1
|
Du WW, Rafiq M, Yuan H, Li X, Wang S, Wu J, Wei J, Li R, Guo H, Yang BB. A Novel Protein NAB1-356 Encoded by circRNA circNAB1 Mitigates Atrial Fibrillation by Reducing Inflammation and Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411959. [PMID: 40145839 PMCID: PMC12120700 DOI: 10.1002/advs.202411959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/15/2025] [Indexed: 03/28/2025]
Abstract
Atrial fibrillation (AF) is a common arrhythmia with irregular atrial electrical activity. Circular RNAs (circRNAs) are key regulators in tissue homeostasis, yet their role in AF remains unclear. Here, we investigated the expression and function of circNAB1 in AF using high-throughput sequencing and functional assays in circNAB1 transgenic mice. We identified circNAB1 as a significantly downregulated circRNA in AF patient specimens. Silencing circNAB1 promoted collagen deposition and inflammation, whereas overexpression reduces atrial fibrosis and AF susceptibility in mice, consistent with results observed in human atrial tissues. Mechanistically, circNAB1 translates into a novel protein, NAB1-356, which is highly expressed in human cardiac hypertrophy. NAB1-356 interacts with EGR1 as NAB1 does, decreasing fibrosis and inflammation in the atrium. Furthermore, NAB1-356 also regulates transcription factor Runx1 and Gadd45b transcription, exerting regulatory effects on cytokine expression and fibrosis. Targeting EGR1, Gadd45b, and Runx1 by circNAB1 or siRNAs attenuate AF incidence and cardiac remodeling, suggesting potential therapeutic strategies for AF management. Delivery of circNAB1 improves AF conditions in LKB1 knockout mice, further highlighting its anti-arrhythmic potential. Our findings elucidate the mechanistic role of circNAB1 in AF pathogenesis and suggest its therapeutic implications for cardiac remodeling-associated disorders.
Collapse
Affiliation(s)
- William W Du
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoM4N3M5Canada
| | - Muhammad Rafiq
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoM4N3M5Canada
| | - Hui Yuan
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoM4N3M5Canada
| | - Xiangmin Li
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoM4N3M5Canada
| | - Sheng Wang
- Department of AnesthesiologyBeijing Anzhen HospitalCapital Medical UniversityBeijing100029China
| | - Jun Wu
- Toronto General Research InstituteUniversity Health NetworkDepartment of PhysiologyUniversity of TorontoTorontoM5G 2C4Canada
| | - Jinfeng Wei
- Department of AnesthesiologyGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital & Guangdong Academy of Medical SciencesGuangzhouGuangdong510080China
| | - Ren‐Ke Li
- Toronto General Research InstituteUniversity Health NetworkDepartment of PhysiologyUniversity of TorontoTorontoM5G 2C4Canada
| | - Huiming Guo
- Department of AnesthesiologyGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital & Guangdong Academy of Medical SciencesGuangzhouGuangdong510080China
| | - Burton B Yang
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoM4N3M5Canada
| |
Collapse
|
2
|
Cavalcanti EBU, Santos SCDL, Couto CM, Rocha GV, Freitas MCDNB, Nascimento OJMD. Genetic and clinical spectrum of early growth response 2-related Charcot-Marie-Tooth disease in a Brazilian cohort. ARQUIVOS DE NEURO-PSIQUIATRIA 2025; 83:1-8. [PMID: 40262821 DOI: 10.1055/s-0045-1806820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BACKGROUND Charcot-Marie-Tooth (CMT) disease is a genetically diverse group of hereditary neuropathies. Most studies on the frequency of CMT subtypes report that the early growth response 2 (EGR2) gene accounts for less than 1% of cases. However, data regarding the epidemiology and clinical characteristics of EGR2-related CMT in Central and South America remain limited. OBJECTIVE To characterize the clinical and genetic features of EGR2-related CMT in a Brazilian cohort. METHODS We retrospectively analyzed clinical and ancillary data from four individuals with confirmed molecular diagnosis of EGR2-related CMT. Patients were categorized based on age of onset, motor nerve conduction velocity of the ulnar nerve, and nerve biopsy findings when available. Next-generation sequencing was utilized for genetic analysis. RESULTS Pathogenic and likely pathogenic variants were identified exclusively in the three zinc-finger domains of EGR2, including a novel variant, c.1234G > C (p.Glu412Gln). Patients exhibited significant variation in clinical severity and phenotypes. Dysphagia, respiratory complications, and scoliosis were prominent features. CONCLUSION Our findings corroborate the complex and varied clinical presentations of EGR2-related CMT, highlighting respiratory issues and dysphagia as significant features. Comprehensive clinical assessment and early genetic diagnosis are essential for managing this condition's diverse phenotypic spectrum.
Collapse
Affiliation(s)
| | | | - Christian Marques Couto
- Rede SARAH de Hospitais de Reabilitação, Ambulatório de Reabilitação Neurológica, Rio de Janeiro RJ, Brazil
| | - Galeno Vieira Rocha
- Rede SARAH de Hospitais de Reabilitação, Ambulatório de Reabilitação Neurológica, Fortaleza CE, Brazil
| | | | | |
Collapse
|
3
|
Suk TR, Part CE, Zhang JL, Nguyen TT, Heer MM, Caballero-Gómez A, Grybas VS, McKeever PM, Nguyen B, Ali T, Callaghan SM, Woulfe JM, Robertson J, Rousseaux MWC. A stress-dependent TDP-43 SUMOylation program preserves neuronal function. Mol Neurodegener 2025; 20:38. [PMID: 40149017 PMCID: PMC11951803 DOI: 10.1186/s13024-025-00826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/09/2025] [Indexed: 03/29/2025] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are overwhelmingly linked to TDP-43 dysfunction. Mutations in TDP-43 are rare, indicating that the progressive accumulation of exogenous factors - such as cellular stressors - converge on TDP-43 to play a key role in disease pathogenesis. Post translational modifications such as SUMOylation play essential roles in response to such exogenous stressors. We therefore set out to understand how SUMOylation may regulate TDP-43 in health and disease. We find that TDP-43 is regulated dynamically via SUMOylation in response to cellular stressors. When this process is blocked in vivo, we note age-dependent TDP-43 pathology and sex-specific behavioral deficits linking TDP-43 SUMOylation with aging and disease. We further find that SUMOylation is correlated with human aging and disease states. Collectively, this work presents TDP-43 SUMOylation as an early physiological response to cellular stress, disruption of which may confer a risk for TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Terry R Suk
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Caroline E Part
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Jenny L Zhang
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Trina T Nguyen
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Meghan M Heer
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Alejandro Caballero-Gómez
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Veronica S Grybas
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Paul M McKeever
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Benjamin Nguyen
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Tahir Ali
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Steve M Callaghan
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - John M Woulfe
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Hospital Research Institute, the Ottawa Hospital, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada.
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Zhang R, Qiu C, Filippova G, Li G, Shendure J, Vert JP, Deng X, Disteche C, Noble WS. Multi-condition and multi-modal temporal profile inference during mouse embryonic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583179. [PMID: 38496477 PMCID: PMC10942306 DOI: 10.1101/2024.03.03.583179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The emergence of single-cell time-series datasets enables modeling of changes in various types of cellular profiles over time. However, due to the disruptive nature of single-cell measurements, it is impossible to capture the full temporal trajectory of a particular cell. Furthermore, single-cell profiles can be collected at mismatched time points across different conditions (e.g., sex, batch, disease) and data modalities (e.g., scRNA-seq, scATAC-seq), which makes modeling challenging. Here we propose a joint modeling framework, Sunbear, for integrating multi-condition and multi-modal single-cell profiles across time. Sunbear can be used to impute single-cell temporal profile changes, align multi-dataset and multi-modal profiles across time, and extrapolate single-cell profiles in a missing modality. We applied Sunbear to reveal sex-biased transcription during mouse embryonic development and predict dynamic relationships between epigenetic priming and transcription for cells in which multi-modal profiles are unavailable. Sunbear thus enables the projection of single-cell time-series snapshots to multi-modal and multi-condition views of cellular trajectories.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Genome Sciences, University of Washington
- eScience Institute, University of Washington
| | | | | | - Gang Li
- Department of Genome Sciences, University of Washington
- eScience Institute, University of Washington
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, University of Washington
- Howard Hughes Medical Institute
- Allen Center for Cell Lineage Tracing
| | | | - Xinxian Deng
- Department of Pathology, University of Washington
| | | | - William Stafford Noble
- Department of Genome Sciences, University of Washington
- Paul G. Allen School of Computer Science and Engineering, University of Washington
| |
Collapse
|
5
|
Echaniz-Laguna A, Cauquil C, Chanson JB, Tard C, Guyant-Marechal L, Kuntzer T, Ion IM, Lia AS, Bouligand J, Poinsignon V. EGR2 gene-linked hereditary neuropathies present with a bimodal age distribution at symptoms onset. J Peripher Nerv Syst 2023; 28:359-367. [PMID: 37306961 DOI: 10.1111/jns.12572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mutations in the Early-Growth Response 2 (EGR2) gene cause various hereditary neuropathies, including demyelinating Charcot-Marie-Tooth (CMT) disease type 1D (CMT1D), congenital hypomyelinating neuropathy type 1 (CHN1), Déjerine-Sottas syndrome (DSS), and axonal CMT (CMT2). METHODS In this study, we identified 14 patients with heterozygous EGR2 mutations diagnosed between 2000 and 2022. RESULTS Mean age was 44 years (15-70), 10 patients were female (71%), and mean disease duration was 28 years (1-56). Disease onset was before age 15 years in nine cases (64%), after age 35 years in four cases (28%), and one patient aged 26 years was asymptomatic (7%). All symptomatic patients had pes cavus and distal lower limbs weakness (100%). Distal lower limbs sensory symptoms were observed in 86% of cases, hand atrophy in 71%, and scoliosis in 21%. Nerve conduction studies showed a predominantly demyelinating sensorimotor neuropathy in all cases (100%), and five patients needed walking assistance after a mean disease duration of 50 years (47-56) (36%). Three patients were misdiagnosed as inflammatory neuropathy and treated with immunosuppressive drugs for years before diagnosis was corrected. Two patients presented with an additional neurologic disorder, including Steinert's myotonic dystrophy and spinocerebellar ataxia (14%). Eight EGR2 gene mutations were found, including four previously undescribed. INTERPRETATION Our findings demonstrate EGR2 gene-related hereditary neuropathies are rare and slowly progressive demyelinating neuropathies with two major clinical presentations, including a childhood-onset variant and an adult-onset variant which may mimic inflammatory neuropathy. Our study also expands the genotypic spectrum of EGR2 gene mutations.
Collapse
Affiliation(s)
- Andoni Echaniz-Laguna
- Neurology Department, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France
- French National Reference Centre for Rare Neuropathies (CERAMIC), Le Kremlin-Bicêtre, France
- INSERM U1195, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Cécile Cauquil
- Neurology Department, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France
- French National Reference Centre for Rare Neuropathies (CERAMIC), Le Kremlin-Bicêtre, France
| | - Jean-Baptiste Chanson
- Department of Neurology and Nord/Est/Ile de France Neuromuscular Reference Center, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Céline Tard
- U1172, Department of Neurology, CHU de Lille, Centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, Lille, France
| | | | - Thierry Kuntzer
- Nerve-Muscle unit, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | | | - Anne-Sophie Lia
- Centre Hospitalo-Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, Limoges, France
| | - Jérôme Bouligand
- Department of Molecular Genetics Pharmacogenomics and Hormonology, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France
| | - Vianney Poinsignon
- Department of Molecular Genetics Pharmacogenomics and Hormonology, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
6
|
Woodson CM, Kehn-Hall K. Examining the role of EGR1 during viral infections. Front Microbiol 2022; 13:1020220. [PMID: 36338037 PMCID: PMC9634628 DOI: 10.3389/fmicb.2022.1020220] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 09/06/2023] Open
Abstract
Early growth response 1 (EGR1) is a multifunctional mammalian transcription factor capable of both enhancing and/or inhibiting gene expression. EGR1 can be activated by a wide array of stimuli such as exposure to growth factors, cytokines, apoptosis, and various cellular stress states including viral infections by both DNA and RNA viruses. Following induction, EGR1 functions as a convergence point for numerous specialized signaling cascades and couples short-term extracellular signals to influence transcriptional regulation of genes required to initiate the appropriate biological response. The role of EGR1 has been extensively studied in both physiological and pathological conditions of the adult nervous system where it is readily expressed in various regions of the brain and is critical for neuronal plasticity and the formation of memories. In addition to its involvement in neuropsychiatric disorders, EGR1 has also been widely examined in the field of cancer where it plays paradoxical roles as a tumor suppressor gene or oncogene. EGR1 is also associated with multiple viral infections such as Venezuelan equine encephalitis virus (VEEV), Kaposi's sarcoma-associated herpesvirus (KSHV), herpes simplex virus 1 (HSV-1), human polyomavirus JC virus (JCV), human immunodeficiency virus (HIV), and Epstein-Barr virus (EBV). In this review, we examine EGR1 and its role(s) during viral infections. First, we provide an overview of EGR1 in terms of its structure, other family members, and a brief overview of its roles in non-viral disease states. We also review upstream regulators of EGR1 and downstream factors impacted by EGR1. Then, we extensively examine EGR1 and its roles, both direct and indirect, in regulating replication of DNA and RNA viruses.
Collapse
Affiliation(s)
- Caitlin M. Woodson
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
7
|
Field JT, Gordon JW. BNIP3 and Nix: Atypical regulators of cell fate. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119325. [PMID: 35863652 DOI: 10.1016/j.bbamcr.2022.119325] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022]
Abstract
Since their discovery nearly 25 years ago, the BCL-2 family members BNIP3 and BNIP3L (aka Nix) have been labelled 'atypical'. Originally, this was because BNIP3 and Nix have divergent BH3 domains compared to other BCL-2 proteins. In addition, this atypical BH3 domain is dispensable for inducing cell death, which is also unusual for a 'death gene'. Instead, BNIP3 and Nix utilize a transmembrane domain, which allows for dimerization and insertion into and through organelle membranes to elicit cell death. Much has been learned regarding the biological function of these two atypical death genes, including their role in metabolic stress, where BNIP3 is responsive to hypoxia, while Nix responds variably to hypoxia and is also down-stream of PKC signaling and lipotoxic stress. Interestingly, both BNIP3 and Nix respond to signals related to cell atrophy. In addition, our current view of regulated cell death has expanded to include forms of necrosis such as necroptosis, pyroptosis, ferroptosis, and permeability transition-mediated cell death where BNIP3 and Nix have been shown to play context- and cell-type specific roles. Perhaps the most intriguing discoveries in recent years are the results demonstrating roles for BNIP3 and Nix outside of the purview of death genes, such as regulation of proliferation, differentiation/maturation, mitochondrial dynamics, macro- and selective-autophagy. We provide a historical and unbiased overview of these 'death genes', including new information related to alternative splicing and post-translational modification. In addition, we propose to redefine these two atypical members of the BCL-2 family as versatile regulators of cell fate.
Collapse
Affiliation(s)
- Jared T Field
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Canada; College of Nursing, Rady Faculty of Health Science, University of Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.
| |
Collapse
|
8
|
Functions of block of proliferation 1 during anterior development in Xenopus laevis. PLoS One 2022; 17:e0273507. [PMID: 36007075 PMCID: PMC9409556 DOI: 10.1371/journal.pone.0273507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Block of proliferation 1 (Bop1) is a nucleolar protein known to be necessary for the assembly of the 60S subunit of ribosomes. Here, we show a specific bop1 expression in the developing anterior tissue of the South African clawed frog Xenopus laevis. Morpholino oligonucleotide-mediated knockdown approaches demonstrated that Bop1 is required for proper development of the cranial cartilage, brain, and the eyes. Furthermore, we show that bop1 knockdown leads to impaired retinal lamination with disorganized cell layers. Expression of neural crest-, brain-, and eye-specific marker genes was disturbed. Apoptotic and proliferative processes, which are known to be affected during ribosomal biogenesis defects, are not hindered upon bop1 knockdown. Because early Xenopus embryos contain a large store of maternal ribosomes, we considered if Bop1 might have a role independent of de novo ribosomal biogenesis. At early embryonic stages, pax6 expression was strongly reduced in bop1 morphants and synergy experiments indicate a common signaling pathway of the two molecules, Bop1 and Pax6. Our studies imply a novel function of Bop1 independent of ribosomal biogenesis.
Collapse
|
9
|
Flach H, Lenz A, Pfeffer S, Kühl M, Kühl SJ. Impact of glyphosate-based herbicide on early embryonic development of the amphibian Xenopus laevis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106081. [PMID: 35074614 DOI: 10.1016/j.aquatox.2022.106081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Worldwide, amphibian populations are declining drastically. One reason might be the use of pesticides including herbicides. The herbicide glyphosate is an inhibitor of the 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase of the plant shikimate pathway, preventing the formation of aromatic amino acids and thus inducing plant death. Due to this specific action, GBH are considered nontoxic to non-target organisms. However, GBH impairs embryonic development of chickens, amphibians and fishes. So far, no detailed tissue- and organ-specific analysis of the effects of GBH during development in amphibians has been performed. RESULTS We demonstrated that GBH Roundup® LB plus has a negative effect on embryonic development of the South African clawed frog Xenopus laevis. GBH treatment with sublethal concentrations resulted in a reduced body length and mobility of embryos. Furthermore, incubation with GBH led to smaller eyes, brains and cranial cartilages in comparison to untreated embryos. GBH incubation also resulted in shorter cranial nerves and had an effect on cardiac development including reduced heart rate and atrium size. On a molecular basis, GBH treatment led to reduced expression of marker genes in different tissues and developmental stages. CONCLUSION GBH leads to disturbed embryonic development of Xenopus laevis.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alexander Lenz
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sarah Pfeffer
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
10
|
Li M, Min Q, Banton MC, Dun X. Single-Cell Regulatory Network Inference and Clustering Identifies Cell-Type Specific Expression Pattern of Transcription Factors in Mouse Sciatic Nerve. Front Cell Neurosci 2021; 15:676515. [PMID: 34955748 PMCID: PMC8693779 DOI: 10.3389/fncel.2021.676515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Advances in single-cell RNA sequencing technologies and bioinformatics methods allow for both the identification of cell types in a complex tissue and the large-scale gene expression profiling of various cell types in a mixture. In this report, we analyzed a single-cell RNA sequencing (scRNA-seq) dataset for the intact adult mouse sciatic nerve and examined cell-type specific transcription factor expression and activity during peripheral nerve homeostasis. In total, we identified 238 transcription factors expressed in nine different cell types of intact mouse sciatic nerve. Vascular smooth muscle cells have the lowest number of transcription factors expressed with 17 transcription factors identified. Myelinating Schwann cells (mSCs) have the highest number of transcription factors expressed, with 61 transcription factors identified. We created a cell-type specific expression map for the identified 238 transcription factors. Our results not only provide valuable information about the expression pattern of transcription factors in different cell types of adult peripheral nerves but also facilitate future studies to understand the function of key transcription factors in the peripheral nerve homeostasis and disease.
Collapse
Affiliation(s)
- Mingchao Li
- Department of Neurology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Matthew C Banton
- School of Biomedical Science, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Xinpeng Dun
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China.,The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
11
|
Lupski JR. Clan genomics: From OMIM phenotypic traits to genes and biology. Am J Med Genet A 2021; 185:3294-3313. [PMID: 34405553 PMCID: PMC8530976 DOI: 10.1002/ajmg.a.62434] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Clinical characterization of a patient phenotype has been the quintessential approach for elucidating a differential diagnosis and a hypothesis to explore a potential clinical diagnosis. This has resulted in a language of medicine and a semantic ontology, with both specialty- and subspecialty-specific lexicons, that can be challenging to translate and interpret. There is no 'Rosetta Stone' of clinical medicine such as the genetic code that can assist translation and interpretation of the language of genetics. Nevertheless, the information content embodied within a clinical diagnosis can guide management, therapeutic intervention, and potentially prognostic outlook of disease enabling anticipatory guidance for patients and families. Clinical genomics is now established firmly in medical practice. The granularity and informative content of a personal genome is immense. Yet, we are limited in our utility of much of that personal genome information by the lack of functional characterization of the overwhelming majority of computationally annotated genes in the haploid human reference genome sequence. Whereas DNA and the genetic code have provided a 'Rosetta Stone' to translate genetic variant information, clinical medicine, and clinical genomics provide the context to understand human biology and disease. A path forward will integrate deep phenotyping, such as available in a clinical synopsis in the Online Mendelian Inheritance in Man (OMIM) entries, with personal genome analyses.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
12
|
Noz MP, Ter Telgte A, Wiegertjes K, Tuladhar AM, Kaffa C, Kersten S, Bekkering S, van der Heijden CDCC, Hoischen A, Joosten LAB, Netea MG, Duering M, de Leeuw FE, Riksen NP. Pro-inflammatory Monocyte Phenotype During Acute Progression of Cerebral Small Vessel Disease. Front Cardiovasc Med 2021; 8:639361. [PMID: 34055930 PMCID: PMC8155247 DOI: 10.3389/fcvm.2021.639361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background: The etiology of cerebral small vessel disease (SVD) remains elusive, though evidence is accumulating that inflammation contributes to its pathophysiology. We recently showed retrospectively that pro-inflammatory monocytes are associated with the long-term progression of white matter hyperintensities (WMHs). In this prospective high-frequency imaging study, we hypothesize that the incidence of SVD progression coincides with a pro-inflammatory monocyte phenotype. Methods: Individuals with SVD underwent monthly magnetic resonance imaging (MRI) for 10 consecutive months to detect SVD progression, defined as acute diffusion-weighted imaging-positive (DWI+) lesions, incident microbleeds, incident lacunes, and WMH progression. Circulating inflammatory markers were measured, cytokine production capacity of monocytes was assessed after ex vivo stimulation, and RNA sequencing was performed on isolated monocytes in a subset of participants. Results: 13 out of 35 individuals developed SVD progression (70 ± 6 years, 54% men) based on incident lesions (n = 7) and/or upper quartile WMH progression (n = 9). Circulating E-selectin concentration (p < 0.05) and the cytokine production capacity of interleukin (IL)-1β and IL-6 (p < 0.01) were higher in individuals with SVD progression. Moreover, RNA sequencing revealed a pro-inflammatory monocyte signature including genes involved in myelination, blood–brain barrier, and endothelial–leukocyte interaction. Conclusions: Circulating monocytes of individuals with progressive SVD have an inflammatory phenotype, characterized by an increased cytokine production capacity and a pro-inflammatory transcriptional signature.
Collapse
Affiliation(s)
- Marlies P Noz
- Department of Internal Medicine, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annemieke Ter Telgte
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kim Wiegertjes
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anil M Tuladhar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Charlotte Kaffa
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Simone Kersten
- Department of Internal Medicine, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, Netherlands
| | - Charlotte D C C van der Heijden
- Department of Internal Medicine, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, Netherlands.,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Marco Duering
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.,Institute for Stroke and Dementia Research, University Hospital of Munich, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
13
|
Merritt N, Garcia K, Rajendran D, Lin ZY, Zhang X, Mitchell KA, Borcherding N, Fullenkamp C, Chimenti MS, Gingras AC, Harvey KF, Tanas MR. TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex. eLife 2021; 10:62857. [PMID: 33913810 PMCID: PMC8143797 DOI: 10.7554/elife.62857] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelioid hemangioendothelioma (EHE) is a vascular sarcoma that metastasizes early in its clinical course and lacks an effective medical therapy. The TAZ-CAMTA1 and YAP-TFE3 fusion proteins are chimeric transcription factors and initiating oncogenic drivers of EHE. A combined proteomic/genetic screen in human cell lines identified YEATS2 and ZZZ3, components of the Ada2a-containing histone acetyltransferase (ATAC) complex, as key interactors of both fusion proteins despite the dissimilarity of the C terminal fusion partners CAMTA1 and TFE3. Integrative next-generation sequencing approaches in human and murine cell lines showed that the fusion proteins drive a unique transcriptome by simultaneously hyperactivating a TEAD-based transcriptional program and modulating the chromatin environment via interaction with the ATAC complex. Interaction of the ATAC complex with both fusion proteins indicates that it is a key oncogenic driver and unifying enzymatic therapeutic target for this sarcoma. This study presents an approach to mechanistically dissect how chimeric transcription factors drive the formation of human cancers. The proliferation of human cells is tightly regulated to ensure that enough cells are made to build and repair organs and tissues, while at the same time stopping cells from dividing uncontrollably and damaging the body. To get the right balance, cells rely on physical and chemical cues from their environment that trigger the biochemical signals that regulate two proteins called TAZ and YAP. These proteins control gene activity by regulating the rate at which genes are copied to produce proteins. If this process becomes dysregulated, cells can grow uncontrollably, causing cancer. In cancer cells, it is common to find TAZ and YAP fused to other proteins. In epithelioid hemangioendothelioma, a rare cancer that grows in the blood vessels, cancerous growth can be driven by a version of TAZ fused to the protein CAMTA1, or a version of YAP fused to the protein TFE3. While the role of TAZ and YAP in promoting gene activity is known, it is unclear how CAMTA1 and TFE3 contribute to cell growth becoming dysregulated. Merritt, Garcia et al. studied sarcoma cell lines to show that these two fusion proteins, TAZ-CAMTA1 and YAP-TFE3, change the pattern of gene activity seen in the cells compared to TAZ or YAP alone. An analysis of molecules that interact with the two fusion proteins identified a complex called ATAC as the cause of these changes. This complex adds chemical markers to DNA-packaging proteins, which control which genes are available for activation. The fusion proteins combine the ability of TAZ and YAP to control gene activity and the ability of CAMTA1 and TFE3 to make DNA more accessible, allowing the fusion proteins to drive uncontrolled cancerous growth. Similar TAZ and YAP fusion proteins have been found in other cancers, which can activate genes and potentially alter DNA packaging. Targeting drug development efforts at the proteins that complex with TAZ and YAP fusion proteins may lead to new therapies.
Collapse
Affiliation(s)
- Nicole Merritt
- Department of Pathology, University of Iowa, Iowa City, United States
| | - Keith Garcia
- Department of Pathology, University of Iowa, Iowa City, United States.,Cancer Biology Graduate Program, University of Iowa, Iowa City, United States
| | - Dushyandi Rajendran
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | | | - Katrina A Mitchell
- Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University, St. Louis, United States
| | | | - Michael S Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, United States.,Cancer Biology Graduate Program, University of Iowa, Iowa City, United States.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, United States.,Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, United States
| |
Collapse
|
14
|
Han L, Huang Y, Nie Y, Li J, Chen G, Tu S, Shen P, Chen C. A novel PMP22 insertion mutation causing Charcot-Marie-Tooth disease type 3: A case report. Medicine (Baltimore) 2021; 100:e25163. [PMID: 33726003 PMCID: PMC7982204 DOI: 10.1097/md.0000000000025163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Charcot-Marie-Tooth disease (CMT) is a group of hereditary neuropathies with clinical features of muscle atrophy, sensory loss, and foot deformities. CMT is related to a number of genes, such as peripheral myelin protein 22 gene (PMP22). Missense mutations, small deletion mutations, and duplications of PMP22 are common in CMT patients, but few insertion mutation cases of PMP22 have been reported. PATIENT CONCERNS A 26-year-old male patient with the complaint of general weakness, peroneal atrophy, and deformities in the extremities visited our hospital. The patient was born with bilateral thumbs and feet dystonia. Additionally, delayed feet arch development and delayed walking was observed when he was a child. DIAGNOSIS Using whole-exome sequencing and electrophysiological test, we identified a novel insertion mutation of PMP22 (NM_153322, c.54_55insGTGCTG, p.(L19delinsVLL)) in a 26-year-old male patient with peroneal atrophy and nerve conduction was not elicited in electromyography (EMG) study. The Protein Variation Effect Analyzer (PROVEAN) program analysis predicted that the variant is likely to be "deleterious." SWISS-MODEL program predicted that alpha helix in original location was disrupted by inserted 6 bases, which may account for the occurrence of CMT3. INTERVENTIONS The patient received symptomatic and supportive treatments, and routine rehabilitation exercises during hospitalization. OUTCOMES The condition of the patient was improved, but the disease could not be cured. At 1- and 3-months follow-up, manifestations of the patient were unchanged, and he could take care of himself. LESSONS Our findings link a novel PMP22 mutation with a clinical diagnosis of CMT3. The link between gene variation and CMT phenotype may help to reveal the structure and function of PMP22 protein and the pathogenesis of CMT. This study adds further support to the heterogeneity of PMP22 related CMT and provides solid functional evidence for the pathogenicity of the p.(L19delinsVLL) PMP22 variant. Moreover, with the development of high-throughput sequencing technology, the combination of next-generation sequencing (NGS) and conventional Sanger sequencing is becoming one of the comprehensive, inexpensive, and convenient tools for genetic diagnosis of CMT.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan
| | - Yanjing Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan
| | - Yuan Nie
- Rehabilitation Center, Qijiang District Hospital of Traditional Chinese Medicine, 50 Dashi Road of Wenlong Avenue, Chongqing
| | - Jing Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan
| | - Gang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan
| | - Pan Shen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan
| | - Chao Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| |
Collapse
|
15
|
Mukherjee D, Gonzales BJ, Ashwal-Fluss R, Turm H, Groysman M, Citri A. Egr2 induction in spiny projection neurons of the ventrolateral striatum contributes to cocaine place preference in mice. eLife 2021; 10:65228. [PMID: 33724178 PMCID: PMC8057818 DOI: 10.7554/elife.65228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Drug addiction develops due to brain-wide plasticity within neuronal ensembles, mediated by dynamic gene expression. Though the most common approach to identify such ensembles relies on immediate early gene expression, little is known of how the activity of these genes is linked to modified behavior observed following repeated drug exposure. To address this gap, we present a broad-to-specific approach, beginning with a comprehensive investigation of brain-wide cocaine-driven gene expression, through the description of dynamic spatial patterns of gene induction in subregions of the striatum, and finally address functionality of region-specific gene induction in the development of cocaine preference. Our findings reveal differential cell-type specific dynamic transcriptional recruitment patterns within two subdomains of the dorsal striatum following repeated cocaine exposure. Furthermore, we demonstrate that induction of the IEG Egr2 in the ventrolateral striatum, as well as the cells within which it is expressed, are required for the development of cocaine seeking. The human brain is ever changing, constantly rewiring itself in response to new experiences, knowledge or information from the environment. Addictive drugs such as cocaine can hijack the genetic mechanisms responsible for this plasticity, creating dangerous, obsessive drug-seeking and consuming behaviors. Cocaine-induced plasticity is difficult to apprehend, however, as brain regions or even cell populations can react differently to the compound. For instance, sub-regions in the striatum – the brain area that responds to rewards and helps to plan movement – show distinct responses during progressive exposure to cocaine. And while researchers know that the drug immediately changes how neurons switch certain genes on and off, it is still unclear how these genetic modifications later affect behavior. Mukherjee, Gonzales et al. explored these questions at different scales, first focusing on how progressive cocaine exposure changed the way various gene programs were activated across the entire brain. This revealed that programs in the striatum were the most affected by the drug. Examining this region more closely showed that cocaine switches on genes in specific ‘spiny projection’ neuron populations, depending on where these cells are located and the drug history of the mouse. Finally, Mukherjee, Gonzales et al. used genetically modified mice to piece together cocaine exposure, genetic changes and modifications in behavior. These experiments revealed that the drive to seek cocaine depended on activation of the Egr2 gene in populations of spiny projection neurons in a specific sub-region of the striatum. The gene, which codes for a protein that regulates how genes are switched on and off, was itself strongly activated by cocaine intake. Cocaine addiction can have devastating consequences for individuals. Grasping how this drug alters the brain could pave the way for new treatments, while also providing information on the basic mechanisms underlying brain plasticity.
Collapse
Affiliation(s)
- Diptendu Mukherjee
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ben Jerry Gonzales
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Ashwal-Fluss
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Hagit Turm
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Groysman
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Program in Child and Brain Development, Canadian Institute for Advanced Research, MaRS Centre, Toronto, Canada
| |
Collapse
|
16
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
17
|
Jeanette H, Marziali LN, Bhatia U, Hellman A, Herron J, Kopec AM, Feltri ML, Poitelon Y, Belin S. YAP and TAZ regulate Schwann cell proliferation and differentiation during peripheral nerve regeneration. Glia 2020; 69:1061-1074. [PMID: 33336855 PMCID: PMC7898398 DOI: 10.1002/glia.23949] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
YAP and TAZ are effectors of the Hippo pathway that controls multicellular development by integrating chemical and mechanical signals. Peripheral nervous system development depends on the Hippo pathway. We previously showed that loss of YAP and TAZ impairs the development of peripheral nerve as well as Schwann cell myelination. The role of the Hippo pathway in peripheral nerve regeneration has just started to be explored. After injury, Schwann cells adopt new identities to promote regeneration by converting to a repair‐promoting phenotype. While the reprogramming of Schwann cells to repair cells has been well characterized, the maintenance of such repair phenotype cannot be sustained for a very long period, which limits nerve repair in human. First, we show that short or long‐term myelin maintenance is not affected by defect in YAP and TAZ expression. Using crush nerve injury and conditional mutagenesis in mice, we also show that YAP and TAZ are regulators of repair Schwann cell proliferation and differentiation. We found that YAP and TAZ are required in repair Schwann cells for their redifferentiation into myelinating Schwann cell following crush injury. In this present study, we describe how the Hippo pathway and YAP and TAZ regulate remyelination over time during peripheral nerve regeneration.
Collapse
Affiliation(s)
- Haley Jeanette
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Leandro N Marziali
- Department of Biochemistry, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Urja Bhatia
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Abigail Hellman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Jacob Herron
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Maria Laura Feltri
- Department of Biochemistry, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.,Department of Neurology, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
18
|
Lupo V, Won S, Frasquet M, Schnitzler MS, Komath SS, Pascual-Pascual SI, Espinós C, Svaren J, Sevilla T. Bi-allelic mutations in EGR2 cause autosomal recessive demyelinating neuropathy by disrupting the EGR2-NAB complex. Eur J Neurol 2020; 27:2662-2667. [PMID: 32896048 DOI: 10.1111/ene.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Mutations in the early growth response 2 gene (EGR2) cause demyelinating, but also axonal, neuropathies differing in severity and age of onset. Except for one family, all reported cases have autosomal dominant inheritance and mutations are localized within the three zinc finger (ZNF) DNA-binding domain. The aim of this study was to provide a clinical and molecular analysis of a novel recessive mutation in EGR2. METHODS Clinical and electrophysiological assessments of three affected patients, from a consanguineous family, were performed. Genetic analyses of EGR2 were carried out by Sanger sequencing. Functional effects of clinical recessive mutations were assessed using a mammalian two-hybrid assay. RESULTS A novel missense mutation (c.791C>T; p.P264L) in the homozygous state was detected outside the ZNF domains of the EGR2 gene. Three affected siblings presented with distal demyelinating polyneuropathy with severe sensory loss, progressive thoracolumbar scoliosis and trigeminal neuralgia. Respiratory compromise and cranial nerve dysfunction were also found. Our data indicate that the p.P264L mutation prevents interaction of EGR2 transcription factor with NAB corepressors, suggesting that a disruption of the NAB-EGR2 protein interactions can result in dramatic neuropathy. CONCLUSION Mutations in, or next to, the R1 domain of EGR2 should be considered with extreme caution for genetic counseling, since these could cause a severe neuropathy with an autosomal recessive manner of transmission.
Collapse
Affiliation(s)
- V Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Rare Diseases Joint Units, IIS La Fe-CIPF, Valencia, Spain
| | - S Won
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - M Frasquet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - M S Schnitzler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - S S Komath
- Jawaharlal Nehru University, New Delhi, India
| | | | - C Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Rare Diseases Joint Units, IIS La Fe-CIPF, Valencia, Spain
| | - J Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - T Sevilla
- Rare Diseases Joint Units, IIS La Fe-CIPF, Valencia, Spain
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| |
Collapse
|
19
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
20
|
Kerr J. Early Growth Response Gene Upregulation in Epstein-Barr Virus (EBV)-Associated Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Biomolecules 2020; 10:biom10111484. [PMID: 33114612 PMCID: PMC7692278 DOI: 10.3390/biom10111484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic multisystem disease exhibiting a variety of symptoms and affecting multiple systems. Psychological stress and virus infection are important. Virus infection may trigger the onset, and psychological stress may reactivate latent viruses, for example, Epstein-Barr virus (EBV). It has recently been reported that EBV induced gene 2 (EBI2) was upregulated in blood in a subset of ME/CFS patients. The purpose of this study was to determine whether the pattern of expression of early growth response (EGR) genes, important in EBV infection and which have also been found to be upregulated in blood of ME/CFS patients, paralleled that of EBI2. EGR gene upregulation was found to be closely associated with that of EBI2 in ME/CFS, providing further evidence in support of ongoing EBV reactivation in a subset of ME/CFS patients. EGR1, EGR2, and EGR3 are part of the cellular immediate early gene response and are important in EBV transcription, reactivation, and B lymphocyte transformation. EGR1 is a regulator of immune function, and is important in vascular homeostasis, psychological stress, connective tissue disease, mitochondrial function, all of which are relevant to ME/CFS. EGR2 and EGR3 are negative regulators of T lymphocytes and are important in systemic autoimmunity.
Collapse
Affiliation(s)
- Jonathan Kerr
- Department of Microbiology, Norfolk & Norwich University Hospital (NNUH), Colney Lane, Norwich, Norfolk NR4 7UY, UK
| |
Collapse
|
21
|
Taefehshokr N, Miao T, Symonds ALJ, Wang P, Li S. Egr2 regulation in T cells is mediated through IFNγ/STAT1 and IL-6/STAT3 signalling pathway. Pathol Res Pract 2020; 216:153259. [PMID: 33099163 DOI: 10.1016/j.prp.2020.153259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022]
Abstract
The immune system is a host defence system to protect the body against foreign invaders. T cells are one of the major components of the immune cells and they are essential for immune responses. Early growth response gene (Egr2) in T cells is important for maintaining immune functions of T cells by promoting adaptive immune responses while controlling inflammation and preventing the development of autoimmune diseases. A study by our group demonstrated the function of Egr2 as a checkpoint regulator controlling the proliferation and differentiation of the T cells. In association, Egr2 and 3 play indispensable role in T cell immune response, but the mechanism regulating Egr2 expression in T cells is still unclear. In this study, we analysed the Egr2 expression mechanism in CD4 T cells under antigen stimulation. We found that Egr2 expression is regulated by different cytokines including IL-2 and IL-4, which increased Egr2 induction in activated T cells. However, inflammatory cytokines, including INFγ and IL-6, suppressed Egr2 expression through STAT1 and STAT3 signalling pathway respectively, highlighting a mechanism for tolergenic immune response on T cells.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Division of Biosciences, Department of Life Sciences, Brunel University London, Kingston Lane, UB8 3PH, UK.
| | - Tizong Miao
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, LONDON E1 2AD, UK
| | - Alistair L J Symonds
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, LONDON E1 2AD, UK
| | - Ping Wang
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, LONDON E1 2AD, UK
| | - Suling Li
- Division of Biosciences, Department of Life Sciences, Brunel University London, Kingston Lane, UB8 3PH, UK
| |
Collapse
|
22
|
Yao Y, Wang C. Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine. NPJ Regen Med 2020; 5:14. [PMID: 32821434 PMCID: PMC7395755 DOI: 10.1038/s41536-020-00099-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cell dedifferentiation is the process by which cells grow reversely from a partially or terminally differentiated stage to a less differentiated stage within their own lineage. This extraordinary phenomenon, observed in many physiological processes, inspires the possibility of developing new therapeutic approaches to regenerate damaged tissue and organs. Meanwhile, studies also indicate that dedifferentiation can cause pathological changes. In this review, we compile the literature describing recent advances in research on dedifferentiation, with an emphasis on tissue-specific findings, cellular mechanisms, and potential therapeutic applications from an engineering perspective. A critical understanding of such knowledge may provide fresh insights for designing new therapeutic strategies for regenerative medicine based on the principle of cell dedifferentiation.
Collapse
Affiliation(s)
- Yongchang Yao
- Department of Joint Surgery, The First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China.,Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
23
|
CNTNAP1 Mutations and Their Clinical Presentations: New Case Report and Systematic Review. Case Rep Med 2020; 2020:8795607. [PMID: 32328110 PMCID: PMC7174947 DOI: 10.1155/2020/8795607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 01/11/2023] Open
Abstract
Lethal congenital contracture syndrome type 7 (LCCS7) and congenital hypomyelinating neuropathy type 3 (CHN3) are rare autosomal recessive diseases, characterized by severe neonatal hypotonia, polyhydramnios, arthrogryposis, facial diplegia, and severe motor paralysis, leading to death in early infancy. They are related to mutations in the CNTNAP1 (contactin associated protein 1) gene, playing an important role in myelination. Recent studies have shown that both diseases could present with a wide phenotypic spectrum, with promising survival up to early childhood. We report on a 7-year-old boy from a nonconsanguineous Lebanese family presenting with neonatal hypotonia, respiratory distress, and arthrogryposis. Molecular analysis revealed the presence of a pathogenic variant in the CNTNAP1 gene leading to a premature stop codon: NM_003632.2:c.3361C>T p.(Arg1121∗). A review of the literature is discussed.
Collapse
|
24
|
Chen QY, Shen S, Sun H, Wu F, Kluz T, Kibriya MG, Chen Y, Ahsan H, Costa M. PBMC gene expression profiles of female Bangladeshi adults chronically exposed to arsenic-contaminated drinking water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113672. [PMID: 31918125 PMCID: PMC11062206 DOI: 10.1016/j.envpol.2019.113672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/06/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Arsenic, a class I human carcinogen, is ubiquitously found throughout the environment and around the globe, posing a great public health concern. Notably, Bangladesh and regions of West Bengal have been found to have high levels (0.5-4600 μg/L) of arsenic drinking water contamination, and approximately 50 million of the world's 200 million people chronically exposed to arsenic in Bangladesh alone. This study was carried out to examine genome-wide gene expression changes in individuals chronically exposed to arsenic-contaminated drinking water. Our study population includes twenty-nine Bangladeshi female participants with urinary arsenic levels ranging from 22.32 to 1828.12 μg/g creatinine. RNA extracted from peripheral blood mononuclear cells (PBMCs) were evaluated using RNA-Sequencing analysis. Our results indicate that a total of 1,054 genes were significantly associated with increasing urinary arsenic levels (FDR p < 0.05), which include 418 down-regulated and 636 up-regulated genes. Further Ingenuity Pathway Analysis revealed potential target genes (DAPK1, EGR2, APP), microRNAs (miR-155, -338, -210) and pathways (NOTCH signaling pathway) related to arsenic carcinogenesis. The selection of female-only participants provides a homogenous study population since arsenic has significant sex dependent effects, and the wide exposure range provides new insight for key gene expression changes that correlate with increasing urinary arsenic levels.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, 10010, New York, NY, USA.
| | - Steven Shen
- Institute of Health Informatics, University of Minnesota, 55455, Minneapolis, MN, USA
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, 10010, New York, NY, USA
| | - Fen Wu
- Department of Population Health and Environmental Medicine, 10016, New York University School of Medicine, New York, NY, USA
| | - Thomas Kluz
- Department of Environmental Medicine, New York University School of Medicine, 10010, New York, NY, USA
| | - Muhammad G Kibriya
- Institute for Population and Precision Health, Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Yu Chen
- Department of Population Health and Environmental Medicine, 10016, New York University School of Medicine, New York, NY, USA
| | - Habibul Ahsan
- Institute for Population and Precision Health, Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, 10010, New York, NY, USA.
| |
Collapse
|
25
|
Banerjee J, Allaway RJ, Taroni JN, Baker A, Zhang X, Moon CI, Pratilas CA, Blakeley JO, Guinney J, Hirbe A, Greene CS, Gosline SJC. Integrative Analysis Identifies Candidate Tumor Microenvironment and Intracellular Signaling Pathways that Define Tumor Heterogeneity in NF1. Genes (Basel) 2020; 11:E226. [PMID: 32098059 PMCID: PMC7073563 DOI: 10.3390/genes11020226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a monogenic syndrome that gives rise to numerous symptoms including cognitive impairment, skeletal abnormalities, and growth of benign nerve sheath tumors. Nearly all NF1 patients develop cutaneous neurofibromas (cNFs), which occur on the skin surface, whereas 40-60% of patients develop plexiform neurofibromas (pNFs), which are deeply embedded in the peripheral nerves. Patients with pNFs have a ~10% lifetime chance of these tumors becoming malignant peripheral nerve sheath tumors (MPNSTs). These tumors have a severe prognosis and few treatment options other than surgery. Given the lack of therapeutic options available to patients with these tumors, identification of druggable pathways or other key molecular features could aid ongoing therapeutic discovery studies. In this work, we used statistical and machine learning methods to analyze 77 NF1 tumors with genomic data to characterize key signaling pathways that distinguish these tumors and identify candidates for drug development. We identified subsets of latent gene expression variables that may be important in the identification and etiology of cNFs, pNFs, other neurofibromas, and MPNSTs. Furthermore, we characterized the association between these latent variables and genetic variants, immune deconvolution predictions, and protein activity predictions.
Collapse
Affiliation(s)
- Jineta Banerjee
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
| | - Robert J Allaway
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
| | - Jaclyn N Taroni
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, PA 19102, USA
| | - Aaron Baker
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Xiaochun Zhang
- Division of Oncology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Chang In Moon
- Division of Oncology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jaishri O Blakeley
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Neurology, Neurosurgery and Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Justin Guinney
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
| | - Angela Hirbe
- Division of Oncology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Casey S Greene
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, PA 19102, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara JC Gosline
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
| |
Collapse
|
26
|
A de novo EGR2 variant, c.1232A > G p.Asp411Gly, causes severe early-onset Charcot-Marie-Tooth Neuropathy Type 3 (Dejerine-Sottas Neuropathy). Sci Rep 2019; 9:19336. [PMID: 31852952 PMCID: PMC6920433 DOI: 10.1038/s41598-019-55875-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/03/2019] [Indexed: 01/04/2023] Open
Abstract
EGR2 (early growth response 2) is a crucial transcription factor for the myelination of the peripheral nervous system. Mutations in EGR2 are reported to cause a heterogenous spectrum of peripheral neuropathy with wide variation in both severity and age of onset, including demyelinating and axonal forms of Charcot-Marie Tooth (CMT) neuropathy, Dejerine-Sottas neuropathy (DSN/CMT3), and congenital hypomyelinating neuropathy (CHN/CMT4E). Here we report a sporadic de novo EGR2 variant, c.1232A > G (NM_000399.5), causing a missense p.Asp411Gly substitution and discovered through whole-exome sequencing (WES) of the proband. The resultant phenotype is severe demyelinating DSN with onset at two years of age, confirmed through nerve biopsy and electrophysiological examination. In silico analyses showed that the Asp411 residue is evolutionarily conserved, and the p.Asp411Gly variant was predicted to be deleterious by multiple in silico analyses. A luciferase-based reporter assay confirmed the reduced ability of p.Asp411Gly EGR2 to activate a PMP22 (peripheral myelin protein 22) enhancer element compared to wild-type EGR2. This study adds further support to the heterogeneity of EGR2-related peripheral neuropathies and provides strong functional evidence for the pathogenicity of the p.Asp411Gly EGR2 variant.
Collapse
|
27
|
Chen G, Luo X, Wang W, Wang Y, Zhu F, Wang W. Interleukin-1β Promotes Schwann Cells De-Differentiation in Wallerian Degeneration via the c-JUN/AP-1 Pathway. Front Cell Neurosci 2019; 13:304. [PMID: 31338026 PMCID: PMC6629865 DOI: 10.3389/fncel.2019.00304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022] Open
Abstract
Schwann cells (SCs) de-differentiate in Wallerian degeneration (WD) following nerve injury and, by doing so, can actively promote nerve repair and functional recovery. An innate-immune response is an important component of the complex of events referred to as WD. Damaged peripheral nervous system SCs produce IL-1β and other inflammatory cytokines. We hypothesized that, in addition to a role in immune responses, IL-1β participates in de-differentiation and proliferation of SCs. qPCR and ELISA demonstrated that expression of IL-1β mRNAs and protein increased after nerve injury. Immunofluorescent staining and western blotting demonstrated that expression of the p75 neurotrophin receptor (p75NTR) was significantly increased and levels of myelin protein zero (MPZ) were significantly decreased after IL-1β exposure compared with control groups in vitro WD. Additionally, qPCR demonstrated that IL-1β elevated expression of the de-differentiation gene p75NTR and decreased expression of myelination locus MPZ and promoted SCs de-differentiation. Furthermore, immunofluorescent staining, western blotting, qPCR and ELISA revealed that IL-1β promoted c-JUN expression and activation of AP-1 activity of SCs in an in vitro WD model. Finally, Immunofluorescent staining illustrated that IL-1β elevated expression of Ki67 in SCs nuclei, the apoptosis of SCs were detected by TUNEL. SCs of WD produce IL-1β which promotes SCs de-differentiation and proliferation.
Collapse
Affiliation(s)
- Gang Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohe Luo
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimei Wang
- Department of Plastic Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Zhu
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Pehlivan D, Bayram Y, Gunes N, Coban Akdemir Z, Shukla A, Bierhals T, Tabakci B, Sahin Y, Gezdirici A, Fatih JM, Gulec EY, Yesil G, Punetha J, Ocak Z, Grochowski CM, Karaca E, Albayrak HM, Radhakrishnan P, Erdem HB, Sahin I, Yildirim T, Bayhan IA, Bursali A, Elmas M, Yuksel Z, Ozdemir O, Silan F, Yildiz O, Yesilbas O, Isikay S, Balta B, Gu S, Jhangiani SN, Doddapaneni H, Hu J, Muzny DM, Boerwinkle E, Gibbs RA, Tsiakas K, Hempel M, Girisha KM, Gul D, Posey JE, Elcioglu NH, Tuysuz B, Lupski JR. The Genomics of Arthrogryposis, a Complex Trait: Candidate Genes and Further Evidence for Oligogenic Inheritance. Am J Hum Genet 2019; 105:132-150. [PMID: 31230720 PMCID: PMC6612529 DOI: 10.1016/j.ajhg.2019.05.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/21/2019] [Indexed: 01/29/2023] Open
Abstract
Arthrogryposis is a clinical finding that is present either as a feature of a neuromuscular condition or as part of a systemic disease in over 400 Mendelian conditions. The underlying molecular etiology remains largely unknown because of genetic and phenotypic heterogeneity. We applied exome sequencing (ES) in a cohort of 89 families with the clinical sign of arthrogryposis. Additional molecular techniques including array comparative genomic hybridization (aCGH) and Droplet Digital PCR (ddPCR) were performed on individuals who were found to have pathogenic copy number variants (CNVs) and mosaicism, respectively. A molecular diagnosis was established in 65.2% (58/89) of families. Eleven out of 58 families (19.0%) showed evidence for potential involvement of pathogenic variation at more than one locus, probably driven by absence of heterozygosity (AOH) burden due to identity-by-descent (IBD). RYR3, MYOM2, ERGIC1, SPTBN4, and ABCA7 represent genes, identified in two or more families, for which mutations are probably causative for arthrogryposis. We also provide evidence for the involvement of CNVs in the etiology of arthrogryposis and for the idea that both mono-allelic and bi-allelic variants in the same gene cause either similar or distinct syndromes. We were able to identify the molecular etiology in nine out of 20 families who underwent reanalysis. In summary, our data from family-based ES further delineate the molecular etiology of arthrogryposis, yielded several candidate disease-associated genes, and provide evidence for mutational burden in a biological pathway or network. Our study also highlights the importance of reanalysis of individuals with unsolved diagnoses in conjunction with sequencing extended family members.
Collapse
Affiliation(s)
- Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nilay Gunes
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa Medical Faculty, Istanbul 34096, Turkey
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Burcu Tabakci
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul 34854, Turkey
| | - Yavuz Sahin
- Department of Medical Genetics, Necip Fazıl City Hospital, Kahramanmaras 46050, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | - Gozde Yesil
- Department of Medical Genetics, Bezmi Alem Vakif University Faculty of Medicine, Istanbul 34093, Turkey
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Ocak
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | | | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hatice Mutlu Albayrak
- Department of Pediatrics, Division of Pediatric Genetics, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55270, Turkey
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Haktan Bagis Erdem
- Department of Medical Genetics, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06110, Turkey
| | - Ibrahim Sahin
- Department of Medical Genetics, University of Erzurum, School of Medicine, Erzurum 25240, Turkey
| | - Timur Yildirim
- Department of Orthopedics and Traumatology, Baltalimani Bone Diseases Training and Research Hospital, Istanbul 34470, Turkey
| | - Ilhan A Bayhan
- Department of Orthopedics and Traumatology, Baltalimani Bone Diseases Training and Research Hospital, Istanbul 34470, Turkey
| | - Aysegul Bursali
- Department of Orthopedics and Traumatology, Baltalimani Bone Diseases Training and Research Hospital, Istanbul 34470, Turkey
| | - Muhsin Elmas
- Department of Medical Genetics, Afyon Kocatepe University, School of Medicine, Afyon 03218, Turkey
| | - Zafer Yuksel
- Medical Genetics Clinic, Mersin Women and Children Hospital, Mersin 33330, Turkey
| | - Ozturk Ozdemir
- Department of Medical Genetics, Faculty of Medicine, Onsekiz Mart University, Canakkale 17000, Turkey
| | - Fatma Silan
- Department of Medical Genetics, Faculty of Medicine, Onsekiz Mart University, Canakkale 17000, Turkey
| | - Onur Yildiz
- Department of Medical Genetics, Faculty of Medicine, Onsekiz Mart University, Canakkale 17000, Turkey
| | - Osman Yesilbas
- Division of Critical Care Medicine, Department of Pediatrics, University of Health Sciences, Van Training and Research Hospital, Van 65130, Turkey
| | - Sedat Isikay
- Department of Physiotherapy and Rehabilitation, Hasan Kalyoncu University, School of Health Sciences, Gaziantep 27000, Turkey
| | - Burhan Balta
- Department of Medical Genetics, Kayseri Training and Research Hospital, Kayseri 38080, Turkey
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Human Genetics Center, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Konstantinos Tsiakas
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Davut Gul
- Department of Medical Genetics, Gulhane Military Medical School, Ankara 06010, Turkey
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nursel H Elcioglu
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul 34854, Turkey; Eastern Mediterranean University School of Medicine, Cyprus, Mersin 10, Turkey
| | - Beyhan Tuysuz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa Medical Faculty, Istanbul 34096, Turkey
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Nam SH, Choi BO. Clinical and genetic aspects of Charcot-Marie-Tooth disease subtypes. PRECISION AND FUTURE MEDICINE 2019. [DOI: 10.23838/pfm.2018.00163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Lesmana H, Vawter Lee M, Hosseini SA, Burrow TA, Hallinan B, Bove K, Schapiro M, Hopkin RJ. CNTNAP1-Related Congenital Hypomyelinating Neuropathy. Pediatr Neurol 2019; 93:43-49. [PMID: 30686628 DOI: 10.1016/j.pediatrneurol.2018.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/13/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Congenital hypomyelinating neuropathy is a rare form of hereditary peripheral neuropathy characterized by nonprogressive weakness, areflexia, hypotonia, severely reduced nerve conduction velocities, and hypomyelination. Mutations in contactin-associated protein 1 (CNTNAP1) were recently described as a cause of congenital hypomyelinating neuropathy. CNTNAP1-associated congenital hypomyelinating neuropathy is characterized by severe hypotonia, multiple distal joint contractures, and high mortality in the first few months of life. METHODS Whole-exome sequencing was performed in two siblings with congenital hypotonia. Detailed phenotyping data were compared with previously reported cases. RESULTS A novel, heterozygous compound mutation of CNTNAP1 was identified in both siblings. We also reviewed 17 patients harboring 10 distinct mutations from previously published studies. All patients presented with severe hypotonia, respiratory distress, and multiple cranial nerve palsies at birth. Six of 19 patients survived beyond infancy and required chronic mechanical ventilation. Seizures were common in the surviving patients. CONCLUSIONS These findings suggest that CNTNAP1-related congenital hypomyelinating neuropathy is a distinct form of hereditary neuropathy that affects both the central and peripheral nervous systems with no clear phenotype-genotype correlation. Our findings also indicate that arthrogryposis multiplex congenita and early lethality are not universal outcomes for patients with congenital hypomyelinating neuropathy.
Collapse
Affiliation(s)
- Harry Lesmana
- Department of Hematology, St. Jude Children's Research Hospital, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Oncology, St. Jude Children's Research Hospital, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Marissa Vawter Lee
- Division of Neurology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | | | - T Andrew Burrow
- Section of Genetics and Metabolism, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Barbara Hallinan
- Division of Neurology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Kevin Bove
- Division of Pathology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio; Division of Laboratory Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Mark Schapiro
- Division of Neurology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio.
| |
Collapse
|
31
|
Tozza S, Magri S, Pennisi EM, Schirinzi E, Pisciotta C, Balistreri F, Severi D, Ricci G, Siciliano G, Taroni F, Santoro L, Manganelli F. A novel family with axonal Charcot-Marie-Tooth disease caused by a mutation in the EGR2 gene. J Peripher Nerv Syst 2019; 24:219-223. [PMID: 30843326 DOI: 10.1111/jns.12314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/17/2019] [Accepted: 03/04/2019] [Indexed: 11/30/2022]
Abstract
EGR2 (Early Growth Response 2) is one of the most important transcription factors involved in myelination in the peripheral nervous system. EGR2 mutations typically cause different forms of demyelinating neuropathy, that is, Charcot-Marie-Tooth type 1D (CMT1D), Dejerine-Sottas Syndrome (DSS), and Congenital Hypomyelinating Neuropathy (CHN). However, the EGR2 gene has been recently associated with an axonal phenotype (CMT2) in a large CMT family. Here, we report another CMT family exhibiting an axonal phenotype associated with a missense change (c.1235A>G, p.E412G) in the EGR2 gene. Neurological evaluation of five affected members of the family showed a classical CMT phenotype including distal muscle atrophy and weakness, absence of deep tendon reflexes, pes cavus, and scoliosis. Electrophysiological examination was consistent with a motor-sensory axonal neuropathy. Sural nerve biopsy performed in one patient showed a loss of myelinated and unmyelinated nerve fibers without de-remyelinating signs and onion bulbs. This study confirms the phenotypical heterogeneity of EGR2-related neuropathy, indicating a role for EGR2 in primary axonal degeneration.
Collapse
Affiliation(s)
- Stefano Tozza
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Stefania Magri
- Department of Diagnostics and Technology, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Erika Schirinzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Pisciotta
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Francesca Balistreri
- Department of Diagnostics and Technology, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Severi
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Franco Taroni
- Department of Diagnostics and Technology, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lucio Santoro
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Fiore Manganelli
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
32
|
Murakami T, Sunada Y. Schwann Cell and the Pathogenesis of Charcot–Marie–Tooth Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:301-321. [DOI: 10.1007/978-981-32-9636-7_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Fontés M. Charcot Marie Tooth Disease. A Single Disorder? Int J Mol Sci 2018; 19:ijms19123807. [PMID: 30501086 PMCID: PMC6321061 DOI: 10.3390/ijms19123807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 11/22/2022] Open
Affiliation(s)
- Michel Fontés
- C2VN, AIX Marseille Université, INRA 1260-INSERM 1263, 13007 Marseille, France.
| |
Collapse
|
34
|
LaVallee J, Grant T, D'Angelo-Early S, Kletsov S, Berry NA, Abt KM, Bloch CP, Muscedere ML, Adams KW. Refining the nuclear localization signal within the Egr transcriptional coregulator NAB2. FEBS Lett 2018; 593:107-118. [PMID: 30411343 DOI: 10.1002/1873-3468.13288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/09/2023]
Abstract
NAB1 and 2 are coregulators for early growth response (Egr) transcription factors. The NAB1 nuclear localization signal (NLS) was previously described as a bipartite NLS of sequence R(X2 )K(X11 )KRXK. The sequence is conserved in NAB2 as K(X2 )R(X11 )KKXK; however, whether it functions as the NAB2 NLS has not been tested. We show that the KKXK motif in NAB2 is necessary and sufficient to mediate nuclear localization. Mutation of the KKXK motif to AAXA causes cytoplasmic localization of NAB2, while Lys/Arg-to-Ala mutations of the upstream K(X2 )R motif have no effect. Fusion of the KKXK motif to cytoplasmic protein eIF2Bε causes nuclear localization. Altogether, this study refines our knowledge of the NAB2 NLS, demonstrating that KKXK343-346 is necessary and sufficient for nuclear localization.
Collapse
Affiliation(s)
- Jacquelyn LaVallee
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Terrain Grant
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | | | - Sergey Kletsov
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Nicole A Berry
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Kimberly M Abt
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Christopher P Bloch
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | | | - Kenneth W Adams
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| |
Collapse
|
35
|
Adam S, Coetzee M, Honey EM. Pena-Shokeir syndrome: current management strategies and palliative care. APPLICATION OF CLINICAL GENETICS 2018; 11:111-120. [PMID: 30498368 PMCID: PMC6207248 DOI: 10.2147/tacg.s154643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pena-Shokeir syndrome (PSS) type 1, also known as fetal akinesia deformation sequence, is a rare genetic syndrome that almost always results in intrauterine or early neonatal death. It is characterized by markedly decreased fetal movements, intrauterine growth restriction, joint contractures, short umbilical cord, and features of pulmonary hypoplasia. Antenatal diagnosis can be difficult. Ultrasound features are varied and may overlap with those of Trisomy 18. The poor prognosis of PSS is due to pulmonary hypoplasia, which is an important feature that distinguishes PSS from arthrogryposis multiplex congenital without pulmonary hypoplasia, which has a better prognosis. If diagnosed in the antenatal period, a late termination of pregnancy can be considered following ethical discussion (if the law allows). In most cases, a diagnosis is only made in the neonatal period. Parents of a baby affected with PSS require detailed counseling that includes information on the imprecise recurrence risks and a plan for subsequent pregnancies.
Collapse
Affiliation(s)
- Sumaiya Adam
- Department of Obstetrics and Gynaecology, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa,
| | - Melantha Coetzee
- Division of Neonatology, Department of Pediatrics and Child Health, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Engela Magdalena Honey
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
36
|
El Soury M, Fornasari BE, Morano M, Grazio E, Ronchi G, Incarnato D, Giacobini M, Geuna S, Provero P, Gambarotta G. Soluble Neuregulin1 Down-Regulates Myelination Genes in Schwann Cells. Front Mol Neurosci 2018; 11:157. [PMID: 29867349 PMCID: PMC5960709 DOI: 10.3389/fnmol.2018.00157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/24/2018] [Indexed: 01/09/2023] Open
Abstract
Peripheral nerves are characterised by the ability to regenerate after injury. Schwann cell activity is fundamental for all steps of peripheral nerve regeneration: immediately after injury they de-differentiate, remove myelin debris, proliferate and repopulate the injured nerve. Soluble Neuregulin1 (NRG1) is a growth factor that is strongly up-regulated and released by Schwann cells immediately after nerve injury. To identify the genes regulated in Schwann cells by soluble NRG1, we performed deep RNA sequencing to generate a transcriptome database and identify all the genes regulated following 6 h stimulation of primary adult rat Schwann cells with soluble recombinant NRG1. Interestingly, the gene ontology analysis of the transcriptome reveals that NRG1 regulates genes belonging to categories that are regulated in the peripheral nerve immediately after an injury. In particular, NRG1 strongly inhibits the expression of genes involved in myelination and in glial cell differentiation, suggesting that NRG1 might be involved in the de-differentiation (or "trans-differentiation") process of Schwann cells from a myelinating to a repair phenotype. Moreover, NRG1 inhibits genes involved in the apoptotic process, and up-regulates genes positively regulating the ribosomal RNA processing, thus suggesting that NRG1 might promote cell survival and stimulate new protein expression. This in vitro transcriptome analysis demonstrates that in Schwann cells NRG1 drives the expression of several genes which partially overlap with genes regulated in vivo after peripheral nerve injury, underlying the pivotal role of NRG1 in the first steps of the nerve regeneration process.
Collapse
Affiliation(s)
- Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Benedetta E Fornasari
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Michela Morano
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Elio Grazio
- Computational Epidemiology Group and Data Analysis Unit, Department of Veterinary Sciences, University of Torino, Turin, Italy
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | | | - Mario Giacobini
- Computational Epidemiology Group and Data Analysis Unit, Department of Veterinary Sciences, University of Torino, Turin, Italy
| | - Stefano Geuna
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences (MBC), University of Torino, Turin, Italy.,Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| |
Collapse
|
37
|
Hobbelink SMR, Brockley CR, Kennedy RA, Carroll K, de Valle K, Rao P, Davis MR, Laing NG, Voermans NC, Ryan MM, Yiu EM. Dejerine-Sottas disease in childhood-Genetic and sonographic heterogeneity. Brain Behav 2018; 8:e00919. [PMID: 29670817 PMCID: PMC5893341 DOI: 10.1002/brb3.919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The nerve sonographic features of Dejerine-Sottas disease (DSD) have not previously been described. METHODS This exploratory cross-sectional, matched, case-control study investigated differences in nerve cross-sectional area (CSA) in children with DSD compared to healthy controls and children with Charcot-Marie-Tooth disease type 1A (CMT1A). CSA of the median, ulnar, tibial, and sural nerves was measured by peripheral nerve ultrasound. The mean difference in CSA between children with DSD, controls, and CMT1A was determined individually and within each group. RESULTS Five children with DSD and five age- and sex-matched controls were enrolled. Data from five age-matched children with CMT1A was also included. Group comparison showed no mean difference in nerve CSA between children with DSD and controls. Individual analysis of each DSD patient with their matched control indicated an increase in nerve CSA in three of the five children. The largest increase was observed in a child with a heterozygous PMP22 point mutation (nerve CSA fivefold larger than a control and twofold larger than a child with CMT1A). Nerve CSA was moderately increased in two children-one with a heterozygous mutation in MPZ and the other of unknown genetic etiology. CONCLUSIONS Changes in nerve CSA on ultrasonography in children with DSD differ according to the underlying genetic etiology, confirming the variation in underlying pathobiologic processes and downstream morphological abnormalities of DSD subtypes. Nerve ultrasound may assist in the clinical phenotyping of DSD and act as an adjunct to known distinctive clinical and neurophysiologic findings of DSD subtypes. Larger studies in DSD cohorts are required to confirm these findings.
Collapse
Affiliation(s)
- Sanne M R Hobbelink
- Neurology Department Radboud University Medical Center Nijmegen The Netherlands
| | - Cain R Brockley
- Medical Imaging Department The Royal Children's Hospital Melbourne Parkville Vic. Australia
| | - Rachel A Kennedy
- Neurology Department The Royal Children's Hospital Melbourne Parkville Vic. Australia.,Neurosciences Research Murdoch Childrens Research Institute Parkville Vic. Australia
| | - Kate Carroll
- Neurology Department The Royal Children's Hospital Melbourne Parkville Vic. Australia.,Neurosciences Research Murdoch Childrens Research Institute Parkville Vic. Australia
| | - Katy de Valle
- Neurology Department The Royal Children's Hospital Melbourne Parkville Vic. Australia.,Neurosciences Research Murdoch Childrens Research Institute Parkville Vic. Australia
| | - Padma Rao
- Medical Imaging Department The Royal Children's Hospital Melbourne Parkville Vic. Australia
| | - Mark R Davis
- Neurogenetics Unit Department of Diagnostic Genomics Path West Laboratory Medicine QEII Medical Centre Nedlands WA Australia
| | - Nigel G Laing
- Neurogenetics Unit Department of Diagnostic Genomics Path West Laboratory Medicine QEII Medical Centre Nedlands WA Australia.,QEII Medical Centre Centre for Medical Research University of Western Australia and Harry Perkins Institute of Medical Research Nedlands WA Australia
| | - Nicol C Voermans
- Neurology Department Radboud University Medical Center Nijmegen The Netherlands
| | - Monique M Ryan
- Neurology Department The Royal Children's Hospital Melbourne Parkville Vic. Australia.,Neurosciences Research Murdoch Childrens Research Institute Parkville Vic. Australia.,Department of Paediatrics The University of Melbourne Parkville Vic. Australia
| | - Eppie M Yiu
- Neurology Department The Royal Children's Hospital Melbourne Parkville Vic. Australia.,Neurosciences Research Murdoch Childrens Research Institute Parkville Vic. Australia.,Department of Paediatrics The University of Melbourne Parkville Vic. Australia
| |
Collapse
|
38
|
Abstract
The journey of Schwann cells from their origin in the neural crest to their ensheathment and myelination of peripheral nerves is a remarkable one. Their apparent static function in enabling saltatory conduction of mature nerve is not only vital for long-term health of peripheral nerve but also belies an innate capacity of terminally differentiated Schwann cells to radically alter their differentiation status in the face of nerve injury. The transition from migrating neural crest cells to nerve ensheathment, and then myelination of large diameter axons has been characterized extensively and several of the transcriptional networks have been identified. However, transcription factors must also modify chromatin structure during Schwann cell maturation and this review will focus on chromatin modification machinery that is involved in promoting the transition to, and maintenance of, myelinating Schwann cells. In addition, Schwann cells are known to play important regenerative roles after peripheral nerve injury, and information on epigenomic reprogramming of the Schwann cell genome has emerged. Characterization of epigenomic requirements for myelin maintenance and Schwann cell responses to injury will be vital in understanding how the various Schwann cell functions can be optimized to maintain and repair peripheral nerve function.
Collapse
Affiliation(s)
- Ki H Ma
- 1 Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - John Svaren
- 1 Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,2 Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
39
|
Yamaguchi M, Takashima H. Drosophila Charcot-Marie-Tooth Disease Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:97-117. [PMID: 29951817 DOI: 10.1007/978-981-13-0529-0_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) was initially described in 1886. It is characterized by defects in the peripheral nervous system, including sensory and motor neurons. Although more than 80 CMT-causing genes have been identified to date, an effective therapy has not yet been developed for this disease. Since Drosophila does not have axons surrounded by myelin sheaths or Schwann cells, the establishment of a demyelinating CMT model is not appropriate. In this chapter, after overviewing CMT, examples of Drosophila CMT models with axonal neuropathy and other animal CMT models are described.
Collapse
Affiliation(s)
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
40
|
Roberts SL, Dun XP, Doddrell RDS, Mindos T, Drake LK, Onaitis MW, Florio F, Quattrini A, Lloyd AC, D'Antonio M, Parkinson DB. Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve. Development 2017; 144:3114-3125. [PMID: 28743796 PMCID: PMC5611958 DOI: 10.1242/dev.150656] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/13/2017] [Indexed: 12/25/2022]
Abstract
Correct myelination is crucial for the function of the peripheral nervous system. Both positive and negative regulators within the axon and Schwann cell function to ensure the correct onset and progression of myelination during both development and following peripheral nerve injury and repair. The Sox2 transcription factor is well known for its roles in the development and maintenance of progenitor and stem cell populations, but has also been proposed in vitro as a negative regulator of myelination in Schwann cells. We wished to test fully whether Sox2 regulates myelination in vivo and show here that, in mice, sustained Sox2 expression in vivo blocks myelination in the peripheral nerves and maintains Schwann cells in a proliferative non-differentiated state, which is also associated with increased inflammation within the nerve. The plasticity of Schwann cells allows them to re-myelinate regenerated axons following injury and we show that re-myelination is also blocked by Sox2 expression in Schwann cells. These findings identify Sox2 as a physiological regulator of Schwann cell myelination in vivo and its potential to play a role in disorders of myelination in the peripheral nervous system.
Collapse
Affiliation(s)
- Sheridan L Roberts
- Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Plymouth PL6 8BU, UK
| | - Xin-Peng Dun
- Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Plymouth PL6 8BU, UK
| | - Robin D S Doddrell
- Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Plymouth PL6 8BU, UK
| | - Thomas Mindos
- Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Plymouth PL6 8BU, UK
| | | | - Mark W Onaitis
- Department of Thoracic Surgery, University of California, San Diego, CA 92103, USA
| | - Francesca Florio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, 20132 Milan, Italy
| | - Angelo Quattrini
- Division of Neuroscience, San Raffaele Scientific Institute, DIBIT, 20132 Milan, Italy
| | - Alison C Lloyd
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Maurizio D'Antonio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, 20132 Milan, Italy
| | - David B Parkinson
- Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Plymouth PL6 8BU, UK
| |
Collapse
|
41
|
Martinez-Moreno M, O'Shea TM, Zepecki JP, Olaru A, Ness JK, Langer R, Tapinos N. Regulation of Peripheral Myelination through Transcriptional Buffering of Egr2 by an Antisense Long Non-coding RNA. Cell Rep 2017; 20:1950-1963. [PMID: 28834756 PMCID: PMC5800313 DOI: 10.1016/j.celrep.2017.07.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 07/24/2017] [Indexed: 10/24/2022] Open
Abstract
Precise regulation of Egr2 transcription is fundamentally important to the control of peripheral myelination. Here, we describe a long non-coding RNA antisense to the promoter of Egr2 (Egr2-AS-RNA). During peripheral nerve injury, the expression of Egr2-AS-RNA is increased and correlates with decreased Egr2 transcript and protein levels. Ectopic expression of Egr2-AS-RNA in dorsal root ganglion (DRG) cultures inhibits the expression of Egr2 mRNA and induces demyelination. In vivo inhibition of Egr2-AS-RNA using oligonucleotide GapMers released from a biodegradable hydrogel following sciatic nerve injury reverts the EGR2-mediated gene expression profile and significantly delays demyelination. Egr2-AS-RNA gradually recruits H3K27ME3, AGO1, AGO2, and EZH2 on the Egr2 promoter following sciatic nerve injury. Furthermore, expression of Egr2-AS-RNA is regulated through ERK1/2 signaling to YY1, while loss of Ser184 of YY1 regulates binding to Egr2-AS-RNA. In conclusion, we describe functional exploration of an antisense long non-coding RNA in peripheral nervous system (PNS) biology.
Collapse
Affiliation(s)
- Margot Martinez-Moreno
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA
| | - Timothy Mark O'Shea
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John P Zepecki
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA
| | - Alexander Olaru
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA
| | - Jennifer K Ness
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nikos Tapinos
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA.
| |
Collapse
|
42
|
Early growth response 2 and Egr3 are unique regulators in immune system. Cent Eur J Immunol 2017; 42:205-209. [PMID: 28860938 PMCID: PMC5573894 DOI: 10.5114/ceji.2017.69363] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
The immune system is evolved to defend the body against pathogens and is composed of thousands of complicated and intertwined pathways, which are highly controlled by processes such as transcription and repression of cellular genes. Sometimes the immune system malfunctions and a break down in self-tolerance occurs. This lead to the inability to distinguish between self and non-self and cause attacks on host tissues, a condition also known as autoimmunity, which can result in chronic debilitating diseases. Early growth response genes are family of transcription factors comprising of four members, Egr1, Egr2, Egr3 and Egr4. All of which contain three cyc2-His2 zinc fingers. Initially, Egr2 function was identified in the regulation of peripheral nerve myelination, hindbrain segmentation. Egr3, on the other hand, is highly expressed in muscle spindle development. Egr2 and Egr3 are induced due to the antigen stimulation and this signaling is implemented through the B and T cell receptors in the adaptive immunity. T cell receptor signaling plays a key role in Egr 2 and 3 expressions via their interaction with NFAT molecules. Egr 2 and 3 play a crucial role in regulation of the immune system and their involvement in B and T cell activation, anergy induction and preventing the autoimmune disease has been investigated. The deficiency of these transcription factors has been associated to deficient Cbl-b expression, a resistant to anergy phenotype, and expression of effector and activated T cells.
Collapse
|
43
|
Kulshrestha R, Burton-Jones S, Antoniadi T, Rogers M, Jaunmuktane Z, Brandner S, Kiely N, Manuel R, Willis T. Deletion of P2 promoter of GJB1 gene a cause of Charcot-Marie-Tooth disease. Neuromuscul Disord 2017; 27:766-770. [PMID: 28601552 DOI: 10.1016/j.nmd.2017.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 11/25/2022]
Abstract
X-linked Charcot-Marie-Tooth disease (CMT) is the second most common cause of CMT, and is usually caused by mutations in the gap junction protein beta 1 (GJB1) gene. This gene has nerve specific P2 promoter that work synergistically with SOX10 and EGR2 genes to initiate transcription. Mutation in this region is known to cause Schwann cell dysfunction. A single large family of X linked peripheral neuropathy was identified in our practice. Next generation sequencing for targeted panel assay identified an upstream exon-splicing deletion identified extending from nucleotide c.-5413 to approximately - c.-49. This matches the sequence of 32 nucleotides at positions c.*218-*249 in the 3'UTR downstream of the GJB1 gene. The deleted fragment included the entire P2 promoter region. The deletion segregated with the disease. To our knowledge a deletion of the P2 promoter alone as a cause of CMT has not been reported previously.
Collapse
Affiliation(s)
- R Kulshrestha
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK.
| | - S Burton-Jones
- Bristol Genetics Laboratory, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - T Antoniadi
- West Midlands Molecular Genetics Lab, Birmingham, UK
| | - M Rogers
- Cardiff and Vale UHB - Medical Genetics, UK
| | | | | | - N Kiely
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - R Manuel
- Royal Stoke University Hospital, Newcastle Road, Stoke-on-Trent, UK
| | - T Willis
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| |
Collapse
|
44
|
Vallat JM, Nizon M, Magee A, Isidor B, Magy L, Péréon Y, Richard L, Ouvrier R, Cogné B, Devaux J, Zuchner S, Mathis S. Contactin-Associated Protein 1 (CNTNAP1) Mutations Induce Characteristic Lesions of the Paranodal Region. J Neuropathol Exp Neurol 2017; 75:1155-1159. [PMID: 27818385 DOI: 10.1093/jnen/nlw093] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Congenital hypomyelinating neuropathy is a rare neonatal syndrome responsible for hypotonia and weakness. Nerve microscopic examination shows amyelination or hypomyelination. Recently, mutations in CNTNAP1 have been described in a few patients. CNTNAP1 encodes contactin-associated protein 1 (caspr-1), which is an essential component of the paranodal junctions of the peripheral and central nervous systems, and is necessary for the establishment of transverse bands that stabilize paranodal axo-glial junctions. We present the results of nerve biopsy studies of three patients from two unrelated, non-consanguineous families with compound heterozygous CNTNAP1 mutations. The lesions were identical, characterized by a hypomyelinating process; on electron microscopy, we detected, in all nodes of Ranvier, subtle lesions that have never been previously described in human nerves. Transverse bands of the myelin loops were absent, with a loss of attachment between myelin and the axolemma; elongated Schwann cell processes sometimes dissociated the Schwann cell and axon membranes that bound the space between them. These lesions were observed in the area where caspr-1 is located and are reminiscent of the lesions reported in sciatic nerves of caspr-1 null mice. CNTNAP1 mutations appear to induce characteristic ultrastructural lesions of the paranodal region.
Collapse
Affiliation(s)
- Jean-Michel Vallat
- From the Department of Neurology and 'Centre de Référence des neuropathies rares', University Hospital (CHU) Limoges, Limoges, France (JMV, LM and LR); Department of Medical Genetics, University Hospital (CHU) Nantes, Nantes, France (MN, BI and BC); Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland (AM); Centre de Référence des Maladies Neuromusculaires, Hôtel Dieu Hospital, Nantes, France (YP); The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia (RO); CNRS, CRN2M-UMR 7286, Aix-Marseille University, Marseille, France (JD); Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida (SZ); Department of Neurology, Nerve-Muscle Unit, University Hospital (CHU) Pellegrin, Bordeaux, France (SM)
| | - Mathilde Nizon
- From the Department of Neurology and 'Centre de Référence des neuropathies rares', University Hospital (CHU) Limoges, Limoges, France (JMV, LM and LR); Department of Medical Genetics, University Hospital (CHU) Nantes, Nantes, France (MN, BI and BC); Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland (AM); Centre de Référence des Maladies Neuromusculaires, Hôtel Dieu Hospital, Nantes, France (YP); The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia (RO); CNRS, CRN2M-UMR 7286, Aix-Marseille University, Marseille, France (JD); Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida (SZ); Department of Neurology, Nerve-Muscle Unit, University Hospital (CHU) Pellegrin, Bordeaux, France (SM)
| | - Alex Magee
- From the Department of Neurology and 'Centre de Référence des neuropathies rares', University Hospital (CHU) Limoges, Limoges, France (JMV, LM and LR); Department of Medical Genetics, University Hospital (CHU) Nantes, Nantes, France (MN, BI and BC); Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland (AM); Centre de Référence des Maladies Neuromusculaires, Hôtel Dieu Hospital, Nantes, France (YP); The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia (RO); CNRS, CRN2M-UMR 7286, Aix-Marseille University, Marseille, France (JD); Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida (SZ); Department of Neurology, Nerve-Muscle Unit, University Hospital (CHU) Pellegrin, Bordeaux, France (SM)
| | - Bertrand Isidor
- From the Department of Neurology and 'Centre de Référence des neuropathies rares', University Hospital (CHU) Limoges, Limoges, France (JMV, LM and LR); Department of Medical Genetics, University Hospital (CHU) Nantes, Nantes, France (MN, BI and BC); Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland (AM); Centre de Référence des Maladies Neuromusculaires, Hôtel Dieu Hospital, Nantes, France (YP); The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia (RO); CNRS, CRN2M-UMR 7286, Aix-Marseille University, Marseille, France (JD); Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida (SZ); Department of Neurology, Nerve-Muscle Unit, University Hospital (CHU) Pellegrin, Bordeaux, France (SM)
| | - Laurent Magy
- From the Department of Neurology and 'Centre de Référence des neuropathies rares', University Hospital (CHU) Limoges, Limoges, France (JMV, LM and LR); Department of Medical Genetics, University Hospital (CHU) Nantes, Nantes, France (MN, BI and BC); Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland (AM); Centre de Référence des Maladies Neuromusculaires, Hôtel Dieu Hospital, Nantes, France (YP); The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia (RO); CNRS, CRN2M-UMR 7286, Aix-Marseille University, Marseille, France (JD); Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida (SZ); Department of Neurology, Nerve-Muscle Unit, University Hospital (CHU) Pellegrin, Bordeaux, France (SM)
| | - Yann Péréon
- From the Department of Neurology and 'Centre de Référence des neuropathies rares', University Hospital (CHU) Limoges, Limoges, France (JMV, LM and LR); Department of Medical Genetics, University Hospital (CHU) Nantes, Nantes, France (MN, BI and BC); Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland (AM); Centre de Référence des Maladies Neuromusculaires, Hôtel Dieu Hospital, Nantes, France (YP); The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia (RO); CNRS, CRN2M-UMR 7286, Aix-Marseille University, Marseille, France (JD); Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida (SZ); Department of Neurology, Nerve-Muscle Unit, University Hospital (CHU) Pellegrin, Bordeaux, France (SM)
| | - Laurence Richard
- From the Department of Neurology and 'Centre de Référence des neuropathies rares', University Hospital (CHU) Limoges, Limoges, France (JMV, LM and LR); Department of Medical Genetics, University Hospital (CHU) Nantes, Nantes, France (MN, BI and BC); Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland (AM); Centre de Référence des Maladies Neuromusculaires, Hôtel Dieu Hospital, Nantes, France (YP); The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia (RO); CNRS, CRN2M-UMR 7286, Aix-Marseille University, Marseille, France (JD); Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida (SZ); Department of Neurology, Nerve-Muscle Unit, University Hospital (CHU) Pellegrin, Bordeaux, France (SM)
| | - Robert Ouvrier
- From the Department of Neurology and 'Centre de Référence des neuropathies rares', University Hospital (CHU) Limoges, Limoges, France (JMV, LM and LR); Department of Medical Genetics, University Hospital (CHU) Nantes, Nantes, France (MN, BI and BC); Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland (AM); Centre de Référence des Maladies Neuromusculaires, Hôtel Dieu Hospital, Nantes, France (YP); The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia (RO); CNRS, CRN2M-UMR 7286, Aix-Marseille University, Marseille, France (JD); Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida (SZ); Department of Neurology, Nerve-Muscle Unit, University Hospital (CHU) Pellegrin, Bordeaux, France (SM)
| | - Benjamin Cogné
- From the Department of Neurology and 'Centre de Référence des neuropathies rares', University Hospital (CHU) Limoges, Limoges, France (JMV, LM and LR); Department of Medical Genetics, University Hospital (CHU) Nantes, Nantes, France (MN, BI and BC); Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland (AM); Centre de Référence des Maladies Neuromusculaires, Hôtel Dieu Hospital, Nantes, France (YP); The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia (RO); CNRS, CRN2M-UMR 7286, Aix-Marseille University, Marseille, France (JD); Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida (SZ); Department of Neurology, Nerve-Muscle Unit, University Hospital (CHU) Pellegrin, Bordeaux, France (SM)
| | - Jérôme Devaux
- From the Department of Neurology and 'Centre de Référence des neuropathies rares', University Hospital (CHU) Limoges, Limoges, France (JMV, LM and LR); Department of Medical Genetics, University Hospital (CHU) Nantes, Nantes, France (MN, BI and BC); Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland (AM); Centre de Référence des Maladies Neuromusculaires, Hôtel Dieu Hospital, Nantes, France (YP); The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia (RO); CNRS, CRN2M-UMR 7286, Aix-Marseille University, Marseille, France (JD); Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida (SZ); Department of Neurology, Nerve-Muscle Unit, University Hospital (CHU) Pellegrin, Bordeaux, France (SM)
| | - Stephan Zuchner
- From the Department of Neurology and 'Centre de Référence des neuropathies rares', University Hospital (CHU) Limoges, Limoges, France (JMV, LM and LR); Department of Medical Genetics, University Hospital (CHU) Nantes, Nantes, France (MN, BI and BC); Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland (AM); Centre de Référence des Maladies Neuromusculaires, Hôtel Dieu Hospital, Nantes, France (YP); The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia (RO); CNRS, CRN2M-UMR 7286, Aix-Marseille University, Marseille, France (JD); Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida (SZ); Department of Neurology, Nerve-Muscle Unit, University Hospital (CHU) Pellegrin, Bordeaux, France (SM)
| | - Stéphane Mathis
- From the Department of Neurology and 'Centre de Référence des neuropathies rares', University Hospital (CHU) Limoges, Limoges, France (JMV, LM and LR); Department of Medical Genetics, University Hospital (CHU) Nantes, Nantes, France (MN, BI and BC); Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland (AM); Centre de Référence des Maladies Neuromusculaires, Hôtel Dieu Hospital, Nantes, France (YP); The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia (RO); CNRS, CRN2M-UMR 7286, Aix-Marseille University, Marseille, France (JD); Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida (SZ); Department of Neurology, Nerve-Muscle Unit, University Hospital (CHU) Pellegrin, Bordeaux, France (SM)
| |
Collapse
|
45
|
Noritsugu K, Ito A, Nakao Y, Yoshida M. Identification of zinc finger transcription factor EGR2 as a novel acetylated protein. Biochem Biophys Res Commun 2017; 489:455-459. [PMID: 28576496 DOI: 10.1016/j.bbrc.2017.05.170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/29/2017] [Indexed: 01/05/2023]
Abstract
EGR2 is a zinc finger transcription factor that regulates myelination in the peripheral nervous system and T cell anergy. The transcriptional activity of EGR2 is known to be regulated by its co-activators and/or co-repressors. Although the activity of transcription factors is generally regulated not only by interactions with co-regulators but also posttranslational modifications including acetylation, little is known about posttranslational modifications of EGR2. Here we show that EGR2 is a novel acetylated protein. Through immunoblotting analyses using an antibody that specifically recognizes the acetylated form of EGR2, CBP and p300 were identified as acetyltransferases, while HDAC6, 10 and SIRT1 were identified as deacetylases of EGR2. Although the NuRD complex containing HDAC1 and HDAC2 is known to associate with EGR2, the present study suggests that acetylation of EGR2 is regulated independently of NuRD.
Collapse
Affiliation(s)
- Kota Noritsugu
- Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akihiro Ito
- Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Yoichi Nakao
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
46
|
Brinkmann BG, Quintes S. Zeb2: Inhibiting the inhibitors in Schwann cells. NEUROGENESIS 2017; 4:e1271495. [PMID: 28203609 DOI: 10.1080/23262133.2016.1271495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
Development of Schwann cells is tightly regulated by concerted action of activating and inhibiting factors. Most of the regulatory feedback loops identified to date are transcriptional activators promoting induction of genes coding for integral myelin proteins and lipids. The mechanisms by which inhibitory factors are silenced during Schwann cell maturation are less well understood. We could recently show a pivotal function for the transcription factor zinc finger E-box binding homeobox 2 (Zeb2) during Schwann cell development and myelination as a transcriptional repressor of maturation inhibitors. Zeb2 belongs to a family of highly conserved 2-handed zinc-finger proteins and represses gene transcription by binding to E-box sequences in the regulatory region of target genes. The protein is known to repress E-cadherin during epithelial to mesenchymal transition (EMT) in tumor malignancy and mediates its functions by interacting with multiple co-factors. During nervous system development, Zeb2 is expressed in neural crest cells, the precursors of Schwann cells, the myelinating glial cells of peripheral nerves. Schwann cells lacking Zeb2 fail to fully differentiate and are unable to sort and myelinate peripheral nerve axons. The maturation inhibitors Sox2, Ednrb and Hey2 emerge as targets for Zeb2-mediated transcriptional repression and show persistent aberrant expression in Zeb2-deficient Schwann cells. While dispensible for adult Schwann cells, re-activation of Zeb2 is essential after nerve injury to allow remyelination and functional recovery. In summary, Zeb2 emerges as an "inhibitor of inhibitors," a novel concept in Schwann cell development and nerve repair.
Collapse
Affiliation(s)
- Bastian G Brinkmann
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics , Göttingen, Germany
| | - Susanne Quintes
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany; University Medical Center Göttingen (UMG), Department of Clinical Neurophysiology, Göttingen, Germany
| |
Collapse
|
47
|
Yue Y, Yang X, Zhang L, Xiao X, Nabar NR, Lin Y, Hao L, Zhang D, Huo J, Li J, Cai X, Wang M. Low-intensity pulsed ultrasound upregulates pro-myelination indicators of Schwann cells enhanced by co-culture with adipose-derived stem cells. Cell Prolif 2016; 49:720-728. [PMID: 27625295 PMCID: PMC6496622 DOI: 10.1111/cpr.12298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Peripheral nerve injuries are a common occurrence, resulting in considerable patient suffering; it also represents a major economic burden on society. To improve treatment options following peripheral nerve injuries, scientists aim to find a way to promote Schwann cell (SC) myelination to help nerves to carry out their functions effectively. In this study, we investigated myelination ability of SCs, regulated by co-culture with adipose-derived stem cells (ASCs) or low-intensity pulsed ultrasound (LIPUS), and synergistic effects of combined treatments. MATERIALS AND METHODS Schwann cells were co-cultured with or without ASCs, and either left untreated or treated with LIPUS for 10 min/d for 1, 4 or 7 days. Effects of LIPUS and ASC co-culture on pro-myelination indicators of SCs were analysed by real-time PCR (RT-PCR), Western blotting and immunofluorescence staining (IF). RESULTS Our results indicate that ASC-SC co-culture and LIPUS, together or individually, promoted mRNA levels of epidermal growth factor receptor 3 (EGFR3/ErbB3), neuregulin1 (NRG1), early growth response protein 2 (Egr2/Krox20) and myelin basic protein (MBP), with corresponding increases in protein levels of ErbB3, NRG1 and Krox20. Interestingly, combination of ASC-SC co-culture and LIPUS displayed the most remarkable effects. CONCLUSION We demonstrated that ASCs upregulated pro-myelination indicators of SCs by indirect contact (through co-culture) and that effects could be potentiated by LIPUS. We conclude that LIPUS, as a mechanical stress, may have potential in nerve regeneration with potential clinical relevance.
Collapse
Affiliation(s)
- Yuan Yue
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xingmei Yang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.
- Oral Implant Center, West China School of Stomatology, Sichuan University, Chengdu, China.
| | - Liang Zhang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Oral Implant Center, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xun Xiao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Neel R Nabar
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Liang Hao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Dongjiao Zhang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jingyi Huo
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jingle Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Oral Implant Center, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Min Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
48
|
Nizon M, Cogne B, Vallat JM, Joubert M, Liet JM, Simon L, Vincent M, Küry S, Boisseau P, Schmitt S, Mercier S, Bénéteau C, Larrose C, Coste M, Latypova X, Péréon Y, Mussini JM, Bézieau S, Isidor B. Two novel variants in CNTNAP1 in two siblings presenting with congenital hypotonia and hypomyelinating neuropathy. Eur J Hum Genet 2016; 25:150-152. [PMID: 27782105 DOI: 10.1038/ejhg.2016.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/29/2016] [Accepted: 09/20/2016] [Indexed: 01/06/2023] Open
Abstract
Homozygous frameshift variants in CNTNAP1 have recently been reported in patients with arthrogryposis and abnormal axon myelination. In two brothers with severe congenital hypotonia and foot deformities, we identified compound heterozygous variants in CNTNAP1, reporting the first causative missense variant, p.(Cys323Arg). Motor nerve conductions were markedly decreased. Nerve microscopical lesions confirmed a severe hypomyelinating process and showed loss of attachment sites of the myelin loops on the axons, which could be a characteristic of Caspr loss-of-function. We discuss the pathophysiology of the myelination process and we propose to consider this disorder as a congenital hypomyelinating neuropathy.
Collapse
Affiliation(s)
| | | | - Jean-Michel Vallat
- Centre de référence « neuropathies périphériques rares », service de Neurologie, CHU Limoges, France
| | | | - Jean-Michel Liet
- Service de réanimation pédiatrique, Hôpital Mère Enfants, Nantes, France
| | - Laure Simon
- Service de réanimation néonatale, Hôpital Mère Enfants, Nantes, France
| | - Marie Vincent
- Service de Génétique Médicale, CHU Hôtel Dieu, France
| | | | | | | | | | | | | | | | | | - Yann Péréon
- Service d'explorations fonctionnelles, CHU Hôtel Dieu, Nantes, France
| | | | | | | |
Collapse
|
49
|
Fogarty EA, Brewer MH, Rodriguez-Molina JF, Law WD, Ma KH, Steinberg NM, Svaren J, Antonellis A. SOX10 regulates an alternative promoter at the Charcot-Marie-Tooth disease locus MTMR2. Hum Mol Genet 2016; 25:3925-3936. [PMID: 27466180 DOI: 10.1093/hmg/ddw233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/21/2016] [Accepted: 07/11/2016] [Indexed: 11/13/2022] Open
Abstract
Schwann cells are the myelinating glia of the peripheral nervous system and dysfunction of these cells causes motor and sensory peripheral neuropathy. The transcription factor SOX10 is critical for Schwann cell development and maintenance, and many SOX10 target genes encode proteins required for Schwann cell function. Loss-of-function mutations in the gene encoding myotubularin-related protein 2 (MTMR2) cause Charcot-Marie-Tooth disease type 4B1 (CMT4B1), a severe demyelinating peripheral neuropathy characterized by myelin outfoldings along peripheral nerves. Previous reports indicate that MTMR2 is ubiquitously expressed making it unclear how loss of this gene causes a Schwann cell-specific phenotype. To address this, we performed computational and functional analyses at MTMR2 to identify transcriptional regulatory elements important for Schwann cell expression. Through these efforts, we identified an alternative, SOX10-responsive promoter at MTMR2 that displays strong regulatory activity in immortalized rat Schwann (S16) cells. This promoter directs transcription of a previously unidentified MTMR2 transcript that is enriched in mouse Schwann cells compared to immortalized mouse motor neurons (MN-1), and is predicted to encode an N-terminally truncated protein isoform. The expression of the endogenous transcript is induced in a heterologous cell line by ectopically expressing SOX10, and is nearly ablated in Schwann cells by impairing SOX10 function. Intriguingly, overexpressing the two MTMR2 protein isoforms in HeLa cells revealed that both localize to nuclear puncta and the shorter isoform displays higher nuclear localization compared to the longer isoform. Combined, our data warrant further investigation of the truncated MTMR2 protein isoform in Schwann cells and in CMT4B1 pathogenesis.
Collapse
Affiliation(s)
| | - Megan H Brewer
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - William D Law
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ki H Ma
- Cellular and Molecular Pathology (CMP) Program
| | - Noah M Steinberg
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John Svaren
- Waisman Center.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony Antonellis
- Neuroscience Graduate Program .,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
50
|
Harel T, Yesil G, Bayram Y, Coban-Akdemir Z, Charng WL, Karaca E, Al Asmari A, Eldomery MK, Hunter JV, Jhangiani SN, Rosenfeld JA, Pehlivan D, El-Hattab AW, Saleh MA, LeDuc CA, Muzny D, Boerwinkle E, Gibbs RA, Chung WK, Yang Y, Belmont JW, Lupski JR. Monoallelic and Biallelic Variants in EMC1 Identified in Individuals with Global Developmental Delay, Hypotonia, Scoliosis, and Cerebellar Atrophy. Am J Hum Genet 2016; 98:562-570. [PMID: 26942288 DOI: 10.1016/j.ajhg.2016.01.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/19/2016] [Indexed: 01/08/2023] Open
Abstract
The paradigm of a single gene associated with one specific phenotype and mode of inheritance has been repeatedly challenged. Genotype-phenotype correlations can often be traced to different mutation types, localization of the variants in distinct protein domains, or the trigger of or escape from nonsense-mediated decay. Using whole-exome sequencing, we identified homozygous variants in EMC1 that segregated with a phenotype of developmental delay, hypotonia, scoliosis, and cerebellar atrophy in three families. In addition, a de novo heterozygous EMC1 variant was seen in an individual with a similar clinical and MRI imaging phenotype. EMC1 encodes a member of the endoplasmic reticulum (ER)-membrane protein complex (EMC), an evolutionarily conserved complex that has been proposed to have multiple roles in ER-associated degradation, ER-mitochondria tethering, and proper assembly of multi-pass transmembrane proteins. Perturbations of protein folding and organelle crosstalk have been implicated in neurodegenerative processes including cerebellar atrophy. We propose EMC1 as a gene in which either biallelic or monoallelic variants might lead to a syndrome including intellectual disability and preferential degeneration of the cerebellum.
Collapse
Affiliation(s)
- Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Gozde Yesil
- Department of Medical Genetics, Bezmialem University, Istanbul 34093, Turkey
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wu-Lin Charng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ali Al Asmari
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Mohammad K Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill V Hunter
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain 15258, United Arab Emirates
| | - Mohammed A Saleh
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Charles A LeDuc
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston TX 77030, USA
| |
Collapse
|