1
|
Zheng Y, Jiang Z, Yuan L, Cheng X, He W, Chen X. Targeting fatty acid oxidation: A potential strategy for treating gastrointestinal tumors. Int J Cancer 2025; 157:7-17. [PMID: 40047558 DOI: 10.1002/ijc.35380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 05/11/2025]
Abstract
Gastrointestinal cancers including esophageal squamous cell carcinoma (ESCC), gastric cancer (GC), and colorectal cancer (CRC) are common and highly lethal types of cancer worldwide. Metabolic reprogramming plays a critical role in cancer progression and involves metabolic processes such as glucose and lipid metabolism. Fatty acid oxidation (FAO) has a profound impact on cancer, with many genes and cytokines influencing cancer cell initiation, development, metastasis, and resistance by regulating FAO. Additionally, FAO further promotes cancer progression by affecting the tumor microenvironment (TME). The role of FAO in gastrointestinal cancers has garnered increasing attention, and related anticancer drugs are currently being developed.
Collapse
Affiliation(s)
- Yingsong Zheng
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, China
| | - Zhengchen Jiang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Li Yuan
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Weiyang He
- Department of Gastric Surgery, Sichuan Clinical Research Centre for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Centre Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaodong Chen
- Department of Gastric Surgery, Sichuan Clinical Research Centre for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Centre Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Govers LP, Grimm C. The Connection Between Cellular Metabolism and Retinal Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:267-271. [PMID: 39930207 DOI: 10.1007/978-3-031-76550-6_44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The retina is one of the most metabolically active tissues in the human body and has its own complex metabolic environment as the different cell types in this tissue are interconnected to maintain a healthy retinal homeostasis. Any disturbances in the homeostatic balance may have a severe impact on retinal function affecting vision. About 341 genes are listed in the RetNet database as being causative for monogenic inherited retinal diseases. By intersecting this list with the Mammalian Metabolic Enzyme Database, we identified 28 metabolic genes that can result in diseases such as retinitis pigmentosa, Leber congenital amaurosis, or optic atrophy when mutated. Alongside inherited retinal diseases, metabolism also plays a prominent role in acquired retinal diseases. Metabolomics studies have been performed on patients with age-related macular degeneration, diabetic retinopathy, and glaucoma revealing dysregulated metabolic pathways, such as lipid, amino acid, and purine metabolism, in the onset of disease. Although there are distinct pathophysiological differences between inherited and acquired retinal disorders, diving deeper into the role of metabolism and how metabolic dysfunction may overlap with different pathologies, could give us indications on how to design approaches to normalize the homeostatic balance in the retina as treatment options to protect vision.
Collapse
Affiliation(s)
- Larissa P Govers
- Department of Ophthalmology, Laboratory for Retinal Cell Biology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | - Christian Grimm
- Department of Ophthalmology, Laboratory for Retinal Cell Biology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
3
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic retinitis pigmentosa. Prog Retin Eye Res 2024; 107:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP, including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as miscellaneous. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam Reproduction & Development, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam, the Netherlands; Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Marion M Brands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Division of Ophthalmology and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Clara D M van Karnebeek
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Human Genetics, Section Ophthalmogenetics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maria M van Genderen
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Truong P, Mack HG, Metha AB, Deen N, Hickey DG, Huq A, Britten-Jones AC, Ayton LN. Forty-year odyssey to Refsum disease diagnosis: impact of diagnostic delay on effective treatment. Clin Exp Optom 2024:1-4. [PMID: 39277904 DOI: 10.1080/08164622.2024.2401509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/28/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- Parker Truong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | - Heather G Mack
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Andrew B Metha
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | - Nelofar Deen
- National Vision Research Institute, Australian College of Optometry, Carlton, Australia
| | - Doron G Hickey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Aamira Huq
- Department of Genomic Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | | | - Lauren N Ayton
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
5
|
Daich Varela M, Schiff E, Malka S, Wright G, Mahroo OA, Webster AR, Michaelides M, Arno G. PHYH c.678+5G>T Leads to In-Frame Exon Skipping and Is Associated With Attenuated Refsum Disease. Invest Ophthalmol Vis Sci 2024; 65:38. [PMID: 38411969 PMCID: PMC10910431 DOI: 10.1167/iovs.65.2.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Purpose To investigate the molecular effect of the variant PHYH:c.678+5G>T. This variant has conflicting interpretations in the ClinVar database and a maximum allele frequency of 0.0045 in the South Asian population in gnomAD. Methods We recruited patients from Moorfields Eye Hospital (London, UK) and Buenos Aires, Argentina, who were diagnosed with retinitis pigmentosa and found to have biallelic variants in PHYH, with at least one being c.678+5G>T. Total RNA was purified from PaxGene RNA-stabilized whole-blood samples, followed by reverse transcription to cDNA, PCR amplification of the canonical PHYH transcript, Oxford Nanopore Technologies library preparation, and single-molecule amplicon sequencing. Results Four patients provided a blood sample. One patient had isolated retinitis pigmentosa and three had mild extraocular findings. Blood phytanic acid levels were normal in two patients, mildly elevated in one, and markedly high in the fourth. Retinal evaluation showed an intact ellipsoid zone as well as preserved autofluorescence in the macular region in three of the four patients. In all patients, we observed in-frame skipping of exons 5 and 6 in 31.1% to 88.4% of the amplicons and a smaller proportion (0% to 11.3% of amplicons) skipping exon 6 only. Conclusions We demonstrate a significant effect of PHYH:c.678+5G>T on splicing of the canonical transcript. The in-frame nature of this may be in keeping with a mild presentation and higher prevalence in the general population. These data support the classification of the variant as pathogenic, and patients harboring a biallelic genotype should undergo phytanic acid testing.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | | - Omar A. Mahroo
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Andrew R. Webster
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Gavin Arno
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
6
|
Ramos-Sánchez RY, López-Fontanet JJ, Izquierdo N. Adult Refsum Disease in Puerto Rico: A Case Report. Cureus 2023; 15:e45426. [PMID: 37859930 PMCID: PMC10581862 DOI: 10.7759/cureus.45426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 10/21/2023] Open
Abstract
Patients with adult Refsum Disease (ARD) have retinitis pigmentosa and thus nyctalopia, anosmia, sensorineural deafness, polyneuropathy, and ataxia. Upon physical examination, patients with ARD have congenital short metacarpals, metatarsals, and cardiac arrhythmias. Manifestations due to the lack of phytanoyl-CoA hydroxylase in peroxisomes needed for alpha-oxidation of phytanic acid lead patients to accumulate phytanic acid in their body tissues. To our knowledge, no consensus for clinical diagnostic criteria for patients with ARD has been published. Our patient had nyctalopia, retinal findings, and visual field results compatible with retinitis pigmentosa. Additionally, the patient had decreased macular thickness and volume in both eyes, the findings being worse in the left eye. The patient had undergone hand surgery due to chronic pain in both hands, as well as his fourth and fifth metatarsal bones were shortened. Interestingly, audiology evaluation showed mild hearing loss in the right ear and mild to moderate hearing loss in the left ear. Inheritance patterns in patients with ARD have been described. Physical examination, phytanic acid evaluation, and genetic studies may all help reach an ARD diagnosis. This is the first report of adult Refsum disease in Puerto Rico.
Collapse
Affiliation(s)
- Raúl Y Ramos-Sánchez
- Ophthalmology, University of Puerto Rico, Medical Sciences Campus, San Juan, PRI
| | | | - Natalio Izquierdo
- Ophthalmology, University of Puerto Rico, Medical Sciences Campus, San Juan, PRI
| |
Collapse
|
7
|
Li JJ, Kim JJ, Nausheen F. Phytanic Acid Intake and Lifestyle Modifications on Quality of Life in Individuals with Adult Refsum Disease: A Retrospective Survey Analysis. Nutrients 2023; 15:nu15112551. [PMID: 37299514 DOI: 10.3390/nu15112551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Adult Refsum disease (ARD) is a rare peroxisomal biogenesis disorder inherited in an autosomal recessive fashion and is often characterized by retinitis pigmentosa, cerebellar ataxia, and polyneuropathy. Many patients with ARD require diet modification, psychosocial support, and various specialist visits to manage their symptoms. In this study, we explored the quality of life in individuals with ARD by analyzing retrospective survey data collected by the Coordination of Rare Diseases at Sanford (CoRDS) Registry and Global Defeat Adult Refsum Everywhere (DARE) Foundation. Statistical tests used were frequencies, mean, and median. There were 32 respondents, ranging between 11 and 32 responses for each question. The mean age at diagnosis was 35.5 ± 14.5 years (range 6-64) with 36.4% male and 63.6% female respondents. The average age for retinitis pigmentosa diagnosis was 22.8 ± 15.7 years (range 2-61). Dieticians were the most frequently seen (41.7%) for management of low-phytanic-acid diets. Most participants exercise at least once per week (92.5%). Depression symptoms were reported in 86.2% of the participants. Early diagnosis of ARD is important for managing symptoms and preventing progression of visual impairment due to phytanic acid buildup. Interdisciplinary approach should be used for patients to address physical and psychosocial impairments of ARD.
Collapse
Affiliation(s)
- Jeffrey J Li
- Department of Education, California University of Science and Medicine, Colton, CA 92324, USA
| | - Jane J Kim
- Department of Education, California University of Science and Medicine, Colton, CA 92324, USA
| | - Fauzia Nausheen
- Department of Education, California University of Science and Medicine, Colton, CA 92324, USA
| |
Collapse
|
8
|
Nguyen XTA, Moekotte L, Plomp AS, Bergen AA, van Genderen MM, Boon CJF. Retinitis Pigmentosa: Current Clinical Management and Emerging Therapies. Int J Mol Sci 2023; 24:ijms24087481. [PMID: 37108642 PMCID: PMC10139437 DOI: 10.3390/ijms24087481] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Retinitis pigmentosa (RP) comprises a group of inherited retinal dystrophies characterized by the degeneration of rod photoreceptors, followed by the degeneration of cone photoreceptors. As a result of photoreceptor degeneration, affected individuals experience gradual loss of visual function, with primary symptoms of progressive nyctalopia, constricted visual fields and, ultimately, central vision loss. The onset, severity and clinical course of RP shows great variability and unpredictability, with most patients already experiencing some degree of visual disability in childhood. While RP is currently untreatable for the majority of patients, significant efforts have been made in the development of genetic therapies, which offer new hope for treatment for patients affected by inherited retinal dystrophies. In this exciting era of emerging gene therapies, it remains imperative to continue supporting patients with RP using all available options to manage their condition. Patients with RP experience a wide variety of physical, mental and social-emotional difficulties during their lifetime, of which some require timely intervention. This review aims to familiarize readers with clinical management options that are currently available for patients with RP.
Collapse
Affiliation(s)
- Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lude Moekotte
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Bartiméus, Diagnostic Center for Complex Visual Disorders, 3703 AJ Zeist, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Nakanishi T, Izumi M, Suzuki R, Yamaguchi K, Sugamoto K, Erickson L, Kawahara S. In vitro characterization of anti-inflammatory activities of 3 RS, 7 R, 11 R-phytanic acid. J DAIRY RES 2023; 90:1-8. [PMID: 36815363 DOI: 10.1017/s0022029923000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The aim of the research described here was to investigate the in vitro immunomodulatory effects of 3RS, 7R, 11R-phytanic acid (3RS-PHY) from the perspective of efficacy against autoimmune diseases. 3RS-PHY is a milk component with strong agonist activity at the peroxisome proliferator activated receptor (PPAR). As PPAR is a therapeutic target for several human diseases, 3RS-PHY intake may have possible health benefits. Recently, we chemically synthesized a preparation of 3RS-PHY and demonstrated that 3RS-PHY inhibited T-cell production of interferon (IFN)-γ. However, the overall immunomodulatory effects were not evaluated. In this study, mouse splenocytes, purified T-cells and B-cells were stimulated by mitogens and incubated with 3RS-PHY, followed by evaluation of cytokine and antibody production. A macrophage-like cell line J774.1 was also incubated with 3RS-PHY to evaluate nitric oxide production. 3RS-PHY decreased mRNA levels not only of IFN-γ but also of interleukin (IL)-2, IL-10 and IL-17A in splenocytes and similar effects were confirmed at the protein level. In addition, 3RS-PHY had a direct action on T-cells with preferential inhibitory effects on Th1 and Th17 cytokines such as IFN-γ and IL-17A. Furthermore, 3RS-PHY suppressed antibody secretion by B-cells and nitric oxide production by J774.1 almost completely, indicating that 3RS-PHY is a bioactive fatty acid with anti-inflammatory properties. These findings encourage further investigations, including in vivo experiments, to evaluate whether 3RS-PHY actually shows the potential to prevent autoimmune diseases, and provide basic information to produce milk and dairy products with an increased 3RS-PHY concentration.
Collapse
Affiliation(s)
- Tomonori Nakanishi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mikihisa Izumi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ryoji Suzuki
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kohta Yamaguchi
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Kazuhiro Sugamoto
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Laurie Erickson
- Department of Biology, Harold Washington City College of Chicago, Chicago, IL, USA
- Department of Health Sciences, Blitstein Institute of Hebrew Theological College, Chicago, IL, USA
| | - Satoshi Kawahara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
10
|
Gutiérrez-Cerrajero C, Sprecher E, Paller AS, Akiyama M, Mazereeuw-Hautier J, Hernández-Martín A, González-Sarmiento R. Ichthyosis. Nat Rev Dis Primers 2023; 9:2. [PMID: 36658199 DOI: 10.1038/s41572-022-00412-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 01/20/2023]
Abstract
The ichthyoses are a large, heterogeneous group of skin cornification disorders. They can be inherited or acquired, and result in defective keratinocyte differentiation and abnormal epidermal barrier formation. The resultant skin barrier dysfunction leads to increased transepidermal water loss and inflammation. Disordered cornification is clinically characterized by skin scaling with various degrees of thickening, desquamation (peeling) and erythema (redness). Regardless of the type of ichthyosis, many patients suffer from itching, recurrent infections, sweating impairment (hypohidrosis) with heat intolerance, and diverse ocular, hearing and nutritional complications that should be monitored periodically. The characteristic clinical features are considered to be a homeostatic attempt to repair the skin barrier, but heterogeneous clinical presentation and imperfect phenotype-genotype correlation hinder diagnosis. An accurate molecular diagnosis is, however, crucial for predicting prognosis and providing appropriate genetic counselling. Most ichthyoses severely affect patient quality of life and, in severe forms, may cause considerable disability and even death. So far, treatment provides only symptomatic relief. It is lifelong, expensive, time-consuming, and often provides disappointing results. A better understanding of the molecular mechanisms that underlie these conditions is essential for designing pathogenesis-driven and patient-tailored innovative therapeutic solutions.
Collapse
Affiliation(s)
- Carlos Gutiérrez-Cerrajero
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amy S Paller
- Departments of Dermatology and Paediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | - Rogelio González-Sarmiento
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
11
|
Masingue M, Fernández-Eulate G, Debs R, Tard C, Labeyrie C, Leonard-Louis S, Dhaenens CM, Masson MA, Latour P, Stojkovic T. Strategy for genetic analysis in hereditary neuropathy. Rev Neurol (Paris) 2023; 179:10-29. [PMID: 36566124 DOI: 10.1016/j.neurol.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Inherited neuropathies are a heterogeneous group of slowly progressive disorders affecting either motor, sensory, and/or autonomic nerves. Peripheral neuropathy may be the major component of a disease such as Charcot-Marie-Tooth disease or a feature of a more complex multisystemic disease involving the central nervous system and other organs. The goal of this review is to provide the clinical clues orientating the genetic diagnosis in a patient with inherited peripheral neuropathy. This review focuses on primary inherited neuropathies, amyloidosis, inherited metabolic diseases, while detailing clinical, neurophysiological and potential treatment of these diseases.
Collapse
Affiliation(s)
- M Masingue
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France.
| | - G Fernández-Eulate
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - R Debs
- Service de neurophysiologie, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C Tard
- CHU de Lille, clinique neurologique, centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, 59037 Lille cedex, France
| | - C Labeyrie
- Service de neurologie, hôpital Kremlin-Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - S Leonard-Louis
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C-M Dhaenens
- Université de Lille, Inserm, CHU de Lille, U1172-LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - M A Masson
- Inserm U1127, Paris Brain Institute, ICM, Sorbonne Université, CNRS UMR 7225, hôpital Pitié-Salpêtrière, Paris, France
| | - P Latour
- Service de biochimie biologie moléculaire, CHU de Lyon, centre de biologie et pathologie Est, 69677 Bron cedex, France
| | - T Stojkovic
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
12
|
Chen CT, Shao Z, Fu Z. Dysfunctional peroxisomal lipid metabolisms and their ocular manifestations. Front Cell Dev Biol 2022; 10:982564. [PMID: 36187472 PMCID: PMC9524157 DOI: 10.3389/fcell.2022.982564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Retina is rich in lipids and dyslipidemia causes retinal dysfunction and eye diseases. In retina, lipids are not only important membrane component in cells and organelles but also fuel substrates for energy production. However, our current knowledge of lipid processing in the retina are very limited. Peroxisomes play a critical role in lipid homeostasis and genetic disorders with peroxisomal dysfunction have different types of ocular complications. In this review, we focus on the role of peroxisomes in lipid metabolism, including degradation and detoxification of very-long-chain fatty acids, branched-chain fatty acids, dicarboxylic acids, reactive oxygen/nitrogen species, glyoxylate, and amino acids, as well as biosynthesis of docosahexaenoic acid, plasmalogen and bile acids. We also discuss the potential contributions of peroxisomal pathways to eye health and summarize the reported cases of ocular symptoms in patients with peroxisomal disorders, corresponding to each disrupted peroxisomal pathway. We also review the cross-talk between peroxisomes and other organelles such as lysosomes, endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhuo Shao
- Post-Graduate Medical Education, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, the Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- The Genetics Program, North York General Hospital, University of Toronto, Toronto, ON, Canada
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
14
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
15
|
Weinstein I, Fries FN, Hartmann M, Abdin AD, Seitz B. [Pronounced band keratopathy in Refsum's syndrome]. DIE OPHTHALMOLOGIE 2022; 119:741-743. [PMID: 34106314 DOI: 10.1007/s00347-021-01428-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 01/26/2023]
Affiliation(s)
- Isabel Weinstein
- Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes UKS, Kirrberger Str. 100, 66421, Homburg/Saar, Deutschland.
| | - Fabian N Fries
- Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes UKS, Kirrberger Str. 100, 66421, Homburg/Saar, Deutschland
| | - Marie Hartmann
- Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes UKS, Kirrberger Str. 100, 66421, Homburg/Saar, Deutschland
| | - Alaa Din Abdin
- Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes UKS, Kirrberger Str. 100, 66421, Homburg/Saar, Deutschland
| | - Berthold Seitz
- Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes UKS, Kirrberger Str. 100, 66421, Homburg/Saar, Deutschland
| |
Collapse
|
16
|
Atassie cerebellari ereditarie. Neurologia 2021. [DOI: 10.1016/s1634-7072(21)45784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Ophthalmic Diagnosis and Novel Management of Infantile Refsum Disease with Combination Docosahexaenoic Acid and Cholic Acid. Case Rep Ophthalmol Med 2021; 2021:1345937. [PMID: 34664020 PMCID: PMC8520494 DOI: 10.1155/2021/1345937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Infantile Refsum disease is a rare peroxisomal biogenesis disorder characterized by impaired alpha-oxidation and accumulation of phytanic acid in the tissues. Patients often present with fundus changes resembling retinitis pigmentosa, developmental delay, sensorineural hearing loss, ataxia, and hepatomegaly. Traditionally, mainstay treatment for this condition has been a phytanic acid-restricted diet, although supplementation with either docosahexaenoic acid or cholic acid has rarely been described in the literature. We present a case of infantile Refsum disease in a child with retinitis pigmentosa-like ocular findings, sensorineural hearing loss, and self-resolving hepatic disease, who developed novel findings of macular edema refractory to carbonic anhydrase inhibitors. We describe management with a phytanic acid-restricted diet and combination docosahexaenoic acid, and cholic acid therapy, which helped to limit progression of her disease.
Collapse
|
18
|
Zwara A, Wertheim-Tysarowska K, Mika A. Alterations of Ultra Long-Chain Fatty Acids in Hereditary Skin Diseases-Review Article. Front Med (Lausanne) 2021; 8:730855. [PMID: 34497816 PMCID: PMC8420999 DOI: 10.3389/fmed.2021.730855] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022] Open
Abstract
The skin is a flexible organ that forms a barrier between the environment and the body's interior; it is involved in the immune response, in protection and regulation, and is a dynamic environment in which skin lipids play an important role in maintaining homeostasis. The different layers of the skin differ in both the composition and amount of lipids. The epidermis displays the best characteristics in this respect. The main lipids in this layer are cholesterol, fatty acids (FAs) and ceramides. FAs can occur in free form and as components of complex molecules. The most poorly characterized FAs are very long-chain fatty acids (VLCFAs) and ultra long-chain fatty acids (ULCFAs). VLCFAs and ULCFAs are among the main components of ceramides and are part of the free fatty acid (FFA) fraction. They are most abundant in the brain, liver, kidneys, and skin. VLCFAs and ULCFAs are responsible for the rigidity and impermeability of membranes, forming the mechanically and chemically strong outer layer of cell membranes. Any changes in the composition and length of the carbon chains of FAs result in a change in their melting point and therefore a change in membrane permeability. One of the factors causing a decrease in the amount of VLCFAs and ULCFAs is an improper diet. Another much more important factor is mutations in the genes which code proteins involved in the metabolism of VLCFAs and ULCFAs—regarding their elongation, their attachment to ceramides and their transformation. These mutations have their clinical consequences in the form of inborn errors in metabolism and neurodegenerative disorders, among others. Some of them are accompanied by skin symptoms such as ichthyosis and ichthyosiform erythroderma. In the following review, the structure of the skin is briefly characterized and the most important lipid components of the skin are presented. The focus is also on providing an overview of selected proteins involved in the metabolism of VLCFAs and ULCFAs in the skin.
Collapse
Affiliation(s)
- Agata Zwara
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
19
|
Hamie L, Eid E, Khalil S, Ghaoui N, Abbas O, Hamie M, Akl PA, Kurban M. Genodermatoses with hearing impairment. J Am Acad Dermatol 2021; 85:931-944. [PMID: 34153387 DOI: 10.1016/j.jaad.2021.06.850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Hearing loss is a prominent feature in multiple genodermatoses. Underappreciation of auditory deficits can misdirect proper diagnosis by the treating dermatologist. This review reviews the anatomic, developmental, and embryologic aspects that characterize the ear and summarizes genodermatoses that have aberrant auditory findings. The latter are classified into neural crest, metabolic, pigmentary, craniofacial, and a miscellaneous category of disorders lacking specific cutaneous findings. The algorithms provided in this review enable treating dermatologists to better recognize and manage genodermatoses with ear involvement.
Collapse
Affiliation(s)
- Lamiaa Hamie
- Department of Dermatology, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Edward Eid
- Department of Dermatology, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Samar Khalil
- Department of Dermatology, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Nohra Ghaoui
- Department of Internal Medicine, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Centre, Beirut, Lebanon
| | | | | | - Mazen Kurban
- Department of Dermatology, American University of Beirut Medical Centre, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
20
|
Abe Y, Tamura S, Honsho M, Fujiki Y. A Mouse Model System to Study Peroxisomal Roles in Neurodegeneration of Peroxisome Biogenesis Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:119-143. [PMID: 33417212 DOI: 10.1007/978-3-030-60204-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fourteen PEX genes are currently identified as genes responsible for peroxisome biogenesis disorders (PBDs). Patients with PBDs manifest as neurodegenerative symptoms such as neuronal migration defect and malformation of the cerebellum. To address molecular mechanisms underlying the pathogenesis of PBDs, mouse models for the PBDs have been generated by targeted disruption of Pex genes. Pathological phenotypes and metabolic abnormalities in Pex-knockout mice well resemble those of the patients with PBDs. The mice with tissue- or cell type-specific inactivation of Pex genes have also been established by using a Cre-loxP system. The genetically modified mice reveal that pathological phenotypes of PBDs are mediated by interorgan and intercellular communications. Despite the illustrations of detailed pathological phenotypes in the mutant mice, mechanistic insights into pathogenesis of PBDs are still underway. In this chapter, we overview the phenotypes of Pex-inactivated mice and the current understanding of the pathogenesis underlying PBDs.
Collapse
Affiliation(s)
- Yuichi Abe
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | | | | | - Yukio Fujiki
- Institute of Rheological Functions of Food, Fukuoka, Japan. .,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
21
|
Kunze M. The type-2 peroxisomal targeting signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118609. [PMID: 31751594 DOI: 10.1016/j.bbamcr.2019.118609] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
The type-2 peroxisomal targeting signal (PTS2) is one of two peptide motifs destining soluble proteins for peroxisomes. This signal acts as amphiphilic α-helix exposing the side chains of all conserved residues to the same side. PTS2 motifs are recognized by a bipartite protein complex consisting of the receptor PEX7 and a co-receptor. Cargo-loaded receptor complexes are translocated across the peroxisomal membrane by a transient pore and inside peroxisomes, cargo proteins are released and processed in many, but not all species. The components of the bipartite receptor are re-exported into the cytosol by a ubiquitin-mediated and ATP-driven export mechanism. Structurally, PTS2 motifs resemble other N-terminal targeting signals, whereas the functional relation to the second peroxisomal targeting signal (PTS1) is unclear. Although only a few PTS2-carrying proteins are known in humans, subjects lacking a functional import mechanism for these proteins suffer from the severe inherited disease rhizomelic chondrodysplasia punctata.
Collapse
Affiliation(s)
- Markus Kunze
- Medical University of Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
22
|
Abstract
Peroxisomes play vital roles in a broad spectrum of cellular metabolic pathways. Defects in genes encoding peroxisomal proteins can result in a wide array of disorders, depending upon the metabolic pathways affected. These disorders can be broadly classified into 2 main groups; peroxisome biogenesis disorders (PBDs) and single peroxisomal enzyme deficiencies. Peroxisomal enzyme deficiencies are result of dysfunction of a specific metabolic pathway, while PBDs are due to generalized peroxisomal dysfunction. Mutations in PEX1 gene are the most common cause of PBDs, accounting for two-thirds of cases. Peroxisomal fission defects is a recently recognized entity, included under the subgroup of PBDs. The aim of this article is to provide a comprehensive review on the clinical and neuroimaging spectrum of peroxisomal disorders.
Collapse
|
23
|
Aroor S, Kumar S, Mundkur S, Girisha KM. Ichthyosis congenita with biliary atresia: a rare association. Clin Dysmorphol 2018; 26:179-180. [PMID: 27824632 DOI: 10.1097/mcd.0000000000000161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Shrikiran Aroor
- Departments of aPediatrics bMedical Genetics, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | | | | | | |
Collapse
|
24
|
Nakanishi T, Motoba I, Anraku M, Suzuki R, Yamaguchi Y, Erickson L, Eto N, Sugamoto K, Matsushita Y, Kawahara S. Naturally occurring 3RS, 7R, 11R-phytanic acid suppresses in vitro T-cell production of interferon-gamma. Lipids Health Dis 2018; 17:147. [PMID: 29935534 PMCID: PMC6015457 DOI: 10.1186/s12944-018-0793-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Among the eight stereoisomers of phytanic acid (PA), the 3RS, 7R, 11R-isomer is naturally occurring and is present in foods and the human body. PA is considered to have possible health benefits in the immune system. However, it remains undetermined whether these effects are elicited by the 3RS, 7R, 11R-PA isomer, because previous studies used a commercially available PA whose isomer configuration is unknown. In this study, we synthesized a preparation of 3RS, 7R, 11R-PA, and investigated its in vitro immunomodulatory effects, especially the T-cell production of interferon (IFN)-γ, which is associated with various autoimmune diseases. This study also investigated the effects of 3RS, 7R, 11R-PA on NF-κB activity in order to address the mechanism of its immunomodulatory effects. METHODS Mouse splenocytes and purified T-cells were stimulated with T-cell mitogens and incubated with 3RS, 7R, 11R-PA, followed by evaluation of IFN-γ production. The effect of 3RS, 7R, 11R-PA on NF-κB activity was also investigated using an A549 cell line with stable expression of an NF-κB-dependent luciferase reporter gene. RESULTS 3RS, 7R, 11R-PA significantly reduced in vitro IFN-γ production at both the protein and mRNA levels, and was accompanied by decreased expression of T-bet, a key regulator of Th1 cell differentiation. The results indicated that NF-κB-mediated transcriptional activity was significantly decreased by 3RS, 7R, 11R-PA and that GW6471, an antagonist of peroxisome proliferator activated receptor α (PPARα), abrogated the inhibitory effect of 3RS, 7R, 11R-PA on NF-κB activity. CONCLUSIONS The present study suggests that 3RS, 7R, 11R-PA is a functional and bioactive fatty acid, and has a potentially beneficial effect for amelioration of T-cell mediated autoimmune diseases. This study also indicates that interference in the NF-κB pathway via PPARα activation is a potential mechanism of the immunomodulatory effects of 3RS, 7R, 11R-PA.
Collapse
Affiliation(s)
- Tomonori Nakanishi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Ibuki Motoba
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Mayuko Anraku
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Ryoji Suzuki
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Yuto Yamaguchi
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Laurie Erickson
- Department of Biology, Harold Washington City College of Chicago, 30 E. Lake St, Chicago, IL, 60601, USA.,Department of Health Sciences, Blitstein Institute of Hebrew Theological College, 2606 W. Touhy Ave, Chicago, IL, 60645, USA
| | - Nozomu Eto
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Kazuhiro Sugamoto
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Yohichi Matsushita
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Satoshi Kawahara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
25
|
Gettelfinger JD, Dahl JP. Syndromic Hearing Loss: A Brief Review of Common Presentations and Genetics. J Pediatr Genet 2018; 7:1-8. [PMID: 29441214 PMCID: PMC5809162 DOI: 10.1055/s-0037-1617454] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
Congenital hearing loss is one of the most common birth defects worldwide, with around 1 in 500 people experiencing some form of severe hearing loss. While over 400 different syndromes involving hearing loss have been described, it is important to be familiar with a wide range of syndromes involving hearing loss so an early diagnosis can be made and early intervention can be pursued to maximize functional hearing and speech-language development in the setting of verbal communication. This review aims to describe the presentation and genetics for some of the most frequently occurring syndromes involving hearing loss, including neurofibromatosis type 2, branchio-oto-renal syndrome, Treacher Collins syndrome, Stickler syndrome, Waardenburg syndrome, Pendred syndrome, Jervell and Lange-Nielsen syndrome, Usher syndromes, Refsum disease, Alport syndrome, MELAS, and MERRF.
Collapse
Affiliation(s)
- John D. Gettelfinger
- Department of Otolaryngology – Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - John P. Dahl
- Department of Otolaryngology – Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
26
|
Jerath NU, Mankodi A, Crawford TO, Grunseich C, Baloui H, Nnamdi-Emeratom C, Schindler AB, Heiman-Patterson T, Chrast R, Shy ME. Charcot-Marie-Tooth Disease type 4C: Novel mutations, clinical presentations, and diagnostic challenges. Muscle Nerve 2017; 57:749-755. [PMID: 28981955 DOI: 10.1002/mus.25981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION This study analyzes and describes atypical presentations of Charcot-Marie-Tooth disease type 4C (CMT4C). METHODS We present clinical and physiologic features of 5 patients with CMT4C caused by biallelic private mutations of SH3TC2. RESULTS All patients manifested scoliosis, and nerve conduction study indicated results in the demyelinating range. All patients exhibited signs of motor impairment within the first years of life. We describe 2 or more different genetic diseases in the same patient, atypical presentations of CMT, and 3 new mutations in CMT4C patients. DISCUSSION A new era of unbiased genetic testing has led to this small case series of individuals with CMT4C and highlights the recognition of different genetic diseases in CMT4C patients for accurate diagnosis, genetic risk identification, and therapeutic intervention. The phenotype of CMT4C, in addition, appears to be enriched by a number of features unusual for the broad CMT category. Muscle Nerve 57: 749-755, 2018.
Collapse
Affiliation(s)
- Nivedita U Jerath
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive Iowa City, Iowa, 52242, USA.,Department of Neurology, University of Florida, PO Box 100236 Gainesville, FL, 32610
| | - Ami Mankodi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas O Crawford
- Department of Pediatric Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Hasna Baloui
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Chioma Nnamdi-Emeratom
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Alice B Schindler
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Terry Heiman-Patterson
- Department of Neurology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Roman Chrast
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive Iowa City, Iowa, 52242, USA
| |
Collapse
|
27
|
Stähr K, Kuechler A, Gencik M, Arnolds J, Dendy M, Lang S, Arweiler-Harbeck D. Cochlear Implantation in Siblings With Refsum’s Disease. Ann Otol Rhinol Laryngol 2017; 126:611-614. [DOI: 10.1177/0003489417717269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kerstin Stähr
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Martin Gencik
- Laboratory of human genetic, diagenos, Osnabrück, Germany
| | - Judith Arnolds
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| | - Meaghan Dendy
- Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Stephan Lang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| | - Diana Arweiler-Harbeck
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| |
Collapse
|
28
|
Proteomic signature of muscle fibre hyperplasia in response to faba bean intake in grass carp. Sci Rep 2017; 7:45950. [PMID: 28367976 PMCID: PMC5377455 DOI: 10.1038/srep45950] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/07/2017] [Indexed: 11/19/2022] Open
Abstract
Fish muscle growth is important for the rapidly developing global aquaculture industry, particularly with respect to production and quality. Changes in muscle fibre size are accomplished by altering the balance between protein synthesis and proteolysis. However, our understanding regarding the effects of different protein sources on fish muscle proteins is still limited. Here we report on the proteomic profile of muscle fibre hyperplasia in grass carp fed only with whole faba bean. From the results, a total of 99 significantly changed proteins after muscle hyperplasia increase were identified (p < 0.05, ratio <0.5 or >2). Protein–protein interaction analysis demonstrated the presence of a network containing 56 differentially expressed proteins, and muscle fibre hyperplasia was closely related to a protein–protein network of 12 muscle component proteins. Muscle fibre hyperplasia was also accompanied by decreased abundance in the fatty acid degradation and calcium signalling pathways. In addition, metabolism via the pentose phosphate pathway decreased in grass carp after ingestion of faba bean, leading to haemolysis. These findings could provide a reference for the prevention and treatment of human glucose-6-phosphate dehydrogenase deficiency (“favism”).
Collapse
|
29
|
Beaudin M, Klein CJ, Rouleau GA, Dupré N. Systematic review of autosomal recessive ataxias and proposal for a classification. CEREBELLUM & ATAXIAS 2017; 4:3. [PMID: 28250961 PMCID: PMC5324265 DOI: 10.1186/s40673-017-0061-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/17/2017] [Indexed: 01/26/2023]
Abstract
Background The classification of autosomal recessive ataxias represents a significant challenge because of high genetic heterogeneity and complex phenotypes. We conducted a comprehensive systematic review of the literature to examine all recessive ataxias in order to propose a new classification and properly circumscribe this field as new technologies are emerging for comprehensive targeted gene testing. Methods We searched Pubmed and Embase to identify original articles on recessive forms of ataxia in humans for which a causative gene had been identified. Reference lists and public databases, including OMIM and GeneReviews, were also reviewed. We evaluated the clinical descriptions to determine if ataxia was a core feature of the phenotype and assessed the available evidence on the genotype-phenotype association. Included disorders were classified as primary recessive ataxias, as other complex movement or multisystem disorders with prominent ataxia, or as disorders that may occasionally present with ataxia. Results After removal of duplicates, 2354 references were reviewed and assessed for inclusion. A total of 130 articles were completely reviewed and included in this qualitative analysis. The proposed new list of autosomal recessive ataxias includes 45 gene-defined disorders for which ataxia is a core presenting feature. We propose a clinical algorithm based on the associated symptoms. Conclusion We present a new classification for autosomal recessive ataxias that brings awareness to their complex phenotypes while providing a unified categorization of this group of disorders. This review should assist in the development of a consensus nomenclature useful in both clinical and research applications. Electronic supplementary material The online version of this article (doi:10.1186/s40673-017-0061-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Beaudin
- Faculty of Medicine, Université Laval, Quebec city, QC G1V 0A6 Canada
| | | | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A4 Canada
| | - Nicolas Dupré
- Faculty of Medicine, Université Laval, Quebec city, QC G1V 0A6 Canada.,Department of Neurological Sciences, CHU de Quebec - Université Laval, 1401 18th street, Québec City, QC G1J 1Z4 Canada
| |
Collapse
|
30
|
Human disorders of peroxisome metabolism and biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:922-33. [DOI: 10.1016/j.bbamcr.2015.11.015] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
|
31
|
Reiter T, Jagoda E, Capellini TD. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds. PLoS One 2016; 11:e0148899. [PMID: 26863414 PMCID: PMC4749313 DOI: 10.1371/journal.pone.0148899] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/24/2016] [Indexed: 01/11/2023] Open
Abstract
Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR), phytanol-CoA 2-hydroxylase (PHYH), and pancreatic α-amylase 2B (AMY2B). These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs.
Collapse
Affiliation(s)
- Taylor Reiter
- Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, 02138, United States of America
| | - Evelyn Jagoda
- Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, 02138, United States of America
| | - Terence D. Capellini
- Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, 02138, United States of America
- * E-mail:
| |
Collapse
|
32
|
Berger J, Dorninger F, Forss-Petter S, Kunze M. Peroxisomes in brain development and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:934-55. [PMID: 26686055 PMCID: PMC4880039 DOI: 10.1016/j.bbamcr.2015.12.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 12/26/2022]
Abstract
Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer’s disease, autism and amyotrophic lateral sclerosis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann.
Collapse
Affiliation(s)
- Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
33
|
De Munter S, Verheijden S, Régal L, Baes M. Peroxisomal Disorders: A Review on Cerebellar Pathologies. Brain Pathol 2015; 25:663-78. [PMID: 26201894 PMCID: PMC8029412 DOI: 10.1111/bpa.12290] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/13/2015] [Indexed: 12/22/2022] Open
Abstract
Peroxisomes are organelles with diverse metabolic tasks including essential roles in lipid metabolism. They are of utmost importance for the normal functioning of the nervous system as most peroxisomal disorders are accompanied with neurological symptoms. Remarkably, the cerebellum exquisitely depends on intact peroxisomal function both during development and adulthood. In this review, we cover all aspects of cerebellar pathology that were reported in peroxisome biogenesis disorders and in diseases caused by dysfunction of the peroxisomal α-oxidation, β-oxidation or ether lipid synthesis pathways. We also discuss the phenotypes of mouse models in which cerebellar pathologies were recapitulated and search for connections with the metabolic abnormalities. It becomes increasingly clear that besides the most severe forms of peroxisome dysfunction that are associated with developmental cerebellar defects, milder impairments can give rise to ataxia later in life.
Collapse
Affiliation(s)
- Stephanie De Munter
- Department of Pharmaceutical and Pharmacological Sciences, Cell MetabolismKU Leuven—University of LeuvenB‐3000LeuvenBelgium
| | - Simon Verheijden
- Department of Clinical and Experimental MedicineTARGIDKU Leuven—University of LeuvenB‐3000LeuvenBelgium
| | - Luc Régal
- Department of Pediatric Neurology and Metabolic DisordersUZ Brussel—University Hospital Brussels1000BrusselsBelgium
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Cell MetabolismKU Leuven—University of LeuvenB‐3000LeuvenBelgium
| |
Collapse
|
34
|
Twists and turns—How we stepped into and had fun in the “boring” lipid field. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1073-83. [DOI: 10.1007/s11427-015-4949-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/28/2015] [Indexed: 11/25/2022]
|
35
|
Barøy T, Koster J, Strømme P, Ebberink MS, Misceo D, Ferdinandusse S, Holmgren A, Hughes T, Merckoll E, Westvik J, Woldseth B, Walter J, Wood N, Tvedt B, Stadskleiv K, Wanders RJ, Waterham HR, Frengen E. A novel type of rhizomelic chondrodysplasia punctata, RCDP5, is caused by loss of the PEX5 long isoform. Hum Mol Genet 2015. [DOI: 10.1093/hmg/ddv305] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
36
|
Abstract
Inherited retinal degeneration (IRD) may occur in isolation or as part of a multi-systemic condition. Ocular manifestations may be the presenting symptom of a syndromic disease and can include retinitis pigmentosa, cone-rod dystrophy, or maculopathy. Alternatively, patients affected with syndromic disease may already have other systemic manifestations at the time retinal disease is diagnosed. Some of these systemic diseases can cause significant morbidity. Here, we review several of these syndromic IRDs and their underlying genetic causes. Early recognition and referral for systemic evaluation and surveillance may lead to early intervention and an improved outcome. Obtaining a molecular diagnosis can be beneficial in securing a definitive diagnosis, especially in cases with atypical presentations. A genetic diagnosis may also be informative with regard to prognosis and potential therapies. Effective management and rehabilitation for patients with syndromic retinal dystrophy requires a comprehensive genetic-based team approach involving patients, family members, ophthalmologists, primary care physicians, and geneticists.
Collapse
Affiliation(s)
- Xiang Q Werdich
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts , USA
| | | | | |
Collapse
|
37
|
Nanetti L, Pensato V, Leoni V, Rizzetto M, Caccia C, Taroni F, Mariotti C, Gellera C. PEX7 Mutations Cause Congenital Cataract Retinopathy and Late-Onset Ataxia and Cognitive Impairment: Report of Two Siblings and Review of the Literature. J Clin Neurol 2015; 11:197-9. [PMID: 25851898 PMCID: PMC4387488 DOI: 10.3988/jcn.2015.11.2.197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/02/2022] Open
Affiliation(s)
- Lorenzo Nanetti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Viviana Pensato
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Valerio Leoni
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Manuela Rizzetto
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Claudio Caccia
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Franco Taroni
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Caterina Mariotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy.
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
38
|
Lucas EK, Reid CS, McMeekin LJ, Dougherty SE, Floyd CL, Cowell RM. Cerebellar transcriptional alterations with Purkinje cell dysfunction and loss in mice lacking PGC-1α. Front Cell Neurosci 2015; 8:441. [PMID: 25610371 PMCID: PMC4285109 DOI: 10.3389/fncel.2014.00441] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/08/2014] [Indexed: 11/17/2022] Open
Abstract
Alterations in the expression and activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (ppargc1a or PGC-1α) have been reported in multiple movement disorders, yet it is unclear how a lack of PGC-1α impacts transcription and function of the cerebellum, a region with high PGC-1α expression. We show here that mice lacking PGC-1α exhibit ataxia in addition to the previously described deficits in motor coordination. Using q-RT-PCR in cerebellar homogenates from PGC-1α−/− mice, we measured expression of 37 microarray-identified transcripts upregulated by PGC-1α in SH-SY5Y neuroblastoma cells with neuroanatomical overlap with PGC-1α or parvalbumin (PV), a calcium buffer highly expressed by Purkinje cells. We found significant reductions in transcripts with synaptic (complexin1, Cplx1; Pacsin2), structural (neurofilament heavy chain, Nefh), and metabolic (isocitrate dehydrogenase 3a, Idh3a; neutral cholesterol ester hydrolase 1, Nceh1; pyruvate dehydrogenase alpha 1, Pdha1; phytanoyl-CoA hydroxylase, Phyh; ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1, Uqcrfs1) functions. Using conditional deletion of PGC-1α in PV-positive neurons, we determined that 50% of PGC-1α expression and a reduction in a subset of these transcripts could be explained by its concentration in PV-positive neuronal populations in the cerbellum. To determine whether there were functional consequences associated with these changes, we conducted stereological counts and spike rate analysis in Purkinje cells, a cell type rich in PV, from PGC-1α−/− mice. We observed a significant loss of Purkinje cells by 6 weeks of age, and the remaining Purkinje cells exhibited a 50% reduction in spike rate. Together, these data highlight the complexity of PGC-1α's actions in the central nervous system and suggest that dysfunction in multiple cell types contribute to motor deficits in the context of PGC-1α deficiency.
Collapse
Affiliation(s)
- Elizabeth K Lucas
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Courtney S Reid
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Laura J McMeekin
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Sarah E Dougherty
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA ; Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Candace L Floyd
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham Birmingham, AL, USA
| | - Rita M Cowell
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
39
|
Menon GK, Orsó E, Aslanidis C, Crumrine D, Schmitz G, Elias PM. Ultrastructure of skin from Refsum disease with emphasis on epidermal lamellar bodies and stratum corneum barrier lipid organization. Arch Dermatol Res 2014; 306:731-7. [PMID: 24920240 DOI: 10.1007/s00403-014-1478-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/14/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
Classic Refsum disease (RD) is a rare, autosomal recessively-inherited disorder of peroxisome metabolism due to a defect in the initial step in the alpha oxidation of phytanic acid (PA), a C16 saturated fatty acid with four methyl side groups, which accumulates in plasma and lipid enriched tissues (please see van den Brink and Wanders, Cell Mol Life Sci 63:1752-1765, 2006). It has been proposed that the disease complex in RD is in part due to the high affinity of phytanic acid for retinoid X receptors and peroxisome proliferator-activated receptors. Structurally, epidermal hyperplasia, increased numbers of cornified cell layers, presence of cells with lipid droplets in stratum basale and reduction of granular layer to a single layer have been reported by Blanchet-Bardon et al. (The ichthyoses, SP Medical & Scientific Books, New York, pp 65-69, 1978). However, lamellar body (LB) density and secretion were reportedly normal. We recently examined biopsies from four unrelated patients, using both OsO4 and RuO4 post-fixation to evaluate the barrier lipid structural organization. Although lamellar body density appeared normal, individual organelles often had distorted shape, or had non-lamellar domains interspersed with lamellar structures. Some of the organelles seemed to lack lamellar contents altogether, showing instead uniformly electron-dense contents. In addition, we also observed mitochondrial abnormalities in the nucleated epidermis. Stratum granulosum-stratum corneum junctions also showed co-existence of non-lamellar and lamellar domains, indicative of lipid phase separation. Also, partial detachment or complete absence of corneocyte lipid envelopes (CLE) was seen in the stratum corneum of all RD patients. In conclusion, abnormal LB contents, resulting in defective lamellar bilayers, as well as reduced CLEs, likely lead to impaired barrier function in RD.
Collapse
Affiliation(s)
- G K Menon
- Global Research and Development, Ashland, Inc., Bridgewater, NJ, USA
| | | | | | | | | | | |
Collapse
|
40
|
Nogueira C, Meehan T, O’Donoghue G. Refsum’s Disease and Cochlear Implantation. Ann Otol Rhinol Laryngol 2014; 123:425-7. [DOI: 10.1177/0003489414526846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives: The objective was to describe a case of bilateral cochlear implantation in a 59-year-old man with hearing and visual impairment due to Refsum’s disease. Method: A retrospective case review was performed. Results: After cochlear implantation, the patient demonstrated much improved audiometric performance and reported improved sound localization. Conclusions: Bilateral cochlear implantation is an important strategy in the improvement of hearing and quality of life in individuals with Refsum’s disease.
Collapse
Affiliation(s)
- Claudia Nogueira
- Directorate of Otorhinolaryngology & Head and Neck Surgery, Queen’s Medical Centre, Nottingham, UK
| | - Thomasina Meehan
- Directorate of Otorhinolaryngology & Head and Neck Surgery, Queen’s Medical Centre, Nottingham, UK
| | - Gerard O’Donoghue
- Directorate of Otorhinolaryngology & Head and Neck Surgery, Queen’s Medical Centre, Nottingham, UK
| |
Collapse
|
41
|
Votsi C, Christodoulou K. Molecular diagnosis of autosomal recessive cerebellar ataxia in the whole exome/genome sequencing era. World J Neurol 2013; 3:115-128. [DOI: 10.5316/wjn.v3.i4.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/30/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCA) are a clinically and genetically heterogeneous group of rare neurodegenerative disorders characterized by autosomal recessive inheritance and an early age of onset. Progressive ataxia is usually the prominent symptom and is often associated with other neurological or additional features. ARCA classification still remains controversial even though different approaches have been proposed over the years. Furthermore, ARCA molecular diagnosis has been a challenge due to phenotypic overlap and increased genetic heterogeneity observed within this group of disorders. Friedreich’s ataxia and ataxia telangiectasia have been reported as the most frequent and well-studied forms of ARCA. Significant progress in understanding the genetic etiologies of the ARCA has been achieved during the last 15 years. The methodological revolution that has been observed in genetics over the last few years has contributed significantly to the molecular diagnosis of rare diseases including the ARCAs. Development of high throughput technologies has resulted in the identification of new ARCA genes and novel mutations in known ARCA genes. Therefore, an improvement in the molecular diagnosis of ARCA is expected. Moreover, based on the fact that many patients still remain undiagnosed, additional forms of ataxia are expected to be identified. We hereby review the current knowledge on the ARCAs, focused on the genetic findings of the most common forms that were molecularly characterized before the whole exome/genome era, as well as the most recently described forms that have been elucidated with the use of these novel technologies. The significant contribution of whole-exome sequencing or whole-genome sequencing in the molecular diagnosis of ARCAs is discussed.
Collapse
|
42
|
Abstract
During the past 20 years, tremendous progress has been made in our understanding of the molecular basis of many genetic skin conditions. The translation of these laboratory findings into effective therapies for affected individuals has been slow, however, in large part due to the risk of carcinogenesis from random viral genomic integration and the lack of efficacy of topically applied genetic material and most proteins. As intervention at the gene level still appears remote for most genetic disorders, increased knowledge about the cellular and biochemical pathogenesis of disease allows specific targeting of pathways with existing and/or novel drugs and molecules. In contrast to the requirement for personalization of most gene-based approaches, pathogenesis-based therapy is pathway specific, and in theory, it should have broader applicability. In this chapter, we provide an overview of the pathoetiology of the various types of ichthyoses and demonstrate how a pathogenesis-based approach can potentially lead to innovative treatments for these conditions. Notably, this strategy has been successfully validated for the treatment of the rare X-linked dominant condition, CHILD syndrome, in which topical applications of cholesterol and lovastatin together to affected skin resulted in marked improvement of the skin phenotype.
Collapse
Affiliation(s)
- Joey E Lai-Cheong
- St John's Institute of Dermatology, King's College London, London, United Kingdom
| | | | | |
Collapse
|
43
|
Raine CH, Kurukulasuriya MF, Bajaj Y, Strachan DR. Cochlear implantation in Refsum's disease. Cochlear Implants Int 2013; 9:97-102. [DOI: 10.1179/cim.2008.9.2.97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
44
|
Cintolesi A, Rodríguez-Moyá M, Gonzalez R. Fatty acid oxidation: systems analysis and applications. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:575-85. [DOI: 10.1002/wsbm.1226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Angela Cintolesi
- Department of Chemical and Biomolecular Engineering; Rice University; Houston TX USA
| | - María Rodríguez-Moyá
- Department of Chemical and Biomolecular Engineering; Rice University; Houston TX USA
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering; Rice University; Houston TX USA
- Department of Bioengineering; Rice University; Houston TX USA
| |
Collapse
|
45
|
Syndromes of hearing loss associated with visual loss. Eur Arch Otorhinolaryngol 2013; 271:635-46. [DOI: 10.1007/s00405-013-2514-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
|
46
|
Abstract
Inborn errors of metabolism may impact on muscle and peripheral nerve. Abnormalities involve mitochondria and other subcellular organelles such as peroxisomes and lysosomes related to the turnover and recycling of cellular compartments. Treatable causes are β-oxidation defects producing progressive neuropathy; pyruvate dehydrogenase deficiency, porphyria, or vitamin B12 deficiency causing recurrent episodes of neuropathy or acute motor deficit mimicking Guillain-Barré syndrome. On the other hand, lysosomal (mucopolysaccharidosis, Gaucher and Fabry diseases), mitochondriopathic (mitochondrial or nuclear mutations or mDNA depletion), peroxisomal (adrenomyeloneuropathy, Refsum disease, sterol carrier protein-2 deficiency, cerebrotendinous xanthomatosis, α-methylacyl racemase deficiency) diseases are multisystemic disorders involving also the heart, liver, brain, retina, and kidney. Pathophysiology of most metabolic myopathies is related to the impairment of energy production or to abnormal production of reactive oxygen species (ROS). Main symptoms are exercise intolerance with myalgias, cramps and recurrent myoglobinuria or limb weakness associated with elevation of serum creatine kinase. Carnitine palmitoyl transferase deficiency, followed by acid maltase deficiency, and lipin deficiency, are the most common cause of isolated rhabdomyolysis. Metabolic myopathies are frequently associated to extra-neuromuscular disorders particularly involving the heart, liver, brain, retina, skin, and kidney.
Collapse
Affiliation(s)
- Adele D'Amico
- Molecular Medicine and Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS-Children's Hospital Bambino Gesù, Rome, Italy
| | | |
Collapse
|
47
|
|
48
|
Abstract
The peroxisomal disorders represent a group of genetic diseases in man in which there is an impairment in one or more peroxisomal functions. The peroxisomal disorders are subdivided into three subgroups comprising: (1) the peroxisome biogenesis disorders (PBDs); (2) the single peroxisomal (enzyme-) protein deficiencies; and (3) the single peroxisomal substrate transport deficiencies. The PBD group comprises four different disorders that include Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), infantile Refsum disease (IRD), and rhizomelic chondrodysplasia punctata (RCDP). ZS, NALD, and IRD are clearly distinct from RCDP and are usually referred to as the Zellweger spectrum with ZS being the most severe, and IRD the less severe disorder, with sometimes onset in adulthood. The single peroxisomal enzyme deficiency group comprises seven different disorders, of which D-bifunctional protein and phytanoyl-CoA hydroxylase (adult Refsum disease) deficiencies are the most frequent. The single peroxisomal substrate transport deficiency group consists of only one disease, X-linked adrenoleukodystrophy. It is the purpose of this chapter to describe the current state of knowledge about the clinical, biochemical, cellular, and molecular aspects of peroxisomal diseases, and to provide guidelines for their post- and prenatal diagnosis. Therapeutic interventions are mostly limited to X-linked adrenoleukodystrophy.
Collapse
Affiliation(s)
- Patrick Aubourg
- Department of Pediatric Neurology, INSERM UM745, University Paris-Descartes, Hôpital Bicêtre-Paris Sud, Paris, France.
| | | |
Collapse
|
49
|
Ersoy Ö, Alkım C, Onuk MD, Demirsoy H, Argon D. A rare cause of Fatty liver and elevated aminotransferase levels: chanarin-dorfman syndrome: a case report. Int J Hepatol 2011; 2011:341372. [PMID: 21994851 PMCID: PMC3170759 DOI: 10.4061/2011/341372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/25/2010] [Accepted: 01/06/2011] [Indexed: 11/20/2022] Open
Abstract
Chanarin-Dorfman syndrome is a rare, inherited metabolic disorder of neutral lipid storage characterized by ichthyosis, lipid vacuoles in leukocytes, and involvement of several internal organs, mostly the liver. Since the initial case was reported by Dorfman in 1974, nearly 50 cases have been reported, and the majority were from Middle East countries. Here, we report a 20-year-old patient with ichthyosis from Turkey, diagnosed as Chanarin-Dorfman syndrome presented with asypmtomatic elevated transaminases and hepatosteatosis, and also briefly review the updated clinical implications and management of this rarely seen syndrome. Prompt diagnosis of this syndrome avoids further unnecessary investigations in patients with ichthyosis.
Collapse
Affiliation(s)
- Özdal Ersoy
- Department of Gastroenterology, Şişli Etfal Training and Research Hospital, 34377 Istanbul, Turkey,*Özdal Ersoy:
| | - Canan Alkım
- Department of Gastroenterology, Şişli Etfal Training and Research Hospital, 34377 Istanbul, Turkey
| | - Mehmet Derya Onuk
- Department of Gastroenterology, Şişli Etfal Training and Research Hospital, 34377 Istanbul, Turkey
| | - Hüseyin Demirsoy
- Department of Gastroenterology, Şişli Etfal Training and Research Hospital, 34377 Istanbul, Turkey
| | - Dilek Argon
- Department of Hematology, Şişli Etfal Training and Research Hospital, 34377 Istanbul, Turkey
| |
Collapse
|
50
|
Revised nomenclature and classification of inherited ichthyoses: results of the First Ichthyosis Consensus Conference in Sorèze 2009. J Am Acad Dermatol 2010; 63:607-41. [PMID: 20643494 DOI: 10.1016/j.jaad.2009.11.020] [Citation(s) in RCA: 476] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/30/2009] [Accepted: 11/17/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND Inherited ichthyoses belong to a large, clinically and etiologically heterogeneous group of mendelian disorders of cornification, typically involving the entire integument. Over the recent years, much progress has been made defining their molecular causes. However, there is no internationally accepted classification and terminology. OBJECTIVE We sought to establish a consensus for the nomenclature and classification of inherited ichthyoses. METHODS The classification project started at the First World Conference on Ichthyosis in 2007. A large international network of expert clinicians, skin pathologists, and geneticists entertained an interactive dialogue over 2 years, eventually leading to the First Ichthyosis Consensus Conference held in Sorèze, France, on January 23 and 24, 2009, where subcommittees on different issues proposed terminology that was debated until consensus was reached. RESULTS It was agreed that currently the nosology should remain clinically based. "Syndromic" versus "nonsyndromic" forms provide a useful major subdivision. Several clinical terms and controversial disease names have been redefined: eg, the group caused by keratin mutations is referred to by the umbrella term, "keratinopathic ichthyosis"-under which are included epidermolytic ichthyosis, superficial epidermolytic ichthyosis, and ichthyosis Curth-Macklin. "Autosomal recessive congenital ichthyosis" is proposed as an umbrella term for the harlequin ichthyosis, lamellar ichthyosis, and the congenital ichthyosiform erythroderma group. LIMITATIONS As more becomes known about these diseases in the future, modifications will be needed. CONCLUSION We have achieved an international consensus for the classification of inherited ichthyosis that should be useful for all clinicians and can serve as reference point for future research.
Collapse
|