1
|
Li YW, Tu SX, Li ZX, Ding YQ, Hu L. Manifold functions of Mediator complex in neurodevelopmental disorders. Neurobiol Dis 2025; 210:106913. [PMID: 40246246 DOI: 10.1016/j.nbd.2025.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
Neurodevelopmental disorders (NDDs) encompass a diverse range of impairments affecting brain development and functions, often presenting as deficits in motor skills, cognitive abilities, language development and neuropsychiatric health. The emergence of next-generation sequencing has unveiled numerous genetic variants linked to NDDs, implicating molecular pathways involved in essential neuronal processes such as synaptic plasticity, neuronal architecture and proteostasis. Central to these processes is the Mediator complex, a highly conserved multi-subunit assembly crucial for RNA polymerase II (Pol II)-dependent transcription. The Mediator functions as a key regulator of gene expression, playing a pivotal role in coordinating cellular processes essential for neuronal differentiation and developmental signaling cascades. Increasingly evidence has shown that its dysfunction is highly associated with the pathogenesis of NDDs. This review aims to comprehensively examine the structural and functional characteristics of individual mediator subunits. We will focus on clinical case reports and recent preclinical studies that highlight the connection between genetic abnormalities in the Mediator complex and specific neurodevelopmental phenotypes, ultimately guiding the development of enhanced diagnostic tools and therapeutic interventions. Furthermore, this review will advance our understanding of the general role transcriptional regulation plays in the etiology of NDDs.
Collapse
Affiliation(s)
- Yi-Wei Li
- Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Si-Xin Tu
- Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Ze-Xuan Li
- Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Yu-Qiang Ding
- Laboratory Animal Center, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai 200032, China.
| | - Ling Hu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Laboratory Animal Center, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Schiano C, Luongo L, Maione S, Napoli C. Mediator complex in neurological disease. Life Sci 2023; 329:121986. [PMID: 37516429 DOI: 10.1016/j.lfs.2023.121986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurological diseases, including traumatic brain injuries, stroke (haemorrhagic and ischemic), and inherent neurodegenerative diseases cause acquired disability in humans, representing a leading cause of death worldwide. The Mediator complex (MED) is a large, evolutionarily conserved multiprotein that facilities the interaction between transcription factors and RNA Polymerase II in eukaryotes. Some MED subunits have been found altered in the brain, although their specific functions in neurodegenerative diseases are not fully understood. Mutations in MED subunits were associated with a wide range of genetic diseases for MED12, MED13, MED13L, MED20, MED23, MED25, and CDK8 genes. In addition, MED12 and MED23 were deregulated in the Alzheimer's Disease. Interestingly, most of the genomic mutations have been found in the subunits of the kinase module. To date, there is only one evidence on MED1 involvement in post-stroke cognitive deficits. Although the underlying neurodegenerative disorders may be different, we are confident that the signal cascades of the biological-cognitive mechanisms of brain adaptation, which begin after brain deterioration, may also differ. Here, we analysed relevant studies in English published up to June 2023. They were identified through a search of electronic databases including PubMed, Medline, EMBASE and Scopus, including search terms such as "Mediator complex", "neurological disease", "brains". Thematic content analysis was conducted to collect and summarize all studies demonstrating MED alteration to understand the role of this central transcriptional regulatory complex in the brain. Improved and deeper knowledge of the regulatory mechanisms in neurological diseases can increase the ability of physicians to predict onset and progression, thereby improving diagnostic care and providing appropriate treatment decisions.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy.
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy; Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Universitaria Policlinico (AOU), Italy
| |
Collapse
|
3
|
Meziane H, Birling MC, Wendling O, Leblanc S, Dubos A, Selloum M, Pavlovic G, Sorg T, Kalscheuer VM, Billuart P, Laumonnier F, Chelly J, van Bokhoven H, Herault Y. Large-Scale Functional Assessment of Genes Involved in Rare Diseases with Intellectual Disabilities Unravels Unique Developmental and Behaviour Profiles in Mouse Models. Biomedicines 2022; 10:biomedicines10123148. [PMID: 36551904 PMCID: PMC9775489 DOI: 10.3390/biomedicines10123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Major progress has been made over the last decade in identifying novel genes involved in neurodevelopmental disorders, although the task of elucidating their corresponding molecular and pathophysiological mechanisms, which are an essential prerequisite for developing therapies, has fallen far behind. We selected 45 genes for intellectual disabilities to generate and characterize mouse models. Thirty-nine of them were based on the frequency of pathogenic variants in patients and literature reports, with several corresponding to de novo variants, and six other candidate genes. We used an extensive screen covering the development and adult stages, focusing specifically on behaviour and cognition to assess a wide range of functions and their pathologies, ranging from basic neurological reflexes to cognitive abilities. A heatmap of behaviour phenotypes was established, together with the results of selected mutants. Overall, three main classes of mutant lines were identified based on activity phenotypes, with which other motor or cognitive deficits were associated. These data showed the heterogeneity of phenotypes between mutation types, recapitulating several human features, and emphasizing the importance of such systematic approaches for both deciphering genetic etiological causes of ID and autism spectrum disorders, and for building appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Olivia Wendling
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Sophie Leblanc
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Aline Dubos
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mohammed Selloum
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Vera M. Kalscheuer
- Max Planck Institute for Molecular Genetics, Research Group Development and Disease, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Pierre Billuart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERM U1266, “Genetic and Development of Cerebral Cortex”, 75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, 75014 Paris, France
| | - Frédéric Laumonnier
- UMR1253, iBrain, University of Tours, Inserm, 37032 Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, 37044 Tours, France
| | - Jamel Chelly
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, The Netherlands
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, France
- Correspondence: ; Tel.: +33-388-65-5715
| |
Collapse
|
4
|
Rafiullah R, Albalawi AM, Alaradi SR, Alluqmani M, Mushtaq M, Wali A, Basit S. An expansion of phenotype: novel homozygous variant in the MED17 identified in patients with progressive microcephaly and global developmental delay. J Neurogenet 2022; 36:108-114. [PMID: 36508181 DOI: 10.1080/01677063.2022.2149748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Global developmental delay (GDD) is a lifelong disability that affects 1-3% of the population around the globe. It is phenotypically variable and highly heterogeneous in terms of the underlying genetics. Patients with GDD are intellectually disabled (ID) manifesting cognitive impairment and deficient adaptive behavior. Here, we investigated a two-looped consanguineous family segregating severe ID, seizure, and progressive microcephaly. Magnetic resonance imaging (MRI) of the brain showed mild brain atrophy and myelination defect. Whole exome sequencing (WES) was performed on the DNA samples of two patients and a novel homozygous missense variant (Chr11:g0.93528085; NM_004268.5_c.871T > C; p. Trp291Gly) was identified in the MED17 gene. Sanger sequencing revealed that the identified variant is heterozygous in both parents and healthy siblings. This variant is conserved among different species, causes a non-conserved amino acid change, and is predicted deleterious by various in silico tools. The variant is not reported in population variant databases. MED17 (OMIM: 613668) encodes for the mediator of RNA polymerase II transcription complex subunit 17. Structure modeling of MED17 protein revealed that Trp291 is involved in different inter-helical interactions, providing structural stability. Replacement of Trp291Gly, a less hydrophobic amino acid loses the inter-helical interaction leading to a perturb variant of MED17 protein.
Collapse
Affiliation(s)
- Rafiullah Rafiullah
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta, Pakistan
| | - Alia M Albalawi
- Center for Genetics and Inherited Diseases, Taibah University, Madinah, Saudi Arabia
| | - Sultan R Alaradi
- Department of Laboratory and Blood Bank, Alwajh General Hospital, Ministry of Health, Alwajh, Saudi Arabia
| | - Majed Alluqmani
- College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Muhammad Mushtaq
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta, Pakistan
| | - Abdul Wali
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta, Pakistan
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Madinah, Saudi Arabia.,Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
5
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
6
|
Schiavon CR, Shadel GS, Manor U. Impaired Mitochondrial Mobility in Charcot-Marie-Tooth Disease. Front Cell Dev Biol 2021; 9:624823. [PMID: 33598463 PMCID: PMC7882694 DOI: 10.3389/fcell.2021.624823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this "impaired mobility" model of the disease.
Collapse
Affiliation(s)
- Cara R. Schiavon
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Gerald S. Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
7
|
Improving the phenotype description of Basel-Vanagaite-Smirin-Yosef syndrome, MED25-related: polymicrogyria as a distinctive neuroradiological finding. Neurogenetics 2020; 22:19-25. [PMID: 32816121 DOI: 10.1007/s10048-020-00625-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
Basel-Vanagaite-Smirin-Yosef syndrome (BVSYS) is an extremely rare autosomal recessive genetic disorder caused by variants in the MED25 gene. It is characterized by severe developmental delay and variable craniofacial, neurological, ocular, and cardiac anomalies. Since 2015, through whole exome sequencing, 20 patients have been described with common clinical features and biallelic variants in MED25, leading to a better definition of the phenotype associated with BVSYS. We report two young sisters, born to consanguineous parents, presenting with intellectual disability, neurological findings, and dysmorphic features typical of BVSYS, and also with bilateral perisylvian polymicrogyria. The younger sister died at the age of 1 year without autoptic examination. Whole exome sequencing detected a homozygous frameshift variant in the MED25 gene: NM_030973.3:c.1778_1779delAG, p.(Gln593Argfs). This report further delineates the most common clinical features of BVSYS and points to polymicrogyria as a distinctive neuroradiological feature of this syndrome.
Collapse
|
8
|
Harada Y, Zuchner SL, Herrmann DN, Veerapandiyan A. Clinical Reasoning: A case of bilateral foot drop in a 74-year-old man. Neurology 2020; 94:405-409. [DOI: 10.1212/wnl.0000000000008760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
9
|
Nam SH, Choi BO. Clinical and genetic aspects of Charcot-Marie-Tooth disease subtypes. PRECISION AND FUTURE MEDICINE 2019. [DOI: 10.23838/pfm.2018.00163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
10
|
Carullo NVN, Day JJ. Genomic Enhancers in Brain Health and Disease. Genes (Basel) 2019; 10:E43. [PMID: 30646598 PMCID: PMC6357130 DOI: 10.3390/genes10010043] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/18/2023] Open
Abstract
Enhancers are non-coding DNA elements that function in cis to regulate transcription from nearby genes. Through direct interactions with gene promoters, enhancers give rise to spatially and temporally precise gene expression profiles in distinct cell or tissue types. In the brain, the accurate regulation of these intricate expression programs across different neuronal classes gives rise to an incredible cellular and functional diversity. Newly developed technologies have recently allowed more accurate enhancer mapping and more sophisticated enhancer manipulation, producing rapid progress in our understanding of enhancer biology. Furthermore, identification of disease-linked genetic variation in enhancer regions has highlighted the potential influence of enhancers in brain health and disease. This review outlines the key role of enhancers as transcriptional regulators, reviews the current understanding of enhancer regulation in neuronal development, function and dysfunction and provides our thoughts on how enhancers can be targeted for technological and therapeutic goals.
Collapse
Affiliation(s)
- Nancy V N Carullo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Sierecki E. The Mediator complex and the role of protein-protein interactions in the gene regulation machinery. Semin Cell Dev Biol 2018; 99:20-30. [PMID: 30278226 DOI: 10.1016/j.semcdb.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
At the core of gene regulation, a complex network of dynamic interactions between proteins, DNA and RNA has to be integrated in order to generate a binary biological output. Large protein complexes, called adaptors, transfer information from the transcription factors to the transcription machinery [1,2]. Here we focus on Mediator, one of the largest adaptor proteins in humans [3]. Assembled from 30 different subunits, this system provides extraordinary illustrations for the various roles played by protein-protein interactions. Recruitment of new subunits during evolution is an adaptive mechanism to the growing complexity of the organism. Integration of information happens at multiple scales, with allosteric effects at the level of individual subunits resulting in large conformational changes. Mediator is also rich in disordered regions that increase the potential for interactions by presenting a malleable surface to its environment. Potentially, 3000 transcription factors can interact with Mediator and so understanding the molecular mechanisms that support the processing of this overload of information is one of the great challenges in molecular biology.
Collapse
Affiliation(s)
- Emma Sierecki
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, Faculty of Medecine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
12
|
Tatsumi Y, Matsumoto N, Iibe N, Watanabe N, Torii T, Sango K, Homma K, Miyamoto Y, Sakagami H, Yamauchi J. CMT type 2N disease-associated AARS mutant inhibits neurite growth that can be reversed by valproic acid. Neurosci Res 2018; 139:69-78. [PMID: 30261202 DOI: 10.1016/j.neures.2018.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is composed of a heterogeneous group of hereditary peripheral neuropathies. The peripheral nervous system primarily comprises two types of cells: neuronal cells and myelinating glial Schwann cells. CMT2 N is an autosomal dominant disease and its responsible gene encodes alanyl-tRNA synthetase (AARS), which is a family of cytoplasmic aminoacyl-tRNA synthetases. CMT2 N is associated with the mutation, including a missense mutation, which is known to decrease the enzymatic activity of AARS, but whether and how its mutation affects AARS localization and neuronal process formation remains to be understood. First, we show that the AARS mutant harboring Asn71-to-Tyr (N71Y) is not localized in cytoplasm. The expression of AARS mutant proteins in COS-7 cells mainly leads to localization into lysosome, whereas the wild type is indeed localized in cytoplasm. Second, in N1E-115 cells as the neuronal cell model, cells expressing the N71Y mutant do not have the ability to grow processes. Third, pretreatment with antiepileptic valproic acid reverses the inhibitory effect of the N71Y mutant on process growth. Taken together, the N71Y mutation of AARS leads to abnormal intracellular localization, inhibiting process growth, yet this inhibition is reversed by valproic acid.
Collapse
Affiliation(s)
- Yuriko Tatsumi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Naoto Matsumoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Noriko Iibe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Natsumi Watanabe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Tomohiro Torii
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kazunori Sango
- Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Keiichi Homma
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Gunma, 371-0816, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0734, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
13
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
14
|
Masingue M, Perrot J, Carlier RY, Piguet-Lacroix G, Latour P, Stojkovic T. WES homozygosity mapping in a recessive form of Charcot-Marie-Tooth neuropathy reveals intronic GDAP1 variant leading to a premature stop codon. Neurogenetics 2018; 19:67-76. [PMID: 29396836 DOI: 10.1007/s10048-018-0539-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 01/06/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) refers to a group of clinically and genetically heterogeneous inherited neuropathies. Ganglioside-induced differentiation-associated protein 1 GDAP1-related CMT has been reported in an autosomal dominant or recessive form in patients presenting either axonal or demyelinating neuropathy. We report two Sri Lankan sisters born to consanguineous parents and presenting with a severe axonal sensorimotor neuropathy. The early onset of the disease, the distal and proximal weakness and atrophy leading to major disability, along with areflexia, and, most notably, vocal cord and diaphragm paralysis were highly evocative of a GDAP1-related CMT. However, sequencing of the coding regions of the gene was normal. Whole-exome sequencing (WES) was performed and revealed that the largest region of homozygosity was around GDAP1 with several variants, mostly in non-coding regions. In view of the high clinical suspicion of GDAP1 gene involvement, we examined the variants in this gene and this, along with functional studies, allowed us to identify an alternative splicing site revealing a cryptic in-frame stop codon in intron 4 responsible for a severe loss of wild-type GDAP1. This work is the first to describe a deleterious mutation in GDAP1 gene outside of coding sequences or intronic junctions and emphasizes the importance of interpreting molecular analysis, and in particular WES results, in light of the clinical and electrophysiological phenotype.
Collapse
Affiliation(s)
- Marion Masingue
- Centre de Référence de pathologie neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Paris, France.
| | - Jimmy Perrot
- Department of Neurobiology, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Robert-Yves Carlier
- Department of Medical Imaging, Hôpitaux universitaires Paris Ile-de-France Ouest, Hôpital Raymond Poincaré, Garches, France
| | | | - Philippe Latour
- Department of Neurobiology, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Tanya Stojkovic
- Centre de Référence de pathologie neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Paris, France
| |
Collapse
|
15
|
Donnio LM, Bidon B, Hashimoto S, May M, Epanchintsev A, Ryan C, Allen W, Hackett A, Gecz J, Skinner C, Stevenson RE, de Brouwer APM, Coutton C, Francannet C, Jouk PS, Schwartz CE, Egly JM. MED12-related XLID disorders are dose-dependent of immediate early genes (IEGs) expression. Hum Mol Genet 2017; 26:2062-2075. [PMID: 28369444 DOI: 10.1093/hmg/ddx099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
Mediator occupies a key role in protein coding genes expression in mediating the contacts between gene specific factors and the basal transcription machinery but little is known regarding the role of each Mediator subunits. Mutations in MED12 are linked with a broad spectrum of genetic disorders with X-linked intellectual disability that are difficult to range as Lujan, Opitz-Kaveggia or Ohdo syndromes. Here, we investigated several MED12 patients mutations (p.R206Q, p.N898D, p.R961W, p.N1007S, p.R1148H, p.S1165P and p.R1295H) and show that each MED12 mutations cause specific expression patterns of JUN, FOS and EGR1 immediate early genes (IEGs), reflected by the presence or absence of MED12 containing complex at their respective promoters. Moreover, the effect of MED12 mutations has cell-type specificity on IEG expression. As a consequence, the expression of late responsive genes such as the matrix metalloproteinase-3 and the RE1 silencing transcription factor implicated respectively in neural plasticity and the specific expression of neuronal genes is disturbed as documented for MED12/p.R1295H mutation. In such case, JUN and FOS failed to be properly recruited at their AP1-binding site. Our results suggest that the differences between MED12-related phenotypes are essentially the result of distinct IEGs expression patterns, the later ones depending on the accurate formation of the transcription initiation complex. This might challenge clinicians to rethink the traditional syndromes boundaries and to include genetic criterion in patients' diagnostic.
Collapse
Affiliation(s)
- Lise-Marie Donnio
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Baptiste Bidon
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Satoru Hashimoto
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France.,Department of Clinical Pharmacology and Therapeutics Oita University Faculty of Medicine, Yufu city, Oita 879-5593, Japan
| | - Melanie May
- Greenwood Genetic Center, Greenwood, SC 29649, USA
| | - Alexey Epanchintsev
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Colm Ryan
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | | | | | - Jozef Gecz
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, and South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | | | | | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525?HP, The Netherlands
| | - Charles Coutton
- Département de Génétique et Procréation, Centre Hospitalier-Universitaire, Institut Albert Bonniot, CNRS/INSERM/Université Grenoble Alpes, 38000 Grenoble, France
| | - Christine Francannet
- Service de Génétique Médicale, Centre Hospitalier-Universitaire, 63003 Clermont-Ferrand, France
| | - Pierre-Simon Jouk
- Département de Génétique et Procréation, Centre Hospitalier-Universitaire, Institut Albert Bonniot, CNRS/INSERM/Université Grenoble Alpes, 38000 Grenoble, France
| | | | - Jean-Marc Egly
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| |
Collapse
|
16
|
Asadollahi R, Zweier M, Gogoll L, Schiffmann R, Sticht H, Steindl K, Rauch A. Genotype-phenotype evaluation of MED13L defects in the light of a novel truncating and a recurrent missense mutation. Eur J Med Genet 2017. [PMID: 28645799 DOI: 10.1016/j.ejmg.2017.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A decade after the designation of MED13L as a gene and its link to intellectual disability (ID) and dextro-looped transposition of great arteries in 2003, we previously described a recognizable syndrome due to MED13L haploinsufficiency. Subsequent reports of 22 further patients diagnosed by genome-wide testing further delineated the syndrome with expansion of the phenotypic spectrum and showed reduced penetrance for congenital heart defects. We now report two novel patients identified by whole exome sequencing, one with a de novo MED13L truncating mutation and the other with a de novo missense mutation. The first patient indicates some facial resemblance to Kleefstra syndrome as a novel differential diagnosis, and the second patient shows, for the first time, recurrence of a MED13L missense mutation (p.(Asp860Gly)). Notably, our in silico modelling predicted this missense mutation to decrease the stability of an alpha-helix and thereby affecting the MED13L secondary structure, while the majority of published missense mutations remain variants of uncertain significance. Review of the reported patients with MED13L haploinsufficiency indicates moderate to severe ID and facial anomalies in all patients, as well as severe speech delay and muscular hypotonia in the majority. Further common signs include abnormal MRI findings of myelination defects and abnormal corpus callosum, ataxia and coordination problems, autistic features, seizures/abnormal EEG, or congenital heart defects, present in about 20-50% of the patients. With reference to facial anomalies, the majority of patients were reported to show broad/prominent forehead, low set ears, bitemporal narrowing, upslanting palpebral fissures, depressed/flat nasal bridge, bulbous nose, and abnormal chin, but macroglossia and horizontal eyebrows were also observed in ∼30%. The latter are especially important in the differential diagnosis of 1p36 deletion and Kleefstra syndromes, while the more common facial gestalt shows some resemblance to 22q11.2 deletion syndrome. Despite the fact that MED13L was found to be one of the most common ID genes in the Deciphering Developmental Disorders Study, further detailed patient descriptions are needed to explore the full clinical spectrum, potential genotype-phenotype correlations, as well as the role of missense mutations and potential mutational hotspots along the gene.
Collapse
Affiliation(s)
- Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Heinrich Sticht
- Institute of Biochemistry, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Geuens T, De Winter V, Rajan N, Achsel T, Mateiu L, Almeida-Souza L, Asselbergh B, Bouhy D, Auer-Grumbach M, Bagni C, Timmerman V. Mutant HSPB1 causes loss of translational repression by binding to PCBP1, an RNA binding protein with a possible role in neurodegenerative disease. Acta Neuropathol Commun 2017; 5:5. [PMID: 28077174 PMCID: PMC5225548 DOI: 10.1186/s40478-016-0407-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022] Open
Abstract
The small heat shock protein HSPB1 (Hsp27) is an ubiquitously expressed molecular chaperone able to regulate various cellular functions like actin dynamics, oxidative stress regulation and anti-apoptosis. So far disease causing mutations in HSPB1 have been associated with neurodegenerative diseases such as distal hereditary motor neuropathy, Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Most mutations in HSPB1 target its highly conserved α-crystallin domain, while other mutations affect the C- or N-terminal regions or its promotor. Mutations inside the α-crystallin domain have been shown to enhance the chaperone activity of HSPB1 and increase the binding to client proteins. However, the HSPB1-P182L mutation, located outside and downstream of the α-crystallin domain, behaves differently. This specific HSPB1 mutation results in a severe neuropathy phenotype affecting exclusively the motor neurons of the peripheral nervous system. We identified that the HSPB1-P182L mutant protein has a specifically increased interaction with the RNA binding protein poly(C)binding protein 1 (PCBP1) and results in a reduction of its translational repressive activity. RNA immunoprecipitation followed by RNA sequencing on mouse brain lead to the identification of PCBP1 mRNA targets. These targets contain larger 3′- and 5′-UTRs than average and are enriched in an RNA motif consisting of the CTCCTCCTCCTCC consensus sequence. Interestingly, next to the clear presence of neuronal transcripts among the identified PCBP1 targets we identified known genes associated with hereditary peripheral neuropathies and hereditary spastic paraplegias. We therefore conclude that HSPB1 can mediate translational repression through interaction with an RNA binding protein further supporting its role in neurodegenerative disease.
Collapse
|
18
|
De novo mutations in genes of mediator complex causing syndromic intellectual disability: mediatorpathy or transcriptomopathy? Pediatr Res 2016; 80:809-815. [PMID: 27500536 DOI: 10.1038/pr.2016.162] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/13/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mutations in the X-linked gene MED12 cause at least three different, but closely related, entities of syndromic intellectual disability. Recently, a new syndrome caused by MED13L deleterious variants has been described, which shows similar clinical manifestations including intellectual disability, hypotonia, and other congenital anomalies. METHODS Genotyping of 1,256 genes related with neurodevelopment was performed by next-generation sequencing in three unrelated patients and their healthy parents. Clinically relevant findings were confirmed by conventional sequencing. RESULTS Each patient showed one de novo variant not previously reported in the literature or databases. Two different missense variants were found in the MED12 or MED13L genes and one nonsense mutation was found in the MED13L gene. CONCLUSION The phenotypic consequences of these mutations are closely related and/or have been previously reported in one or other gene. Additionally, MED12 and MED13L code for two closely related partners of the mediator kinase module. Consequently, we propose the concept of a common MED12/MED13L clinical spectrum, encompassing Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, Ohdo syndrome, MED13L haploinsufficiency syndrome, and others.
Collapse
|
19
|
Hirabayashi S, Saitsu H, Matsumoto N. Distinct but milder phenotypes with choreiform movements in siblings with compound heterozygous mutations in the transcription preinitiation mediator complex subunit 17 (MED17). Brain Dev 2016; 38:118-23. [PMID: 26004231 DOI: 10.1016/j.braindev.2015.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
Abstract
Two siblings born to non-consanguineous parents showed nystagmus and sudden opistotonic posturing from the early infancy, and subsequent developmental delay and marked choreiform movements with hypotonia in the childhood. The brother had a mild postnatal microcephaly. Brain MRI of the sister showed mild delay of myelination, dilated anterior horn and mild cerebellar atrophy. Whole exome sequencing (WES) revealed compound heterozygous mutations in MED17 gene in both siblings: c.1013-5A>G and c.1484T>G mutations transmitted from their father and mother, respectively. The c.1013-5A>G mutation caused insertion of 4 bases of intron 6 in the transcript, resulting in frameshift (p. Ser338Asnfs*15), and mutant transcript underwent nonsense-mediated mRNA decay in lymphoblastoid cells derived from two siblings. The c.1484T>G mutation substituted a leucine residue, which is highly conserved among the vertebrates, and was predicted to be damaging by in silico analysis programs. Both mutations were not registered in dbSNP data and in our 575 control exomes. These results suggest that the siblings' mutations are likely to be pathogenic. This is the second case report concerning MED17 mutations. Compared with the first reported cases of Caucasian Jewish origin, the clinical symptoms and courses are much milder and slower, respectively, in our cases. Genotype difference (a homozygous mutation versus compound heterozygous mutations) might explain these clinical differences between two cases, though early-onset nystagmus and later choreiform movements were unique in our cases. Clinical spectrum and phenotype-genotype correlations in this rare mutation should be further elucidated.
Collapse
Affiliation(s)
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
20
|
Montecchiani C, Pedace L, Lo Giudice T, Casella A, Mearini M, Gaudiello F, Pedroso JL, Terracciano C, Caltagirone C, Massa R, St George-Hyslop PH, Barsottini OGP, Kawarai T, Orlacchio A. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease. Brain 2015; 139:73-85. [PMID: 26556829 PMCID: PMC5839554 DOI: 10.1093/brain/awv320] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022] Open
Abstract
Charcot-Marie-Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼ 40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot-Marie-Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot-Marie-Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot-Marie-Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot-Marie-Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot-Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot-Marie-Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot-Marie-Tooth disease type 2H on chromosome 8q13-21.1 was excluded by linkage analysis. Pedigrees originated in Italy, Brazil, Canada, England, Iran, and Japan. Interestingly, we identified 15 ALS5/SPG11/KIAA1840 mutations in 12 families (two sequence variants were never reported before, p.Gln198* and p.Pro2212fs*5). No large deletions/duplications were detected in these patients. The novel mutations seemed to be pathogenic since they co-segregated with the disease in all pedigrees and were absent in 300 unrelated controls. Furthermore, in silico analysis predicted their pathogenic effect. Our results indicate that ALS5/SPG11/KIAA1840 is the causative gene of a wide spectrum of clinical features, including autosomal recessive axonal Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
| | - Lucia Pedace
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy
| | - Temistocle Lo Giudice
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Antonella Casella
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy
| | - Marzia Mearini
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy
| | | | - José L Pedroso
- 3 Department of Neurology, Universidade Federal de São Paulo, Brazil
| | - Chiara Terracciano
- 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Carlo Caltagirone
- 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy 4 Laboratorio di Neurologia Clinica e Comportamentale, IRCCS Santa Lucia, Rome, Italy
| | - Roberto Massa
- 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Peter H St George-Hyslop
- 5 Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada 6 Department of Medicine, University of Toronto, Toronto, Ontario, Canada 7 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Toshitaka Kawarai
- 8 Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Antonio Orlacchio
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| |
Collapse
|
21
|
Antoniadi T, Buxton C, Dennis G, Forrester N, Smith D, Lunt P, Burton-Jones S. Application of targeted multi-gene panel testing for the diagnosis of inherited peripheral neuropathy provides a high diagnostic yield with unexpected phenotype-genotype variability. BMC MEDICAL GENETICS 2015; 16:84. [PMID: 26392352 PMCID: PMC4578331 DOI: 10.1186/s12881-015-0224-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/21/2015] [Indexed: 01/01/2023]
Abstract
Background Inherited peripheral neuropathy (IPN) is a clinically and genetically heterogeneous group of disorders with more than 90 genes associated with the different subtypes. Sequential gene screening is gradually being replaced by next generation sequencing (NGS) applications. Methods We designed and validated a targeted NGS panel assay including 56 genes associated with known causes of IPN. We report our findings following NGS panel testing of 448 patients with different types of clinically-suspected IPN. Results Genetic diagnosis was achieved in 137 patients (31 %) and involved 195 pathogenic variants in 31 genes. 93 patients had pathogenic variants in genes where a resulting phenotype follows dominant inheritance, 32 in genes where this would follow recessive inheritance, and 12 presented with X-linked disease. Almost half of the diagnosed patients (64) had a pathogenic variant either in genes not previously available for routine diagnostic testing in a UK laboratory (50 patients) or in genes whose primary clinical association was not IPN (14). Seven patients had a pathogenic variant in a gene not hitherto indicated from their phenotype and three patients had more than one pathogenic variant, explaining their complex phenotype and providing information essential for accurate prediction of recurrence risks. Conclusions Our results demonstrate that targeted gene panel testing is an unbiased approach which overcomes the limitations imposed by limited existing knowledge for rare genes, reveals high heterogeneity, and provides high diagnostic yield. It is therefore a highly efficient and cost effective tool for achieving a genetic diagnosis for IPN. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0224-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thalia Antoniadi
- Bristol Genetics Laboratory, North Bristol NHS Trust, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Chris Buxton
- Bristol Genetics Laboratory, North Bristol NHS Trust, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Gemma Dennis
- Bristol Genetics Laboratory, North Bristol NHS Trust, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Natalie Forrester
- Bristol Genetics Laboratory, North Bristol NHS Trust, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Debbie Smith
- Bristol Genetics Laboratory, North Bristol NHS Trust, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Peter Lunt
- Department of Social & Community Medicine, University of Bristol, Oakfield House, Bristol, BS8 2BN, UK.
| | - Sarah Burton-Jones
- Bristol Genetics Laboratory, North Bristol NHS Trust, Southmead Hospital, Bristol, BS10 5NB, UK.
| |
Collapse
|
22
|
Exome Sequence Analysis Suggests that Genetic Burden Contributes to Phenotypic Variability and Complex Neuropathy. Cell Rep 2015; 12:1169-83. [PMID: 26257172 DOI: 10.1016/j.celrep.2015.07.023] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 05/27/2015] [Accepted: 07/09/2015] [Indexed: 02/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ∼ 45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy-associated genes in subjects versus controls, confirmed in a second ethnically discrete neuropathy cohort, suggesting that mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HPMVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity.
Collapse
|
23
|
Trehan A, Brady JM, Maduro V, Bone W, Huang Y, Golas GA, Kane M, Lee PR, Thurm A, Gropman AL, Paul SM, Vezina G, Markello TC, Gahl WA, Boerkoel CF, Tifft CJ. MED23-associated intellectual disability in a non-consanguineous family. Am J Med Genet A 2015; 167:1374-80. [PMID: 25845469 PMCID: PMC5671761 DOI: 10.1002/ajmg.a.37047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/18/2015] [Indexed: 11/10/2022]
Abstract
Intellectual disability (ID) is a heterogeneous condition arising from a variety of environmental and genetic factors. Among these causes are defects in transcriptional regulators. Herein, we report on two brothers in a nonconsanguineous family with novel compound heterozygous, disease-segregating mutations (NM_015979.3: [3656A > G];[4006C > T], NP_057063.2: [H1219R];[R1336X]) in MED23. This gene encodes a subunit of the Mediator complex that modulates the expression of RNA polymerase II-dependent genes. These brothers, who had profound ID, spasticity, congenital heart disease, brain abnormalities, and atypical electroencephalography, represent the first case of MED23-associated ID in a non-consanguineous family. They also expand upon the clinical features previously reported for mutations in this gene.
Collapse
Affiliation(s)
- Aditi Trehan
- Office of the Clinical Director, NHGRI/NIH, Bethesda, Maryland, USA
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| | - Jacqueline M. Brady
- Office of the Clinical Director, NHGRI/NIH, Bethesda, Maryland, USA
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| | - Valerie Maduro
- Office of the Clinical Director, NHGRI/NIH, Bethesda, Maryland, USA
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| | - William Bone
- Office of the Clinical Director, NHGRI/NIH, Bethesda, Maryland, USA
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| | - Yan Huang
- Office of the Clinical Director, NHGRI/NIH, Bethesda, Maryland, USA
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| | - Gretchen A. Golas
- Office of the Clinical Director, NHGRI/NIH, Bethesda, Maryland, USA
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| | - Megan Kane
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| | - Paul R. Lee
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland, USA
| | - Audrey Thurm
- Pediatrics and Developmental Neuroscience, NIMH/NIH, Bethesda, Maryland, USA
| | - Andrea L. Gropman
- Office of the Clinical Director, NHGRI/NIH, Bethesda, Maryland, USA
- George Washington University School of Medicine and Health Sciences and Children’s National Medical Center, Washington D.C., USA
| | - Scott M. Paul
- Rehabilitation Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Gilbert Vezina
- George Washington University School of Medicine and Health Sciences and Children’s National Medical Center, Washington D.C., USA
| | - Thomas C. Markello
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| | - William A. Gahl
- Office of the Clinical Director, NHGRI/NIH, Bethesda, Maryland, USA
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| | - Cornelius F. Boerkoel
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| | - Cynthia J. Tifft
- Office of the Clinical Director, NHGRI/NIH, Bethesda, Maryland, USA
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Homozygous MED25 mutation implicated in eye-intellectual disability syndrome. Hum Genet 2015; 134:577-87. [PMID: 25792360 DOI: 10.1007/s00439-015-1541-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/11/2015] [Indexed: 12/26/2022]
Abstract
Genetic syndromes involving both brain and eye abnormalities are numerous and include syndromes such as Warburg micro syndrome, Kaufman oculocerebrofacial syndrome, Cerebro-oculo-facio-skeletal syndrome, Kahrizi syndrome and others. Using exome sequencing, we have been able to identify homozygous mutation p.(Tyr39Cys) in MED25 as the cause of a syndrome characterized by eye, brain, cardiac and palatal abnormalities as well as growth retardation, microcephaly and severe intellectual disability in seven patients from four unrelated families, all originating from the same village. The protein encoded by MED25 belongs to Mediator complex or MED complex, which is an evolutionary conserved multi-subunit RNA polymerase II transcriptional regulator complex. The MED25 point mutation is located in the von Willebrand factor type A (MED25 VWA) domain which is responsible for MED25 recruitment into the Mediator complex; co-immunoprecipitation experiment demonstrated that this mutation dramatically impairs MED25 interaction with the Mediator complex in mammalian cells.
Collapse
|
25
|
Adegbola A, Musante L, Callewaert B, Maciel P, Hu H, Isidor B, Picker-Minh S, Le Caignec C, Delle Chiaie B, Vanakker O, Menten B, Dheedene A, Bockaert N, Roelens F, Decaestecker K, Silva J, Soares G, Lopes F, Najmabadi H, Kahrizi K, Cox GF, Angus SP, Staropoli JF, Fischer U, Suckow V, Bartsch O, Chess A, Ropers HH, Wienker TF, Hübner C, Kaindl AM, Kalscheuer VM. Redefining the MED13L syndrome. Eur J Hum Genet 2015; 23:1308-17. [PMID: 25758992 DOI: 10.1038/ejhg.2015.26] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/19/2014] [Accepted: 01/06/2015] [Indexed: 11/09/2022] Open
Abstract
Congenital cardiac and neurodevelopmental deficits have been recently linked to the mediator complex subunit 13-like protein MED13L, a subunit of the CDK8-associated mediator complex that functions in transcriptional regulation through DNA-binding transcription factors and RNA polymerase II. Heterozygous MED13L variants cause transposition of the great arteries and intellectual disability (ID). Here, we report eight patients with predominantly novel MED13L variants who lack such complex congenital heart malformations. Rather, they depict a syndromic form of ID characterized by facial dysmorphism, ID, speech impairment, motor developmental delay with muscular hypotonia and behavioral difficulties. We thereby define a novel syndrome and significantly broaden the clinical spectrum associated with MED13L variants. A prominent feature of the MED13L neurocognitive presentation is profound language impairment, often in combination with articulatory deficits.
Collapse
Affiliation(s)
- Abidemi Adegbola
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luciana Musante
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Patricia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Hao Hu
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bertrand Isidor
- CHU Nantes, Service de Genetique Medicale, Institut de Biologie, Nantes, France.,INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue Contre le Cancer 2012, Université de Nantes, Nantes, France
| | - Sylvie Picker-Minh
- Department of Pediatric Neurology, Charité University Medicine, Berlin, Germany.,Institute of Cell Biology and Neurobiology, Charité University Medicine, Berlin, Germany
| | - Cedric Le Caignec
- CHU Nantes, Service de Genetique Medicale, Institut de Biologie, Nantes, France.,INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue Contre le Cancer 2012, Université de Nantes, Nantes, France
| | | | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Nele Bockaert
- Pediatric Neurology, Ghent University Hospital, Ghent, Belgium
| | - Filip Roelens
- Pediatrics Department, Heilig Hart Hospital, Roeselare, Belgium
| | | | - João Silva
- Institute for Molecular and Celular Biology (IBMC), Porto, Portugal
| | - Gabriela Soares
- Center for Medical Genetics Dr Jacinto Magalhães, Porto Hospital Centre, Porto, Portugal
| | - Fátima Lopes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Hossein Najmabadi
- Genetic Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetic Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Gerald F Cox
- Division of Genetics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Steven P Angus
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - John F Staropoli
- Biogen Idec, 12 Cambridge Center, Building 6, Cambridge, MA, USA
| | - Ute Fischer
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Vanessa Suckow
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Oliver Bartsch
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrew Chess
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hans-Hilger Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thomas F Wienker
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Christoph Hübner
- Department of Pediatric Neurology, Charité University Medicine, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité University Medicine, Berlin, Germany.,Institute of Cell Biology and Neurobiology, Charité University Medicine, Berlin, Germany
| | - Vera M Kalscheuer
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
26
|
Samanta S, Thakur JK. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:757. [PMID: 26442070 PMCID: PMC4584954 DOI: 10.3389/fpls.2015.00757] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/04/2015] [Indexed: 05/19/2023]
Abstract
Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.
Collapse
Affiliation(s)
| | - Jitendra K. Thakur
- *Correspondence: Jitendra K. Thakur, Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
27
|
Vodopiutz J, Schmook MT, Konstantopoulou V, Plecko B, Greber-Platzer S, Creus M, Seidl R, Janecke AR. MED20 mutation associated with infantile basal ganglia degeneration and brain atrophy. Eur J Pediatr 2015; 174:113-8. [PMID: 25446406 DOI: 10.1007/s00431-014-2463-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/15/2014] [Accepted: 11/19/2014] [Indexed: 12/01/2022]
Abstract
UNLABELLED Infantile movement disorders are rare and genetically heterogeneous. We set out to identify the disease-causing mutation in siblings with a novel recessive neurodegenerative movement disorder. Genetic linkage analysis and whole-exome sequencing were performed in the original family. A cohort of six unrelated patients were sequenced for further mutations in the identified candidate gene. Pathogenicity of the mutation was evaluated by in silico analyses and by structural modeling. We identified the first and homozygous mutation (p.Gly114Ala) in the Mediator subunit 20 gene (MED20) in siblings presenting with infantile-onset spasticity and childhood-onset dystonia, progressive basal ganglia degeneration, and brain atrophy. Mediator refers to an evolutionarily conserved multi-subunit RNA polymerase II co-regulatory complex. Pathogenicity of the identified missense mutation is suggested by in silico analyses, by structural modeling, and by previous reporting of mutations in four distinct Mediator subunits causing neurodegenerative phenotypes. No further MED20 mutations were detected in this study. CONCLUSION We delineate a novel infantile-onset neurodegenerative movement disorder and emphasize the Mediator complex as critical for normal neuronal function. Definitive proof of pathogenicity of the identified MED20 mutation will require confirmation in unrelated patients.
Collapse
Affiliation(s)
- Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Austria,
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Figueiredo T, Melo US, Pessoa ALS, Nobrega PR, Kitajima JP, Correa I, Zatz M, Kok F, Santos S. Homozygous missense mutation in MED25 segregates with syndromic intellectual disability in a large consanguineous family. J Med Genet 2014; 52:123-7. [PMID: 25527630 DOI: 10.1136/jmedgenet-2014-102793] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Intellectual disability (ID) is a highly heterogeneous condition affecting 2% of the population worldwide. In a field study conducted in a highly inbred area of Northeastern Brazil, we investigated a consanguineous family in which seven adults presented syndromic ID. METHODS Genome-Wide Human SNP Array 6.0 (Affymetrix) microarray was used to determine regions of homozygosity-by-descent and whole exome sequencing (WES) was performed in one affected individual using Extended Nextera Rapid-Capture Exome and Illumina HiSeq2500. RESULTS We found two regions with an logarithm of the odds (LOD) score of 3.234: a region spanning 4.0 Mb in 19q13.32-q13.33 and a pericentromeric 20 Mb area in chromosome 2 (2p12-q11.2). WES disclosed in the critical region of chromosome 19 a homozygous variant (c.418C>T, p.Arg140Trp) in Mediator complex subunit 25 (MED25), predicted as deleterious by PolyPhen-2, Provean, Mutation Taster and Sorting Intolerant From Tolerant (SIFT). MED25 is a component of the Mediator complex, involved in regulation of transcription of nearly all RNA polymerase II-dependent genes. Deleterious mutations in MED12, MED17 and MED23 have already been associated with ID. CONCLUSIONS These findings demonstrate that the combination of field investigation of families in highly inbred regions with modern technologies is an effective way for identifying new genes associated with ID.
Collapse
Affiliation(s)
- Thalita Figueiredo
- Northeast Biotechnology Network (RENORBIO), Federal University of Paraiba (UFPB), Joao Pessoa, PB, Brazil Department of Biology, Paraiba State University (UEPB), Campina Grande, PB, Brazil
| | - Uirá Souto Melo
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - André Luiz Santos Pessoa
- Department of Neurology, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil Fortaleza University (UNIFOR), Fortaleza, CE, Brazil
| | - Paulo Ribeiro Nobrega
- Department of Neurology, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | | | - Igor Correa
- Mendelics Genomic Analysis, Sao Paulo, SP, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Fernando Kok
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo (USP), Sao Paulo, SP, Brazil Department of Neurology, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Silvana Santos
- Northeast Biotechnology Network (RENORBIO), Federal University of Paraiba (UFPB), Joao Pessoa, PB, Brazil Department of Biology, Paraiba State University (UEPB), Campina Grande, PB, Brazil
| |
Collapse
|
29
|
Jerath NU, Shy ME. Hereditary motor and sensory neuropathies: Understanding molecular pathogenesis could lead to future treatment strategies. Biochim Biophys Acta Mol Basis Dis 2014; 1852:667-78. [PMID: 25108281 DOI: 10.1016/j.bbadis.2014.07.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/02/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Inherited peripheral neuropathies, like many other degenerative disorders, have been challenging to treat. At this point, there is little specific therapy for the inherited neuropathies other than genetic counseling as well as symptomatic treatment and rehabilitation. In the past, ascorbic acid, progesterone antagonists, and subcutaneous neurotrophin-3 (NT3) injections have demonstrated improvement in animal models of CMT 1A, the most common inherited neuropathy, but have failed to translate any effect in humans. Given the difficulty in treatment, it is important to understand the molecular pathogenesis of hereditary neuropathies in order to strategize potential future therapies. The hereditary neuropathies are in an era of molecular insight and over the past 20 years, more than 78 subtypes of Charcot Marie Tooth disease (CMT) have been identified and extensively studied to understand the biological pathways in greater detail. Next generation molecular sequencing has also improved the diagnosis as well as the understanding of CMT. A greater understanding of the molecular pathways will help pave the way to future therapeutics of CMT. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Nivedita U Jerath
- University of Iowa, Carver College of Medicine, Department of Neurology, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Michael E Shy
- University of Iowa, Carver College of Medicine, Department of Neurology, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| |
Collapse
|
30
|
Fuxreiter M, Tóth-Petróczy Á, Kraut DA, Matouschek AT, Lim RYH, Xue B, Kurgan L, Uversky VN. Disordered proteinaceous machines. Chem Rev 2014; 114:6806-43. [PMID: 24702702 PMCID: PMC4350607 DOI: 10.1021/cr4007329] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Monika Fuxreiter
- MTA-DE
Momentum Laboratory of Protein Dynamics, Department of Biochemistry
and Molecular Biology, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Ágnes Tóth-Petróczy
- Department
of Biological Chemistry, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Daniel A. Kraut
- Department
of Chemistry, Villanova University, 800 East Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Andreas T. Matouschek
- Section
of Molecular Genetics and Microbiology, Institute for Cellular &
Molecular Biology, The University of Texas
at Austin, 2506 Speedway, Austin, Texas 78712, United States
| | - Roderick Y. H. Lim
- Biozentrum
and the Swiss Nanoscience Institute, University
of Basel, Klingelbergstrasse
70, CH-4056 Basel, Switzerland
| | - Bin Xue
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lukasz Kurgan
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Vladimir N. Uversky
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute
for Biological Instrumentation, Russian
Academy of Sciences, 142290 Pushchino, Moscow Region 119991, Russia
| |
Collapse
|
31
|
Abstract
This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease.
Collapse
Affiliation(s)
| | - Cornelius F. Boerkoel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-875-2157; Fax: +1-604-875-2376
| |
Collapse
|
32
|
Yin JW, Wang G. The Mediator complex: a master coordinator of transcription and cell lineage development. Development 2014; 141:977-87. [PMID: 24550107 DOI: 10.1242/dev.098392] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mediator is a multiprotein complex that is required for gene transcription by RNA polymerase II. Multiple subunits of the complex show specificity in relaying information from signals and transcription factors to the RNA polymerase II machinery, thus enabling control of the expression of specific genes. Recent studies have also provided novel mechanistic insights into the roles of Mediator in epigenetic regulation, transcriptional elongation, termination, mRNA processing, noncoding RNA activation and super enhancer formation. Based on these specific roles in gene regulation, Mediator has emerged as a master coordinator of development and cell lineage determination. Here, we describe the most recent advances in understanding the mechanisms of Mediator function, with an emphasis on its role during development and disease.
Collapse
Affiliation(s)
- Jing-wen Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|
33
|
Nicolaou P, Christodoulou K. Advances in the molecular diagnosis of Charcot-Marie-Tooth disease. World J Neurol 2013; 3:42-55. [DOI: 10.5316/wjn.v3.i3.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/23/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease or hereditary motor and sensory neuropathy is the most common inherited neuromuscular disorder affecting at least 1 in 2500. CMT disease is pathologically and genetically heterogeneous and is characterized by a variable age of onset, slowly progressive weakness and muscle atrophy, starting in the lower limbs and subsequently affecting the upper extremities. Symptoms are usually slowly progressive, especially for the classic and late-onset phenotypes, but can be rather severe in early-onset forms. CMT is grouped into demyelinating, axonal and intermediate forms, based on electrophysiological and pathological findings. The demyelinating types are characterized by severely reduced motor nerve conduction velocities (MNCVs) and mainly by myelin abnormalities. The axonal types are characterized by normal or slightly reduced MNCVs and mainly axonal abnormalities. The intermediate types are characterized by MNCVs between 25 m/s and 45 m/s and they have features of both demyelination and axonopathy. Inheritance can be autosomal dominant, X-linked, or autosomal recessive. Mutations in more than 30 genes have been associated with the different forms of CMT, leading to major advancements in molecular diagnostics of the disease, as well as in the understanding of pathogenetic mechanisms. This editorial aims to provide an account that is practicable and efficient on the current molecular diagnostic procedures for CMT, in correlation with the clinical, pathological and electrophysiological findings. The most frequent causative mutations of CMT will also be outlined.
Collapse
|
34
|
Tazir M, Bellatache M, Nouioua S, Vallat JM. Autosomal recessive Charcot-Marie-Tooth disease: from genes to phenotypes. J Peripher Nerv Syst 2013; 18:113-29. [DOI: 10.1111/jns5.12026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Meriem Tazir
- Service de Neurologie; University Hospital Mustapha Bacha; Alger Algeria
- Laboratoire de NeuroSciences; Université d'Alger 1; Alger Algeria
| | - Mounia Bellatache
- Service de Neurologie; University Hospital Mustapha Bacha; Alger Algeria
- Laboratoire de NeuroSciences; Université d'Alger 1; Alger Algeria
| | - Sonia Nouioua
- Service de Neurologie; University Hospital Mustapha Bacha; Alger Algeria
- Laboratoire de NeuroSciences; Université d'Alger 1; Alger Algeria
| | - Jean-Michel Vallat
- Centre de Référence ⟨Neuropathies Périphériques Rares⟩, Service et Laboratoire de Neurologie; University Hospital; Limoges France
| |
Collapse
|
35
|
Grueter CE. Mediator complex dependent regulation of cardiac development and disease. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:151-7. [PMID: 23727265 PMCID: PMC4357813 DOI: 10.1016/j.gpb.2013.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/09/2013] [Accepted: 05/18/2013] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality. The risk factors for CVD include environmental and genetic components. Human mutations in genes involved in most aspects of cardiovascular function have been identified, many of which are involved in transcriptional regulation. The Mediator complex serves as a pivotal transcriptional regulator that functions to integrate diverse cellular signals by multiple mechanisms including recruiting RNA polymerase II, chromatin modifying proteins and non-coding RNAs to promoters in a context dependent manner. This review discusses components of the Mediator complex and the contribution of the Mediator complex to normal and pathological cardiac development and function. Enhanced understanding of the role of this core transcriptional regulatory complex in the heart will help us gain further insights into CVD.
Collapse
Affiliation(s)
- Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
36
|
Abstract
The gene expression programs that establish and maintain specific cell states in humans are controlled by thousands of transcription factors, cofactors, and chromatin regulators. Misregulation of these gene expression programs can cause a broad range of diseases. Here, we review recent advances in our understanding of transcriptional regulation and discuss how these have provided new insights into transcriptional misregulation in disease.
Collapse
Affiliation(s)
- Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts
| |
Collapse
|
37
|
Asadollahi R, Oneda B, Sheth F, Azzarello-Burri S, Baldinger R, Joset P, Latal B, Knirsch W, Desai S, Baumer A, Houge G, Andrieux J, Rauch A. Dosage changes of MED13L further delineate its role in congenital heart defects and intellectual disability. Eur J Hum Genet 2013; 21:1100-4. [PMID: 23403903 DOI: 10.1038/ejhg.2013.17] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/09/2013] [Accepted: 01/16/2013] [Indexed: 01/20/2023] Open
Abstract
A chromosomal balanced translocation disrupting the MED13L (Mediator complex subunit13-like) gene, encoding a subunit of the Mediator complex, was previously associated with transposition of the great arteries (TGA) and intellectual disability (ID), and led to the identification of missense mutations in three patients with isolated TGA. Recently, a homozygous missense mutation in MED13L was found in two siblings with non-syndromic ID from a consanguineous family. Here, we describe for the first time, three patients with copy number changes affecting MED13L and delineate a recognizable MED13L haploinsufficiency syndrome. Using high resolution molecular karyotyping, we identified two intragenic de novo frameshift deletions, likely resulting in haploinsufficiency, in two patients with a similar phenotype of hypotonia, moderate ID, conotruncal heart defect and facial anomalies. In both, Sanger sequencing of MED13L did not reveal any pathogenic mutation and exome sequencing in one patient showed no evidence for a non-allelic second hit. A further patient with hypotonia, learning difficulties and perimembranous VSD showed a 1 Mb de novo triplication in 12q24.2, including MED13L and MAP1LC3B2. Our findings show that MED13L haploinsufficiency in contrast to the previously observed missense mutations cause a distinct syndromic phenotype. Additionally, a MED13L copy number gain results in a milder phenotype. The clinical features suggesting a neurocristopathy may be explained by animal model studies indicating involvement of the Mediator complex subunit 13 in neural crest induction.
Collapse
Affiliation(s)
- Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Parman Y, Battaloğlu E. Recessively transmitted predominantly motor neuropathies. HANDBOOK OF CLINICAL NEUROLOGY 2013; 115:847-861. [PMID: 23931818 DOI: 10.1016/b978-0-444-52902-2.00048-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recessively transmitted predominantly motor neuropathies are rare and show a severe phenotype. They are frequently observed in populations with a high rate of consanguineous marriages. At least 15 genes and six loci have been found to be associated with autosomal recessive CMT (AR-CMT) and X-linked CMT (AR-CMTX) and also distal hereditary motor neuronopathy (AR-dHMN). These disorders are genetically heterogeneous but the clinical phenotype is relatively homogeneous. Distal muscle weakness and atrophy predominating in the lower extremities, diminished or absent deep tendon reflexes, distal sensory loss, and pes cavus are the main clinical features of this disorder with occasional cranial nerve involvement. Although genetic diagnosis of some of subtypes of AR-CMT are now available, rapid advances in the molecular genetics and cell biology show a great complexity. Animal models for the most common subtypes of human AR-CMT disease provide clues for understanding the pathogenesis of CMT and also help to reveal possible treatment strategies of inherited neuropathies. This chapter highlights the clinical features and the recent genetic and biological findings in these disorders based on the current classification.
Collapse
Affiliation(s)
- Yeşim Parman
- Department of Neurology, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey.
| | | |
Collapse
|
39
|
Abstract
Hereditary neuropathies (HN) with onset in childhood are categorized according to clinical presentation, pathogenic mechanism based on electrophysiology, genetic transmission and, in selected cases, pathological findings. Especially relevant to pediatrics are the items "secondary" versus "primary" neuropathy, "syndromic versus nonsyndromic," and "period of life." Different combinations of these parameters frequently point toward specific monogenic disorders. Ruling out a neuropathy secondary to a generalized metabolic disorder remains the first concern in pediatrics. As a rule, metabolic diseases include additional, orienting symptoms or signs, and their biochemical diagnosis is based on logical algorithms. Primary, motor sensory are the most frequent HN and are dominated by demyelinating autosomal dominant (AD) forms (CMT1). Other forms include demyelinating autosomal recessive (AR) forms, axonal AD/AR forms, and forms with "intermediate" electrophysiological phenotype. Peripheral motor neuron disorders are dominated by AR SMN-linked spinal muscular atrophies. (Distal) hereditary motor neuropathies represent <10% of HN but exhibit large clinical and genetic heterogeneity. Sensory/dysautonomic HN involves five classic subtypes, each one related to specific genes. However, genetic heterogeneity is larger than initially suspected. Syndromic HN distinguish "purely neurological syndromes", which are multisystemic, such as spinocerebellar atrophies +, spastic paraplegias +, etc. Peripheral neuropathy is possibly the presenting feature, including in childhood. Autosomal recessive forms, on average, start more frequently in childhood. "Multiorgan syndromes", on the other hand, are more specific to Pediatrics. AR forms, which are clearly degenerative, prompt the investigation of a large set of pleiotropic genes. Other syndromes expressed in the perinatal period are mainly developmental disorders, and can sometimes be related to specific transcription factors. Systematic malformative workup and ethical considerations are necessary. Altogether, >40 genes with various biological functions have been found to be responsible for primary HN. Many are responsible for various phenotypes, including some without the polyneuropathic trait, and some for various types of transmission.
Collapse
Affiliation(s)
- Pierre Landrieu
- Department of Pediatric Neurology, CHU Paris sud, Hôpital Bicêtre, Paris, France.
| | | |
Collapse
|
40
|
Landrieu P, Baets J, De Jonghe P. Hereditary motor-sensory, motor, and sensory neuropathies in childhood. HANDBOOK OF CLINICAL NEUROLOGY 2013; 113:1413-32. [PMID: 23622364 DOI: 10.1016/b978-0-444-59565-2.00011-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hereditary neuropathies (HN) are categorized according to clinical presentation, pathogenic mechanism based on electrophysiology, genetic transmission, age of occurrence, and, in selected cases, pathological findings. The combination of these parameters frequently orients towards specific genetic disorders. Ruling out a neuropathy secondary to a generalized metabolic disorder remains the first pediatric concern. Primary, motor-sensory are the most frequent HN and are dominated by demyelinating AD forms (CMT1). Others are demyelinating AR forms, axonal AD/AR forms, and forms with "intermediate" electrophysiological phenotype. Pure motor HN represent<10% of HN but exhibit large clinical and genetic heterogeneity. Sensory/dysautonomic HN cover five classical subtypes, each one related to specific genes. However, genetic heterogeneity is largly greater than initially suspected. Syndromic HN distinguish: "purely neurological syndromes", which are multisystemic, usually AD disorders, such as spinocerebellar atrophies +, spastic paraplegias +, etc. Peripheral Neuropathy may be the presenting feature, including in childhood. Clearly degenerative, AR forms prompt to investigate a large set of pleiotropic genes. Other syndromes, expressed in the perinatal period and comprising malformative features, are mainly developmental disorders, sometimes related to specific transcription factors. Altogether, >40 genes with various biological functions have been found responsible for HN. Many are responsible for various phenotypes, including some without the polyneuropathic trait: for the pediatric neurologist, phenotype/genotype correlations constitute a permanent bidirectional exercise.
Collapse
Affiliation(s)
- Pierre Landrieu
- Department of Paediatric Neurology, Université Paris Sud, Bicêtre Hospital, Paris, France.
| | | | | |
Collapse
|
41
|
Abstract
The inherited neuropathies are a clinically and genetically heterogeneous group of disorders in which there have been rapid advances in the last two decades. Molecular genetic testing is now an integral part of the evaluation of patients with inherited neuropathies. In this chapter we describe the genes responsible for the primary inherited neuropathies. We briefly discuss the clinical phenotype of each of the known inherited neuropathy subgroups, describe algorithms for molecular genetic testing of affected patients and discuss genetic counseling. The basic principles of careful phenotyping, documenting an accurate family history, and testing the available genes in an appropriate manner should identify the vast majority of individuals with CMT1 and many of those with CMT2. In this chapter we also describe the current methods of genetic testing. As advances are made in molecular genetic technologies and improvements are made in bioinformatics, it is likely that the current time-consuming methods of DNA sequencing will give way to quicker and more efficient high-throughput methods, which are briefly discussed here.
Collapse
|
42
|
Azzedine H, Senderek J, Rivolta C, Chrast R. Molecular genetics of charcot-marie-tooth disease: from genes to genomes. Mol Syndromol 2012; 3:204-14. [PMID: 23293578 DOI: 10.1159/000343487] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50-70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs.
Collapse
Affiliation(s)
- H Azzedine
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
43
|
Azzedine H, Senderek J, Rivolta C, Chrast R. Molecular genetics of charcot-marie-tooth disease: from genes to genomes. Mol Syndromol 2012. [PMID: 23293578 DOI: 10.1159/000343487/msy-0003-0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50-70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs.
Collapse
Affiliation(s)
- H Azzedine
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
44
|
d’Ydewalle C, Benoy V, Van Den Bosch L. Charcot-Marie-Tooth disease: Emerging mechanisms and therapies. Int J Biochem Cell Biol 2012; 44:1299-304. [DOI: 10.1016/j.biocel.2012.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
|
45
|
Gentil BJ, Cooper L. Molecular basis of axonal dysfunction and traffic impairments in CMT. Brain Res Bull 2012; 88:444-53. [PMID: 22595495 DOI: 10.1016/j.brainresbull.2012.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/01/2012] [Accepted: 05/04/2012] [Indexed: 12/17/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neurological disorders. It comprises a group of diseases caused by mutations in genes involved in Schwann cells homeostasis and neuronal function that affect the peripheral nerves. So far mutations in more than 33 genes have been identified causing either the demyelinating form (CMT1) or the axonal form (CMT2). Genes involving a large variety of unrelated functions may lead to the same phenotype when mutated. Our review will focus on the common link between genes causing axonal phenotypes like MFN2, KIF1B, DYNC1H1, Rab7, TRPV4, ARSs, NEFL, HSPB1, MPZ, and HSPB8. While KIF1B and DYNC1H1, two genes coding for molecular motors, are directly linked to axonal transport, the involvement of the other CMT2-causing genes in this function is less obvious. However, the last years have seen a growing list of evidence demonstrating that intracellular trafficking and mitochondrial dynamics might be dysfunctional in CMT2, and these mechanisms might present a common link between dissimilar CMT2-causing genes. The involvement of impaired transport in the pathogenesis of other rare neurological diseases or recessive CMT2 is also discussed.
Collapse
Affiliation(s)
- Benoit J Gentil
- Department of Neurology/Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4 Canada.
| | | |
Collapse
|
46
|
Charcot–Marie–Tooth diseases. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Bucci C, Bakke O, Progida C. Charcot-Marie-Tooth disease and intracellular traffic. Prog Neurobiol 2012; 99:191-225. [PMID: 22465036 PMCID: PMC3514635 DOI: 10.1016/j.pneurobio.2012.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 12/23/2011] [Accepted: 03/13/2012] [Indexed: 12/23/2022]
Abstract
Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot-Marie-Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects.
Collapse
Affiliation(s)
- Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy.
| | | | | |
Collapse
|
48
|
Lin KP, Soong BW, Yang CC, Huang LW, Chang MH, Lee IH, Antonellis A, Lee YC. The mutational spectrum in a cohort of Charcot-Marie-Tooth disease type 2 among the Han Chinese in Taiwan. PLoS One 2011; 6:e29393. [PMID: 22206013 PMCID: PMC3242783 DOI: 10.1371/journal.pone.0029393] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/28/2011] [Indexed: 12/20/2022] Open
Abstract
Background Charcot-Marie-Tooth disease type 2 (CMT2) is a clinically and genetically heterogeneous group of inherited axonal neuropathies. The aim of this study was to extensively investigate the mutational spectrum of CMT2 in a cohort of patients of Han Chinese. Methodology and Principal Findings Genomic DNA from 36 unrelated Taiwanese CMT2 patients of Han Chinese descent was screened for mutations in the coding regions of the MFN2, RAB7, TRPV4, GARS, NEFL, HSPB1, MPZ, GDAP1, HSPB8, DNM2, AARS and YARS genes. Ten disparate mutations were identified in 14 patients (38.9% of the cohort), including p.N71Y in AARS (2.8%), p.T164A in HSPB1 (2.8%), and p.[H256R]+[R282H] in GDAP1 (2.8%) in one patient each, three NEFL mutations in six patients (16.7%) and four MFN2 mutations in five patients (13.9%). The following six mutations were novel: the individual AARS, HSPB1 and GDAP1 mutations and c.475-1G>T, p.L233V and p.E744M mutations in MFN2. An in vitro splicing assay revealed that the MFN2 c.475-1G>T mutation causes a 4 amino acid deletion (p.T159_Q162del). Despite an extensive survey, the genetic causes of CMT2 remained elusive in the remaining 22 CMT2 patients (61.1%). Conclusions and Significance This study illustrates the spectrum of CMT2 mutations in a Taiwanese CMT2 cohort and expands the number of CMT2-associated mutations. The relevance of the AARS and HSPB1 mutations in the pathogenesis of CMT2 is further highlighted. Moreover, the frequency of the NEFL mutations in this study cohort was unexpectedly high. Genetic testing for NEFL and MFN2 mutations should, therefore, be the first step in the molecular diagnosis of CMT2 in ethnic Chinese.
Collapse
Affiliation(s)
- Kon-Ping Lin
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing-Wen Soong
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Chao Yang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Wen Huang
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Hong Chang
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Section of Neurology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Hui Lee
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Antony Antonellis
- Department of Human Genetics and Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yi-Chung Lee
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
49
|
Kidd BN, Cahill DM, Manners JM, Schenk PM, Kazan K. Diverse roles of the Mediator complex in plants. Semin Cell Dev Biol 2011; 22:741-8. [DOI: 10.1016/j.semcdb.2011.07.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023]
|
50
|
Mediator and human disease. Semin Cell Dev Biol 2011; 22:776-87. [PMID: 21840410 DOI: 10.1016/j.semcdb.2011.07.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 01/21/2023]
Abstract
Since the identification of a metazoan counterpart to yeast Mediator nearly 15 years ago, a convergent body of biochemical and molecular genetic studies have confirmed their structural and functional relationship as an integrative hub through which regulatory information conveyed by signal activated transcription factors is transduced to RNA polymerase II. Nonetheless, metazoan Mediator complexes have been shaped during evolution by substantive diversification and expansion in both the number and sequence of their constituent subunits, with important implications for the development of multicellular organisms. The appearance of unique interaction surfaces within metazoan Mediator complexes for transcription factors of diverse species-specific origins extended the role of Mediator to include an essential function in coupling developmentally coded signals with precise gene expression output sufficient to specify cell fate and function. The biological significance of Mediator in human development, suggested by genetic studies in lower metazoans, is emphatically illustrated by an expanding list of human pathologies linked to genetic variation or aberrant expression of its individual subunits. Here, we review our current body of knowledge concerning associations between individual Mediator subunits and specific pathological disorders. When established, molecular etiologies underlying genotype-phenotype correlations are addressed, and we anticipate that future progress in this critical area will help identify therapeutic targets across a range of human pathologies.
Collapse
|