins involved in cell signal propagation. In addition, cells are divided into compartments limited by other membranes whose integrity and homeostasis are finely controlled, and which determine the identity and function of the different organelles. Here, we review current knowledge on membrane lipid composition in the plasma membrane and endomembrane compartments, emphasizing its role in sustaining organelle structure and function. The correct composition and structure of cell membranes define key pathophysiological aspects of cells. Therefore, we explore the therapeutic potential of manipulating membrane lipid composition with approaches like membrane lipid therapy, aiming to normalize cell functions through the modification of membrane lipid bilayers.
Collapse
|
24
|
Leri M, Natalello A, Bruzzone E, Stefani M, Bucciantini M. Oleuropein aglycone and hydroxytyrosol interfere differently with toxic Aβ 1-42 aggregation. Food Chem Toxicol 2019; 129:1-12. [PMID: 30995514 DOI: 10.1016/j.fct.2019.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/18/2022]
Abstract
Oleuropein aglycone (OleA), the most abundant polyphenol in extra virgin olive oil (EVOO), and Hydroxythyrosol (HT), the OleA main metabolite, have attracted our interest due to their multitarget effects, including the interference with amyloid aggregation path. However, the mechanistic details of their anti-amyloid effect are not known yet. We report here a broad biophysical approach and cell biology techniques that enabled us to characterize the different molecular mechanisms by which OleA and HT modulate the Aβ1-42 fibrillation, a main histopathological feature of Alzheimer's disease (AD). In particular, OleA prevents the growth of toxic Aβ1-42 oligomers and blocks their successive growth into mature fibrils following its interaction with the peptide N-terminus, while HT speeds up harmless fibril formation. Our data demonstrate that, by stabilizing oligomers and fibrils, both polyphenols reduce their seeding activity and aggregate/membrane interaction on human neuroblastoma SH-SY5Y cells. These findings highlight the great potential of EVOO polyphenols and offer the possibility to validate and to optimize their use for possible AD prevention and therapy.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy; Department of Neuroscience, Psychology, Area of Medicine and Health of the Child of the University of Florence, Viale Pieraccini, 6 - 50139 Florence, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Elena Bruzzone
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy.
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy; Interuniversity Center for the Study of Neurodegenerative Diseases (CIMN), Florence, Italy.
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy; Interuniversity Center for the Study of Neurodegenerative Diseases (CIMN), Florence, Italy.
| |
Collapse
|
25
|
Oropesa-Nuñez R, Keshavan S, Dante S, Diaspro A, Mannini B, Capitini C, Cecchi C, Stefani M, Chiti F, Canale C. Toxic HypF-N Oligomers Selectively Bind the Plasma Membrane to Impair Cell Adhesion Capability. Biophys J 2019; 114:1357-1367. [PMID: 29590593 DOI: 10.1016/j.bpj.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
The deposition of fibrillar protein aggregates in human organs is the hallmark of several pathological states, including highly debilitating neurodegenerative disorders and systemic amyloidoses. It is widely accepted that small oligomers arising as intermediates in the aggregation process, released by fibrils, or growing in secondary nucleation steps are the cytotoxic entities in protein-misfolding diseases, notably neurodegenerative conditions. Increasing evidence indicates that cytotoxicity is triggered by the interaction between nanosized protein aggregates and cell membranes, even though little information on the molecular details of such interaction is presently available. In this work, we propose what is, to our knowledge, a new approach, based on the use of single-cell force spectroscopy applied to multifunctional substrates, to study the interaction between protein oligomers, cell membranes, and/or the extracellular matrix. We compared the interaction of single Chinese hamster ovary cells with two types of oligomers (toxic and nontoxic) grown from the N-terminal domain of the Escherichia coli protein HypF. We were able to quantify the affinity between both oligomer type and the cell membrane by measuring the mechanical work needed to detach the cells from the aggregates, and we could discriminate the contributions of the membrane lipid and protein fractions to such affinity. The fundamental role of the ganglioside GM1 in the membrane-oligomers interaction was also highlighted. Finally, we observed that the binding of toxic oligomers to the cell membrane significantly affects the functionality of adhesion molecules such as Arg-Gly-Asp binding integrins, and that this effect requires the presence of the negatively charged sialic acid moiety of GM1.
Collapse
Affiliation(s)
- Reinier Oropesa-Nuñez
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; DIBRIS Department, University of Genova, Genova, Italy
| | - Sandeep Keshavan
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; DIBRIS Department, University of Genova, Genova, Italy
| | - Silvia Dante
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; Department of Physics, University of Genova, Genova, Italy.
| | - Benedetta Mannini
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Claudia Capitini
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Cristina Cecchi
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Massimo Stefani
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Claudio Canale
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; Department of Physics, University of Genova, Genova, Italy
| |
Collapse
|
26
|
Zhang L, Zhao L, Ouyang PK, Chen P. Insight into the role of cholesterol in modulation of morphology and mechanical properties of CHO-K1 cells: An in situ AFM study. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-018-1775-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Kubánková M, López-Duarte I, Kiryushko D, Kuimova MK. Molecular rotors report on changes in live cell plasma membrane microviscosity upon interaction with beta-amyloid aggregates. SOFT MATTER 2018; 14:9466-9474. [PMID: 30427370 DOI: 10.1039/c8sm01633j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Amyloid deposits of aggregated beta-amyloid Aβ(1-42) peptides are a pathological hallmark of Alzheimer's disease. Aβ(1-42) aggregates are known to induce biophysical alterations in cells, including disruption of plasma membranes. We investigated the microviscosity of plasma membranes upon interaction with oligomeric and fibrillar forms of Aβ(1-42). Viscosity-sensing fluorophores termed molecular rotors were utilised to directly measure the microviscosities of giant plasma membrane vesicles (GPMVs) and plasma membranes of live SH-SY5Y and HeLa cells. The fluorescence lifetimes of membrane-inserting BODIPY-based molecular rotors revealed a decrease in bilayer microviscosity upon incubation with Aβ(1-42) oligomers, while fibrillar Aβ(1-42) did not significantly affect the microviscosity of the bilayer. In addition, we demonstrate that the neuroprotective peptide H3 counteracts the microviscosity change induced by Aβ(1-42) oligomers, suggesting the utility of H3 as a neuroprotective therapeutic agent in neurodegenerative disorders and indicating that ligand-induced membrane stabilisation may be a possible mechanism of neuroprotection during neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Markéta Kubánková
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
28
|
Rangachari V, Dean DN, Rana P, Vaidya A, Ghosh P. Cause and consequence of Aβ - Lipid interactions in Alzheimer disease pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:1652-1662. [PMID: 29526709 PMCID: PMC6133763 DOI: 10.1016/j.bbamem.2018.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/14/2022]
Abstract
Self-templating propagation of protein aggregate conformations is increasingly becoming a significant factor in many neurological diseases. In Alzheimer disease (AD), intrinsically disordered amyloid-β (Aβ) peptides undergo aggregation that is sensitive to environmental conditions. High-molecular weight aggregates of Aβ that form insoluble fibrils are deposited as senile plaques in AD brains. However, low-molecular weight aggregates called soluble oligomers are known to be the primary toxic agents responsible for neuronal dysfunction. The aggregation process is highly stochastic involving both homotypic (Aβ-Aβ) and heterotypic (Aβ with interacting partners) interactions. Two of the important members of interacting partners are membrane lipids and surfactants, to which Aβ shows a perpetual association. Aβ-membrane interactions have been widely investigated for more than two decades, and this research has provided a wealth of information. Although this has greatly enriched our understanding, the objective of this review is to consolidate the information from the literature that collectively showcases the unique phenomenon of lipid-mediated Aβ oligomer generation, which has largely remained inconspicuous. This is especially important because Aβ aggregate "strains" are increasingly becoming relevant in light of the correlations between the structure of aggregates and AD phenotypes. Here, we will focus on aspects of Aβ-lipid interactions specifically from the context of how lipid modulation generates a wide variety of biophysically and biochemically distinct oligomer sub-types. This, we believe, will refocus our thinking on the influence of lipids and open new approaches in delineating the mechanisms of AD pathogenesis. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Vijayaraghavan Rangachari
- Department of Chemistry & Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - Dexter N Dean
- Department of Chemistry & Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Pratip Rana
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Ashwin Vaidya
- Department of Mathematical Science, Montclair State University, Montclair, NJ 07043, USA
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
29
|
Dhouafli Z, Leri M, Bucciantini M, Stefani M, Gadhoumi H, Mahjoub B, Ben Jannet H, Guillard J, Tounsi MS, Ksouri R, Hayouni EA. A new purified Lawsoniaside remodels amyloid-β42 fibrillation into a less toxic and non-amyloidogenic pathway. Int J Biol Macromol 2018; 114:830-835. [DOI: 10.1016/j.ijbiomac.2018.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
|
30
|
Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nat Chem 2018; 10:673-683. [DOI: 10.1038/s41557-018-0031-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/20/2018] [Indexed: 02/03/2023]
|
31
|
Effect of Phosphatidylserine and Cholesterol on Membrane-mediated Fibril Formation by the N-terminal Amyloidogenic Fragment of Apolipoprotein A-I. Sci Rep 2018; 8:5497. [PMID: 29615818 PMCID: PMC5882889 DOI: 10.1038/s41598-018-23920-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 01/31/2023] Open
Abstract
Here, we examined the effects of phosphatidylserine (PS) and cholesterol on the fibril-forming properties of the N-terminal 1‒83 fragment of an amyloidogenic G26R variant of apoA-I bound to small unilamellar vesicles. A thioflavin T fluorescence assay together with microscopic observations showed that PS significantly retards the nucleation step in fibril formation by apoA-I 1‒83/G26R, whereas cholesterol slightly enhances fibril formation. Circular dichroism analyses demonstrated that PS facilitates a structural transition from random coil to α-helix in apoA-I 1‒83/G26R with great stabilization of the α-helical structure upon lipid binding. Isothermal titration calorimetry measurements revealed that PS induces a marked increase in capacity for binding of apoA-I 1‒83/G26R to the membrane surface, perhaps due to electrostatic interactions of positively charged amino acids in apoA-I with PS. Such effects of PS to enhance lipid interactions and inhibit fibril formation of apoA-I were also observed for the amyloidogenic region-containing apoA-I 8‒33/G26R peptide. Fluorescence measurements using environment-sensitive probes indicated that PS induces a more solvent-exposed, membrane-bound conformation in the amyloidogenic region of apoA-I without affecting membrane fluidity. Since cell membranes have highly heterogeneous lipid compositions, our findings may provide a molecular basis for the preferential deposition of apoA-I amyloid fibrils in tissues and organs.
Collapse
|
32
|
Oropesa-Nuñez R, Seghezza S, Dante S, Diaspro A, Cascella R, Cecchi C, Stefani M, Chiti F, Canale C. Interaction of toxic and non-toxic HypF-N oligomers with lipid bilayers investigated at high resolution with atomic force microscopy. Oncotarget 2018; 7:44991-45004. [PMID: 27391440 PMCID: PMC5216700 DOI: 10.18632/oncotarget.10449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/26/2016] [Indexed: 11/25/2022] Open
Abstract
Protein misfolded oligomers are considered the most toxic species amongst those formed in the process of amyloid formation and the molecular basis of their toxicity, although not completely understood, is thought to originate from the interaction with the cellular membrane. Here, we sought to highlight the molecular determinants of oligomer-membrane interaction by atomic force microscopy. We monitored the interaction between multiphase supported lipid bilayers and two types of HypF-N oligomers displaying different structural features and cytotoxicities. By our approach we imaged with unprecedented resolution the ordered and disordered lipid phases of the bilayer and different oligomer structures interacting with either phase. We identified the oligomers and lipids responsible for toxicity and, more generally, we established the importance of the membrane lipid component in mediating oligomer toxicity. Our findings support the importance of GM1 ganglioside in mediating the oligomer-bilayer interaction and support a mechanism of oligomer cytotoxicity involving bilayer destabilization by globular oligomers within GM1-rich ordered raft regions rather than by annular oligomers in the surrounding disordered membrane domains.
Collapse
Affiliation(s)
- Reinier Oropesa-Nuñez
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy.,DIBRIS Department, University of Genova, Genova, Italy
| | - Silvia Seghezza
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Silvia Dante
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Physics, University of Genova, Genova, Italy
| | - Roberta Cascella
- Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Cristina Cecchi
- Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Massimo Stefani
- Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Claudio Canale
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
33
|
De Santis A, La Manna S, Krauss IR, Malfitano AM, Novellino E, Federici L, De Cola A, Di Matteo A, D'Errico G, Marasco D. Nucleophosmin-1 regions associated with acute myeloid leukemia interact differently with lipid membranes. Biochim Biophys Acta Gen Subj 2018; 1862:967-978. [PMID: 29330024 DOI: 10.1016/j.bbagen.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/04/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Augusta De Santis
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Luca Federici
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonella De Cola
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, CNR, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy.
| |
Collapse
|
34
|
Jackson MP, Hewitt EW. Why are Functional Amyloids Non-Toxic in Humans? Biomolecules 2017; 7:biom7040071. [PMID: 28937655 PMCID: PMC5745454 DOI: 10.3390/biom7040071] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022] Open
Abstract
Amyloids were first identified in association with amyloidoses, human diseases in which proteins and peptides misfold into amyloid fibrils. Subsequent studies have identified an array of functional amyloid fibrils that perform physiological roles in humans. Given the potential for the production of toxic species in amyloid assembly reactions, it is remarkable that cells can produce these functional amyloids without suffering any obvious ill effect. Although the precise mechanisms are unclear, there are a number of ways in which amyloid toxicity may be prevented. These include regulating the level of the amyloidogenic peptides and proteins, minimising the production of prefibrillar oligomers in amyloid assembly reactions, sequestrating amyloids within membrane bound organelles, controlling amyloid assembly by other molecules, and disassembling the fibrils under physiological conditions. Crucially, a better understanding of how toxicity is avoided in the production of functional amyloids may provide insights into the prevention of amyloid toxicity in amyloidoses.
Collapse
Affiliation(s)
- Matthew P Jackson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Eric W Hewitt
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
35
|
Sartiani L, Bucciantini M, Spinelli V, Leri M, Natalello A, Nosi D, Maria Doglia S, Relini A, Penco A, Giorgetti S, Gerace E, Mannaioni G, Bellotti V, Rigacci S, Cerbai E, Stefani M. Biochemical and Electrophysiological Modification of Amyloid Transthyretin on Cardiomyocytes. Biophys J 2017; 111:2024-2038. [PMID: 27806283 DOI: 10.1016/j.bpj.2016.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/26/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022] Open
Abstract
Transthyretin (TTR) amyloidoses are familial or sporadic degenerative conditions that often feature heavy cardiac involvement. Presently, no effective pharmacological therapy for TTR amyloidoses is available, mostly due to a substantial lack of knowledge about both the molecular mechanisms of TTR aggregation in tissue and the ensuing functional and viability modifications that occur in aggregate-exposed cells. TTR amyloidoses are of particular interest regarding the relation between functional and viability impairment in aggregate-exposed excitable cells such as peripheral neurons and cardiomyocytes. In particular, the latter cells provide an opportunity to investigate in parallel the electrophysiological and biochemical modifications that take place when the cells are exposed for various lengths of time to variously aggregated wild-type TTR, a condition that characterizes senile systemic amyloidosis. In this study, we investigated biochemical and electrophysiological modifications in cardiomyocytes exposed to amyloid oligomers or fibrils of wild-type TTR or to its T4-stabilized form, which resists tetramer disassembly, misfolding, and aggregation. Amyloid TTR cytotoxicity results in mitochondrial potential modification, oxidative stress, deregulation of cytoplasmic Ca2+ levels, and Ca2+ cycling. The altered intracellular Ca2+ cycling causes a prolongation of the action potential, as determined by whole-cell recordings of action potentials on isolated mouse ventricular myocytes, which may contribute to the development of cellular arrhythmias and conduction alterations often seen in patients with TTR amyloidosis. Our data add information about the biochemical, functional, and viability alterations that occur in cardiomyocytes exposed to aggregated TTR, and provide clues as to the molecular and physiological basis of heart dysfunction in sporadic senile systemic amyloidosis and familial amyloid cardiomyopathy forms of TTR amyloidoses.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy.
| | - Valentina Spinelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Amanda Penco
- Department of Physics, University of Genoa, Genoa, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Elisabetta Gerace
- Department of Health Science, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Vittorio Bellotti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, United Kingdom
| | - Stefania Rigacci
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy
| | - Elisabetta Cerbai
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| |
Collapse
|
36
|
Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J 2017; 473:2453-62. [PMID: 27515257 PMCID: PMC4980807 DOI: 10.1042/bcj20160082] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1–5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology.
Collapse
|
37
|
Sharma N, Baek K, Phan HTT, Shimokawa N, Takagi M. Glycosyl chains and 25-hydroxycholesterol contribute to the intracellular transport of amyloid beta (Aβ-42) in Jurkat T cells. FEBS Open Bio 2017; 7:865-876. [PMID: 28593141 PMCID: PMC5458452 DOI: 10.1002/2211-5463.12234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 01/05/2023] Open
Abstract
Amyloid beta (Aβ) is a peptide responsible for the development of Alzheimer's disease (AD). Misfolding and accumulation of endogenous Aβ can lead to neural cell apoptosis through endoplasmic reticulum (ER) stress. Added exogenous Aβ can also result in ER stress, leading to neurotoxicity and apoptosis, which is identical to that caused by the endogenous peptide. We have speculated that the endocytic transport of Aβ causes ER stress and have previously shown that the oxysterol, in particular, 7-ketocholesterol (7-keto) induces more surface interaction between Aβ-42 and Jurkat cells than cholesterol. However, the interaction was not enough to induce intracellular transfer of the peptide. In this study, we investigated the effect of another oxysterol, 25-hydroxycholesterol (25-OH) on the membrane raft-dependent transport of Aβ-42 in Jurkat cells. Interestingly, intracellular transfer of Aβ-42 was observed in the presence of 25-OH only after the inclusion of cholera toxin B subunit (CT-B), a marker used to detect the raft domain. We speculated that 25-OH can induce intracellular movement of Aβ peptides. Furthermore, CT-B together with GM1 provided negative curvature, which resulted in the intracellular transport of Aβ-42. Notably, we used a protofibrillar species of Aβ-42 in this study. We have shown that the transport was microtubule-dependent since it could not be observed in depolymerized microtubules. These results demonstrate that oxysterols and glycosyl chains are important factors affecting intracellular transport. These compounds are also associated with aging and advanced glycation are risk factors for AD. Thus, this study should further understanding of the pathology of AD.
Collapse
Affiliation(s)
- Neha Sharma
- School of Materials Science Japan Advanced Institute of Science and Technology (JAIST) Ishikawa Japan
| | - KeangOK Baek
- School of Materials Science Japan Advanced Institute of Science and Technology (JAIST) Ishikawa Japan
| | | | - Naofumi Shimokawa
- School of Materials Science Japan Advanced Institute of Science and Technology (JAIST) Ishikawa Japan
| | - Masahiro Takagi
- School of Materials Science Japan Advanced Institute of Science and Technology (JAIST) Ishikawa Japan
| |
Collapse
|
38
|
Cappelli S, Penco A, Mannini B, Cascella R, Wilson MR, Ecroyd H, Li X, Buxbaum JN, Dobson CM, Cecchi C, Relini A, Chiti F. Effect of molecular chaperones on aberrant protein oligomers in vitro: super-versus sub-stoichiometric chaperone concentrations. Biol Chem 2016; 397:401-15. [PMID: 26812789 DOI: 10.1515/hsz-2015-0250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/11/2016] [Indexed: 11/15/2022]
Abstract
Living systems protect themselves from aberrant proteins by a network of chaperones. We have tested in vitro the effects of different concentrations, ranging from 0 to 16 μm, of two molecular chaperones, namely αB-crystallin and clusterin, and an engineered monomeric variant of transthyretin (M-TTR), on the morphology and cytotoxicity of preformed toxic oligomers of HypF-N, which represent a useful model of misfolded protein aggregates. Using atomic force microscopy imaging and static light scattering analysis, all were found to bind HypF-N oligomers and increase the size of the aggregates, to an extent that correlates with chaperone concentration. SDS-PAGE profiles have shown that the large aggregates were predominantly composed of the HypF-N protein. ANS fluorescence measurements show that the chaperone-induced clustering of HypF-N oligomers does not change the overall solvent exposure of hydrophobic residues on the surface of the oligomers. αB-crystallin, clusterin and M-TTR can diminish the cytotoxic effects of the HypF-N oligomers at all chaperone concentration, as demonstrated by MTT reduction and Ca2+ influx measurements. The observation that the protective effect is primarily at all concentrations of chaperones, both when the increase in HypF-N aggregate size is minimal and large, emphasizes the efficiency and versatility of these protein molecules.
Collapse
|
39
|
Evangelisti E, Cascella R, Becatti M, Marrazza G, Dobson CM, Chiti F, Stefani M, Cecchi C. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases. Sci Rep 2016; 6:32721. [PMID: 27619987 PMCID: PMC5020652 DOI: 10.1038/srep32721] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/10/2016] [Indexed: 11/10/2022] Open
Abstract
The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aβ42 peptide associated with Alzheimer’s disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca2+ across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane.
Collapse
Affiliation(s)
- Elisa Evangelisti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Florence, Italy
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
40
|
Leri M, Bemporad F, Oropesa-Nuñez R, Canale C, Calamai M, Nosi D, Ramazzotti M, Giorgetti S, Pavone FS, Bellotti V, Stefani M, Bucciantini M. Molecular insights into cell toxicity of a novel familial amyloidogenic variant of β2-microglobulin. J Cell Mol Med 2016; 20:1443-56. [PMID: 26990223 PMCID: PMC4956941 DOI: 10.1111/jcmm.12833] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/10/2016] [Indexed: 12/20/2022] Open
Abstract
The first genetic variant of β2‐microglobulin (b2M) associated with a familial form of systemic amyloidosis has been recently described. The mutated protein, carrying a substitution of Asp at position 76 with an Asn (D76N b2M), exhibits a strongly enhanced amyloidogenic tendency to aggregate with respect to the wild‐type protein. In this study, we characterized the D76N b2M aggregation path and performed an unprecedented analysis of the biochemical mechanisms underlying aggregate cytotoxicity. We showed that, contrarily to what expected from other amyloid studies, early aggregates of the mutant are not the most toxic species, despite their higher surface hydrophobicity. By modulating ganglioside GM1 content in cell membrane or synthetic lipid bilayers, we confirmed the pivotal role of this lipid as aggregate recruiter favouring their cytotoxicity. We finally observed that the aggregates bind to the cell membrane inducing an alteration of its elasticity (with possible functional unbalance and cytotoxicity) in GM1‐enriched domains only, thus establishing a link between aggregate‐membrane contact and cell damage.
Collapse
Affiliation(s)
- Manuela Leri
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche 'Mario Serio', Università degli Studi di Firenze, Firenze, Italy
| | - Francesco Bemporad
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche 'Mario Serio', Università degli Studi di Firenze, Firenze, Italy
| | | | - Claudio Canale
- Dipartimento di Nanofisica, Istituto Italiano di Tecnologia, Genova, Italy
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy (LENS), Università degli Studi di Firenze, Sesto Fiorentino, Italy.,National Institute of Optics, Consiglio Nazionale delle Ricerche (CNR), Firenze, Italy
| | - Daniele Nosi
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Matteo Ramazzotti
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche 'Mario Serio', Università degli Studi di Firenze, Firenze, Italy
| | - Sofia Giorgetti
- Dipartimento di Medicina Molecolare, Istituto di Biochimica, Università degli Studi di Pavia, Pavia, Italy
| | - Francesco S Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Vittorio Bellotti
- Dipartimento di Medicina Molecolare, Istituto di Biochimica, Università degli Studi di Pavia, Pavia, Italy.,Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus University College London, London, UK
| | - Massimo Stefani
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche 'Mario Serio', Università degli Studi di Firenze, Firenze, Italy.,Centro Interuniversitario per lo Studio delle Malattie Neurodegenerative (CIMN), Firenze, Italy
| | - Monica Bucciantini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche 'Mario Serio', Università degli Studi di Firenze, Firenze, Italy.,Centro Interuniversitario per lo Studio delle Malattie Neurodegenerative (CIMN), Firenze, Italy
| |
Collapse
|
41
|
Yates EV, Meisl G, Knowles TPJ, Dobson CM. An Environmentally Sensitive Fluorescent Dye as a Multidimensional Probe of Amyloid Formation. J Phys Chem B 2016; 120:2087-94. [PMID: 26865546 PMCID: PMC5717618 DOI: 10.1021/acs.jpcb.5b09663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
We have explored amyloid formation
using poly(amino acid) model
systems in which differences in peptide secondary structure and hydrophobicity
can be introduced in a controlled manner. We show that an environmentally
sensitive fluorescent dye, dapoxyl, is able to identify β-sheet
structure and hydrophobic surfaces, structural features likely to
be related to toxicity, as a result of changes in its excitation and
emission profiles and its relative quantum yield. These results show
that dapoxyl is a multidimensional probe of the time dependence of
amyloid aggregation, which provides information about the presence
and nature of metastable aggregation intermediates that is inaccessible
to the conventional probes that rely on changes in quantum yield alone.
Collapse
Affiliation(s)
- Emma V Yates
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Georg Meisl
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
42
|
α-Synuclein and huntingtin exon 1 amyloid fibrils bind laterally to the cellular membrane. Sci Rep 2016; 6:19180. [PMID: 26757959 PMCID: PMC4725933 DOI: 10.1038/srep19180] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/04/2015] [Indexed: 11/08/2022] Open
Abstract
Fibrillar aggregates involved in neurodegenerative diseases have the ability to spread from one cell to another in a prion-like manner. The underlying molecular mechanisms, in particular the binding mode of the fibrils to cell membranes, are poorly understood. In this work we decipher the modality by which aggregates bind to the cellular membrane, one of the obligatory steps of the propagation cycle. By characterizing the binding properties of aggregates made of α-synuclein or huntingtin exon 1 protein displaying similar composition and structure but different lengths to mammalian cells we demonstrate that in both cases aggregates bind laterally to the cellular membrane, with aggregates extremities displaying little or no role in membrane binding. Lateral binding to artificial liposomes was also observed by transmission electron microscopy. In addition we show that although α-synuclein and huntingtin exon 1 fibrils bind both laterally to the cellular membrane, their mechanisms of interaction differ. Our findings have important implications for the development of future therapeutic tools that aim to block protein aggregates propagation in the brain.
Collapse
|
43
|
Bednarska NG, van Eldere J, Gallardo R, Ganesan A, Ramakers M, Vogel I, Baatsen P, Staes A, Goethals M, Hammarström P, Nilsson KPR, Gevaert K, Schymkowitz J, Rousseau F. Protein aggregation as an antibiotic design strategy. Mol Microbiol 2015; 99:849-65. [PMID: 26559925 DOI: 10.1111/mmi.13269] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2015] [Indexed: 12/12/2022]
Abstract
Taking advantage of the xenobiotic nature of bacterial infections, we tested whether the cytotoxicity of protein aggregation can be targeted to bacterial pathogens without affecting their mammalian hosts. In particular, we examined if peptides encoding aggregation-prone sequence segments of bacterial proteins can display antimicrobial activity by initiating toxic protein aggregation in bacteria, but not in mammalian cells. Unbiased in vitro screening of aggregating peptide sequences from bacterial genomes lead to the identification of several peptides that are strongly bactericidal against methicillin-resistant Staphylococcus aureus. Upon parenteral administration in vivo, the peptides cured mice from bacterial sepsis without apparent toxic side effects as judged from histological and hematological evaluation. We found that the peptides enter and accumulate in the bacterial cytosol where they cause aggregation of bacterial polypeptides. Although the precise chain of events that leads to cell death remains to be elucidated, the ability to tap into aggregation-prone sequences of bacterial proteomes to elicit antimicrobial activity represents a rich and unexplored chemical space to be mined in search of novel therapeutic strategies to fight infectious diseases.
Collapse
Affiliation(s)
- Natalia G Bednarska
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KULeuven, Leuven, Belgium.,Switch Laboratory, VIB, Leuven, Belgium
| | - Johan van Eldere
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KULeuven, Leuven, Belgium
| | - Rodrigo Gallardo
- Switch Laboratory, VIB, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Ashok Ganesan
- Switch Laboratory, VIB, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Isabel Vogel
- Laboratory of Immunology, Department of Microbiology and Immunology, KULeuven, Leuven, Belgium
| | - Pieter Baatsen
- Department of Molecular and Developmental Genetics (VIB11 and KULeuven), Electron Microscopy Network (EMoNe), Gasthuisberg, Leuven, Belgium
| | - An Staes
- Department of Medical Protein Research, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Marc Goethals
- Department of Medical Protein Research, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Per Hammarström
- Department of Chemistry, Linköping University, Linköping, Sweden
| | | | - Kris Gevaert
- Department of Medical Protein Research, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| |
Collapse
|
44
|
Calamai M, Evangelisti E, Cascella R, Parenti N, Cecchi C, Stefani M, Pavone F. Single molecule experiments emphasize GM1 as a key player of the different cytotoxicity of structurally distinct Aβ1-42 oligomers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:386-92. [PMID: 26656159 DOI: 10.1016/j.bbamem.2015.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/10/2015] [Accepted: 12/03/2015] [Indexed: 12/29/2022]
Abstract
It is well established that cytotoxic Aβ oligomers are the key factor that triggers the initial tissue and cell modifications eventually culminating in the development of Alzheimer's disease. Aβ1-42 oligomers display a high degree of polymorphism, and several structurally different oligomers have been described. Amongst them, two types, recently classified as A+ and A-, have been shown to possess similar size but distinct toxic properties, as a consequence of their biophysical and structural differences. Here, we have investigated by means of single molecule tracking the oligomer mobility on the plasma membrane of living neuroblastoma cells and the interaction with the ganglioside GM1, a component of membrane rafts. We have found that A+ and A- oligomers display a similar lateral diffusion on the plasma membrane of living cells. However, only the toxic A+ oligomers appear to interact and alter the mobility of GM1. We have also studied the lateral diffusion of each kind of oligomers in cells depleted or enriched in GM1. We found that the content of GM1 influences the diffusion of both types of oligomer, although the effect of the increased levels of GM1 is higher for the A+ type. Interestingly, the content of GM1 also affects significantly the mobility of GM1 molecules themselves.
Collapse
Affiliation(s)
- Martino Calamai
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, 50019 Florence, Italy; National Institute of Optics, National Research Council of Italy (CNR), Largo Fermi 6, 50125, Florence, Italy.
| | - Elisa Evangelisti
- Dipartimento di Scienze Biomediche Sperimentali e Clinche "Mario Serio", Università degli Studi di Firenze, 50134 Florence, Italy
| | - Roberta Cascella
- Dipartimento di Scienze Biomediche Sperimentali e Clinche "Mario Serio", Università degli Studi di Firenze, 50134 Florence, Italy
| | - Niccoló Parenti
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, 50019 Florence, Italy
| | - Cristina Cecchi
- Dipartimento di Scienze Biomediche Sperimentali e Clinche "Mario Serio", Università degli Studi di Firenze, 50134 Florence, Italy; Centro Interuniversitario per lo Studio delle Malattie Neurodegenerative (CIMN), 50134 Florence, Italy
| | - Massimo Stefani
- Dipartimento di Scienze Biomediche Sperimentali e Clinche "Mario Serio", Università degli Studi di Firenze, 50134 Florence, Italy; Centro Interuniversitario per lo Studio delle Malattie Neurodegenerative (CIMN), 50134 Florence, Italy
| | - Francesco Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, 50019 Florence, Italy
| |
Collapse
|
45
|
Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes. FEBS Lett 2015; 589:2661-7. [DOI: 10.1016/j.febslet.2015.08.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/24/2015] [Accepted: 08/05/2015] [Indexed: 02/02/2023]
|
46
|
Uptake of raft components into amyloid β-peptide aggregates and membrane damage. Anal Biochem 2015; 481:18-26. [PMID: 25908557 DOI: 10.1016/j.ab.2015.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/13/2015] [Accepted: 04/12/2015] [Indexed: 01/26/2023]
Abstract
Amyloid aggregation and deposition of amyloid β-peptide (Aβ) are pathologic characteristics of Alzheimer's disease (AD). Recent reports have shown that the association of Aβ with membranes containing ganglioside GM1 (GM1) plays a pivotal role in amyloid deposition and the pathogenesis of AD. However, the molecular interactions responsible for membrane damage associated with Aβ deposition are not fully understood. In this study, we microscopically observed amyloid aggregation of Aβ in the presence of lipid vesicles and on a substrate-supported planar membrane containing raft components and GM1. The experimental system enabled us to observe lipid-associated aggregation of Aβ, uptake of the raft components into Aβ aggregates, and relevant membrane damage. The results indicate that uptake of raft components from the membrane into Aβ deposits induces macroscopic heterogeneity of the membrane structure.
Collapse
|
47
|
Nguyen PT, Andraka N, De Carufel CA, Bourgault S. Mechanistic Contributions of Biological Cofactors in Islet Amyloid Polypeptide Amyloidogenesis. J Diabetes Res 2015; 2015:515307. [PMID: 26576436 PMCID: PMC4630397 DOI: 10.1155/2015/515307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 01/24/2023] Open
Abstract
Type II diabetes mellitus is associated with the deposition of fibrillar aggregates in pancreatic islets. The major protein component of islet amyloids is the glucomodulatory hormone islet amyloid polypeptide (IAPP). Islet amyloid fibrils are virtually always associated with several biomolecules, including apolipoprotein E, metals, glycosaminoglycans, and various lipids. IAPP amyloidogenesis has been originally perceived as a self-assembly homogeneous process in which the inherent aggregation propensity of the peptide and its local concentration constitute the major driving forces to fibrillization. However, over the last two decades, numerous studies have shown a prominent role of amyloid cofactors in IAPP fibrillogenesis associated with the etiology of type II diabetes. It is increasingly evident that the biochemical microenvironment in which IAPP amyloid formation occurs and the interactions of the polypeptide with various biomolecules not only modulate the rate and extent of aggregation, but could also remodel the amyloidogenesis process as well as the structure, toxicity, and stability of the resulting fibrils.
Collapse
Affiliation(s)
- Phuong Trang Nguyen
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
| | - Nagore Andraka
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Carole Anne De Carufel
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
| | - Steve Bourgault
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
- *Steve Bourgault:
| |
Collapse
|
48
|
Ibrahim T, McLaurin J. Protein seeding in Alzheimer’s disease and Parkinson’s disease: Similarities and differences. World J Neurol 2014; 4:23-35. [DOI: 10.5316/wjn.v4.i4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/21/2014] [Accepted: 12/10/2014] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative pathology can be seeded by introduction of misfolded proteins and peptides into the nervous system. Models of Alzheimer’s disease (AD) and Parkinson’s disease (PD) have both demonstrated susceptibility to this seeding mechanism, emphasizing the role of misfolded conformations of disease-specific proteins and peptides in disease progression. Thinking of the amyloidogenic amyloid-beta peptide (Aβ) and alpha-synuclein (α-syn), of AD and PD, respectively, as prionoids requires a comparison of these molecules and the mechanisms underlying the progression of disease. Aβ and α-syn, despite their size differences, are both natively unstructured and misfold into β-structured conformers. Additionally, several studies implicate the significant role of membrane interactions, such as those with lipid rafts in the plasma membrane, in mediating protein aggregation and transfer of Aβ and α-syn between cells that may be common to both AD and PD. Examination of inter-neuronal transfer of proteins/peptides provides evidence into the core mechanism of neuropathological propagation. Specifically, uptake of aggregates likely occurs by the endocytic pathway, possibly in response to their formation of membrane pores via a mechanism shared with pore-forming toxins. Failure of cellular clearance machinery to degrade misfolded proteins favours their release into the extracellular space, where they can be taken up by directly connected, nearby neurons. Although similarities between AD and PD are frequent and include mechanistically similar transfer processes, what differentiates these diseases, in terms of temporal and spatial patterns of propagation, may be in part due to the differing kinetics of protein misfolding. Several examples of animal models demonstrating seeding and propagation by exogenous treatment with Aβ and α-syn highlight the importance of both the environment in which these seeds are formed as well as the environment into which the seeds are propagated. Although these studies suggest potent seeding effects by both Aβ and α-syn, they emphasize the need for future studies to thoroughly characterize “seeds” as well as analyze changes in the nervous system in response to exogenous insults.
Collapse
|
49
|
Bishop P, Rubin P, Thomson AR, Rocca D, Henley JM. The ubiquitin C-terminal hydrolase L1 (UCH-L1) C terminus plays a key role in protein stability, but its farnesylation is not required for membrane association in primary neurons. J Biol Chem 2014; 289:36140-9. [PMID: 25326379 PMCID: PMC4276877 DOI: 10.1074/jbc.m114.557124] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is highly expressed in neurons. A possible role for UCH-L1 in neurodegeneration has been highlighted because of its presence in Lewy bodies associated with Parkinson disease and neurofibrillary tangles observed in Alzheimer disease. UCH-L1 exists in two forms in neurons, a soluble cytoplasmic form (UCH-L1(C)) and a membrane-associated form (UCH-L1(M)). Alzheimer brains show reduced levels of soluble UCH-L1(C) correlating with the formation of UCH-L1-immunoreactive tau tangles, whereas UCH-L1(M) has been implicated in α-synuclein dysfunction. Given these reports of divergent roles, we investigated the properties of UCH-L1 membrane association. Surprisingly, our results indicate that UCH-L1 does not partition to the membrane in the cultured cell lines we tested. Furthermore, in primary cultured neurons, a proportion of UCH-L1(M) does partition to the membrane, but, contrary to a previous report, this does not require farnesylation. Deletion of the four C-terminal residues caused the loss of protein solubility, abrogation of substrate binding, increased cell death, and an abnormal intracellular distribution, consistent with protein dysfunction and aggregation. These data indicate that UCH-L1 is differently processed in neurons compared with clonal cell lines and that farnesylation does not account for the membrane association in neurons.
Collapse
Affiliation(s)
- Paul Bishop
- From the School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Philip Rubin
- From the School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Andrew R Thomson
- From the School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Dan Rocca
- From the School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Jeremy M Henley
- From the School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
50
|
Phan HT, Vestergaard MC, Baek K, Shimokawa N, Takagi M. Localization of amyloid beta (Aβ1-42) protofibrils in membrane lateral compartments: Effect of cholesterol and 7-Ketocholesterol. FEBS Lett 2014; 588:3483-90. [DOI: 10.1016/j.febslet.2014.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 01/10/2023]
|