1
|
Namikawa K, Pose-Méndez S, Köster RW. Genetic modeling of degenerative diseases and mechanisms of neuronal regeneration in the zebrafish cerebellum. Cell Mol Life Sci 2024; 82:26. [PMID: 39725709 DOI: 10.1007/s00018-024-05538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024]
Abstract
The cerebellum is a highly conserved brain compartment of vertebrates. Genetic diseases of the human cerebellum often lead to degeneration of the principal neuron, the Purkinje cell, resulting in locomotive deficits and socio-emotional impairments. Due to its relatively simple but highly conserved neuroanatomy and circuitry, these human diseases can be modeled well in vertebrates amenable for genetic manipulation. In the recent years, cerebellar research in zebrafish has contributed to understanding cerebellum development and function, since zebrafish larvae are not only molecularly tractable, but also accessible for high resolution in vivo imaging due to the transparency of the larvae and the ease of access to the zebrafish cerebellar cortex for microscopy approaches. Therefore, zebrafish is increasingly used for genetic modeling of human cerebellar neurodegenerative diseases and in particular of different types of Spinocerebellar Ataxias (SCAs). These models are well suited to address the underlying pathogenic mechanisms by means of in vivo cell biological studies. Furthermore, accompanying circuitry characterizations, physiological studies and behavioral analysis allow for unraveling molecular, structural and functional relationships. Moreover, unlike in mammals, zebrafish possess an astonishing ability to regenerate neuronal populations and their functional circuitry in the central nervous system including the cerebellum. Understanding the cellular and molecular processes of these regenerative processes could well serve to counteract acute and chronic loss of neurons in humans. Based on the high evolutionary conservation of the cerebellum these regeneration studies in zebrafish promise to open therapeutic avenues for counteracting cerebellar neuronal degeneration. The current review aims to provide an overview over currently existing genetic models of human cerebellar neurodegenerative diseases in zebrafish as well as neuroregeneration studies using the zebrafish cerebellum. Due to this solid foundation in cerebellar disease modeling and neuronal regeneration analysis, the zebrafish promises to become a popular model organism for both unraveling pathogenic mechanisms of human cerebellar diseases and providing entry points for therapeutic neuronal regeneration approaches.
Collapse
Affiliation(s)
- Kazuhiko Namikawa
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
2
|
Moura J, Oliveira J, Santos M, Costa S, Silva L, Lemos C, Barros J, Sequeiros J, Damásio J. Spinocerebellar Ataxias: Phenotypic Spectrum of PolyQ versus Non-Repeat Expansion Forms. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2258-2268. [PMID: 39048885 PMCID: PMC11585503 DOI: 10.1007/s12311-024-01723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Spinocerebellar ataxias (SCA) are most frequently due to (CAG)n (coding for polyglutamine, polyQ) expansions and, less so, to expansion of other oligonucleotide repeats (non-polyQ) or other type of variants (non-repeat expansion SCA). In this study we compared polyQ and non-repeat expansion SCA, in a cohort of patients with hereditary ataxia followed at a tertiary hospital. From a prospective study, 88 patients (51 families) with SCA were selected, 74 (40 families) of whom genetically diagnosed. Thirty-eight patients (51.4%, 19 families) were confirmed as having a polyQ (no other repeat-expansions were identified) and 36 (48.6%, 21 families) a non-repeat expansion SCA. Median age-at-onset was 39.5 [30.0-45.5] for polyQ and 7.0 years [1.00-21.50] for non-repeat expansion SCA. PolyQ SCA were associated with cerebellar onset, and non-repeat expansion forms with non-cerebellar onset. Time to diagnosis was longer for non-repeat expansion SCA. The most common polyQ SCA were Machado-Joseph disease (MJD/SCA3) (73.7%) and SCA2 (15.8%); whereas in non-repeat expansion SCA ATX-CACNA1A (14.3%), ATP1A3-related ataxia, ATX-ITPR1, ATX/HSP-KCNA2, and ATX-PRKCG (9.5% each) predominated. Disease duration (up to inclusion) was significantly higher in non-repeat expansion SCA, but the difference in SARA score was not statistically significant. Cerebellar peduncles and pons atrophy were more common in polyQ ataxias, as was axonal neuropathy. SCA had a wide range of genetic etiology, age-at-onset and presentation. Proportion of polyQ and non-repeat expansion SCA was similar; the latter had a higher genetic heterogeneity. While polyQ ataxias were typically linked to cerebellar onset in adulthood, non-repeat expansion forms associated with early onset and non-cerebellar presentations.
Collapse
Affiliation(s)
- João Moura
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal
| | - Jorge Oliveira
- Centro de Genética Preditiva e Preventiva (CGPP), IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Mariana Santos
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sara Costa
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal
| | - Lénia Silva
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal
| | - Carolina Lemos
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - José Barros
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- Centro de Genética Preditiva e Preventiva (CGPP), IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - Joana Damásio
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS de Santo António, Porto, Portugal.
- Centro de Genética Preditiva e Preventiva (CGPP), IBMC - Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Nobili G, Botticelli S, La Penna G, Morante S, Rossi G, Salina G. Probing protein stability: towards a computational atomistic, reliable, affordable, and improvable model. Front Mol Biosci 2023; 10:1122269. [PMID: 37325476 PMCID: PMC10267363 DOI: 10.3389/fmolb.2023.1122269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
We present an improved application of a recently proposed computational method designed to evaluate the change of free energy as a function of the average value of a suitably chosen collective variable in proteins. The method is based on a full atomistic description of the protein and its environment. The goal is to understand how the protein melting temperature changes upon single-point mutations, because the sign of the temperature variation will allow us to discriminate stabilizing vs. destabilizing mutations in protein sequences. In this refined application the method is based on altruistic well-tempered metadynamics, a variant of multiple-walkers metadynamics. The resulting metastatistics is then modulated by the maximal constrained entropy principle. The latter turns out to be especially helpful in free-energy calculations as it is able to alleviate the severe limitations of metadynamics in properly sampling folded and unfolded configurations. In this work we apply the computational strategy outlined above in the case of the bovine pancreatic trypsin inhibitor, a well-studied small protein, which is a reference for computer simulations since decades. We compute the variation of the melting temperature characterizing the folding-unfolding process between the wild-type protein and two of its single-point mutations that are seen to have opposite effect on the free energy changes. The same approach is used for free energy difference calculations between a truncated form of frataxin and a set of five of its variants. Simulation data are compared to in vitro experiments. In all cases the sign of the change of melting temperature is reproduced, under the further approximation of using an empirical effective mean-field to average out protein-solvent interactions.
Collapse
Affiliation(s)
- Germano Nobili
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Roma, Italy
- INFN, Sezione di Roma Tor Vergata, Roma, Italy
| | - Simone Botticelli
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Roma, Italy
- INFN, Sezione di Roma Tor Vergata, Roma, Italy
| | - Giovanni La Penna
- CNR-Istituto di Chimica Dei Composti Organometallici, Firenze, Italy
- INFN, Sezione di Roma Tor Vergata, Roma, Italy
| | - Silvia Morante
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Roma, Italy
- INFN, Sezione di Roma Tor Vergata, Roma, Italy
- CNR-Istituto di Chimica Dei Composti Organometallici, Firenze, Italy
| | - Giancarlo Rossi
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Roma, Italy
- INFN, Sezione di Roma Tor Vergata, Roma, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Roma, Italy
| | | |
Collapse
|
4
|
Jäschke D, Steiner KM, Chang DI, Claaßen J, Uslar E, Thieme A, Gerwig M, Pfaffenrot V, Hulst T, Gussew A, Maderwald S, Göricke SL, Minnerop M, Ladd ME, Reichenbach JR, Timmann D, Deistung A. Age-related differences of cerebellar cortex and nuclei: MRI findings in healthy controls and its application to spinocerebellar ataxia (SCA6) patients. Neuroimage 2023; 270:119950. [PMID: 36822250 DOI: 10.1016/j.neuroimage.2023.119950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Understanding cerebellar alterations due to healthy aging provides a reference point against which pathological findings in late-onset disease, for example spinocerebellar ataxia type 6 (SCA6), can be contrasted. In the present study, we investigated the impact of aging on the cerebellar nuclei and cerebellar cortex in 109 healthy controls (age range: 16 - 78 years) using 3 Tesla magnetic resonance imaging (MRI). Findings were compared with 25 SCA6 patients (age range: 38 - 78 years). A subset of 16 SCA6 (included: 14) patients and 50 controls (included: 45) received an additional MRI scan at 7 Tesla and were re-scanned after one year. MRI included T1-weighted, T2-weighted FLAIR, and multi-echo T2*-weighted imaging. The T2*-weighted phase images were converted to quantitative susceptibility maps (QSM). Since the cerebellar nuclei are characterized by elevated iron content with respect to their surroundings, two independent raters manually outlined them on the susceptibility maps. T1-weighted images acquired at 3T were utilized to automatically identify the cerebellar gray matter (GM) volume. Linear correlations revealed significant atrophy of the cerebellum due to tissue loss of cerebellar cortical GM in healthy controls with increasing age. Reduction of the cerebellar GM was substantially stronger in SCA6 patients. The volume of the dentate nuclei did not exhibit a significant relationship with age, at least in the age range between 18 and 78 years, whereas mean susceptibilities of the dentate nuclei increased with age. As previously shown, the dentate nuclei volumes were smaller and magnetic susceptibilities were lower in SCA6 patients compared to age- and sex-matched controls. The significant dentate volume loss in SCA6 patients could also be confirmed with 7T MRI. Linear mixed effects models and individual paired t-tests accounting for multiple comparisons revealed no statistical significant change in volume and susceptibility of the dentate nuclei after one year in neither patients nor controls. Importantly, dentate volumes were more sensitive to differentiate between SCA6 (Cohen's d = 3.02) and matched controls than the cerebellar cortex volume (d = 2.04). In addition to age-related decline of the cerebellar cortex and atrophy in SCA6 patients, age-related increase of susceptibility of the dentate nuclei was found in controls, whereas dentate volume and susceptibility was significantly decreased in SCA6 patients. Because no significant changes of any of these parameters was found at follow-up, these measures do not allow to monitor disease progression at short intervals.
Collapse
Affiliation(s)
- Dominik Jäschke
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Department of Radiology and Nuclear Medicine, University Hospital Basel, Basel 4031, Switzerland
| | - Katharina M Steiner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen 45147, Germany
| | - Dae-In Chang
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Clinic for Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital of the Ruhr-University Bochum, Bochum 44791, Germany
| | - Jens Claaßen
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Fachklinik für Neurologie, MEDICLIN Klinik Reichshof, Reichshof-Eckenhagen 51580, Germany
| | - Ellen Uslar
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany
| | - Marcus Gerwig
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany
| | - Viktor Pfaffenrot
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany
| | - Thomas Hulst
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Erasmus University College, Rotterdam 3011 HP, the Netherlands
| | - Alexander Gussew
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Ernst-Grube-Str. 40, Halle (Saale) 06120, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany
| | - Sophia L Göricke
- Institute of Diagnostic and Interventional Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Essen 45141, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich 52425, Germany; Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Faculty of Physics and Astronomy and Faculty of Medicine, Heidelberg University, Heidelberg 69120, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena 07743, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany
| | - Andreas Deistung
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Ernst-Grube-Str. 40, Halle (Saale) 06120, Germany; Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena 07743, Germany.
| |
Collapse
|
5
|
Ranjbar H, Soti M, Kohlmeier KA, Janahmadi M, Shabani M. Pharmacologic antagonism of CB1 receptors improves electrophysiological alterations in Purkinje cells exposed to 3-AP. BMC Neurosci 2023; 24:18. [PMID: 36869289 PMCID: PMC9985293 DOI: 10.1186/s12868-023-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
INTRODUCTION Although ataxia is associated with cerebellar dysfunction, little is known about the effects of 3-AP exposure on Purkinje cell electrophysiological properties. Here, we evaluated these parameters in cerebellar vermis brain slices. METHODS Purkinje cells were exposed to artificial cerebrospinal fluid (aCSF) (control) or to 1 mM 3-acetylpyridine (3-AP) in the recording chamber. The effects of a cannabinoid agonist (WIN; 7.5 nmol) and a cannabinoid antagonist (AM; 20 nmol) were evaluated under both conditions. RESULTS Exposure to 3-AP induced dramatic changes in cellular excitability that likely would affect Purkinje cell output. In whole-cell current clamp recordings, 3-AP-exposed Purkinje cells demonstrated a significantly higher frequency of action potentials, a larger afterhyperpolarization (AHP), and a larger rebound of action potentials. In addition, 3-AP caused a significant decrease in the interspike interval (ISI), half-width, and first spike latency. Remarkably, the action potential frequency, AHP amplitude, rebound, ISI, action potential halfwidth, and first spike latency were no longer different from controls in 3-AP cells treated with AM. Sag percentage, on the other hand, showed no significant difference under any treatment condition, indicating that cannabinoids' actions on 3-AP-mediated Purkinje cell changes may not include effects on neuronal excitability through changes of Ih. CONCLUSIONS These data show that cannabinoid antagonists reduce the excitability of Purkinje cells following exposure to 3-AP and suggest their potential as therapeutics in cerebellar dysfunctions.
Collapse
Affiliation(s)
- Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran
| | - Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mahyar Janahmadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran.
| |
Collapse
|
6
|
Ranjbar H, Soti M, Razavinasab M, Kohlmeier KA, Shabani M. The neglected role of endocannabinoid actions at TRPC channels in ataxia. Neurosci Biobehav Rev 2022; 141:104860. [PMID: 36087758 DOI: 10.1016/j.neubiorev.2022.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 12/01/2022]
Abstract
Transient receptor potential (TRP) channels are highly expressed in cells of the cerebellum including in the dendrites and somas of Purkinje cells (PCs). Their endogenous activation promotes influx of Ca2+ and Na+, resulting in depolarization. TRP channels can be activated by endogenous endocannabinoids (eCBs) and activity of TRP channels has been shown to modulate GABA and glutamate transmission. Ataxia is caused by disruption of multiple intracellular pathways which often involve changes in Ca2+ homeostasis that can result in neural cellular dysfunction and cell death. Based on available literature, alteration of transmission of eCBs would be expected to change activity of cerebellar TRP channels. Antagonists of the endocannabinoid system (ECS) including enzymes which break eCBs down have been shown to result in reductions in postsynaptic excitatory activity mediated by TRPC channels. Further, TRPC channel antagonists could modulate both pre and postsynaptically-mediated glutamatergic and GABAergic transmission, resulting in reductions in cell death due to excitotoxicity and dysfunctions caused by abnormal inhibitory signaling. Accordingly, TRP channels, and in particular the TRPC channel, represent a potential therapeutic target for management of ataxia.
Collapse
Affiliation(s)
- Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
8
|
Bedewy AAE. Anaesthesia for a patient with Friedreich’s ataxia undergoing emergency tibia interlocking nail insertion. EGYPTIAN JOURNAL OF ANAESTHESIA 2022. [DOI: 10.1080/11101849.2022.2082789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
9
|
Botticelli S, La Penna G, Nobili G, Rossi G, Stellato F, Morante S. Modelling Protein Plasticity: The Example of Frataxin and Its Variants. Molecules 2022; 27:1955. [PMID: 35335316 PMCID: PMC8950120 DOI: 10.3390/molecules27061955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
Frataxin (FXN) is a protein involved in storage and delivery of iron in the mitochondria. Single-point mutations in the FXN gene lead to reduced production of functional frataxin, with the consequent dyshomeostasis of iron. FXN variants are at the basis of neurological impairment (the Friedreich's ataxia) and several types of cancer. By using altruistic metadynamics in conjunction with the maximal constrained entropy principle, we estimate the change of free energy in the protein unfolding of frataxin and of some of its pathological mutants. The sampled configurations highlight differences between the wild-type and mutated sequences in the stability of the folded state. In partial agreement with thermodynamic experiments, where most of the analyzed variants are characterized by lower thermal stability compared to wild type, the D104G variant is found with a stability comparable to the wild-type sequence and a lower water-accessible surface area. These observations, obtained with the new approach we propose in our work, point to a functional switch, affected by single-point mutations, of frataxin from iron storage to iron release. The method is suitable to investigate wide structural changes in proteins in general, after a proper tuning of the chosen collective variable used to perform the transition.
Collapse
Affiliation(s)
- Simone Botticelli
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
| | - Giovanni La Penna
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Firenze, Italy
| | - Germano Nobili
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
| | - Giancarlo Rossi
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
- Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, I-00184 Roma, Italy
| | - Francesco Stellato
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
- Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, I-00184 Roma, Italy
| | - Silvia Morante
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
| |
Collapse
|
10
|
Moghaddam MH, Hatari S, Shahidi AMEJ, Nikpour F, Omran HS, Fathi M, Vakili K, Abdollahifar MA, Tizro M, Eskandari N, Raoofi A, Ebrahimi V, Aliaghaei A. Human olfactory epithelium-derived stem cells ameliorate histopathological deficits and improve behavioral functions in a rat model of cerebellar ataxia. J Chem Neuroanat 2022; 120:102071. [PMID: 35051594 DOI: 10.1016/j.jchemneu.2022.102071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/18/2021] [Accepted: 01/15/2022] [Indexed: 12/11/2022]
Abstract
Cell replacement therapy (CRT) is one of the most effective approaches used to alleviate symptoms of neurodegenerative syndromes such as cerebellar ataxia (CA). Human olfactory epithelium mesenchymal stem cells (OE-MSCs) have been recognized as a promising candidate for CRT, due to their distinctive features including immunomodulatory properties and ease of accessible compared to other types of MSCs. Hence, the main goal of our study was to explore the impacts of OE-MSCs transplantation on behavioral, structural, and histological deficiencies in a rat model of CA. After obtained an informed consent from volunteers, OE-MSCs were obtained from their nasal cavity. Then, OE-MSCs were characterized by the positive expression of CD73, CD90, and CD105 as MSCs as well as nestin and vimentin as primitive neuroectodermal stem cells markers. Then, the animals were randomized into three control, 3-acetylpyridine (3-AP) treated, and 3-AP + cell groups. In both experimental groups, the rats received intraperitoneal injection of 3-AP (75 mg/kg), followed by the implantation of OE-MSCs into the cerebellum of 3-AP + cell group. The impact of engrafted OE-MSCs on motor coordination and performance along with biochemical, immunohistochemical, and stereological changes in the cerebellum of the rat models of CA were investigated. According to our findings, the administration of 3-AP decreased the cerebellar GSH concentration. The injection of 3-AP also altered the morphological characteristics of the cerebellar Golgi cells. On the other hand, OE-MSCs transplantation improved motor coordination in CA. Besides, the implantation of OE-MSCs reduced caspase-3 expression and microglia proliferation in the cerebellum upon 3-AP administration. Finally, the transplant of OE-MSCs protected Purkinje cells against 3-AP toxicity. In sum, the present study revealed considerable advantages of OE-MSCs in managing CA animal model.
Collapse
Affiliation(s)
- Meysam Hassani Moghaddam
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Saba Hatari
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mahdi Emam Jome Shahidi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nikpour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Salehi Omran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Tizro
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Eskandari
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Raoofi
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Vahid Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Abbas Aliaghaei
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Smethurst DGJ, Shcherbik N. Interchangeable utilization of metals: New perspectives on the impacts of metal ions employed in ancient and extant biomolecules. J Biol Chem 2021; 297:101374. [PMID: 34732319 PMCID: PMC8633580 DOI: 10.1016/j.jbc.2021.101374] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Metal ions provide considerable functionality across biological systems, and their utilization within biomolecules has adapted through changes in the chemical environment to maintain the activity they facilitate. While ancient earth's atmosphere was rich in iron and manganese and low in oxygen, periods of atmospheric oxygenation significantly altered the availability of certain metal ions, resulting in ion replacement within biomolecules. This adaptation mechanism has given rise to the phenomenon of metal cofactor interchangeability, whereby contemporary proteins and nucleic acids interact with multiple metal ions interchangeably, with different coordinated metals influencing biological activity, stability, and toxic potential. The ability of extant organisms to adapt to fluctuating metal availability remains relevant in a number of crucial biomolecules, including the superoxide dismutases of the antioxidant defense systems and ribonucleotide reductases. These well-studied and ancient enzymes illustrate the potential for metal interchangeability and adaptive utilization. More recently, the ribosome has also been demonstrated to exhibit interchangeable interactions with metal ions with impacts on function, stability, and stress adaptation. Using these and other examples, here we review the biological significance of interchangeable metal ions from a new angle that combines both biochemical and evolutionary viewpoints. The geochemical pressures and chemical properties that underlie biological metal utilization are discussed in the context of their impact on modern disease states and treatments.
Collapse
Affiliation(s)
- Daniel G J Smethurst
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| |
Collapse
|
12
|
Potential for Stem Cell-Based Therapy in the Road of Treatment for Neurological Disorders Secondary to COVID-19. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021; 8:355-369. [PMID: 34746370 PMCID: PMC8555723 DOI: 10.1007/s40883-021-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
Abstract
The severe acute respiratory syndrome coronavirus 2 has led to the worldwide pandemic named coronavirus disease 2019 (COVID-19). It has caused a significant increase in the number of cases and mortalities since its first diagnosis in December 2019. Although COVID-19 primarily affects the respiratory system, neurological involvement of the central and peripheral nervous system has been also reported. Herein, the higher risk of neurodegenerative diseases in COVID-19 patients in future is also imaginable. Neurological complications of COVID-19 infection are more commonly seen in severely ill individuals; but, earlier diagnosis and treatment can lead to better long-lasting results. In this respect, stem cell biotechnologies with considerable self-renewal and differentiation capacities have experienced great progress in the field of neurological disorders whether in finding out their underlying processes or proving them promising therapeutic approaches. Herein, many neurological disorders have been found to benefit from stem cell medicine strategies. Accordingly, in the present review, the authors are trying to discuss stem cell-based biotechnologies as promising therapeutic options for neurological disorders secondary to COVID-19 infection through reviewing neurological manifestations of COVID-19 and current stem cell-based biotechnologies for neurological disorders. Lay Summary Due to the substantial burden of neurological disorders in the health, economic, and social system of society, the emergence of neurological manifestations following COVID-19 (as a life-threatening pandemic) creates the need to use efficient and modern methods of treatment. Since stem cell-based methods have been efficient for a large number of neurological diseases, it seems that the use of mentioned methods is also effective in the process of improving neurological disorders caused by COVID-19. Hereupon, the current review aims to address stem cell-based approaches as treatments showing promise to neurological disorders related to COVID-19.
Collapse
|
13
|
Wozniak EAL, Chen Z, Paul S, Yang P, Figueroa KP, Friedrich J, Tschumperlin T, Berken M, Ingram M, Henzler C, Pulst SM, Orr HT. Cholecystokinin 1 receptor activation restores normal mTORC1 signaling and is protective to Purkinje cells of SCA mice. Cell Rep 2021; 37:109831. [PMID: 34644575 PMCID: PMC8916043 DOI: 10.1016/j.celrep.2021.109831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/23/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of genetic diseases characterized by progressive ataxia and neurodegeneration, often in cerebellar Purkinje neurons. A SCA1 mouse model, Pcp2-ATXN1[30Q]D776, has severe ataxia in absence of progressive Purkinje neuron degeneration and death. Previous RNA-seq analyses identify cerebellar upregulation of the peptide hormone cholecystokinin (Cck) in Pcp2-ATXN1[30Q]D776 mice. Importantly, absence of Cck1 receptor (Cck1R) in Pcp2-ATXN1[30Q]D776 mice confers a progressive disease with Purkinje neuron death. Administration of a Cck1R agonist, A71623, to Pcp2-ATXN1[30Q]D776;Cck-/- and Pcp2-AXTN1[82Q] mice dampens Purkinje neuron pathology and associated deficits in motor performance. In addition, A71623 administration improves motor performance of Pcp2-ATXN2[127Q] SCA2 mice. Moreover, the Cck1R agonist A71623 corrects mTORC1 signaling and improves expression of calbindin in cerebella of AXTN1[82Q] and ATXN2[127Q] mice. These results indicate that manipulation of the Cck-Cck1R pathway is a potential therapeutic target for treatment of diseases involving Purkinje neuron degeneration.
Collapse
Affiliation(s)
- Emily A L Wozniak
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhao Chen
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Praseuth Yang
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jill Friedrich
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tyler Tschumperlin
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Berken
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Melissa Ingram
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christine Henzler
- RISS Bioinformatics, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Harry T Orr
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Niewiadomska-Cimicka A, Doussau F, Perot JB, Roux MJ, Keime C, Hache A, Piguet F, Novati A, Weber C, Yalcin B, Meziane H, Champy MF, Grandgirard E, Karam A, Messaddeq N, Eisenmann A, Brouillet E, Nguyen HHP, Flament J, Isope P, Trottier Y. SCA7 Mouse Cerebellar Pathology Reveals Preferential Downregulation of Key Purkinje Cell-Identity Genes and Shared Disease Signature with SCA1 and SCA2. J Neurosci 2021; 41:4910-4936. [PMID: 33888607 PMCID: PMC8260160 DOI: 10.1523/jneurosci.1882-20.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease mainly characterized by motor incoordination because of progressive cerebellar degeneration. SCA7 is caused by polyglutamine expansion in ATXN7, a subunit of the transcriptional coactivator SAGA, which harbors histone modification activities. Polyglutamine expansions in specific proteins are also responsible for SCA1-SCA3, SCA6, and SCA17; however, the converging and diverging pathomechanisms remain poorly understood. Using a new SCA7 knock-in mouse, SCA7140Q/5Q, we analyzed gene expression in the cerebellum and assigned gene deregulation to specific cell types using published datasets. Gene deregulation affects all cerebellar cell types, although at variable degree, and correlates with alterations of SAGA-dependent epigenetic marks. Purkinje cells (PCs) are by far the most affected neurons and show reduced expression of 83 cell-type identity genes, including these critical for their spontaneous firing activity and synaptic functions. PC gene downregulation precedes morphologic alterations, pacemaker dysfunction, and motor incoordination. Strikingly, most PC genes downregulated in SCA7 have also decreased expression in SCA1 and SCA2 mice, revealing converging pathomechanisms and a common disease signature involving cGMP-PKG and phosphatidylinositol signaling pathways and LTD. Our study thus points out molecular targets for therapeutic development, which may prove beneficial for several SCAs. Furthermore, we show that SCA7140Q/5Q males and females exhibit the major disease features observed in patients, including cerebellar damage, cerebral atrophy, peripheral nerves pathology, and photoreceptor dystrophy, which account for progressive impairment of behavior, motor, and visual functions. SCA7140Q/5Q mice represent an accurate model for the investigation of different aspects of SCA7 pathogenesis.SIGNIFICANCE STATEMENT Spinocerebellar ataxia 7 (SCA7) is one of the several forms of inherited SCAs characterized by cerebellar degeneration because of polyglutamine expansion in specific proteins. The ATXN7 involved in SCA7 is a subunit of SAGA transcriptional coactivator complex. To understand the pathomechanisms of SCA7, we determined the cell type-specific gene deregulation in SCA7 mouse cerebellum. We found that the Purkinje cells are the most affected cerebellar cell type and show downregulation of a large subset of neuronal identity genes, critical for their spontaneous firing and synaptic functions. Strikingly, the same Purkinje cell genes are downregulated in mouse models of two other SCAs. Thus, our work reveals a disease signature shared among several SCAs and uncovers potential molecular targets for their treatment.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Frédéric Doussau
- Université de Strasbourg, Illkirch 67404, France
- Centre National de la Recherche Scientifique UPR3212, Strasbourg 67000, France
| | - Jean-Baptiste Perot
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Michel J Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Celine Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Antoine Hache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Françoise Piguet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Ariana Novati
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
- Department of Human Genetics, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Chantal Weber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Binnaz Yalcin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Hamid Meziane
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
- Celphedia, Phenomin, Institut Clinique de la Souris, Illkirch 67404, France
| | - Marie-France Champy
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
- Celphedia, Phenomin, Institut Clinique de la Souris, Illkirch 67404, France
| | - Erwan Grandgirard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Alice Karam
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Aurélie Eisenmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Hoa Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
- Department of Human Genetics, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Julien Flament
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Philippe Isope
- Université de Strasbourg, Illkirch 67404, France
- Centre National de la Recherche Scientifique UPR3212, Strasbourg 67000, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
15
|
Schmitz-Hübsch T, Lux S, Bauer P, Brandt AU, Schlapakow E, Greschus S, Scheel M, Gärtner H, Kirlangic ME, Gras V, Timmann D, Synofzik M, Giorgetti A, Carloni P, Shah JN, Schöls L, Kopp U, Bußenius L, Oberwahrenbrock T, Zimmermann H, Pfueller C, Kadas EM, Rönnefarth M, Grosch AS, Endres M, Amunts K, Paul F, Doss S, Minnerop M. Spinocerebellar ataxia type 14: refining clinicogenetic diagnosis in a rare adult-onset disorder. Ann Clin Transl Neurol 2021; 8:774-789. [PMID: 33739604 PMCID: PMC8045942 DOI: 10.1002/acn3.51315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022] Open
Abstract
Objectives Genetic variant classification is a challenge in rare adult‐onset disorders as in SCA‐PRKCG (prior spinocerebellar ataxia type 14) with mostly private conventional mutations and nonspecific phenotype. We here propose a refined approach for clinicogenetic diagnosis by including protein modeling and provide for confirmed SCA‐PRKCG a comprehensive phenotype description from a German multi‐center cohort, including standardized 3D MR imaging. Methods This cross‐sectional study prospectively obtained neurological, neuropsychological, and brain imaging data in 33 PRKCG variant carriers. Protein modeling was added as a classification criterion in variants of uncertain significance (VUS). Results Our sample included 25 cases confirmed as SCA‐PRKCG (14 variants, thereof seven novel variants) and eight carriers of variants assigned as VUS (four variants) or benign/likely benign (two variants). Phenotype in SCA‐PRKCG included slowly progressive ataxia (onset at 4–50 years), preceded in some by early‐onset nonprogressive symptoms. Ataxia was often combined with action myoclonus, dystonia, or mild cognitive‐affective disturbance. Inspection of brain MRI revealed nonprogressive cerebellar atrophy. As a novel finding, a previously not described T2 hyperintense dentate nucleus was seen in all SCA‐PRKCG cases but in none of the controls. Interpretation In this largest cohort to date, SCA‐PRKCG was characterized as a slowly progressive cerebellar syndrome with some clinical and imaging features suggestive of a developmental disorder. The observed non‐ataxia movement disorders and cognitive‐affective disturbance may well be attributed to cerebellar pathology. Protein modeling emerged as a valuable diagnostic tool for variant classification and the newly described T2 hyperintense dentate sign could serve as a supportive diagnostic marker of SCA‐PRKCG.
Collapse
Affiliation(s)
- Tanja Schmitz-Hübsch
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,CENTOGENE AG, Rostock, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Department of Neurology, University of California, Irvine, CA, USA
| | - Elena Schlapakow
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Susanne Greschus
- Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Department of Neuroradiology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Hanna Gärtner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
| | - Mehmet E Kirlangic
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,Institute for Biomedical Engineering and Computer Science, Technische Universität Ilmenau, Ilmenau, Germany
| | - Vincent Gras
- Institute of Neuroscience and Medicine (INM-4), Research Centre Juelich, Juelich, Germany
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alejandro Giorgetti
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Research Centre Juelich, Juelich, Germany.,Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Research Centre Juelich, Juelich, Germany
| | - Jon N Shah
- Institute of Neuroscience and Medicine (INM-4), Research Centre Juelich, Juelich, Germany.,Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ute Kopp
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lisa Bußenius
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,Institute for Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Clinic Hamburg Eppendorf, Hamburg, Germany
| | - Timm Oberwahrenbrock
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Hanna Zimmermann
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Caspar Pfueller
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Ella-Maria Kadas
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Maria Rönnefarth
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Anne-Sophie Grosch
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sarah Doss
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Movement Disorders Section, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
16
|
Franklin GL, Camargo CHF, Meira AT, Pavanelli GM, Milano SS, Germiniani FB, Lima NSC, Raskin S, Barsottini OGP, Pedroso JL, Maggi FA, Tumas V, de Carvalho PM, de Oliveira AC, Braga B, Souza LC, Guimarães RP, Piovesana LG, Lopes-Cendes ÍT, de Azevedo PC, França MC, Martinez ARM, Teive HAG. Is Ataxia an Underestimated Symptom of Huntington's Disease? Front Neurol 2020; 11:571843. [PMID: 33281707 PMCID: PMC7689004 DOI: 10.3389/fneur.2020.571843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
Background: Huntington's disease (HD) is a progressive disorder characterized by motor, cognitive and psychiatric features. Cerebellar ataxia is classically considered as uncommon in HD clinical spectrum. Objective: To determine the prevalence of cerebellar ataxia in patients with HD, both in the early and in the late stages of HD. Methods: Seventy-two individuals considered eligible were assessed by two trained doctors, applying the Scale for Assessment and Rating of Ataxia (SARA) and Brief Ataxia Rating Scale (BARS) for ataxia, the Unified Huntington's Disease Rating Scale (UHDRS) and also, Barthel Index (BI), in order to evaluate functional capacity. Results: Fifty-one patients (70.8%) presented with clinical ataxia at the time of examination (mean time of disease was 9.1 years). Six (8.33%) patients presented with cerebellar ataxia as first symptom. When stratified according to time of disease, a decline in the presence of chorea (p = 0.032) and an increase in cognitive deficit (p = 0.023) were observed in the patients as the disease progressed. The presence of ataxia was associated with longer duration of illness and severity of illness (UHDRS) (p < 0.0001), and shorter Barthel (less functionality) (p = 0.001). Conclusions: Cerebellar involvement may play an important role in natural history of brain degeneration in HD. The presence of cerebellar ataxia in HD is relevant and it may occur even in early stages, and should be included as part of the motor features of the disease.
Collapse
Affiliation(s)
- Gustavo L. Franklin
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Carlos Henrique F. Camargo
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Alex T. Meira
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Giovana M. Pavanelli
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Sibele S. Milano
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Francisco B. Germiniani
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Nayra S. C. Lima
- Faculdade de Medicina, Universidade de Vila Velha, Espirito Santo, Brazil
| | - Salmo Raskin
- Genetika – Centro de Aconselhamento e Laboratório de Genética, Curitiba, Brazil
| | | | - José Luiz Pedroso
- Division of General Neurology and Ataxia Unit, Department of Neurology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil
| | - Fernanda Aparecida Maggi
- Division of General Neurology and Ataxia Unit, Department of Neurology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil
| | - Vitor Tumas
- Movement Disorders and Behavioral Neurology Section, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, Brazil
| | - Pedro Manzke de Carvalho
- Movement Disorders and Behavioral Neurology Section, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, Brazil
| | - Ana Carolina de Oliveira
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Bárbara Braga
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Laura Cristina Souza
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Rachel Paes Guimarães
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Luiza Gonzaga Piovesana
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Íscia Teresinha Lopes-Cendes
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Paula Christina de Azevedo
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Marcondes Cavalcante França
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Alberto Rolim Muro Martinez
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Hélio A. G. Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de clínicas, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
17
|
Tejwani L, Lim J. Pathogenic mechanisms underlying spinocerebellar ataxia type 1. Cell Mol Life Sci 2020; 77:4015-4029. [PMID: 32306062 PMCID: PMC7541529 DOI: 10.1007/s00018-020-03520-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The family of hereditary cerebellar ataxias is a large group of disorders with heterogenous clinical manifestations and genetic etiologies. Among these, over 30 autosomal dominantly inherited subtypes have been identified, collectively referred to as the spinocerebellar ataxias (SCAs). Generally, the SCAs are characterized by a progressive gait impairment with classical cerebellar features, and in a subset of SCAs, accompanied by extra-cerebellar features. Beyond the common gait impairment and cerebellar atrophy, the wide range of additional clinical features observed across the SCAs is likely explained by the diverse set of mutated genes that encode proteins with seemingly disparate functional roles in nervous system biology. By synthesizing knowledge obtained from studies of the various SCAs over the past several decades, convergence onto a few key cellular changes, namely ion channel dysfunction and transcriptional dysregulation, has become apparent and may represent central mechanisms of cerebellar disease pathogenesis. This review will detail our current understanding of the molecular pathogenesis of the SCAs, focusing primarily on the first described autosomal dominant spinocerebellar ataxia, SCA1, as well as the emerging common core mechanisms across the various SCAs.
Collapse
Affiliation(s)
- Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, 06510, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
18
|
Dynamics of a Protein Interaction Network Associated to the Aggregation of polyQ-Expanded Ataxin-1. Genes (Basel) 2020; 11:genes11101129. [PMID: 32992839 PMCID: PMC7600199 DOI: 10.3390/genes11101129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Several experimental models of polyglutamine (polyQ) diseases have been previously developed that are useful for studying disease progression in the primarily affected central nervous system. However, there is a missing link between cellular and animal models that would indicate the molecular defects occurring in neurons and are responsible for the disease phenotype in vivo. Methods: Here, we used a computational approach to identify dysregulated pathways shared by an in vitro and an in vivo model of ATXN1(Q82) protein aggregation, the mutant protein that causes the neurodegenerative polyQ disease spinocerebellar ataxia type-1 (SCA1). Results: A set of common dysregulated pathways were identified, which were utilized to construct cerebellum-specific protein-protein interaction (PPI) networks at various time-points of protein aggregation. Analysis of a SCA1 network indicated important nodes which regulate its function and might represent potential pharmacological targets. Furthermore, a set of drugs interacting with these nodes and predicted to enter the blood–brain barrier (BBB) was identified. Conclusions: Our study points to molecular mechanisms of SCA1 linked from both cellular and animal models and suggests drugs that could be tested to determine whether they affect the aggregation of pathogenic ATXN1 and SCA1 disease progression.
Collapse
|
19
|
Novel Missense CACNA1G Mutations Associated with Infantile-Onset Developmental and Epileptic Encephalopathy. Int J Mol Sci 2020; 21:ijms21176333. [PMID: 32878331 PMCID: PMC7503748 DOI: 10.3390/ijms21176333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/29/2020] [Accepted: 08/29/2020] [Indexed: 11/17/2022] Open
Abstract
The CACNA1G gene encodes the low-voltage-activated Cav3.1 channel, which is expressed in various areas of the CNS, including the cerebellum. We studied two missense CACNA1G variants, p.L208P and p.L909F, and evaluated the relationships between the severity of Cav3.1 dysfunction and the clinical phenotype. The presentation was of a developmental and epileptic encephalopathy without evident cerebellar atrophy. Both patients exhibited axial hypotonia, developmental delay, and severe to profound cognitive impairment. The patient with the L909F mutation had initially refractory seizures and cerebellar ataxia, whereas the L208P patient had seizures only transiently but was overall more severely affected. In transfected mammalian cells, we determined the biophysical characteristics of L208P and L909F variants, relative to the wild-type channel and a previously reported gain-of-function Cav3.1 variant. The L208P mutation shifted the activation and inactivation curves to the hyperpolarized direction, slowed the kinetics of inactivation and deactivation, and reduced the availability of Ca2+ current during repetitive stimuli. The L909F mutation impacted channel function less severely, resulting in a hyperpolarizing shift of the activation curve and slower deactivation. These data suggest that L909F results in gain-of-function, whereas L208P exhibits mixed gain-of-function and loss-of-function effects due to opposing changes in the biophysical properties. Our study expands the clinical spectrum associated with CACNA1G mutations, corroborating further the causal association with distinct complex phenotypes.
Collapse
|
20
|
Niewiadomska-Cimicka A, Hache A, Trottier Y. Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion. Front Neurosci 2020; 14:571. [PMID: 32581696 PMCID: PMC7296114 DOI: 10.3389/fnins.2020.00571] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) include SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 and constitute a group of adult onset neurodegenerative disorders caused by the expansion of a CAG repeat sequence located within the coding region of specific genes, which translates into polyglutamine tract in the corresponding proteins. PolyQ SCAs are characterized by degeneration of the cerebellum and its associated structures and lead to progressive ataxia and other diverse symptoms. In recent years, gene and epigenetic deregulations have been shown to play a critical role in the pathogenesis of polyQ SCAs. Here, we provide an overview of the functions of wild type and pathogenic polyQ SCA proteins in gene regulation, describe the extent and nature of gene expression changes and their pathological consequences in diseases, and discuss potential avenues to further investigate converging and distinct disease pathways and to develop therapeutic strategies.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Antoine Hache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
21
|
Corral-Juan M, Serrano-Munuera C, Rábano A, Cota-González D, Segarra-Roca A, Ispierto L, Cano-Orgaz AT, Adarmes AD, Méndez-Del-Barrio C, Jesús S, Mir P, Volpini V, Alvarez-Ramo R, Sánchez I, Matilla-Dueñas A. Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37. Brain 2019; 141:1981-1997. [PMID: 29939198 DOI: 10.1093/brain/awy137] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
The autosomal dominant spinocerebellar ataxias (SCAs) consist of a highly heterogeneous group of rare movement disorders characterized by progressive cerebellar ataxia variably associated with ophthalmoplegia, pyramidal and extrapyramidal signs, dementia, pigmentary retinopathy, seizures, lower motor neuron signs, or peripheral neuropathy. Over 41 different SCA subtypes have been described evidencing the high clinical and genetic heterogeneity. We previously reported a novel spinocerebellar ataxia type subtype, SCA37, linked to an 11-Mb genomic region on 1p32, in a large Spanish ataxia pedigree characterized by ataxia and a pure cerebellar syndrome distinctively presenting with early-altered vertical eye movements. Here we demonstrate the segregation of an unstable intronic ATTTC pentanucleotide repeat mutation within the 1p32 5' non-coding regulatory region of the gene encoding the reelin adaptor protein DAB1, implicated in neuronal migration, as the causative genetic defect of the disease in four Spanish SCA37 families. We describe the clinical-genetic correlation and the first SCA37 neuropathological findings caused by dysregulation of cerebellar DAB1 expression. Post-mortem neuropathology of two patients with SCA37 revealed severe loss of Purkinje cells with abundant astrogliosis, empty baskets, occasional axonal spheroids, and hypertrophic fibres by phosphorylated neurofilament immunostaining in the cerebellar cortex. The remaining cerebellar Purkinje neurons showed loss of calbindin immunoreactivity, aberrant dendrite arborization, nuclear pathology including lobulation, irregularity, and hyperchromatism, and multiple ubiquitinated perisomatic granules immunostained for DAB1. A subpopulation of Purkinje cells was found ectopically mispositioned within the cerebellar cortex. No significant neuropathological alterations were identified in other brain regions in agreement with a pure cerebellar syndrome. Importantly, we found that the ATTTC repeat mutation dysregulated DAB1 expression and induced an RNA switch resulting in the upregulation of reelin-DAB1 and PI3K/AKT signalling in the SCA37 cerebellum. This study reveals the unstable ATTTC repeat mutation within the DAB1 gene as the underlying genetic cause and provides evidence of reelin-DAB1 signalling dysregulation in the spinocerebellar ataxia type 37.
Collapse
Affiliation(s)
- Marc Corral-Juan
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| | | | | | - Daniel Cota-González
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Anna Segarra-Roca
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Lourdes Ispierto
- Neurodegeneration Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Spain
| | | | - Astrid D Adarmes
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Carlota Méndez-Del-Barrio
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,CIBERNED, Spain
| | | | - Ramiro Alvarez-Ramo
- Neurodegeneration Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Spain
| | - Ivelisse Sánchez
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Antoni Matilla-Dueñas
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| |
Collapse
|
22
|
Chen J, Sun Y, Liu X, Li J. Identification of a novel mutation in the CACNA1C gene in a Chinese family with autosomal dominant cerebellar ataxia. BMC Neurol 2019; 19:157. [PMID: 31291898 PMCID: PMC6617910 DOI: 10.1186/s12883-019-1381-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hereditary ataxia is a group of neurodegenerative diseases with progressive cerebellar ataxia of the gait and limbs as the main symptoms. The genetic patterns of the disease are diverse but it is mainly divided into autosomal dominant cerebellar ataxia (ADCA) and autosomal recessive cerebellar ataxia (ARCA), and about 45 pathogenic loci have been found in ADCA. The purpose of this study was to explore the genetic defect in a Chinese family with ADCA. METHODS A three-generation Chinese family with ADCA was enrolled in this study, Exome sequencing was conducted in four family members, including the proband, and verified by Sanger sequencing. RESULTS The rs779393130 mutation of the CACNA1C gene co-segregated with the ataxia phenotype in this family. The mutation was not detected in 50 unaffected controls. CONCLUSIONS The rs779393130 mutation of CACNA1C may be associated with the phenotype of the disease. The CACNA1C gene encodes the Cav1.2 (alpha-1) subunit of an L-type calcium channel and this subunit may be related to the ADCA phenotype. These findings may have implications for family clinical monitoring and genetic counseling and may also help in understanding pathogenesis of this disease.
Collapse
Affiliation(s)
- Jiajun Chen
- Department of Neurology, China–Japan Union Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033 China
| | - Yajuan Sun
- Department of Neurology, China–Japan Union Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033 China
| | - Xiaoyang Liu
- Department of Neurology, China–Japan Union Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033 China
| | - Jia Li
- Department of Neurology, China–Japan Union Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033 China
| |
Collapse
|
23
|
Sayan S, Kotan D, Gündoğdu-Eken A, Şahbaz I, Koçoğlu C, Başak AN. Phenotypic and Genotypic Analysis of Hereditary Ataxia Patients in Sakarya City, Turkey. ACTA ACUST UNITED AC 2019; 56:106-109. [PMID: 31223241 DOI: 10.5152/npa.2017.20525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/12/2017] [Indexed: 11/22/2022]
Abstract
Introduction Hereditary ataxias are a group of heterogeneous diseases in regard to their clinical and genetic characteristics. Ataxia that progresses slowly may be accompanied by pyramidal and extrapyramidal findings, articulation disorders, ophthalmic movement disorders, neuropathic complaints, cognitive and behavioral abnormalies, and epilepsy. Definitive diagnosis in hereditary ataxias is based on molecular assays. History, clinical examination, laboratory and neuroimaging assist diagnosis. In our study, thirty-seven patients of suspected hereditary ataxia were examined with their clinical and genetic aspects, and the results compared with literature. Method Our study included 37 patients in 22 families who presented to our center between 2010-2016, and whose familial history and phenotypic features indicated hereditary ataxia. The patients were studied for clinical findings, family tree, neuroimaging, and laboratory findings. Advanced genetic investigations were performed on peripheral venous blood samples for hereditary ataxia. Results Of the 37 patients included in our study, 21 were females and 16 were males. Genetic analyses resulted in spinocerebellar ataxia (SCA) in four families (10 patients), Friedrich ataxia (FA) in three families (eight patients), and recessive ataxia due to point mutation in one family (two patients). SCA subtyping revealed SCA 1, 2, 6 and 8 in our patients. The remaining 16 patients included in our study could not be solved so far and are under investigation. Conclusion Hereditary ataxias are rare neurodegenerative disorders. Large genetic pool, ethnic and local differences complicate diagnosing even further. Our study contributes to the literature by reflecting phenotypic and genotypic characteristics of hereditary SCA patients in our region and reporting rare hereditary ataxia genotypes.
Collapse
Affiliation(s)
- Saadet Sayan
- Department of Neurology, SB Sakarya University Research and Training Hospital, Sakarya, Turkey
| | - Dilcan Kotan
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Aslı Gündoğdu-Eken
- Suna and İnan Kıraç Foundation; Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| | - Irmak Şahbaz
- Suna and İnan Kıraç Foundation; Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| | - Cemile Koçoğlu
- Suna and İnan Kıraç Foundation; Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation; Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| |
Collapse
|
24
|
Gómez-Ruiz M, Rodríguez-Cueto C, Luna-Piñel E, Hernández-Gálvez M, Fernández-Ruiz J. Endocannabinoid System in Spinocerebellar Ataxia Type-3 and Other Autosomal-Dominant Cerebellar Ataxias: Potential Role in Pathogenesis and Expected Relevance as Neuroprotective Targets. Front Mol Neurosci 2019; 12:94. [PMID: 31068788 PMCID: PMC6491810 DOI: 10.3389/fnmol.2019.00094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/29/2019] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of hereditary and progressive neurological disorders characterized by a loss of balance and motor coordination typically associated with cerebellar atrophy. The most prevalent SCA types are all polyQ disorders like Huntington’s disease, sharing the most relevant events in pathogenesis with this basal ganglia disorder, but with most of the damage concentrated in cerebellar neurons, and in their afferent and efferent connections (e.g., brainstem nuclei). SCAs have no cure and effective symptom-alleviating and disease-modifying therapies are not currently available. However, based on results obtained in studies conducted in murine models and information derived from analyses in post-mortem tissue samples from patients, which show notably higher levels of CB1 receptors found in different cerebellar neuronal subpopulations, the blockade of these receptors has been proposed for acutely modulating motor incoordination in cerebellar ataxias, whereas their chronic activation has been proposed for preserving specific neuronal losses. Additional studies in post-mortem tissues from SCA patients have also demonstrated elevated levels of CB2 receptors in Purkinje neurons as well as in glial elements in the granular layer and in the cerebellar white matter, with a similar profile found for endocannabinoid hydrolyzing enzymes, then suggesting that activating CB2 receptors and/or inhibiting these enzymes may also serve to develop cannabinoid-based neuroprotective therapies. The present review will address both aspects. On one hand, the endocannabinoid system becomes dysregulated in the cerebellum and also in other CNS structures (e.g., brainstem, basal ganglia) in SCAs, which may contribute to the progression of pathogenic events in these diseases. On the other hand, these endocannabinoid alterations may be pharmacologically corrected or enhanced, and this may have therapeutic consequences, either alleviating specific symptoms or eliciting neuroprotective effects, an objective presently under investigation.
Collapse
Affiliation(s)
- María Gómez-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Eva Luna-Piñel
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Mariluz Hernández-Gálvez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
25
|
Abstract
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominantly inherited progressive disorders, the clinical hallmark of which is loss of balance and coordination accompanied by slurred speech; onset is most often in adult life. Genetically, SCAs are grouped as repeat expansion SCAs, such as SCA3/Machado-Joseph disease (MJD), and rare SCAs that are caused by non-repeat mutations, such as SCA5. Most SCA mutations cause prominent damage to cerebellar Purkinje neurons with consecutive cerebellar atrophy, although Purkinje neurons are only mildly affected in some SCAs. Furthermore, other parts of the nervous system, such as the spinal cord, basal ganglia and pontine nuclei in the brainstem, can be involved. As there is currently no treatment to slow or halt SCAs (many SCAs lead to premature death), the clinical care of patients with SCA focuses on managing the symptoms through physiotherapy, occupational therapy and speech therapy. Intense research has greatly expanded our understanding of the pathobiology of many SCAs, revealing that they occur via interrelated mechanisms (including proteotoxicity, RNA toxicity and ion channel dysfunction), and has led to the identification of new targets for treatment development. However, the development of effective therapies is hampered by the heterogeneity of the SCAs; specific therapeutic approaches may be required for each disease.
Collapse
|
26
|
Muguruma K. Self-Organized Cerebellar Tissue from Human Pluripotent Stem Cells and Disease Modeling with Patient-Derived iPSCs. THE CEREBELLUM 2019; 17:37-41. [PMID: 29196977 DOI: 10.1007/s12311-017-0905-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent advances in the techniques that differentiate induced pluripotent stem cells (iPSCs) into specific types of cells enabled us to establish in vitro cell-based models as a platform for drug discovery. iPSC-derived disease models are advantageous to generation of a large number of cells required for high-throughput screening. Furthermore, disease-relevant cells differentiated from patient-derived iPSCs are expected to recapitulate the disorder-specific pathogenesis and physiology in vitro. Such disease-relevant cells will be useful for developing effective therapies. We demonstrated that cerebellar tissues are generated from human PSCs (hPSCs) in 3D culture systems that recapitulate the in vivo microenvironments associated with the isthmic organizer. Recently, we have succeeded in generation of spinocerebellar ataxia (SCA) patient-derived Purkinje cells by combining the iPSC technology and the self-organizing stem cell 3D culture technology. We demonstrated that SCA6-derived Purkinje cells exhibit vulnerability to triiodothyronine depletion, which is suppressed by treatment with thyrotropin-releasing hormone and Riluzole. We further discuss applications of patient-specific iPSCs to intractable cerebellar disease.
Collapse
Affiliation(s)
- Keiko Muguruma
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo Kobe, 650-0047, Japan.
| |
Collapse
|
27
|
Li X, Zhou C, Cui L, Zhu L, Du H, Liu J, Wang C, Fang S. A case of a novel CACNA1G mutation from a Chinese family with SCA42: A case report and literature review. Medicine (Baltimore) 2018; 97:e12148. [PMID: 30200108 PMCID: PMC6133555 DOI: 10.1097/md.0000000000012148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RATIONALE Spinocerebellar ataxia (SCA), a genetically inherited heterogeneous disorder, is characterized by gait ataxia, dysarthria, parkinsonism, choreic movements, dystonia, epilepsy, cognitive and psychiatric symptoms. Spinocerebellar ataxia-42 (SCA42), caused by heterozygous mutation in the calcium channel 1G (CACNA1G) gene, is a rare SCA subtype and the transmission pattern is autosomal dominant inheritance. PATIENT CONCERNS We presented a novel mutation (c.4721T>A; p.Met1574Lys) in 3 patients from a Chinese family using whole-exome sequencing. All patients exhibited cerebellar ataxia and the clinical manifestations were similar to those that were previously reported in the French and Japanese families. In addition, cerebral magnetic resonance imaging (MRI) showed cerebellar atrophy, and the hot cross bun sign of brainstem was found in the proband and her sister. DIAGNOSES The clinical features and MRI findings indicated the diagnosis of SCA. Taken together, the symptoms, MRI findings, as well as whole-exome sequencing made the diagnosis of SCA42 most likely candidate. INTERVENTIONS AND OUTCOMES The patient was treated with cobamamide (1.5 mg once daily) for nerve nutrition and further physical therapy. At the 4-month follow-up visit, the patient's condition did not improve obviously. LESSONS Recently, a missense mutation in CACNA1G gene (c.5144G4A; p.Arg1715His) was identified in French and Japanese families with SCA42. However, there has been no report of SCA42 or its mutant loci in Chinese patients. Our finding showed a novel mutation in CACNA1G gene and provided important insights into the pathogenesis of SCA42.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of Neurology, Neuroscience Centre
| | | | - Li Cui
- Department of Neurology, Neuroscience Centre
| | - Lijun Zhu
- China–Japan Union Hospital of Jilin University, Changchun, China
| | - Heqian Du
- Department of Neurology, Neuroscience Centre
| | - Jing Liu
- Department of Neurology, Neuroscience Centre
| | | | | |
Collapse
|
28
|
Huang M, Verbeek DS. Why do so many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia? Neurosci Lett 2018; 688:49-57. [PMID: 29421540 DOI: 10.1016/j.neulet.2018.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
The genetically heterozygous spinocerebellar ataxias are all characterized by cerebellar atrophy and pervasive Purkinje Cell degeneration. Up to date, more than 35 functionally diverse spinocerebellar ataxia genes have been identified. The main question that remains yet unsolved is why do some many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia? To address this question it is important to identify intrinsic pathways important for Purkinje Cell function and survival. In this review, we discuss the current consensus on shared mechanisms underlying the pervasive Purkinje Cell loss in spinocerebellar ataxia. Additionally, using recently published cell type specific expression data, we identified several Purkinje Cell-specific genes and discuss how the corresponding pathways might underlie the vulnerability of Purkinje Cells in response to the diverse genetic insults causing spinocerebellar ataxia.
Collapse
Affiliation(s)
- Miaozhen Huang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Dineke S Verbeek
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| |
Collapse
|
29
|
Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets CJLM, de Boer-Bergsma JJ, van der Vries G, Dooijes D, Bampi GB, van Diemen C, Brunt E, Ippel E, Kremer B, Vlak M, Adir N, Wijmenga C, van de Warrenburg BPC, Franke L, Sinke RJ, Verbeek DS. Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 2017; 140:2860-2878. [PMID: 29053796 DOI: 10.1093/brain/awx251] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/05/2017] [Indexed: 12/17/2022] Open
Abstract
The autosomal dominant cerebellar ataxias, referred to as spinocerebellar ataxias in genetic nomenclature, are a rare group of progressive neurodegenerative disorders characterized by loss of balance and coordination. Despite the identification of numerous disease genes, a substantial number of cases still remain without a genetic diagnosis. Here, we report five novel spinocerebellar ataxia genes, FAT2, PLD3, KIF26B, EP300, and FAT1, identified through a combination of exome sequencing in genetically undiagnosed families and targeted resequencing of exome candidates in a cohort of singletons. We validated almost all genes genetically, assessed damaging effects of the gene variants in cell models and further consolidated a role for several of these genes in the aetiology of spinocerebellar ataxia through network analysis. Our work links spinocerebellar ataxia to alterations in synaptic transmission and transcription regulation, and identifies these as the main shared mechanisms underlying the genetically diverse spinocerebellar ataxia types.
Collapse
Affiliation(s)
- Esther A R Nibbeling
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anna Duarri
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Michiel R Fokkens
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Juha M Karjalainen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cleo J L M Smeets
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jelkje J de Boer-Bergsma
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerben van der Vries
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dennis Dooijes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Giovana B Bampi
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cleo van Diemen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ewout Brunt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elly Ippel
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Berry Kremer
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Monique Vlak
- Department of Neurology, Medical Center Haaglanden and Bronovo-Nebo, Den Hague, The Netherlands
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Israel
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Richard J Sinke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Mormina E, Petracca M, Bommarito G, Piaggio N, Cocozza S, Inglese M. Cerebellum and neurodegenerative diseases: Beyond conventional magnetic resonance imaging. World J Radiol 2017; 9:371-388. [PMID: 29104740 PMCID: PMC5661166 DOI: 10.4329/wjr.v9.i10.371] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/18/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
The cerebellum plays a key role in movement control and in cognition and cerebellar involvement is described in several neurodegenerative diseases. While conventional magnetic resonance imaging (MRI) is widely used for brain and cerebellar morphologic evaluation, advanced MRI techniques allow the investigation of cerebellar microstructural and functional characteristics. Volumetry, voxel-based morphometry, diffusion MRI based fiber tractography, resting state and task related functional MRI, perfusion, and proton MR spectroscopy are among the most common techniques applied to the study of cerebellum. In the present review, after providing a brief description of each technique’s advantages and limitations, we focus on their application to the study of cerebellar injury in major neurodegenerative diseases, such as multiple sclerosis, Parkinson’s and Alzheimer’s disease and hereditary ataxia. A brief introduction to the pathological substrate of cerebellar involvement is provided for each disease, followed by the review of MRI studies exploring structural and functional cerebellar abnormalities and by a discussion of the clinical relevance of MRI measures of cerebellar damage in terms of both clinical status and cognitive performance.
Collapse
Affiliation(s)
- Enricomaria Mormina
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Neuroradiology Unit, Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, 98100 Messina, Italy
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80138 Naples, Italy
| | - Giulia Bommarito
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Niccolò Piaggio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
- Department of Neuroradiology, San Martino Hospital, 16132 Genoa, Italy
| | - Sirio Cocozza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80138 Naples, Italy
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
31
|
Jiang HB, Du AL, Luo HY, Yang J, Luo XQ, Ma RQ, Shi CH, Xu YM. Arginine vasopressin relates with spatial learning and memory in a mouse model of spinocerebellar ataxia type 3. Neuropeptides 2017; 65:83-89. [PMID: 28619276 DOI: 10.1016/j.npep.2017.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 12/29/2022]
Abstract
Spinocerebellar ataxia is an inherited neurodegenerative disorder that the most prevalent type is type 3 (SCA3). Arginine vasopressin (AVP) is released within the lateral septum for controlling the learning and memory. This communication studied the effect of AVP on the spatial learning and memory of SCA3 mice. The spatial learning and memory were analyzed by Morris water maze test (MWM), and AVP concentration was measured by radioimmunoassay. The results showed that (Alves et al., 2010) the swimming velocity, distance traveled and latency to the platform of MWM in SCA3 mice were reduced slower than those in WT mice over 4 training days (p<0.05, 0.01 or 0.001); (Antunes and Zimmerman, 1978) SCA3 mice showed a lower performance of spatial learning and memory of MWM during the fifth day (test day) compared to WT mice; (Bao et al., 2014) SCA3 mice had a decrease of AVP concentration in cerebral cortex (6.3±0.6pg/mg vs. 11.4±1.0pg/mg, p<0.01), hypothalamus (6.1±1.3ng/mg vs. 10.3±2.1ng/mg, p<0.05), hippocampus (3.2±0.5pg/mg vs. 5.2±1.0pg/mg, p<0.01) and cerebellum (4.7±0.9pg/mg vs. 8.3±1.1pg/mg, p<0.01), not in spinal cord, pituitary and serum; and (Barberies and Tribollet, 1996) intraventricular AVP could significantly quicken swimming velocity, cut down distance traveled and reduce latency to the platform of MWM in a dose-dependent manner, but intraventricular AVP receptor antagonist weakened the spatial learning and memory of MWM in SCA3 mice during the fifth day. The data suggested that AVP in the brain, not spinal cord and peripheral system of SCA3 mice related with the change of the spatial learning and memory of MWM.
Collapse
Affiliation(s)
- Hong-Bo Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Ai-Lin Du
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Provincial Key Laboratory of Brain Research, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hai-Yang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Yang
- Xinxiang Institute for New Medicine, Xinxiang, Henan, China.
| | - Xiao-Qiu Luo
- Henan Provincial Key Laboratory of Brain Research, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Rui-Qing Ma
- Xinxiang Institute for New Medicine, Xinxiang, Henan, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
32
|
Sarro L, Nanetti L, Castaldo A, Mariotti C. Monitoring disease progression in spinocerebellar ataxias: implications for treatment and clinical research. Expert Rev Neurother 2017; 17:919-931. [PMID: 28805093 DOI: 10.1080/14737175.2017.1364628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Spinocerebellar ataxias (SCAs) are autosomal dominant diseases characterized by progressive gait and limb incoordination, disequilibrium, dysarthria, and eye movement disturbances. Approximately 40 genetic subtypes of SCAs are known and classified according to the causative disease gene/locus. With the possibility of the specific genetic diagnosis in patients and at-risk family members, several clinical scales and functional tests have been validated and used in ataxic patients with the purposes of measuring the entity of disease progression in natural history studies and the possible slowing of neurological impairment in therapeutic trials. Areas covered: This paper reviews the most widely used clinical scales and quantitative tests that contributed in monitoring disease progression of the most common forms of SCAs. Expert commentary: The currently available and validated clinical scales and quantitative performance scores are adequate to measure disease severity, but may require a considerable number of subjects and a long period of treatment to allow the recognition of beneficial effect of interventional therapies. Advanced MRI techniques are a consistent biomarker and maybe useful to track disease progression from the preclinical to the manifest ataxic phase in association with appropriate clinical or paraclinical investigations.
Collapse
Affiliation(s)
- Lidia Sarro
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Lorenzo Nanetti
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Anna Castaldo
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Caterina Mariotti
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| |
Collapse
|
33
|
Arias M, García-Murias M, Sobrido M. Spinocerebellar ataxia 36 (SCA36): “Costa da Morte ataxia”. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2014.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
34
|
Altered striatal endocannabinoid signaling in a transgenic mouse model of spinocerebellar ataxia type-3. PLoS One 2017; 12:e0176521. [PMID: 28448548 PMCID: PMC5407801 DOI: 10.1371/journal.pone.0176521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia type-3 (SCA-3) is the most prevalent autosomal dominant inherited ataxia. We recently found that the endocannabinoid system is altered in the post-mortem cerebellum of SCA-3 patients, and similar results were also found in the cerebellar and brainstem nuclei of a SCA-3 transgenic mouse model. Given that the neuropathology of SCA-3 is not restricted to these two brain regions but rather, it is also evident in other structures (e.g., the basal ganglia), we studied the possible changes to endocannabinoid signaling in the striatum of these transgenic mice. SCA-3 mutant mice suffer defects in motor coordination, balance and they have an abnormal gait, reflecting a cerebellar/brainstem neuropathology. However, they also show dystonia-like behavior (limb clasping) that may be related to the malfunction/deterioration of specific neurons in the striatum. Indeed, we found a loss of striatal projecting neurons in SCA-3 mutant mice, accompanied by a reduction in glial glutamate transporters that could potentially aggravate excitotoxic damage. In terms of endocannabinoid signaling, no changes in CB2 receptors were evident, yet an important reduction in CB1 receptors was detected by qPCR and immunostaining. The reduction in CB1 receptors was presumed to occur in striatal afferent and efferent neurons, also potentially aggravating excitotoxicity. We also measured the endocannabinoid lipids in the striatum and despite a marked increase in the FAAH enzyme in this area, no overall changes in these lipids were found. Collectively, these studies confirm that the striatal endocannabinoid system is altered in SCA-3 mutant mice, adding to the equivalent changes found in other strongly affected CNS structures in this type of ataxia (i.e.: the cerebellum and brainstem). These data open the way to search for drugs that might correct these changes.
Collapse
|
35
|
Deistung A, Schweser F, Reichenbach JR. Overview of quantitative susceptibility mapping. NMR IN BIOMEDICINE 2017; 30:e3569. [PMID: 27434134 DOI: 10.1002/nbm.3569] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 06/06/2023]
Abstract
Magnetic susceptibility describes the magnetizability of a material to an applied magnetic field and represents an important parameter in the field of MRI. With the recently introduced method of quantitative susceptibility mapping (QSM) and its conceptual extension to susceptibility tensor imaging (STI), the non-invasive assessment of this important physical quantity has become possible with MRI. Both methods solve the ill-posed inverse problem to determine the magnetic susceptibility from local magnetic fields. Whilst QSM allows the extraction of the spatial distribution of the bulk magnetic susceptibility from a single measurement, STI enables the quantification of magnetic susceptibility anisotropy, but requires multiple measurements with different orientations of the object relative to the main static magnetic field. In this review, we briefly recapitulate the fundamental theoretical foundation of QSM and STI, as well as computational strategies for the characterization of magnetic susceptibility with MRI phase data. In the second part, we provide an overview of current methodological and clinical applications of QSM with a focus on brain imaging. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, NY, USA
- MRI Clinical and Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, NY, USA
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
- Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
36
|
Lattke M, Reichel SN, Magnutzki A, Abaei A, Rasche V, Walther P, Calado DP, Ferger B, Wirth T, Baumann B. Transient IKK2 activation in astrocytes initiates selective non-cell-autonomous neurodegeneration. Mol Neurodegener 2017; 12:16. [PMID: 28193238 PMCID: PMC5307695 DOI: 10.1186/s13024-017-0157-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuroinflammation is associated with a wide range of neurodegenerative disorders, however the specific contribution to individual disease pathogenesis and selective neuronal cell death is not well understood. Inflammatory cerebellar ataxias are neurodegenerative diseases occurring in various autoimmune/inflammatory conditions, e.g. paraneoplastic syndromes. However, how inflammatory insults can cause selective cerebellar neurodegeneration in the context of these diseases remains open, and appropriate animal models are lacking. A key regulator of neuroinflammatory processes is the NF-κB signalling pathway, which is activated by the IκB kinase 2 (IKK2) in response to various pathological conditions. Importantly, its activation is sufficient to initiate neuroinflammation on its own. METHODS To investigate the contribution of IKK/NF-κB-mediated neuroinflammation to neurodegeneration, we established conditional mouse models of cerebellar neuroinflammation, which depend either on the tetracycline-regulated expression of IKK2 in astrocytes or Cre-recombination based IKK2 activation in Bergmann glia. RESULTS We demonstrate that IKK2 activation for a limited time interval in astrocytes is sufficient to induce neuroinflammation, astrogliosis and loss of Purkinje neurons, resembling the pathogenesis of inflammatory cerebellar ataxias. We identified IKK2-driven irreversible dysfunction of Bergmann glia as critical pathogenic event resulting in Purkinje cell loss. This was independent of Lipocalin 2, an acute phase protein secreted by reactive astrocytes and well known to mediate neurotoxicity. Instead, downregulation of the glutamate transporters EAAT1 and EAAT2 and ultrastructural alterations suggest an excitotoxic mechanism of Purkinje cell degeneration. CONCLUSIONS Our results suggest a novel pathogenic mechanism how diverse inflammatory insults can cause inflammation/autoimmune-associated cerebellar ataxias. Disease-mediated elevation of danger signals like TLR ligands and inflammatory cytokines in the cerebellum activates IKK2/NF-κB signalling in astrocytes, which as a consequence triggers astrogliosis-like activation of Bergmann glia and subsequent non-cell-autonomous Purkinje cell degeneration. Notably, the identified hit and run mechanism indicates only an early window for therapeutic interventions.
Collapse
Affiliation(s)
- Michael Lattke
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Stephanie N. Reichel
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alexander Magnutzki
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal MRI, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Dinis P. Calado
- Immunity and Cancer Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Boris Ferger
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
37
|
Cassidy E, Naylor S, Reynolds F. The meanings of physiotherapy and exercise for people living with progressive cerebellar ataxia: an interpretative phenomenological analysis. Disabil Rehabil 2017; 40:894-904. [DOI: 10.1080/09638288.2016.1277400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Elizabeth Cassidy
- Department of Clinical Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Sandra Naylor
- Department of Clinical Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Frances Reynolds
- Department of Clinical Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
38
|
Lukovic D, Moreno-Manzano V, Rodriguez-Jimenez FJ, Vilches A, Sykova E, Jendelova P, Stojkovic M, Erceg S. hiPSC Disease Modeling of Rare Hereditary Cerebellar Ataxias: Opportunities and Future Challenges. Neuroscientist 2016; 23:554-566. [DOI: 10.1177/1073858416672652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cerebellar ataxias are clinically and genetically heterogeneous diseases affecting primary cerebellar cells. The lack of availability of affected tissue from cerebellar ataxias patients is the main obstacle in investigating the pathogenicity of these diseases. The landmark discovery of human-induced pluripotent stem cells (hiPSC) has permitted the derivation of patient-specific cells with an unlimited self-renewing capacity. Additionally, their potential to differentiate into virtually any cell type of the human organism allows for large amounts of affected cells to be generated in culture, converting this hiPSC technology into a revolutionary tool in the study of the mechanisms of disease, drug discovery, and gene correction. In this review, we will summarize the current studies in which hiPSC were utilized to study cerebellar ataxias. Describing the currently available 2D and 3D hiPSC-based cellular models, and due to the fact that extracerebellar cells were used to model these diseases, we will discuss whether or not they represent a faithful cellular model and whether they have contributed to a better understanding of disease mechanisms.
Collapse
Affiliation(s)
- Dunja Lukovic
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center “Principe Felipe,” Valencia, Spain
- National Stem Cell Bank-Valencia Node, Biomolecular and Bioinformatics Resources Platform PRB2, ISCIII, Research Center “Principe Felipe,” Valencia, Spain
| | | | | | - Angel Vilches
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center “Principe Felipe,” Valencia, Spain
| | - Eva Sykova
- Institute of Experimental Medicine, Department of Neuroscience, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Department of Neuroscience, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - Miodrag Stojkovic
- Spebo Medical, Leskovac, Serbia
- Human Genetics Department, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Slaven Erceg
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center “Principe Felipe,” Valencia, Spain
- National Stem Cell Bank-Valencia Node, Biomolecular and Bioinformatics Resources Platform PRB2, ISCIII, Research Center “Principe Felipe,” Valencia, Spain
- Institute of Experimental Medicine, Department of Neuroscience, Academy of Science of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
39
|
Rodríguez-Cueto C, Hernández-Gálvez M, Hillard CJ, Maciel P, García-García L, Valdeolivas S, Pozo MA, Ramos JA, Gómez-Ruiz M, Fernández-Ruiz J. Dysregulation of the endocannabinoid signaling system in the cerebellum and brainstem in a transgenic mouse model of spinocerebellar ataxia type-3. Neuroscience 2016; 339:191-209. [PMID: 27717809 DOI: 10.1016/j.neuroscience.2016.09.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/15/2022]
Abstract
Spinocerebellar ataxia type-3 (SCA-3) is a rare disease but it is the most frequent type within the autosomal dominant inherited ataxias. The disease lacks an effective treatment to alleviate major symptoms and to modify disease progression. Our recent findings that endocannabinoid receptors and enzymes are significantly altered in the post-mortem cerebellum of patients affected by autosomal-dominant hereditary ataxias suggest that targeting the endocannabinoid signaling system may be a promising therapeutic option. Our goal was to investigate the status of the endocannabinoid signaling system in a transgenic mouse model of SCA-3, in the two CNS structures most affected in this disease - cerebellum and brainstem. These animals exhibited progressive motor incoordination, imbalance, abnormal gait, muscle weakness, and dystonia, in parallel to reduced in vivo brain glucose metabolism, deterioration of specific neuron subsets located in the dentate nucleus and pontine nuclei, small changes in microglial morphology, and reduction in glial glutamate transporters. Concerning the endocannabinoid signaling, our data indicated no changes in CB2 receptors. By contrast, CB1 receptors increased in the Purkinje cell layer, in particular in terminals of basket cells, but they were reduced in the dentate nucleus. We also measured the levels of endocannabinoid lipids and found reductions in anandamide and oleoylethanolamide in the brainstem. These changes correlated with an increase in the FAAH enzyme in the brainstem, which also occurred in some cerebellar areas, whereas other endocannabinoid-related enzymes were not altered. Collectively, our results in SCA-3 mutant mice confirm a possible dysregulation in the endocannabinoid system in the most important brain structures affected in this type of ataxia, suggesting that a pharmacological manipulation addressed to correct these changes could be a promising option in SCA-3.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Mariluz Hernández-Gálvez
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Patricia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Luis García-García
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, Madrid, Spain; Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Sara Valdeolivas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Miguel A Pozo
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - José A Ramos
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - María Gómez-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense, Madrid, Spain.
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.
| |
Collapse
|
40
|
Stephens GJ. Does modulation of the endocannabinoid system have potential therapeutic utility in cerebellar ataxia? J Physiol 2016; 594:4631-41. [PMID: 26970080 PMCID: PMC4983615 DOI: 10.1113/jp271106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022] Open
Abstract
Cerebellar ataxias represent a spectrum of disorders which are, however, linked by common symptoms of motor incoordination and typically associated with deficiency in Purkinje cell firing activity and, often, degeneration. Cerebellar ataxias currently lack a curative agent. The endocannabinoid (eCB) system includes eCB compounds and their associated metabolic enzymes, together with cannabinoid receptors, predominantly the cannabinoid CB1 receptor (CB1R) in the cerebellum; activation of this system in the cerebellar cortex is associated with deficits in motor coordination characteristic of ataxia, effects which can be prevented by CB1R antagonists. Of further interest are various findings that CB1R deficits may also induce a progressive ataxic phenotype. Together these studies suggest that motor coordination is reliant on maintaining the correct balance in eCB system signalling. Recent work also demonstrates deficient cannabinoid signalling in the mouse ‘ducky2J’ model of ataxia. In light of these points, the potential mechanisms whereby cannabinoids may modulate the eCB system to ameliorate dysfunction associated with cerebellar ataxias are considered.
![]()
Collapse
Affiliation(s)
- G J Stephens
- School of Pharmacy, University of Reading, Reading, RG6 6AJ, UK
| |
Collapse
|
41
|
Akinyemi RO, Owolabi MO, Oyeniyi T, Ovbiagele B, Arnett DK, Tiwari HK, Walker R, Ogunniyi A, Kalaria RN. Neurogenomics in Africa: Perspectives, progress, possibilities and priorities. J Neurol Sci 2016; 366:213-223. [PMID: 27288810 DOI: 10.1016/j.jns.2016.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/04/2016] [Indexed: 11/18/2022]
Abstract
The understanding of the genetic basis of neurological disorders has grown rapidly in the last two decades. Despite the genomic heterogeneity within African populations, large-scale candidate gene or linkage and exome studies are lacking. However, current knowledge on neurogenetics in African populations is limited and geographically very uneven. Isolated reports indicate the existence of autosomal dominant or recessive conditions incorporating cerebrovascular, movement, neuromuscular, seizure and motor neuron disorders in Africans. In addition, few African families with neurodegenerative disorders associated with dementia have been characterized in North, West and South Africa. The current insurgency in genomic research triggered by among others the Human Health and Heredity (H3) Africa Initiative indicates that there are unique opportunities to advance our knowledge and understanding of the influence of genomic variation on the pattern, presentations and prognosis of neurological disorders in Africa. These have enormous potential to unmask novel genes and molecular pathways germane to the neurobiology of brain disorders. It would facilitate the development of novel diagnostics, preventative and targeted treatments in the new paradigm of precision medicine. Nevertheless, it is crucial to strike a balance between effective traditional public health strategies and personalized genome based care. The translational barriers can be overcome through robust stakeholder engagement and sustainable multilevel, multigenerational and multidisciplinary capacity building and infrastructural development for genomic medicine in Africa.
Collapse
Affiliation(s)
- Rufus O Akinyemi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Nigeria; Institute of Neuroscience, Newcastle University, UK.
| | - Mayowa O Owolabi
- Department of Medicine, College of Medicine, University of Ibadan, Nigeria
| | | | - Bruce Ovbiagele
- Department of Neurosciences, Medical University of South Carolina, USA
| | - Donna K Arnett
- School of Public Health, University of Alabama at Birmingham, USA
| | - Hemant K Tiwari
- School of Public Health, University of Alabama at Birmingham, USA
| | - Richard Walker
- Institute of Health and Society, Newcastle University, UK
| | - Adesola Ogunniyi
- Department of Medicine, College of Medicine, University of Ibadan, Nigeria
| | - Raj N Kalaria
- Institute of Neuroscience, Newcastle University, UK.
| |
Collapse
|
42
|
Watson LM, Wong MMK, Becker EBE. Induced pluripotent stem cell technology for modelling and therapy of cerebellar ataxia. Open Biol 2016; 5:150056. [PMID: 26136256 PMCID: PMC4632502 DOI: 10.1098/rsob.150056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology has emerged as an important tool in understanding, and potentially reversing, disease pathology. This is particularly true in the case of neurodegenerative diseases, in which the affected cell types are not readily accessible for study. Since the first descriptions of iPSC-based disease modelling, considerable advances have been made in understanding the aetiology and progression of a diverse array of neurodegenerative conditions, including Parkinson's disease and Alzheimer's disease. To date, however, relatively few studies have succeeded in using iPSCs to model the neurodegeneration observed in cerebellar ataxia. Given the distinct neurodevelopmental phenotypes associated with certain types of ataxia, iPSC-based models are likely to provide significant insights, not only into disease progression, but also to the development of early-intervention therapies. In this review, we describe the existing iPSC-based disease models of this heterogeneous group of conditions and explore the challenges associated with generating cerebellar neurons from iPSCs, which have thus far hindered the expansion of this research.
Collapse
Affiliation(s)
- Lauren M Watson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Maggie M K Wong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Esther B E Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Cerebellar Transcriptome Profiles of ATXN1 Transgenic Mice Reveal SCA1 Disease Progression and Protection Pathways. Neuron 2016; 89:1194-1207. [PMID: 26948890 DOI: 10.1016/j.neuron.2016.02.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 12/13/2022]
Abstract
SCA1, a fatal neurodegenerative disorder, is caused by a CAG expansion encoding a polyglutamine stretch in the protein ATXN1. We used RNA sequencing to profile cerebellar gene expression in Pcp2-ATXN1[82Q] mice with ataxia and progressive pathology and Pcp2-ATXN1[30Q]D776 animals having ataxia in absence of Purkinje cell progressive pathology. Weighted Gene Coexpression Network Analysis of the cerebellar expression data revealed two gene networks that significantly correlated with disease and have an expression profile correlating with disease progression in ATXN1[82Q] Purkinje cells. The Magenta Module provides a signature of suppressed transcriptional programs reflecting disease progression in Purkinje cells, while the Lt Yellow Module reflects transcriptional programs activated in response to disease in Purkinje cells as well as other cerebellar cell types. Furthermore, we found that upregulation of cholecystokinin (Cck) and subsequent interaction with the Cck1 receptor likely underlies the lack of progressive Purkinje cell pathology in Pcp2-ATXN1[30Q]D776 mice.
Collapse
|
44
|
Morino H, Matsuda Y, Muguruma K, Miyamoto R, Ohsawa R, Ohtake T, Otobe R, Watanabe M, Maruyama H, Hashimoto K, Kawakami H. A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia. Mol Brain 2015; 8:89. [PMID: 26715324 PMCID: PMC4693440 DOI: 10.1186/s13041-015-0180-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 12/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia (SCA) is a genetically heterogeneous disease. To date, 36 dominantly inherited loci have been reported, and 31 causative genes have been identified. RESULTS In this study, we analyzed a Japanese family with autosomal dominant SCA using linkage analysis and exome sequencing, and identified CACNA1G, which encodes the calcium channel CaV3.1, as a new causative gene. The same mutation was also found in another family with SCA. Although most patients exhibited the pure form of cerebellar ataxia, two patients showed prominent resting tremor in addition to ataxia. CaV3.1 is classified as a low-threshold voltage-dependent calcium channel (T-type) and is expressed abundantly in the central nervous system, including the cerebellum. The mutation p.Arg1715His, identified in this study, was found to be located at S4 of repeat IV, the voltage sensor of the CaV3.1. Electrophysiological analyses revealed that the membrane potential dependency of the mutant CaV3.1 transfected into HEK293T cells shifted toward a positive potential. We established induced pluripotent stem cells (iPSCs) from fibroblasts of the patient, and to our knowledge, this is the first report of successful differentiation from the patient-derived iPSCs into Purkinje cells. There was no significant difference in the differentiation status between control- and patient-derived iPSCs. CONCLUSIONS To date, several channel genes have been reported as causative genes for SCA. Our findings provide important insights into the pathogenesis of SCA as a channelopathy.
Collapse
Affiliation(s)
- Hiroyuki Morino
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Yukiko Matsuda
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Keiko Muguruma
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, Japan.
| | - Ryosuke Miyamoto
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Ryosuke Ohsawa
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Toshiyuki Ohtake
- Department of Neurology, Tokyo Metropolitan Health and Medical Treatment Corporation Ebara Hospital, Tokyo, Japan.
| | - Reiko Otobe
- Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima, Japan.
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience & Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
45
|
Structural and Functional Magnetic Resonance Imaging of the Cerebellum: Considerations for Assessing Cerebellar Ataxias. THE CEREBELLUM 2015; 15:21-25. [DOI: 10.1007/s12311-015-0738-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Velázquez-Pérez L. An insight into the natural history of spinocerebellar ataxias. Lancet Neurol 2015; 14:1067-9. [PMID: 26377378 DOI: 10.1016/s1474-4422(15)00218-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/13/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Luis Velázquez-Pérez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This article discusses recent advances in the understanding of clinical and genetic aspects of primary ataxias, including congenital, autosomal recessive, autosomal dominant, episodic, X-linked, and mitochondrial ataxias, as well as idiopathic degenerative and secondary ataxias. RECENT FINDINGS Many important observations have been published in recent years in connection with primary ataxias, particularly new loci and genes. The most commonly inherited ataxias may present with typical and atypical phenotypes. In the group of idiopathic degenerative ataxias, genes have been found in patients with multiple system atrophy type C. Secondary ataxias represent an important group of sporadic, cerebellar, and afferent/sensory ataxias. SUMMARY Knowledge of primary ataxias has been growing rapidly in recent years. Here we review different forms of primary ataxia, including inherited forms, which are subdivided into congenital, autosomal recessive cerebellar ataxias, autosomal dominant cerebellar ataxias, episodic ataxias, X-linked ataxias, and mitochondrial ataxias, as well as sporadic ataxias and idiopathic degenerative ataxias. Secondary or acquired ataxias are also reviewed and the most common causes are discussed.
Collapse
Affiliation(s)
- Hélio A.G. Teive
- Department of Internal Medicine, Movement Disorders Unit and Neurology Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil and
| | - Tetsuo Ashizawa
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
48
|
Kim JS, Cho JW. Hereditary Cerebellar Ataxias: A Korean Perspective. J Mov Disord 2015; 8:67-75. [PMID: 26090078 PMCID: PMC4460542 DOI: 10.14802/jmd.15006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 12/28/2022] Open
Abstract
Hereditary ataxia is a heterogeneous disorder characterized by progressive ataxia combined with/without peripheral neuropathy, extrapyramidal symptoms, pyramidal symptoms, seizure, and multiple systematic involvements. More than 35 autosomal dominant cerebellar ataxias have been designated as spinocerebellar ataxia, and there are 55 recessive ataxias that have not been named systematically. Conducting genetic sequencing to confirm a diagnosis is difficult due to the large amount of subtypes with phenotypic overlap. The prevalence of hereditary ataxia can vary among countries, and estimations of prevalence and subtype frequencies are necessary for planning a diagnostic strategy in a specific population. This review covers the various hereditary ataxias reported in the Korean population with a focus on the prevalence and subtype frequencies as the clinical characteristics of the various subtypes.
Collapse
Affiliation(s)
- Ji Sun Kim
- Department of Neurology, Soonchunhyang University Hospital, Soonchunhyang University School of Medicine, Seoul, Korea
| | - Jin Whan Cho
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, Korea ; Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
49
|
Becker EBE. The Moonwalker mouse: new insights into TRPC3 function, cerebellar development, and ataxia. THE CEREBELLUM 2015; 13:628-36. [PMID: 24797279 PMCID: PMC4155175 DOI: 10.1007/s12311-014-0564-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Moonwalker (Mwk) mouse is a recent model of dominantly inherited cerebellar ataxia. The motor phenotype of the Mwk mouse is due to a gain-of-function mutation in the gene encoding the cation-permeable transient receptor potential channel (TRPC3). This mutation converts a threonine into an alanine in the highly conserved cytoplasmic S4–S5 linker of the channel, affecting channel gating. TRPC3 is highly expressed in cerebellar Purkinje cells and type II unipolar brush cells that both degenerate in the Mwk mouse. Studies of the Mwk mouse have provided new insights into the role of TRPC3 in cerebellar development and disease, which could not have been predicted from the Trpc3 knockout phenotype. Here, the genetic, behavioral, histological, and functional characterization of the Mwk mouse is reviewed. Moreover, the relationship of the Mwk mutant to other cerebellar mouse models and its relevance as a model for cerebellar ataxia are discussed.
Collapse
Affiliation(s)
- Esther B E Becker
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK,
| |
Collapse
|
50
|
Stefanescu MR, Dohnalek M, Maderwald S, Thürling M, Minnerop M, Beck A, Schlamann M, Diedrichsen J, Ladd ME, Timmann D. Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich's ataxia. Brain 2015; 138:1182-97. [PMID: 25818870 DOI: 10.1093/brain/awv064] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/21/2015] [Indexed: 02/07/2023] Open
Abstract
Spinocerebellar ataxia type 3, spinocerebellar ataxia type 6 and Friedreich's ataxia are common hereditary ataxias. Different patterns of atrophy of the cerebellar cortex are well known. Data on cerebellar nuclei are sparse. Whereas cerebellar nuclei have long been thought to be preserved in spinocerebellar ataxia type 6, histology shows marked atrophy of the nuclei in Friedreich's ataxia and spinocerebellar ataxia type 3. In the present study susceptibility weighted imaging was used to assess atrophy of the cerebellar nuclei in patients with spinocerebellar ataxia type 6 (n = 12, age range 41-76 years, five female), Friedreich's ataxia (n = 12, age range 21-55 years, seven female), spinocerebellar ataxia type 3 (n = 10, age range 34-67 years, three female), and age- and gender-matched controls (total n = 23, age range 22-75 years, 10 female). T1-weighted magnetic resonance images were used to calculate the volume of the cerebellum. In addition, ultra-high field functional magnetic resonance imaging was performed with optimized normalization methods to assess function of the cerebellar cortex and nuclei during simple hand movements. As expected, the volume of the cerebellum was markedly reduced in spinocerebellar ataxia type 6, preserved in Friedreich's ataxia, and mildy reduced in spinocerebellar ataxia type 3. The volume of the cerebellar nuclei was reduced in the three patient groups compared to matched controls (P-values < 0.05; two-sample t-tests). Atrophy of the cerebellar nuclei was most pronounced in spinocerebellar ataxia type 6. On a functional level, hand-movement-related cerebellar activation was altered in all three disorders. Within the cerebellar cortex, functional magnetic resonance imaging signal was significantly reduced in spinocerebellar ataxia type 6 and Friedreich's ataxia compared to matched controls (P-values < 0.001, bootstrap-corrected cluster-size threshold; two-sample t-tests). The difference missed significance in spinocerebellar ataxia type 3. Within the cerebellar nuclei, reductions were significant when comparing spinocerebellar ataxia type 6 and Friedreich's ataxia to matched controls (P < 0.01, bootstrap-corrected cluster-size threshold; two-sample t-tests). Susceptibility weighted imaging allowed depiction of atrophy of the cerebellar nuclei in patients with Friedreich's ataxia and spinocerebellar ataxia type 3. In spinocerebellar ataxia type 6, pathology was not restricted to the cerebellar cortex but also involved the cerebellar nuclei. Functional magnetic resonance imaging data, on the other hand, revealed that pathology in Friedreich's ataxia and spinocerebellar ataxia type 3 is not restricted to the cerebellar nuclei. There was functional involvement of the cerebellar cortex despite no or little structural changes.
Collapse
Affiliation(s)
- Maria R Stefanescu
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany 2 Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Moritz Dohnalek
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Maderwald
- 2 Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Markus Thürling
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany 2 Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Martina Minnerop
- 3 Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany 4 Department of Neurology, University of Bonn, Bonn, Germany
| | - Andreas Beck
- 5 Department of Computer Sciences, University of Düsseldorf, Düsseldorf, Germany
| | - Marc Schlamann
- 6 Department of Diagnostic and Interventional Radiology and Neuroradiology, University of Duisburg-Essen, Essen, Germany
| | - Joern Diedrichsen
- 7 Institute of Cognitive Neuroscience, University College London, London, UK
| | - Mark E Ladd
- 2 Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany 6 Department of Diagnostic and Interventional Radiology and Neuroradiology, University of Duisburg-Essen, Essen, Germany 8 Division of Medical Physics in Radiology, University of Heidelberg and German Cancer Research Centre, Heidelberg, Germany
| | - Dagmar Timmann
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|