1
|
Ahn S, Kaipparettu BA. G-protein coupled receptors in metabolic reprogramming and cancer. Pharmacol Ther 2025; 270:108849. [PMID: 40204142 DOI: 10.1016/j.pharmthera.2025.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/09/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
G-protein coupled receptors (GPCR) are one of the frequently investigated drug targets. GPCRs are involved in many human pathophysiologies that lead to various disease conditions, such as cancer, diabetes, and obesity. GPCR receptor activates multiple signaling pathways depending on the ligand and tissue type. However, this review will be limited to the GPCR-mediated metabolic modulations and the activation of relevant signaling pathways in cancer therapy. Cancer cells often have reprogrammed cell metabolism to support tumor growth and metastatic plasticity. Many aggressive cancer cells maintain a hybrid metabolic status, using both glycolysis and mitochondrial metabolism for better metabolic plasticity. In addition to glucose and glutamine pathways, fatty acid is a key mitochondrial energy source in some cancer subtypes. Recently, targeting alternative energy pathways like fatty acid beta-oxidation (FAO) has attracted great interest in cancer therapy. Several in vitro and in vivo experiments in different cancer models reported encouraging responses to FAO inhibitors. However, due to the potential liver toxicity of FAO inhibitors in clinical trials, new approaches to indirectly target metabolic reprogramming are necessary for in vivo targeting of cancer cells. This review specifically focused on free fatty acid receptors (FFAR) and β-adrenergic receptors (β-AR) because of their reported significance in mitochondrial metabolism and cancer. Further understanding the pharmacology of GPCRs and their role in cancer metabolism will help repurpose GPCR-targeting drugs for cancer therapy and develop novel drug discovery strategies to combine them with standard cancer therapy to increase anticancer potential and overcome drug resistance.
Collapse
Affiliation(s)
- Songyeon Ahn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Jin C, Chen H, Xie L, Zhou Y, Liu LL, Wu J. GPCRs involved in metabolic diseases: pharmacotherapeutic development updates. Acta Pharmacol Sin 2024; 45:1321-1336. [PMID: 38326623 PMCID: PMC11192902 DOI: 10.1038/s41401-023-01215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 02/09/2024]
Abstract
G protein-coupled receptors (GPCRs) are expressed in a variety of cell types and tissues, and activation of GPCRs is involved in enormous metabolic pathways, including nutrient synthesis, transportation, storage or insulin sensitivity, etc. This review intends to summarize the regulation of metabolic homeostasis and mechanisms by a series of GPCRs, such as GPR91, GPR55, GPR119, GPR109a, GPR142, GPR40, GPR41, GPR43 and GPR120. With deep understanding of GPCR's structure and signaling pathways, it is attempting to uncover the role of GPCRs in major metabolic diseases, including metabolic syndrome, diabetes, dyslipidemia and nonalcoholic steatohepatitis, for which the global prevalence has risen during last two decades. An extensive list of agonists and antagonists with their chemical structures in a nature of small molecular compounds for above-mentioned GPCRs is provided as pharmacologic candidates, and their preliminary data of preclinical studies are discussed. Moreover, their beneficial effects in correcting abnormalities of metabolic syndrome, diabetes and dyslipidemia are summarized when clinical trials have been undertaken. Thus, accumulating data suggest that these agonists or antagonists might become as new pharmacotherapeutic candidates for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Cheng Jin
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
- College of Clinical Medicine, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yuan Zhou
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li-Li Liu
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
3
|
Lee DH, Kim MT, Han JH. GPR41 and GPR43: From development to metabolic regulation. Biomed Pharmacother 2024; 175:116735. [PMID: 38744220 DOI: 10.1016/j.biopha.2024.116735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
G-protein-coupled receptors are a diverse class of cell surface receptors that orchestrate numerous physiological functions. The G-protein-coupled receptors, GPR41 and GPR43, sense short-chain fatty acids (SCFAs), which are metabolites of dietary fermentation by the host's intestinal bacteria. These receptors have gained attention as potential therapeutic targets against various diseases because of their SCFA-mediated beneficial effects on the host's intestinal health. Mounting evidence has associated the activity of these receptors with chronic metabolic diseases, including obesity, diabetes, inflammation, and cardiovascular disease. However, despite intensive research using various strategies, including gene knockout (KO) mouse models, evidence about the precise roles of GPR41 and GPR43 in disease treatment remains inconsistent. Here, we comprehensively review the latest findings from functional studies of the signaling mechanisms that underlie the activities of GPR41 and GPR43, as well as highlight their multifaceted roles in health and disease. We anticipate that this knowledge will guide future research priorities and the development of effective therapeutic interventions.
Collapse
Affiliation(s)
- Do-Hyung Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, the Republic of Korea
| | - Min-Tae Kim
- Department of Pharmaceutical Research, KyongBo Pharmaceutical Co., Ltd, 174, Sirok-ro, Asan-si, Chungcheongnam-do 31501, the Republic of Korea
| | - Joo-Hui Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, the Republic of Korea.
| |
Collapse
|
4
|
Muradás TC, Freitas RDS, Gonçalves JIB, Xavier FAC, Marinowic DR. Potential antitumor effects of short-chain fatty acids in breast cancer models. Am J Cancer Res 2024; 14:1999-2019. [PMID: 38859825 PMCID: PMC11162650 DOI: 10.62347/etuq6763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/13/2024] [Indexed: 06/12/2024] Open
Abstract
The effects of short-chain fatty acids (SCFAs) have been explored against cancer due to the crosstalk between gut microbiota alterations and the immune system as a crucial role in cancer development. We evaluated the SCFAs effects in both in vitro and in vivo breast cancer models. In vitro, the SCFAs displayed contrasting effects on viability index, according to the evaluation of breast cancer cells with different phenotypes, human MCF-7, SK-BR-3, MDA-MD-231, or the mouse 4T1 lineage. Acetate displayed minimal effects at concentrations up to 100 mM. Alternatively, propionate increases or reduces cell viability depending on the concentration. Butyrate and valerate showed consistent time- and concentration-dependent effects on the viability of human or mouse breast cancer cells. The selective FFA2 4-CMTB or FFA3 AR420626 receptor agonists failed to overtake the SCFA actions, except by modest inhibitory effects on MDA-MB-231 and 4T1 cell viability. The FFA2 CATPB or FFA3 and β-hydroxybutyrate receptor antagonists lacked significant activity on human cell lines, although CATPB reduced 4T1 cell viability. Butyrate significantly affected cell morphology, clonogenicity, and migration, according to the evaluation of MDA-MB-231 and 4T1 cells. A preliminary examination of in vivo oral effects of butyrate, propionate, or valerate, dosed in prophylactic or therapeutic regimens, on several parameters evaluated in an orthotopic breast cancer model showed a reduction of lung metastasis in post-tumor induction butyrate-treated mice. Overall, the present results indicate that in vitro effects of SCFAs did not rely on FFA2 or FFA3 receptor activation, and they were not mirrored in vivo, at least at the tested conditions. Overall, the present results indicate potential in vitro inhibitory effects of SCFAs in breast cancer, independent of FFA2 or FFA3 receptor activation, and, in the metastatic breast cancer model, the butyrate-dosed therapeutic regimen reduced the number of lung metastases.
Collapse
Affiliation(s)
- Thaís C Muradás
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do SulPorto Alegre, RS, Brazil
| | - Raquel DS Freitas
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do SulPorto Alegre, RS, Brazil
| | - João IB Gonçalves
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do SulPorto Alegre, RS, Brazil
- Brain Institute of Rio Grande do SulPorto Alegre, RS, Brazil
| | - Fernando AC Xavier
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do SulPorto Alegre, RS, Brazil
- Brain Institute of Rio Grande do SulPorto Alegre, RS, Brazil
| | - Daniel R Marinowic
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do SulPorto Alegre, RS, Brazil
- Brain Institute of Rio Grande do SulPorto Alegre, RS, Brazil
| |
Collapse
|
5
|
Li F, Tai L, Sun X, Lv Z, Tang W, Wang T, Zhao Z, Gong D, Ma S, Tang S, Gu Q, Zhu X, Yu M, Liu X, Wang J. Molecular recognition and activation mechanism of short-chain fatty acid receptors FFAR2/3. Cell Res 2024; 34:323-326. [PMID: 38191689 PMCID: PMC10978569 DOI: 10.1038/s41422-023-00914-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Affiliation(s)
- Fahui Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Linhua Tai
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Sun
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Lv
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Wenqin Tang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Tianxin Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Ziyi Zhao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Daohong Gong
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shaohua Ma
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Shichen Tang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Quanchang Gu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Zhu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Minling Yu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Karati D, Mukherjee S, Roy S. Emerging therapeutic strategies in cancer therapy by HDAC inhibition as the chemotherapeutic potent and epigenetic regulator. Med Oncol 2024; 41:84. [PMID: 38438564 DOI: 10.1007/s12032-024-02303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
In developing new cancer medications, attention has been focused on novel epigenetic medicines called histone deacetylase (HDAC) inhibitors. Our understanding of cancer behavior is being advanced by research on epigenetics, which also supplies new targets for improving the effectiveness of cancer therapy. Most recently published patents emphasize HDAC selective drugs and multitarget HDAC inhibitors. Though significant progress has been made in emerging HDAC selective antagonists, it is urgently necessary to find new HDAC blockers with novel zinc-binding analogues to avoid the undesirable pharmacological characteristics of hydroxamic acid. HDAC antagonists have lately been explored as a novel approach to treating various diseases, including cancer. The complicated terrain of HDAC inhibitor development is summarized in this article, starting with a discussion of the many HDAC isotypes and their involvement in cancer biology, followed by a discussion of the mechanisms of action of HDAC inhibitors, their current level of development, effect of miRNA, and their combination with immunotherapeutic.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
7
|
Lee YJ, Son SE, Im DS. Free fatty acid 3 receptor agonist AR420626 reduces allergic responses in asthma and eczema in mice. Int Immunopharmacol 2024; 127:111428. [PMID: 38159551 DOI: 10.1016/j.intimp.2023.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Free fatty acid 3 receptor (FFA3; previously GPR41) is a G protein-coupled receptor that senses short-chain fatty acids and dietary metabolites produced by the gut microbiota. FFA3 deficiency reportedly exacerbates inflammatory events in asthma. Herein, we aimed to determine the therapeutic potential of FFA3 agonists in treating inflammatory diseases. We investigated the effects of N-(2,5-dichlorophenyl)-4-(furan-2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxamide (AR420626), an FFA3 agonist, in in vivo models of chemically induced allergic asthma and eczema in BALB/c mice. Administration of AR420626 decreased the number of immune cells in the bronchoalveolar lavage fluid and skin. AR420626 suppressed inflammatory cytokine expression in the lung and skin tissues. Histological examination revealed that AR420626 suppressed inflammation in the lungs and skin. Treatment with AR420626 significantly suppressed the enhanced lymph node size and inflammatory cytokine levels. Overall, FFA3 agonist AR420626 could suppress allergic asthma and eczema, implying that activation of FFA3 might be a therapeutic target for allergic diseases.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Biomedical and Pharmaceutical Sciences, Seoul 02446, Republic of Korea
| | - So-Eun Son
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Seoul 02446, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea.
| |
Collapse
|
8
|
Luo T, Chen X, Pan W, Zhang S, Huang J. The sorafenib resistance-related gene signature predicts prognosis and indicates immune activity in hepatocellular carcinoma. Cell Cycle 2024; 23:150-168. [PMID: 38444181 PMCID: PMC11037289 DOI: 10.1080/15384101.2024.2309020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 03/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death worldwide. Most patients with advanced HCC acquire sorafenib resistance. Drug resistance reflects the heterogeneity of tumors and is the main cause of tumor recurrence and death.We identified and validated sorafenib resistance related-genes (SRGs) as prognostic biomarkers for HCC. We obtained SRGs from the Gene Expression Omnibus and selected four key SRGs using the least absolute shrinkage and selection operator, random forest, and Support Vector Machine-Recursive feature elimination machine learning algorithms. Samples from the The Cancer Genome Atlas (TCGA)-HCC were segregated into two groups by consensus clustering. Following difference analysis, 19 SRGs were obtained through univariate Cox regression analysis, and a sorafenib resistance model was constructed for risk stratification and prognosis prediction. In multivariate Cox regression analysis, the risk score was an independent predictor of overall survival (OS). Patients classified as high-risk were more sensitive to other chemotherapy drugs and showed a higher expression of the common immune checkpoints. Additionally, the expression of drug-resistance genes was verified in the International Cancer Genome Consortium cohort. A nomogram model with a risk score was established, and its prediction performance was verified by calibration chart analysis of the TCGA-HCC cohort. We conclude that there is a significant correlation between sorafenib resistance and the tumor immune microenvironment in HCC. The risk score could be used to identify a reliable prognostic biomarker to optimize the therapeutic benefits of chemotherapy and immunotherapy, which can be helpful in the clinical decision-making for HCC patients.
Collapse
Affiliation(s)
- Tianxin Luo
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Xiaomei Chen
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Wei Pan
- Prenatal Diagnosis Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shu Zhang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Huang
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Liu Z, Qiu E, Yang B, Zeng Y. Uncovering hub genes in sepsis through bioinformatics analysis. Medicine (Baltimore) 2023; 102:e36237. [PMID: 38050254 PMCID: PMC10695588 DOI: 10.1097/md.0000000000036237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023] Open
Abstract
In-depth studies on the mechanisms of pathogenesis of sepsis and diagnostic biomarkers in the early stages may be the key to developing individualized and effective treatment strategies. This study aimed to identify sepsis-related hub genes and evaluate their diagnostic reliability. The gene expression profiles of GSE4607 and GSE131761 were obtained from the Gene Expression Omnibus. Differentially co-expressed genes between the sepsis and control groups were screened. Single-sample gene set enrichment analysis and gene set variation analysis were performed to investigate the biological functions of the hub genes. A receiver operating characteristic curve was used to evaluate diagnostic value. Datasets GSE154918 and GSE185263 were used as external validation datasets to verify the reliability of the hub genes. Four differentially co-expressed genes, FAM89A, FFAR3, G0S2, and FGF13, were extracted using a weighted gene co-expression network analysis and differential gene expression analysis methods. These 4 genes were upregulated in the sepsis group and were distinct from those in the controls. Moreover, the receiver operating characteristic curves of the 4 genes exhibited considerable diagnostic value in discriminating septic blood samples from those of the non-septic control group. The reliability and consistency of these 4 genes were externally validated. Single-sample gene set enrichment analysis and gene set variation analysis analyses indicated that the 4 hub genes were significantly correlated with the regulation of immunity and metabolism in sepsis. The identified FAM89A, FFAR3, G0S2, and FGF13 genes may help elucidate the molecular mechanisms underlying sepsis and drive the introduction of new biomarkers to advance diagnosis and treatment.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, China
| | - Eryue Qiu
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China
| | - Bihui Yang
- Department of Hematology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Yiqian Zeng
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China
| |
Collapse
|
10
|
Hamed SA, Mohan A, Navaneetha Krishnan S, Wang A, Drikic M, Prince NL, Lewis IA, Shearer J, Keita ÅV, Söderholm JD, Shutt TE, McKay DM. Butyrate reduces adherent-invasive E. coli-evoked disruption of epithelial mitochondrial morphology and barrier function: involvement of free fatty acid receptor 3. Gut Microbes 2023; 15:2281011. [PMID: 38078655 PMCID: PMC10730202 DOI: 10.1080/19490976.2023.2281011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023] Open
Abstract
Gut bacteria provide benefits to the host and have been implicated in inflammatory bowel disease (IBD), where adherent-invasive E. coli (AIEC) pathobionts (e.g., strain LF82) are associated with Crohn's disease. E. coli-LF82 causes fragmentation of the epithelial mitochondrial network, leading to increased epithelial permeability. We hypothesized that butyrate would limit the epithelial mitochondrial disruption caused by E. coli-LF82. Human colonic organoids and the T84 epithelial cell line infected with E. coli-LF82 (MOI = 100, 4 h) showed a significant increase in mitochondrial network fission that was reduced by butyrate (10 mM) co-treatment. Butyrate reduced the loss of mitochondrial membrane potential caused by E. coli-LF82 and increased expression of PGC-1α mRNA, the master regulator of mitochondrial biogenesis. Metabolomics revealed that butyrate significantly altered E. coli-LF82 central carbon metabolism leading to diminished glucose uptake and increased succinate secretion. Correlating with preservation of mitochondrial network form/function, butyrate reduced E. coli-LF82 transcytosis across T84-cell monolayers. The use of the G-protein inhibitor, pertussis toxin, implicated GPCR signaling as critical to the effect of butyrate, and the free fatty acid receptor three (FFAR3, GPR41) agonist, AR420626, reproduced butyrate's effect in terms of ameliorating the loss of barrier function and reducing the mitochondrial fragmentation observed in E. coli-LF82 infected T84-cells and organoids. These data indicate that butyrate helps maintain epithelial mitochondrial form/function when challenged by E. coli-LF82 and that this occurs, at least in part, via FFAR3. Thus, loss of butyrate-producing bacteria in IBD in the context of pathobionts would contribute to loss of epithelial mitochondrial and barrier functions that could evoke disease and/or exaggerate a low-grade inflammation.
Collapse
Affiliation(s)
- Samira A. Hamed
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Armaan Mohan
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Saranya Navaneetha Krishnan
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Arthur Wang
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Marija Drikic
- Calgary Metabolomics Research Facility, Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Nicole L. Prince
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ian A. Lewis
- Calgary Metabolomics Research Facility, Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology, Linköping University, Linköping, Sweden
| | - Johan D. Söderholm
- Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology, Linköping University, Linköping, Sweden
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Derek M. McKay
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
11
|
Liu Z, Ling Y, Peng Y, Han S, Ren Y, Jing Y, Fan W, Su Y, Mu C, Zhu W. Regulation of serotonin production by specific microbes from piglet gut. J Anim Sci Biotechnol 2023; 14:111. [PMID: 37542282 PMCID: PMC10403853 DOI: 10.1186/s40104-023-00903-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/04/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Serotonin is an important signaling molecule that regulates secretory and sensory functions in the gut. Gut microbiota has been demonstrated to affect serotonin synthesis in rodent models. However, how gut microbes regulate intestinal serotonin production in piglets remains vague. To investigate the relationship between microbiota and serotonin specifically in the colon, microbial composition and serotonin concentration were analyzed in ileum-cannulated piglets subjected to antibiotic infusion from the ileum when comparing with saline infusion. Microbes that correlated positively with serotonin production were isolated from piglet colon and were further used to investigate the regulation mechanisms on serotonin production in IPEC-J2 and a putative enterochromaffin cell line RIN-14B cells. RESULTS Antibiotic infusion increased quantities of Lactobacillus amylovorus (LA) that positively correlated with increased serotonin concentrations in the colon, while no effects observed for Limosilactobacillus reuteri (LR). To understand how microbes regulate serotonin, representative strains of LA, LR, and Streptococcus alactolyticus (SA, enriched in feces from prior observation) were selected for cell culture studies. Compared to the control group, LA, LR and SA supernatants significantly up-regulated tryptophan hydroxylase 1 (TPH1) expression and promoted serotonin production in IPEC-J2 cells, while in RIN-14B cells only LA exerted similar action. To investigate potential mechanisms mediated by microbe-derived molecules, microbial metabolites including lactate, acetate, glutamine, and γ-aminobutyric acid were selected for cell treatment based on computational and metabolite profiling in bacterial supernatant. Among these metabolites, acetate upregulated the expression of free fatty acid receptor 3 and TPH1 while downregulated indoleamine 2,3-dioxygenase 1. Similar effects were also recapitulated when treating the cells with AR420626, an agonist targeting free fatty acid receptor 3. CONCLUSIONS Overall, these results suggest that Lactobacillus amylovorus showed a positive correlation with serotonin production in the pig gut and exhibited a remarkable ability to regulate serotonin production in cell cultures. These findings provide evidence that microbial metabolites mediate the dialogue between microbes and host, which reveals a potential approach using microbial manipulation to regulate intestinal serotonin biosynthesis.
Collapse
Affiliation(s)
- Ziyu Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yidan Ling
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yu Peng
- Hubei CAT Biological Technology Co., Ltd., Wuhan, China
| | - Shuibing Han
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yuting Ren
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yujia Jing
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Wenlu Fan
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
12
|
Xu Y, Wei S, Zhu L, Huang C, Yang T, Wang S, Zhang Y, Duan Y, Li X, Wang Z, Pan W. Low expression of the intestinal metabolite butyric acid and the corresponding memory pattern regulate HDAC4 to promote apoptosis in rat hippocampal neurons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114660. [PMID: 36812872 DOI: 10.1016/j.ecoenv.2023.114660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
After intensive research on the gut-brain axis, intestinal dysbiosis is considered to be one of the important pathways of cognitive decline. Microbiota transplantation has long been thought to reverse the behavioral changes in the brain caused by colony dysregulation, but in our study, microbiota transplantation seemed to improve only behavioral brain function, and there was no reasonable explanation for the high level of hippocampal neuron apoptosis that remained. Butyric acid is one of the short-chain fatty acids of intestinal metabolites and is mainly used as an edible flavoring. It is commonly used in butter, cheese and fruit flavorings, and is a natural product of bacterial fermentation of dietary fiber and resistant starch in the colon, acting similarly to the small-molecule HDAC inhibitor TSA. The effect of butyric acid on HDAC levels in hippocampal neurons in the brain remains unclear. Therefore, this study used rats with low bacterial abundance, conditional knockout mice, microbiota transplantation, 16S rDNA amplicon sequencing, and behavioral assays to demonstrate the regulatory mechanism of short-chain fatty acids on the acetylation of hippocampal histones. The results showed that disturbance of short-chain fatty acid metabolism led to high HDAC4 expression in the hippocampus and regulated H4K8ac, H4K12ac, and H4K16ac to promote increased neuronal apoptosis. However, microbiota transplantation did not change the pattern of low butyric acid expression, resulting in maintained high HDAC4 expression in hippocampal neurons with continued neuronal apoptosis. Overall, our study shows that low levels of butyric acid in vivo can promote HDAC4 expression through the gut-brain axis pathway, leading to hippocampal neuronal apoptosis, and demonstrates that butyric acid has great potential value for neuroprotection in the brain. In this regard, we suggest that patients with chronic dysbiosis should pay attention to changes in the levels of SCFAs in their bodies, and if deficiencies occur, they should be promptly supplemented through diet and other means to avoid affecting brain health.
Collapse
Affiliation(s)
- Yongjie Xu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Sijia Wei
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Liying Zhu
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Changyudong Huang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Tingting Yang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Shuang Wang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Yiqiong Zhang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Yunfeng Duan
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Xing Li
- Guizhou University of Traditional Chinese Medicine, Guiyang 550004, Guizhou, PR China.
| | - Zhengrong Wang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China.
| | - Wei Pan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, PR China.
| |
Collapse
|
13
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. Advantageous tactics with certain probiotics for the treatment of graft-versus-host-disease after hematopoietic stem cell transplantation. World J Hematol 2023; 10:15-24. [DOI: 10.5315/wjh.v10.i2.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 01/17/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) becomes a standard form of cellular therapy for patients with malignant diseases. HSCT is the first-choice of immunotherapy, although HSCT can be associated with many complications such as graft-versus-host disease (GVHD) which is a major cause of morbidity and mortality after allogeneic HSCT. It has been shown that certain gut microbiota could exert protective and/or regenerative immunomodulatory effects by the production of short-chain fatty acids (SCFAs) such as butyrate in the experimental models of GVHD after allogeneic HSCT. Loss of gut commensal bacteria which can produce SCFAs may worsen dysbiosis, increasing the risk of GVHD. Expression of G-protein coupled receptors such as GPR41 seems to be upre-gulated in the presence of commensal bacteria, which might be associated with the biology of regulatory T cells (Tregs). Treg cells are a suppressive subset of CD4 positive T lymphocytes implicated in the prevention of GVHD after allogeneic HSCT. Here, we discuss the current findings of the relationship between the modification of gut microbiota and the GVHD-related immunity, which suggested that tactics with certain probiotics for the beneficial symbiosis in gut-immune axis might lead to the elevation of safety in the allogeneic HSCT.
Collapse
Affiliation(s)
- Sayuri Yoshikawa
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Haruka Sawamura
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yuka Ikeda
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
14
|
Rekha K, Venkidasamy B, Samynathan R, Nagella P, Rebezov M, Khayrullin M, Ponomarev E, Bouyahya A, Sarkar T, Shariati MA, Thiruvengadam M, Simal-Gandara J. Short-chain fatty acid: An updated review on signaling, metabolism, and therapeutic effects. Crit Rev Food Sci Nutr 2022; 64:2461-2489. [PMID: 36154353 DOI: 10.1080/10408398.2022.2124231] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fatty acids are good energy sources (9 kcal per gram) that aerobic tissues can use except for the brain (glucose is an alternative source). Apart from the energy source, fatty acids are necessary for cell signaling, learning-related memory, modulating gene expression, and functioning as cytokine precursors. Short-chain fatty acids (SCFAs) are saturated fatty acids arranged as a straight chain consisting minimum of 6 carbon atoms. SCFAs possess various beneficial effects like improving metabolic function, inhibiting insulin resistance, and ameliorating immune dysfunction. In this review, we discussed the biogenesis, absorption, and transport of SCFA. SCFAs can act as signaling molecules by stimulating G protein-coupled receptors (GPCRs) and suppressing histone deacetylases (HDACs). The role of SCFA on glucose metabolism, fatty acid metabolism, and its effect on the immune system is also reviewed with updated details. SCFA possess anticancer, anti-diabetic, and hepatoprotective effects. Additionally, the association of protective effects of SCFA against brain-related diseases, kidney diseases, cardiovascular damage, and inflammatory bowel diseases were also reviewed. Nanotherapy is a branch of nanotechnology that employs nanoparticles at the nanoscale level to treat various ailments with enhanced drug stability, solubility, and minimal side effects. The SCFA functions as drug carriers, and nanoparticles were also discussed. Still, much research was not focused on this area. SCFA functions in host gene expression through inhibition of HDAC inhibition. However, the study has to be focused on the molecular mechanism of SCFA against various diseases that still need to be investigated.
Collapse
Affiliation(s)
- Kaliaperumal Rekha
- Department of Environmental and Herbal Science, Tamil University, Thanjavur, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Mars Khayrullin
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Evgeny Ponomarev
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, West Bengal, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, South Korea
| | - Jesus Simal-Gandara
- Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
15
|
Dai K, Liu C, Guan G, Cai J, Wu L. Identification of immune infiltration-related genes as prognostic indicators for hepatocellular carcinoma. BMC Cancer 2022; 22:496. [PMID: 35513781 PMCID: PMC9074323 DOI: 10.1186/s12885-022-09587-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/18/2022] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a high degree of malignancy and a poor prognosis. Immune infiltration-related genes have shown good predictive value in the prognosis of many solid tumours. In this study, we established and verified prognostic biomarkers consisting of immune infiltration-related genes in HCC. Gene expression data and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. Differential gene expression analysis, univariate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) regression algorithm were used to screen prognostic immune infiltration-related genes and to construct a risk scoring model. Kaplan-Meier (KM) survival plots and receiver operating characteristic (ROC) curve analysis were used to evaluate the prognostic performance of the risk scoring model in the TCGA-HCC cohort. In addition, a nomogram model with a risk score was established, and its predictive performance was verified by ROC analysis and calibration plot analysis in the TCGA-HCC cohort. Gene set enrichment analysis (GSEA) identified pathways and biological processes that may be enriched in the high-risk group. Finally, immune infiltration analysis was used to explore the characteristics of the tumour microenvironment related to the risk score. We identified 17 immune infiltration-related genes with prognostic value and constructed a risk scoring model. ROC analysis showed that the risk scoring model can accurately predict the 1-year, 3-year, and 5-year overall survival (OS) of HCC patients in the TCGA-HCC cohort. KM analysis showed that the OS of the high-risk group was significantly lower than that of the low-risk group (P < 0.001). The nomogram model effectively predicted the OS of HCC patients in the TCGA-HCC cohort. GSEA indicated that the immune infiltration-related genes may be involved in biological processes such as amino acid and lipid metabolism, matrisome and small molecule transportation, immune system regulation, and hepatitis virus infection. Immune infiltration analysis showed that the level of immune cell infiltration in the high-risk group was low, and the risk score was negatively correlated with infiltrating immune cells. Our prognostic model based on immune infiltration-related genes in HCC could help the prognostic assessment of HCC patients and provide potential targets for HCC inhibition.
Collapse
Affiliation(s)
- Kunfu Dai
- Liver Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266003, China
| | - Chao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266003, China
| | - Ge Guan
- Liver Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266003, China
| | - Jinzhen Cai
- Liver Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266003, China
| | - Liqun Wu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266003, China.
| |
Collapse
|
16
|
Krivokolysko DS, Dotsenko VV, Bibik EY, Myazina AV, Krivokolysko SG, Vasilin VK, Pankov AA, Aksenov NA., Aksenova IV. Synthesis, Structure, and Analgesic Activity of 4-(5-Cyano-{4-(fur-2-yl)-1,4-dihydropyridin-3-yl}carboxamido)benzoic Acids Ethyl Esters. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363221120306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Krivokolysko DS, Dotsenko VV, Bibik EY, Samokish AA, Venidiktova YS, Frolov KA, Krivokolysko SG, Vasilin VK, Pankov AA, Aksenov NA, Aksenova IV. New 4-(2-Furyl)-1,4-dihydronicotinonitriles and 1,4,5,6-Tetrahydronicotinonitriles: Synthesis, Structure, and Analgesic Activity. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221090073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Xue D, Zhou X, Qiu J. Cytotoxicity mechanisms of plumbagin in drug-resistant tongue squamous cell carcinoma. J Pharm Pharmacol 2021; 73:98-109. [PMID: 33791802 DOI: 10.1093/jpp/rgaa027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVES To evaluate the inhibitory effect and mechanism of plumbagin (PLB) against drug-resistant tongue squamous cell carcinoma (TSCC), and whether its antitumour effect is not affected by tumour drug resistance. METHODS TSCC sensitive CAL27 cells and drug-resistant CAL27/RE cells were used to study the cytotoxicity and mechanism of PLB in vitro, including CCK-8 analysis, colony formation, DAPI staining, flow cytometry assay, transmission electron microscopy, western blotting assay, autophagy, apoptosis and ROS fluorescent probes. BALB/c nude mice xenograft models were used to study the growth inhibitory effect of PLB in vivo. KEY FINDINGS The results showed that the cell viability and proliferation inhibition and apoptosis induction abilities of PLB on drug-resistant cells were more obvious than that on sensitive cells. And PLB induced protective autophagy in TSCC cells. Mechanistically, PLB induced apoptosis and autophagy by generating reactive oxygen species to mediate JNK and AKT/mTOR pathways. Finally, the growth inhibitory effect of PLB against drug-resistant TSCC was also confirmed in vivo. CONCLUSIONS PLB will be a promising anticancer agent to overcome drug-resistant TSCC without being affected by its drug resistance properties.
Collapse
Affiliation(s)
- Danfeng Xue
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiongming Zhou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|