1
|
Chen Y, Wu L, Yang L, Chen J, Gu X, Zhang Y, Lin Q. Decitabine facilitates thrombopoiesis independent of the thrombopoietin receptor in zebrafish. BLOOD SCIENCE 2025; 7:e00216. [PMID: 39949500 PMCID: PMC11822343 DOI: 10.1097/bs9.0000000000000216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/26/2024] [Indexed: 02/16/2025] Open
Affiliation(s)
- Yudong Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Liangliang Wu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Lian Yang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jiajun Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xiaofan Gu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Yiyue Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Qing Lin
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Hematology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong China
| |
Collapse
|
2
|
Everett LA, Lin Z, Friedman A, Tang VT, Myers G, Balbin-Cuesta G, King R, Zhu G, McGee B, Khoriaty R. LMAN1 serves as a cargo receptor for thrombopoietin. JCI Insight 2024; 9:e175704. [PMID: 39499573 DOI: 10.1172/jci.insight.175704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/30/2024] [Indexed: 11/07/2024] Open
Abstract
Thrombopoietin (TPO) is a plasma glycoprotein that binds its receptor on megakaryocytes (MKs) and MK progenitors, resulting in enhanced platelet production. The mechanism by which TPO is secreted from hepatocytes remains poorly understood. Lectin mannose-binding 1 (LMAN1) and multiple coagulation factor deficiency 2 (MCFD2) form a complex at the endoplasmic reticulum membrane, recruiting cargo proteins into COPII vesicles for secretion. In this study, we showed that LMAN1-deficient mice (with complete germline LMAN1 deficiency) exhibited mild thrombocytopenia, whereas the platelet count was entirely normal in mice with approximately 7% Lman1 expression. Surprisingly, mice deleted for Mcfd2 did not exhibit thrombocytopenia. Analysis of peripheral blood from LMAN1-deficient mice demonstrated normal platelet size and normal morphology of dense and alpha granules. LMAN1-deficient mice exhibited a trend toward reduced MK and MK progenitors in the bone marrow. We next showed that hepatocyte-specific but not hematopoietic Lman1 deletion results in thrombocytopenia, with plasma TPO level reduced in LMAN1-deficient mice, despite normal Tpo mRNA levels in LMAN1-deficient livers. TPO and LMAN1 interacted by coimmunoprecipitation in a heterologous cell line, and TPO accumulated intracellularly in LMAN1-deleted cells. Together, these studies verified the hepatocyte as the cell of origin for TPO production in vivo and were consistent with LMAN1 as the endoplasmic reticulum cargo receptor that mediates the efficient secretion of TPO. To our knowledge, TPO is the first example of an LMAN1-dependent cargo that is independent of MCFD2.
Collapse
Affiliation(s)
- Lesley A Everett
- Department of Ophthalmology and
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | - Vi T Tang
- Department of Molecular and Integrative Physiology
| | | | | | | | | | | | - Rami Khoriaty
- Department of Internal Medicine
- Department of Cell and Developmental Biology
- Cellular and Molecular Biology Program
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Meng P, Liu W, Lao J, Liu X, Zhang Y, Sun Y, Zhou R, Du C, Wang J, Zhao D, Lin Q, Zhang Y. Paclitaxel improves thrombopoiesis in the absence of thrombopoietin receptor (Mpl). J Thromb Haemost 2024; 22:3599-3613. [PMID: 39307245 DOI: 10.1016/j.jtha.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 10/17/2024]
Abstract
BACKGROUND Platelets are critical for thrombosis and hemostasis. The THPO-MPL pathway is the primary pathway for generating thrombocytes. Dysregulation of thrombopoiesis results in platelet formation and/or function-related disorders, such as thrombocytopenia. Paclitaxel is an extensively utilized chemotherapeutic agent and its activity may be related to platelets, but the effect of paclitaxel on thrombocytopoiesis warrants comprehensive exploration. OBJECTIVES We focused on identifying factors that regulate thrombocyte production and elucidating paclitaxel's regulatory mechanisms on thrombocytopoiesis, with a particular emphasis on discovering mechanisms that bypass THPO-MPL pathways. METHODS We performed drug screenings using the Tg(mpl:eGFP) zebrafish model in vivo to identify Food and Drug Administration-approved compounds capable of boosting thrombocyte production. An injury experiment was used to evaluate thrombocyte function. Bromodeoxyuridine assays, terminal deoxynucleotidyl transferase dUTP nick-end labeling, and RNA sequencing analyses were performed to explore cytological and molecular mechanisms. Routine blood testing and flow cytometry were used to analyze mouse phenotypes. RESULTS We found that paclitaxel expands thrombocytes by accelerating the proliferation of thrombocytic lineage cells in zebrafish and elevates platelet levels in mice. This effect occurs by bypassing the thrombopoietin receptor (Mpl). We found that paclitaxel promotes thrombopoiesis, potentially involving the JAK2-ERK1/2 MAPK signaling cascade, a pathway integral to MPL and other regulators. Our results further demonstrate that ERK1/2 is at least partially downstream of JAK2 in paclitaxel-induced thrombopoiesis. CONCLUSION Paclitaxel could promote thrombopoiesis by bypassing Mpl but presumably via the JAK2-ERK1/2 MAPK pathways. It will aid in understanding the relationship between paclitaxel and platelets clinically, and paclitaxel may have potential value for safeguarding platelets and improving thrombocytosis in related diseases.
Collapse
Affiliation(s)
- Panpan Meng
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenyu Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiawen Lao
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xunwei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yangping Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Sun
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Riyang Zhou
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Changhong Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Dejian Zhao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Qing Lin
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China; Department of Hematology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yiyue Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
4
|
Frick J, Frobert A, Quintela Pousa AM, Balaphas A, Meyer J, Schäfer K, Giraud MN, Egger B, Bühler L, Gonelle-Gispert C. Evidence for platelet-derived transforming growth factor β1 as an early inducer of liver regeneration after hepatectomy in mice. FASEB J 2024; 38:e70039. [PMID: 39258958 DOI: 10.1096/fj.202400345r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
Platelets play a crucial role in tissue regeneration, and their involvement in liver regeneration is well-established. However, the specific contribution of platelet-derived Transforming Growth Factor Beta 1 (TGFβ1) to liver regeneration remains unexplored. This study investigated the role of platelet-derived TGFβ1 in initiating liver regeneration following 2/3 liver resection. Using platelet-specific TGFβ1 knockout (Plt.TGFβ1 KO) mice and wild-type littermates (Plt.TGFβ1 WT) as controls, the study assessed circulating levels and hepatic gene expression of TGFβ1, Platelet Factor 4 (PF4), and Thrombopoietin (TPO) at early time points post-hepatectomy (post-PHx). Hepatocyte proliferation was quantified through Ki67 staining and PCNA expression in total liver lysates at various intervals, and phosphohistone-H3 (PHH3) staining was employed to mark mitotic cells. Circulating levels of hepatic mitogens, Hepatocyte Growth Factor (HGF), and Interleukin-6 (IL6) were also assessed. Results revealed that platelet-TGFβ1 deficiency significantly reduced total plasma TGFβ1 levels at 5 h post-PHx in Plt.TGFβ1 KO mice compared to controls. While circulating PF4 levels, liver platelet recruitment and activation appeared normal at early time points, Plt.TGFβ1 KO mice showed more stable circulating platelet numbers with higher numbers at 48 h post-PHx. Notably, hepatocyte proliferation was significantly reduced in Plt.TGFβ1 KO mice. The results show that a lack of TGFβ1 in platelets leads to an unbalanced expression of IL6 in the liver and to strongly increased HGF levels 48 h after liver resection, and yet liver regeneration remains reduced. The study identifies platelet-TGFβ1 as a regulator of hepatocyte proliferation and platelet homeostasis in the early stages of liver regeneration.
Collapse
Affiliation(s)
- Johanna Frick
- Surgical Research Unit, Department of MSS, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Aurelien Frobert
- Cardiology, Department of EMC, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Ana Maria Quintela Pousa
- Surgical Research Unit, Department of MSS, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Alexandre Balaphas
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Jeremy Meyer
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Marie-Noelle Giraud
- Cardiology, Department of EMC, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Bernhard Egger
- Surgical Research Unit, Department of MSS, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Leo Bühler
- Surgical Research Unit, Department of MSS, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, Department of MSS, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Liu G, Hou Y, Jin X, Zhang Y, Sun C, Huang C, Ren Y, Gao J, Wang X, Jiang X. PI3K/HSCB axis facilitates FOG1 nuclear translocation to promote erythropoiesis and megakaryopoiesis. eLife 2024; 13:RP95815. [PMID: 38757931 PMCID: PMC11101173 DOI: 10.7554/elife.95815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron-sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron-sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal UniversityChangchunChina
| | - Yunxuan Hou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal UniversityChangchunChina
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal UniversityChangchunChina
| | - Yixue Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal UniversityChangchunChina
| | - Chaoyue Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal UniversityChangchunChina
| | - Chengquan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal UniversityChangchunChina
| | - Yujie Ren
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal UniversityChangchunChina
| | - Jianmin Gao
- School of Chemistry, Northeast Normal UniversityChangchunChina
| | - Xiuli Wang
- School of Life Science, Northeast Normal UniversityChangchunChina
| | - Xiumei Jiang
- School of Chemistry, Northeast Normal UniversityChangchunChina
| |
Collapse
|
6
|
Lee S, Zhan H. Deciphering the differential impact of thrombopoietin/MPL signaling on hematopoietic stem/progenitor cell function in bone marrow and spleen. Stem Cell Reports 2024; 19:211-223. [PMID: 38215758 PMCID: PMC10874852 DOI: 10.1016/j.stemcr.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Thrombopoietin (TPO) and its receptor MPL play crucial roles in hematopoietic stem cell (HSC) function and platelet production. However, the precise effects of TPO/MPL signaling on HSC regulation in different hematopoietic niches remain unclear. Here, we investigated the effects of TPO/MPL ablation on marrow and splenic hematopoiesis in TPO-/- and MPL-/- mice during aging. Despite severe thrombocytopenia, TPO-/- and MPL-/- mice did not develop marrow failure during a 2-year follow-up. Marrow and splenic HSCs exhibited different responses to TPO/MPL ablation and exogenous TPO treatment. Splenic niche cells compensated for marrow HSC loss in TPO-/- and MPL-/- mice by upregulating CXCL12 levels. These findings provide new insights into the complex regulation of HSCs by TPO/MPL and reveal a previously unknown link between TPO and CXCL12, two key growth factors for HSC maintenance. Understanding the distinct regulatory mechanisms between marrow and spleen hematopoiesis will help to develop novel therapeutic approaches for hematopoietic disorders.
Collapse
Affiliation(s)
- Sandy Lee
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA; Medical Service, Northport VA Medical Center, Northport, NY, USA.
| |
Collapse
|
7
|
Hashemzaei M, Ghoshoon MB, Jamshidi M, Moradbeygi F, Hashemzehi A. A Review on Romiplostim Mechanism of Action and the Expressive Approach in E. coli. Recent Pat Biotechnol 2024; 18:95-109. [PMID: 38282441 DOI: 10.2174/1872208317666230503094451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 01/30/2024]
Abstract
Immune thrombocytopenic purpura (ITP) is an autoimmune disorder determined by immune-mediated platelet demolition and reduction of platelet production. Romiplostim is a new thrombopoiesis motivating peptibody that binds and stimulates the human thrombopoietin receptor the patent of which was registered in 2008. It is used to treat thrombocytopenia in patients with chronic immune thrombocytopenic purpura. Romiplostim is a 60 kDa peptibody designed to inhibit cross-reacting immune responses. It consists of four high-affinity TPO-receptor binding domains for the Mpl receptor and one human IgG1 Fc domain. Escherichia coli is a good host for the fabrication of recombinant proteins such as romiplostim. The expression of a gene intended in E. coli is dependent on many factors such as a protein's inherent ability to fold, mRNA's secondary structure, its solubility, its toxicity preferential codon use, and its need for post-translational modification (PTM). This review focuses on the structure, function, mechanism of action, and expressive approach to romiplostim in E. coli.
Collapse
Affiliation(s)
- Masoud Hashemzaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehrnaz Jamshidi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moradbeygi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hashemzehi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Dong B, Zhu J, Chen X, Jiang H, Deng Y, Xu L, Wang Y, Li S. The Emerging Role of Interleukin-(IL)-11/IL-11R in Bone Metabolism and Homeostasis: From Cytokine to Osteokine. Aging Dis 2023; 14:2113-2126. [PMID: 37199584 PMCID: PMC10676798 DOI: 10.14336/ad.2023.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/06/2023] [Indexed: 05/19/2023] Open
Abstract
Interleukin-(IL)-11 is a cytokine involved in hematopoiesis, cancer metastasis, and inflammation. IL-11 belongs to the IL-6 cytokine family, binding to the complex of receptors glycoprotein gp130 and the ligand-specific-receptor subunits (IL-11Rα or their soluble counterpart sIL-11R). IL-11/IL-11R signaling enhances osteoblast differentiation and bone formation and mitigates osteoclast-induced bone resorption and cancer bone metastasis. Recent studies have shown that systemic and osteoblast/osteocyte-specific IL-11 deficiency leads to reduced bone mass and formation, but also adiposity, glucose intolerance, and insulin resistance. In humans, mutations of IL-11 and the receptor IL-11RA genes are associated with height reduction, osteoarthritis, and craniosynostosis. In this review, we describe the emerging role of IL-11/IL-11R signaling in bone metabolism by targeting osteoblasts, osteoclasts, osteocytes, and bone mineralization. Furthermore, IL-11 promotes osteogenesis and suppresses adipogenesis, thereby influencing the fate of osteoblast/adipocyte differentiation derived from pluripotent mesenchymal stem cells. We have newly identified IL-11 as a bone-derived cytokine that regulates bone metabolism and the link between bone and other organs. Thus, IL-11 is vital in bone homeostasis and could be considered a potential therapeutic strategy.
Collapse
Affiliation(s)
- Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Zhu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyuan Jiang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujie Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shufa Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther 2023; 8:204. [PMID: 37208335 DOI: 10.1038/s41392-023-01468-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Lee S, Zhan H. Deciphering the Differential Impact of Thrombopoietin/MPL Signaling on Hematopoietic Stem Cell Function in Bone Marrow and Spleen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538580. [PMID: 37162918 PMCID: PMC10168386 DOI: 10.1101/2023.04.27.538580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Thrombopoietin (TPO) and its receptor MPL play crucial roles in hematopoietic stem cell (HSC) function and platelet production. However, the precise effects of TPO/MPL signaling on HSC regulation in different hematopoietic niches remain unclear. Here, we investigated the effects of TPO/MPL ablation on marrow and splenic hematopoiesis in TPO-/- and MPL-/- mice during aging. Despite severe thrombocytopenia, TPO-/- and MPL-/- mice did not develop marrow failure during a 2-year follow-up. Marrow and splenic HSCs exhibited different responses to TPO/MPL ablation and exogenous TPO treatment. Splenic niche cells compensated for marrow HSC loss in TPO-/- and MPL-/- mice by upregulating CXCL12 levels. These findings provide new insights into the complex regulation of HSCs by TPO/MPL and reveal a previously unknown link between TPO and CXCL12, two key growth factors for HSC maintenance. Understanding the distinct regulatory mechanisms between marrow and spleen hematopoiesis will help develop novel therapeutic approaches for hematopoietic disorders.
Collapse
Affiliation(s)
- Sandy Lee
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY
- Medical Service, Northport VA Medical Center, Northport, NY
| |
Collapse
|
11
|
Sayyadi M, Hassani S, Shams M, Dorgalaleh A. Status of major hemostatic components in the setting of COVID-19: the effect on endothelium, platelets, coagulation factors, fibrinolytic system, and complement. Ann Hematol 2023; 102:1307-1322. [PMID: 37074380 PMCID: PMC10115391 DOI: 10.1007/s00277-023-05234-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/14/2023] [Indexed: 04/20/2023]
Abstract
The coagulation, fibrinolytic, anticoagulation, and complement systems are in delicate balance with the vessel wall endothelium ensuring appropriate hemostasis. Coagulopathy in coronavirus disease 2019 (COVID-19) is not a simple disorder of one hemostatic component but a complicated process affecting most of the hemostasis system. COVID-19 disturbs the balance between the procoagulant systems and the regulatory mechanisms. Here, we investigate the effect of COVID-19 on key hemostatic components, including platelets, endothelial cells, coagulation factors, fibrinolytic system, anticoagulant protein system, and complement system, to improve our understanding of the pathophysiological processes underlying COVID-19 coagulopathy based on evidence.
Collapse
Affiliation(s)
- Mohammad Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Saeed Hassani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran.
| | - Mahmood Shams
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
12
|
Viuff M, Skakkebæk A, Johannsen EB, Chang S, Pedersen SB, Lauritsen KM, Pedersen MGB, Trolle C, Just J, Gravholt CH. X chromosome dosage and the genetic impact across human tissues. Genome Med 2023; 15:21. [PMID: 36978128 PMCID: PMC10053618 DOI: 10.1186/s13073-023-01169-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Sex chromosome aneuploidies (SCAs) give rise to a broad range of phenotypic traits and diseases. Previous studies based on peripheral blood samples have suggested the presence of ripple effects, caused by altered X chromosome number, affecting the methylome and transcriptome. Whether these alterations can be connected to disease-specific tissues, and thereby having clinical implication for the phenotype, remains to be elucidated. METHODS We performed a comprehensive analysis of X chromosome number on the transcriptome and methylome in blood, fat, and muscle tissue from individuals with 45,X, 46,XX, 46,XY, and 47,XXY. RESULTS X chromosome number affected the transcriptome and methylome globally across all chromosomes in a tissue-specific manner. Furthermore, 45,X and 47,XXY demonstrated a divergent pattern of gene expression and methylation, with overall gene downregulation and hypomethylation in 45,X and gene upregulation and hypermethylation in 47,XXY. In fat and muscle, a pronounced effect of sex was observed. We identified X chromosomal genes with an expression pattern different from what would be expected based on the number of X and Y chromosomes. Our data also indicate a regulatory function of Y chromosomal genes on X chromosomal genes. Fourteen X chromosomal genes were downregulated in 45,X and upregulated in 47,XXY, respectively, in all three tissues (AKAP17A, CD99, DHRSX, EIF2S3, GTPBP6, JPX, KDM6A, PP2R3B, PUDP, SLC25A6, TSIX, XIST, ZBED1, ZFX). These genes may be central in the epigenetic and genomic regulation of sex chromosome aneuploidies. CONCLUSION We highlight a tissue-specific and complex effect of X chromosome number on the transcriptome and methylome, elucidating both shared and non-shared gene-regulatory mechanism between SCAs.
Collapse
Affiliation(s)
- Mette Viuff
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Gynecology and Obstetrics, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Genetics, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
| | - Emma B Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Simon Chang
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Steen Bønlykke Pedersen
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Katrine Meyer Lauritsen
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Mette Glavind Bülow Pedersen
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Christian Trolle
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Claus H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| |
Collapse
|
13
|
Ou Y, Zhan Y, Zhuang X, Shao X, Xu P, Li F, Chen H, Ji L, Cheng Y. A bibliometric analysis of primary immune thrombocytopenia from 2011 to 2021. Br J Haematol 2023; 201:954-970. [PMID: 36807900 DOI: 10.1111/bjh.18692] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023]
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune disorder characterized by isolated thrombocytopenia. This bibliometric analysis was applied to identify the characteristics of global scientific output, the hotspots, and frontiers of ITP over the past 10 years. We retrieved publications from 2011 to 2021 from the Web of Science Core Collection (WoSCC). Bibliometrix package, VOSviewer, and Citespace were used to analyse and visualize the trend, distribution, and hotspots of research on ITP. Altogether, there were 2084 papers, written by 9080 authors from 410 organizations in 70 countries/regions, published in 456 journals with 37 160 co-cited references. In the last decades, the most productive journal was British Journal of Haematology, China was the most productive country. and the most cited journal was Blood. Shandong University was the most productive institution in the field of ITP. NEUNERT C, 2011, BLOOD, CHENG G, 2011, LANCET, and PATEL VL, 2012, BLOOD were the top three most cited documents. "Thrombopoietin receptor agonist", "regulatory T cell" and "sialic acid" were three hotspots of the last decade. And "immature platelet fraction", "Th17", and "fostamatinib" would be research frontiers in the feature. The present study provided a novel insight for future research directions and scientific decision-making.
Collapse
Affiliation(s)
- Yang Ou
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xibing Zhuang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Shao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengcheng Xu
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Zhongshan Hospital Qingpu Branch, Department of Hematology, Fudan University, Shanghai, China
| | - Hao Chen
- Zhongshan Hospital Xuhui Branch, Department of Thoracic Surgery, Fudan University, Shanghai, China
| | - Lili Ji
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Zhongshan Hospital Qingpu Branch, Department of Hematology, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Tang X, Xu Q, Yang S, Huang X, Wang L, Huang F, Luo J, Zhou X, Wu A, Mei Q, Zhao C, Wu J. Toll-like Receptors and Thrombopoiesis. Int J Mol Sci 2023; 24:1010. [PMID: 36674552 PMCID: PMC9864288 DOI: 10.3390/ijms24021010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Platelets are the second most abundant blood component after red blood cells and can participate in a variety of physiological and pathological functions. Beyond its traditional role in hemostasis and thrombosis, it also plays an indispensable role in inflammatory diseases. However, thrombocytopenia is a common hematologic problem in the clinic, and it presents a proportional relationship with the fatality of many diseases. Therefore, the prevention and treatment of thrombocytopenia is of great importance. The expression of Toll-like receptors (TLRs) is one of the most relevant characteristics of thrombopoiesis and the platelet inflammatory function. We know that the TLR family is found on the surface or inside almost all cells, where they perform many immune functions. Of those, TLR2 and TLR4 are the main stress-inducing members and play an integral role in inflammatory diseases and platelet production and function. Therefore, the aim of this review is to present and discuss the relationship between platelets, inflammation and the TLR family and extend recent research on the influence of the TLR2 and TLR4 pathways and the regulation of platelet production and function. Reviewing the interaction between TLRs and platelets in inflammation may be a research direction or program for the treatment of thrombocytopenia-related and inflammatory-related diseases.
Collapse
Affiliation(s)
- Xiaoqin Tang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qian Xu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shuo Yang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xinwu Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Jiesi Luo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Xiaogang Zhou
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Qibing Mei
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Chunling Zhao
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| |
Collapse
|
15
|
Yang L, Wu L, Meng P, Zhang X, Zhao D, Lin Q, Zhang Y. Generation of a thrombopoietin-deficient thrombocytopenia model in zebrafish. J Thromb Haemost 2022; 20:1900-1909. [PMID: 35622056 DOI: 10.1111/jth.15772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The production of platelets is tightly regulated by thrombopoietin (THPO). Mutations in the THPO gene cause thrombocytopenia. Although mice lacking Thpo present with thrombocytopenia, predicting phenotypes and pathogenicity of novel THPO mutations in mice is limited. Zebrafish can be a powerful tool for fast validation and study of candidate genes of human hematological diseases and have already been used as a model of human thrombocytopenia. OBJECTIVES We aim to investigate the role of Thpo in zebrafish thrombopoiesis and to establish a Thpo-deficient zebrafish model. The model could be applied for illustrating the clinically discovered human THPO variants of which the clinical significance is not known and to evaluate the effect of THPO receptor agonists (THPO-Ras), as well as a screening platform for new drugs. METHODS We generated a thpo loss-of-function zebrafish model using CRISPR/Cas9. After disruption of zebrafish thpo, thposzy6 zebrafish presented with a significant reduction of thpo expression and developed thrombocytopenia. Furthermore, we performed in vivo studies with zebrafish with the thposzy6 mutation and found two human clinical point mutations (c.091C > T and c.112C > T) that were responsible for the thrombocytopenia phenotype. In addition, effects of THPO-RAs used as therapeutics against thrombocytopenia were evaluated in the Tg(mpl:eGFP);thposzy6 line. RESULTS AND CONCLUSIONS Zebrafish with the mutation thposzy6 presented with a significant reduction of thpo expression and developed thrombocytopenia. Thpo loss-of-function zebrafish model can serve as a valuable preclinical model for thrombocytopenia caused by thpo-deficiency, as well as a tool to study human clinical THPO variants and evaluate the effect of THPO-RAs.
Collapse
Affiliation(s)
- Lian Yang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liangliang Wu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Panpan Meng
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xuebing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dejian Zhao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Qing Lin
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
16
|
Megakaryocyte/platelet-derived TGF-β1 inhibits megakaryopoiesis in bone marrow by regulating thrombopoietin production in liver. Blood Adv 2022; 6:3321-3328. [PMID: 35358295 PMCID: PMC9198906 DOI: 10.1182/bloodadvances.2021005977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/26/2022] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor β1 (TGF-β1) regulates a wide variety of events in the adult bone marrow, including quiescence of hematopoietic stem cells, via an undefined mechanism. Because megakaryocyte/platelets are a rich source of TGF-β1, we assessed whether TGF-β1 might inhibit its own production by comparing mice with conditional inactivation of Tgfb1 in megakaryocytes (PF4Cre;Tgfb1flox/flox) and control mice. PF4Cre;Tgfb1flox/flox mice had ~30% more megakaryocytes in BM and ~15% more circulating platelets than control mice (p<0.001). Thrombopoietin (TPO) levels in plasma and TPO expression in liver were ~2-fold higher in PF4Cre;Tgfb1flox/flox than in control mice (p<0.01), whereas the TPO expression in BM cells was similar between these mice. In BM cell culture, TPO treatment increased the number of megakaryocytes from WT-mice by ~3-fold, which increased a further ~2-fold in the presence of a TGF-β1-neutralizing antibody, and increased the number of megakaryocytes from PF4Cre;Tgfb1flox/flox mice ~5-fold. Our data reveal a new role for TGF-β1 produced by megakaryocyte/platelets in regulating its own production in BM via increasing TPO production in the liver. Further studies are required to determine the mechanism.
Collapse
|
17
|
Nations CC, Pavani G, French DL, Gadue P. Modeling genetic platelet disorders with human pluripotent stem cells: mega-progress but wanting more on our plate(let). Curr Opin Hematol 2021; 28:308-314. [PMID: 34397590 PMCID: PMC8371829 DOI: 10.1097/moh.0000000000000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Megakaryocytes are rare hematopoietic cells that play an instrumental role in hemostasis, and other important biological processes such as immunity and wound healing. With the advent of cell reprogramming technologies and advances in differentiation protocols, it is now possible to obtain megakaryocytes from any pluripotent stem cell (PSC) via hematopoietic induction. Here, we review recent advances in PSC-derived megakaryocyte (iMK) technology, focusing on platform validation, disease modeling and current limitations. RECENT FINDINGS A comprehensive study confirmed that iMK can recapitulate many transcriptional and functional aspects of megakaryocyte and platelet biology, including variables associated with complex genetic traits such as sex and race. These findings were corroborated by several pathological models in which iMKs revealed molecular mechanisms behind inherited platelet disorders and assessed the efficacy of novel pharmacological interventions. However, current differentiation protocols generate primarily embryonic iMK, limiting the clinical and translational potential of this system. SUMMARY iMK are strong candidates to model pathologic mutations involved in platelet defects and develop innovative therapeutic strategies. Future efforts on generating definitive hematopoietic progenitors would improve current platelet generation protocols and expand our capacity to model neonatal and adult megakaryocyte disorders.
Collapse
Affiliation(s)
- Catriana C Nations
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Sclerostin Depletion Induces Inflammation in the Bone Marrow of Mice. Int J Mol Sci 2021; 22:ijms22179111. [PMID: 34502021 PMCID: PMC8431516 DOI: 10.3390/ijms22179111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 01/25/2023] Open
Abstract
Romosozumab, a humanized monoclonal antibody specific for sclerostin (SOST), has been approved for treatment of postmenopausal women with osteoporosis at a high risk for fracture. Previous work in sclerostin global knockout (Sost-/-) mice indicated alterations in immune cell development in the bone marrow (BM), which could be a possible side effect in romosozumab-treated patients. Here, we examined the effects of short-term sclerostin depletion in the BM on hematopoiesis in young mice receiving sclerostin antibody (Scl-Ab) treatment for 6 weeks, and the effects of long-term Sost deficiency on wild-type (WT) long-term hematopoietic stem cells transplanted into older cohorts of Sost-/- mice. Our analyses revealed an increased frequency of granulocytes in the BM of Scl-Ab-treated mice and WT→Sost-/- chimeras, indicating myeloid-biased differentiation in Sost-deficient BM microenvironments. This myeloid bias extended to extramedullary hematopoiesis in the spleen and was correlated with an increase in inflammatory cytokines TNFα, IL-1α, and MCP-1 in Sost-/- BM serum. Additionally, we observed alterations in erythrocyte differentiation in the BM and spleen of Sost-/- mice. Taken together, our current study indicates novel roles for Sost in the regulation of myelopoiesis and control of inflammation in the BM.
Collapse
|
19
|
Recombinant human thrombopoietin promotes platelet engraftment after umbilical cord blood transplantation. Blood Adv 2021; 4:3829-3839. [PMID: 32790845 DOI: 10.1182/bloodadvances.2020002257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023] Open
Abstract
Delayed platelet engraftment is a common complication after umbilical cord blood transplantation (UCBT) accompanied by increased transplant-related complications or death. This study was designed to determine the safety and efficacy of recombinant human thrombopoietin (rhTPO) in promoting platelet engraftment after UCBT. A total of 120 patients scheduled to receive UCBT were randomly assigned to the rhTPO group (300 U/kg once daily from days 14 to 28 after UCBT, n = 60) or the control group (n = 60). The primary outcome was the 60-day cumulative incidence of platelet engraftment after single-unit cord blood transplantation. The 60-day cumulative incidence of platelet engraftment (platelet count ≥20 × 109/L) and the 120-day cumulative incidence of platelet recovery (platelet count ≥50 × 109/L) were both significantly higher in the rhTPO group than in the control group (83.1% vs 66.7%, P = .020; and 81.4% vs 65.0%, P = .032, respectively). In addition, the number of required platelet infusions was significantly lower in the rhTPO group than in the control group (6 vs 8 units, respectively; P = .026). The cumulative incidence of neutrophil engraftment and the probability of 2-year overall survival, disease-free survival, and graft-versus-host disease-free relapse-free survival did not differ between the 2 groups. Other transplant-related outcomes and complications did not differ between the 2 groups, and no severe adverse effects were observed in patients receiving rhTPO. This study demonstrated that rhTPO is well tolerated in patients and could effectively promote platelet engraftment after UCBT. This study was registered on the Chinese Clinical Trial Registry (http://www.chictr.org.cn/index.aspx) as ChiCTR-IPR-16009357.
Collapse
|
20
|
Martínez-Botía P, Acebes-Huerta A, Seghatchian J, Gutiérrez L. On the Quest for In Vitro Platelet Production by Re-Tailoring the Concepts of Megakaryocyte Differentiation. ACTA ACUST UNITED AC 2020; 56:medicina56120671. [PMID: 33287459 PMCID: PMC7761839 DOI: 10.3390/medicina56120671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
The demand of platelet transfusions is steadily growing worldwide, inter-donor variation, donor dependency, or storability/viability being the main contributing factors to the current global, donor-dependent platelet concentrate shortage concern. In vitro platelet production has been proposed as a plausible alternative to cover, at least partially, the increasing demand. However, in practice, such a logical production strategy does not lack complexity, and hence, efforts are focused internationally on developing large scale industrial methods and technologies to provide efficient, viable, and functional platelet production. This would allow obtaining not only sufficient numbers of platelets but also functional ones fit for all clinical purposes and civil scenarios. In this review, we cover the evolution around the in vitro culture and differentiation of megakaryocytes into platelets, the progress made thus far to bring the culture concept from basic research towards good manufacturing practices certified production, and subsequent clinical trial studies. However, little is known about how these in vitro products should be stored or whether any safety measure should be implemented (e.g., pathogen reduction technology), as well as their quality assessment (how to isolate platelets from the rest of the culture cells, debris, microvesicles, or what their molecular and functional profile is). Importantly, we highlight how the scientific community has overcome the old dogmas and how the new perspectives influence the future of platelet-based therapy for transfusion purposes.
Collapse
Affiliation(s)
- Patricia Martínez-Botía
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
- Department of Medicine, University of Oviedo, 33003 Oviedo, Spain
| | - Andrea Acebes-Huerta
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
| | - Jerard Seghatchian
- International Consultancy in Strategic Safety/Quality Improvements of Blood-Derived Bioproducts and Suppliers Quality Audit/Inspection, London NW3 3AA, UK;
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
- Department of Medicine, University of Oviedo, 33003 Oviedo, Spain
- Correspondence:
| |
Collapse
|
21
|
Yang J, Luan J, Shen Y, Chen B. Developments in the production of platelets from stem cells (Review). Mol Med Rep 2020; 23:7. [PMID: 33179095 PMCID: PMC7673345 DOI: 10.3892/mmr.2020.11645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
Platelets are small pieces of cytoplasm that have become detached from the cytoplasm of mature megakaryocytes (MKs) in the bone marrow. Platelets modulate vascular system integrity and serve important role, particularly in hemostasis. With the rapid development of clinical medicine, the demand for platelet transfusion as a life‑saving intervention increases continuously. Stem cell technology appears to be highly promising for transfusion medicine, and the generation of platelets from stem cells would be of great value in the clinical setting. Furthermore, several studies have been undertaken to investigate the potential of producing platelets from stem cells. Initial success has been achieved in terms of the yields and function of platelets generated from stem cells. However, the requirements of clinical practice remain unmet. The aim of the present review was to focus on several sources of stem cells and factors that induce MK differentiation. Updated information on current research into the genetic regulation of megakaryocytopoiesis and platelet generation was summarized. Additionally, advanced strategies of platelet generation were reviewed and the progress made in this field was discussed.
Collapse
Affiliation(s)
- Jie Yang
- Department of Hematology and Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jianfeng Luan
- Jinling Hospital Department of Blood Transfusion, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Baoan Chen
- Department of Hematology and Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
22
|
Zebrafish for thrombocytopoiesis- and hemostasis-related researches and disorders. BLOOD SCIENCE 2020; 2:44-49. [PMID: 35402814 PMCID: PMC8975081 DOI: 10.1097/bs9.0000000000000043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/05/2020] [Indexed: 11/30/2022] Open
Abstract
Platelets play vital roles in hemostasis, inflammation, and vascular biology. Platelets are also active participants in the immune responses. As vertebrates, zebrafish have a highly conserved hematopoietic system in the developmental, cellular, functional, biochemical, and genetic levels with mammals. Thrombocytes in zebrafish are functional homologs of mammalian platelets. Here, we summarized thrombocyte development, function, and related research techniques in zebrafish, and reviewed available zebrafish models of platelet-associated disorders, including congenital amegakaryocytic thrombocytopenia, inherited thrombocytopenia, essential thrombocythemia, and blood coagulation disorders such as gray platelet syndrome. These elegant zebrafish models and methods are crucial for understanding the molecular and genetic mechanisms of thrombocyte development and function, and provide deep insights into related human disease pathophysiology and drug development.
Collapse
|
23
|
Park J, Jeong J, Choi HJ, Shim JW, Lee HM, Hong SH, Park CS, Choi JH, Chae MS. Role of thrombocytopenia in risk stratification for acute kidney injury after living donor liver transplantation. Platelets 2020; 32:453-462. [PMID: 32299264 DOI: 10.1080/09537104.2020.1754377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim of our study was to investigate pre and intraoperative clinical factors, including platelet count, which could inform risk stratification of early acute kidney injury (AKI) after living donor liver transplantation (LDLT). Additionally, the impact of severe thrombocytopenia on AKI risk was assessed using a propensity score (PS)-matched analysis. In total, 591 adult patients who underwent LDLT between January 2009 and December 2018 at our hospital were retrospectively analyzed. Early postoperative AKI was determined based on the KDIGO criteria, and 149 patients (25.2%) developed AKI immediately after surgery. In a multivariate analysis, a lower preoperative platelet count was significantly associated with early postoperative AKI, together with diabetes mellitus, lower hourly urine output, and longer graft ischemic time; furthermore, a decrease in platelet count was correlated with AKI severity. After adjusting for the PS, the probability of AKI was significantly (1.9-fold) higher in patients with severe thrombocytopenia than in those without severe thrombocytopenia. Patients with thrombocytopenia showed a higher postoperative incidence of AKI and a higher requirement for dialysis than those without thrombocytopenia. The platelet count can easily be obtained via regular blood analysis of patients scheduled for LDLT and can be used to identify patients at risk for AKI.
Collapse
Affiliation(s)
- Jaesik Park
- Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Anesthesiology and Pain Medicine, Seocho-gu, Seoul, Korea (The Republic Of)
| | - Jangsu Jeong
- Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Anesthesiology and Pain Medicine, Seocho-gu, Seoul, Korea (The Republic Of)
| | - Ho Joong Choi
- Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Surgery, Seocho-gu, Seoul, Korea (The Republic Of)
| | - Jung-Woo Shim
- Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Anesthesiology and Pain Medicine, Seocho-gu, Seoul, Korea (The Republic Of)
| | - Hyung Mook Lee
- Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Anesthesiology and Pain Medicine, Seocho-gu, Seoul, Korea (The Republic Of)
| | - Sang Hyun Hong
- Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Anesthesiology and Pain Medicine, Seocho-gu, Seoul, Korea (The Republic Of)
| | - Chul Soo Park
- Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Anesthesiology and Pain Medicine, Seocho-gu, Seoul, Korea (The Republic Of)
| | - Jong Ho Choi
- Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Anesthesiology and Pain Medicine, Seocho-gu, Seoul, Korea (The Republic Of)
| | - Min Suk Chae
- Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Anesthesiology and Pain Medicine, Seocho-gu, Seoul, Korea (The Republic Of)
| |
Collapse
|
24
|
Abstract
A central feature of atherosclerosis, the most prevalent chronic vascular disease and root cause of myocardial infarction and stroke, is leukocyte accumulation in the arterial wall. These crucial immune cells are produced in specialized niches in the bone marrow, where a complex cell network orchestrates their production and release. A growing body of clinical studies has documented a correlation between leukocyte numbers and cardiovascular disease risk. Understanding how leukocytes are produced and how they contribute to atherosclerosis and its complications is, therefore, critical to understanding and treating the disease. In this review, we focus on the key cells and products that regulate hematopoiesis under homeostatic conditions, during atherosclerosis and after myocardial infarction.
Collapse
Affiliation(s)
- Wolfram C Poller
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Matthias Nahrendorf
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
25
|
Fukuda T, Hamaguchi M, Osaka T, Hashimoto Y, Ushigome E, Asano M, Yamazaki M, Fukuda E, Yamaguchi K, Ogawa K, Goshima N, Fukui M. A Pilot Study on the Effect of Anti-Thrombopoietin Antibody on Platelet Count in Patients with Type 2 Diabetes. Molecules 2020; 25:molecules25071667. [PMID: 32260359 PMCID: PMC7181124 DOI: 10.3390/molecules25071667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Thrombopoietin (THPO) is a circulatory cytokine that plays an important role in platelet production. The presence of anti-THPO antibody relates to thrombocytopenia and is rarely seen in hematopoietic and autoimmune diseases. To date, there had been no reports that focused on the anti-THPO antibody in patients with type 2 diabetes mellitus (T2DM). To evaluate prevalence of the anti-THPO antibody in patients with T2DM and the relationship between anti-THPO antibody and platelet count, a cross-sectional study was performed on 82 patients with T2DM. The anti-THPO antibody was measured by ELISA using preserved sera and detected in 13 patients. The average platelet count was significantly lower in patients with the anti-THPO antibody than in those without the anti-THPO antibody. Multivariate linear regression analyses showed a significant relationship between the anti-THPO antibody and platelet count, after adjusting for other variables. To our best knowledge, this was the first report on the effect of the anti-THPO antibody on platelet count in patients with T2DM. Further investigation is needed to validate the prevalence and pathological significance of the anti-THPO antibody in patients with T2DM.
Collapse
Affiliation(s)
- Takuya Fukuda
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.F.); (T.O.); (Y.H.); (E.U.); (M.A.); (M.Y.); (M.F.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.F.); (T.O.); (Y.H.); (E.U.); (M.A.); (M.Y.); (M.F.)
- Correspondence: ; Tel.: +81-75-251-5505
| | - Takafumi Osaka
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.F.); (T.O.); (Y.H.); (E.U.); (M.A.); (M.Y.); (M.F.)
- Department of Endocrinology and Diabetology, Ayabe City Hospital, Ayabe 623-0011, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.F.); (T.O.); (Y.H.); (E.U.); (M.A.); (M.Y.); (M.F.)
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.F.); (T.O.); (Y.H.); (E.U.); (M.A.); (M.Y.); (M.F.)
| | - Mai Asano
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.F.); (T.O.); (Y.H.); (E.U.); (M.A.); (M.Y.); (M.F.)
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.F.); (T.O.); (Y.H.); (E.U.); (M.A.); (M.Y.); (M.F.)
| | - Eriko Fukuda
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; (E.F.); (K.Y.); (N.G.)
- ProteoBridge Corporation, Tokyo 135-0064, Japan;
| | - Kei Yamaguchi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; (E.F.); (K.Y.); (N.G.)
- ProteoBridge Corporation, Tokyo 135-0064, Japan;
| | - Koji Ogawa
- ProteoBridge Corporation, Tokyo 135-0064, Japan;
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; (E.F.); (K.Y.); (N.G.)
- ProteoBridge Corporation, Tokyo 135-0064, Japan;
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.F.); (T.O.); (Y.H.); (E.U.); (M.A.); (M.Y.); (M.F.)
| |
Collapse
|
26
|
Nakamura-Ishizu A, Suda T. Multifaceted roles of thrombopoietin in hematopoietic stem cell regulation. Ann N Y Acad Sci 2019; 1466:51-58. [PMID: 31292976 DOI: 10.1111/nyas.14169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
Abstract
Thrombopoietin (Thpo) and its receptor myeloid proliferative leukemia (Mpl) were initially identified as the cytokine signaling that stimulates megakaryopoiesis and platelet production. However, Thpo-Mpl signaling has also been widely characterized as one of the few cytokine systems that directly regulates hematopoietic stem and progenitor cells. The ability of Thpo signaling to stimulate hematopoietic stem cell (HSC) self-renewal has led to the development and utilization of Thpo mimetic drugs to treat hematopoietic diseases with restricted function of HSCs, such as aplastic anemia. This review will cover the mechanisms by which Thpo-Mpl signaling regulates HSCs.
Collapse
Affiliation(s)
| | - Toshio Suda
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Japan
| |
Collapse
|
27
|
Son B, Park HS, Han HS, Kim HK, Baek SW, Yang Y, Lee KH, Kwon J. A Case of Acquired Amegakaryocytic Thrombocytopenia with Anti-c-mpl Autoantibody: Comparison with Idiopathic Thrombocytopenic Purpura. Acta Haematol 2019; 142:239-243. [PMID: 31132762 DOI: 10.1159/000499523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/12/2019] [Indexed: 11/19/2022]
Abstract
Acquired amegakaryocytic thrombocytopenia (AAMT) is a rare disease that causes severe bleeding. The pathogenesis and treatment of AAMT have not yet been defined. We report the case of a 60-year-old woman diagnosed with AAMT, who presented with severe thrombocytopenia, gastroin-testinal bleeding, and significantly reduced bone marrow megakaryocytes. The patient was treated with methylprednisolone, cyclosporin, and intravenous immunoglobulin. After 2 weeks of treatment, her platelet count started to increase, and her bone marrow megakaryocyte count had normalized 3 months after diagnosis. At the time of diagnosis, the patient was seropositive for anti-c-mpl antibody but was seen to be seronegative once the platelet count recovered. In contrast, anti-c-mpl antibodies were not detected in the serum of 3 patients with idiopathic thrombocytopenic purpura. This case study suggests that anti-c-mpl antibody plays an important role in the development of AAMT, and that intensive immunosuppressive treatment is required for autoantibody clearance and recovery of megakaryocyte count.
Collapse
Affiliation(s)
- Bora Son
- Department of Laboratory Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Hee Sue Park
- Department of Laboratory Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Hye Sook Han
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Hee Kyung Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Seung Woo Baek
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Yaewon Yang
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Ki Hyeong Lee
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Jihyun Kwon
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea,
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea,
| |
Collapse
|
28
|
Enhancing functional platelet release in vivo from in vitro-grown megakaryocytes using small molecule inhibitors. Blood Adv 2019; 2:597-606. [PMID: 29545255 DOI: 10.1182/bloodadvances.2017010975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
In vitro-grown megakaryocytes for generating platelets may have value in meeting the increasing demand for platelet transfusions. Remaining challenges have included the poor yield and quality of in vitro-generated platelets. We have shown that infusing megakaryocytes leads to intrapulmonary release of functional platelets. A Src kinase inhibitor (SU6656), a Rho-associated kinase inhibitor (Y27632), and an aurora B kinase inhibitor (AZD1152) have been shown to increase megakaryocyte ploidy and in vitro proplatelet release. We now tested whether megakaryocytes generated from CD34+ hematopoietic cells in the presence of these inhibitors could enhance functional platelet yield following megakaryocyte infusion. As expected, all inhibitors increased megakaryocyte ploidy, size, and granularity, but these inhibitors differed in whether they injured terminal megakaryocytes: SU6656 was protective, whereas Y27632 and AZD1152 increased injury. Upon infusion, inhibitor-treated megakaryocytes released threefold to ninefold more platelets per initial noninjured megakaryocyte relative to control, but only SU6656-treated megakaryocytes had a significant increase in platelet yield when calculated based on the number of initial CD34+ cells; this was fourfold over nontreated megakaryocytes. The released platelets from drug-treated, but healthy, megakaryocytes contained similar percentages of young, uninjured platelets that robustly responded to agonists and were well incorporated into a growing thrombus in vivo as controls. These studies suggest that drug screens that select megakaryocytes with enhanced ploidy, cell size, and granularity may include a subset of drugs that can enhance the yield and function of platelets, and may have clinical application for ex vivo-generated megakaryocytes and platelet transfusion.
Collapse
|
29
|
|
30
|
Bhat FA, Advani J, Khan AA, Mohan S, Pal A, Gowda H, Chakrabarti P, Keshava Prasad TS, Chatterjee A. A network map of thrombopoietin signaling. J Cell Commun Signal 2018; 12:737-743. [PMID: 30039510 DOI: 10.1007/s12079-018-0480-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022] Open
Abstract
Thrombopoietin (THPO), also known as megakaryocyte growth and development factor (MGDF), is a cytokine involved in the production of platelets. THPO is a glycoprotein produced by liver and kidney. It regulates the production of platelets by stimulating the differentiation and maturation of megakaryocyte progenitors. It acts as a ligand for MPL receptor, a member of the hematopoietic cytokine receptor superfamily and is essential for megakaryocyte maturation. THPO binding induces homodimerization of the receptor which results in activation of JAKSTAT and MAPK signaling cascades that subsequently control cellular proliferation, differentiation and other signaling events. Despite the importance of THPO signaling in various diseases and biological processes, a detailed signaling network of THPO is not available in any publicly available database. Therefore, in this study, we present a resource of signaling events induced by THPO that was manually curated from published literature on THPO. Our manual curation of thrombopoietin pathway resulted in identification of 48 molecular associations, 66 catalytic reactions, 100 gene regulation events, 19 protein translocation events and 43 activation/inhibition reactions that occur upon activation of thrombopoietin receptor by THPO. THPO signaling pathway is made available on NetPath, a freely available human signaling pathway resource developed previously by our group. We believe this resource will provide a platform for scientific community to accelerate further research in this area on potential therapeutic interventions.
Collapse
Affiliation(s)
- Firdous A Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India.,Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aafaque Ahmad Khan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Sonali Mohan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
| | - Prantar Chakrabarti
- Department of Haematology, Nil Ratan Sircar Medical College and Hospital, Kolkata, 700014, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India. .,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Mangalore, 575018, India.
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India.
| |
Collapse
|
31
|
Kotha S, Sun S, Adams A, Hayes B, Phong KT, Nagao R, Reems JA, Gao D, Torok-Storb B, López JA, Zheng Y. Microvasculature-directed thrombopoiesis in a 3D in vitro marrow microenvironment. PLoS One 2018; 13:e0195082. [PMID: 29617409 PMCID: PMC5884538 DOI: 10.1371/journal.pone.0195082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 03/17/2018] [Indexed: 12/03/2022] Open
Abstract
Vasculature is an interface between the circulation and the hematopoietic tissue providing the means for hundreds of billions of blood cells to enter the circulation every day in a regulated fashion. The precise mechanisms that control the interactions of hematopoietic cells with the vessel wall are largely undefined. Here, we report on the development of an in vitro 3D human marrow vascular microenvironment (VME) to study hematopoietic trafficking and the release of blood cells, specifically platelets. We show that mature megakaryocytes from aspirated marrow as well as megakaryocytes differentiated in culture from CD34+ cells can be embedded in a collagen matrix containing engineered microvessels to create a thrombopoietic VME. These megakaryocytes continue to mature, penetrate the vessel wall, and release platelets into the vessel lumen. This process can be blocked with the addition of antibodies specific for CXCR4, indicating that CXCR4 is required for megakaryocyte migration, though whether it is sufficient is unclear. The 3D marrow VME system shows considerable potential for mechanistic studies defining the role of marrow vasculature in thrombopoiesis. Through a stepwise addition or removal of individual marrow components, this model provides potential to define key pathways responsible for the release of platelets and other blood cells.
Collapse
Affiliation(s)
- Surya Kotha
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Sijie Sun
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Bloodworks Research Institute, Seattle, Washington, United States of America
| | - Amie Adams
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Brian Hayes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kiet T. Phong
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Ryan Nagao
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Jo-Anna Reems
- Bloodworks Research Institute, Seattle, Washington, United States of America
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Beverly Torok-Storb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - José A. López
- Bloodworks Research Institute, Seattle, Washington, United States of America
- Department of Medicine (Hematology), University of Washington, Seattle, Washington, United States of America
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, and Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
32
|
Hall T, Walker M, Ganuza M, Holmfeldt P, Bordas M, Kang G, Bi W, Palmer LE, Finkelstein D, McKinney-Freeman S. Nfix Promotes Survival of Immature Hematopoietic Cells via Regulation of c-Mpl. Stem Cells 2018; 36:943-950. [PMID: 29430853 DOI: 10.1002/stem.2800] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 12/15/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are necessary for life-long blood production and replenishment of the hematopoietic system during stress. We recently reported that nuclear factor I/X (Nfix) promotes HSPC survival post-transplant. Here, we report that ectopic expression of Nfix in primary mouse HSPCs extends their ex vivo culture from about 20 to 40 days. HSPCs overexpressing Nfix display hypersensitivity to supportive cytokines and reduced apoptosis when subjected to cytokine deprivation relative to controls. Ectopic Nfix resulted in elevated levels of c-Mpl transcripts and cell surface protein on primary murine HSPCs as well as increased phosphorylation of STAT5, which is known to be activated down-stream of c-MPL. Blocking c-MPL signaling by removal of thrombopoietin or addition of a c-MPL neutralizing antibody negated the antiapoptotic effect of Nfix overexpression on cultured HSPCs. Furthermore, NFIX was capable of binding to and transcriptionally activating a proximal c-Mpl promoter fragment. In sum, these data suggest that NFIX-mediated upregulation of c-Mpl transcription can protect primitive hematopoietic cells from stress ex vivo. Stem Cells 2018;36:943-950.
Collapse
Affiliation(s)
- Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Megan Walker
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Per Holmfeldt
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Marie Bordas
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wenjian Bi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lance E Palmer
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
33
|
Borst S, Sim X, Poncz M, French DL, Gadue P. Induced Pluripotent Stem Cell-Derived Megakaryocytes and Platelets for Disease Modeling and Future Clinical Applications. Arterioscler Thromb Vasc Biol 2017; 37:2007-2013. [PMID: 28982668 PMCID: PMC5675007 DOI: 10.1161/atvbaha.117.309197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022]
Abstract
Platelets, derived from megakaryocytes, are anucleate cytoplasmic discs that circulate in the blood stream and play major roles in hemostasis, inflammation, and vascular biology. Platelet transfusions are used in a variety of medical settings to prevent life-threatening thrombocytopenia because of cancer therapy, other causes of acquired or inherited thrombocytopenia, and trauma. Currently, platelets used for transfusion purposes are donor derived. However, there is a drive to generate nondonor sources of platelets to help supplement donor-derived platelets. Efforts have been made by many laboratories to generate in vitro platelets and optimize their production and quality. In vitro-derived platelets have the potential to be a safer, more uniform product, and genetic manipulation could allow for better treatment of patients who become refractory to donor-derived units. This review focuses on potential clinical applications of in vitro-derived megakaryocytes and platelets, current methods to generate and expand megakaryocytes from pluripotent stem cell sources, and the use of these cells for disease modeling.
Collapse
Affiliation(s)
- Sara Borst
- From the Department of Cell and Molecular Biology, Perelman School of Medicine (S.B., X.S.), Department of Pharmacology, Perelman School of Medicine (M.P.), and Department of Pathology and Laboratory Medicine (D.L.F., P.G.), University of Pennsylvania, Philadelphia; and Center for Cellular and Molecular Therapeutics (S.B., X.S., D.L.F., P.G.) and Division of Hematology (M.P.), Children's Hospital of Philadelphia, PA
| | - Xiuli Sim
- From the Department of Cell and Molecular Biology, Perelman School of Medicine (S.B., X.S.), Department of Pharmacology, Perelman School of Medicine (M.P.), and Department of Pathology and Laboratory Medicine (D.L.F., P.G.), University of Pennsylvania, Philadelphia; and Center for Cellular and Molecular Therapeutics (S.B., X.S., D.L.F., P.G.) and Division of Hematology (M.P.), Children's Hospital of Philadelphia, PA
| | - Mortimer Poncz
- From the Department of Cell and Molecular Biology, Perelman School of Medicine (S.B., X.S.), Department of Pharmacology, Perelman School of Medicine (M.P.), and Department of Pathology and Laboratory Medicine (D.L.F., P.G.), University of Pennsylvania, Philadelphia; and Center for Cellular and Molecular Therapeutics (S.B., X.S., D.L.F., P.G.) and Division of Hematology (M.P.), Children's Hospital of Philadelphia, PA
| | - Deborah L French
- From the Department of Cell and Molecular Biology, Perelman School of Medicine (S.B., X.S.), Department of Pharmacology, Perelman School of Medicine (M.P.), and Department of Pathology and Laboratory Medicine (D.L.F., P.G.), University of Pennsylvania, Philadelphia; and Center for Cellular and Molecular Therapeutics (S.B., X.S., D.L.F., P.G.) and Division of Hematology (M.P.), Children's Hospital of Philadelphia, PA
| | - Paul Gadue
- From the Department of Cell and Molecular Biology, Perelman School of Medicine (S.B., X.S.), Department of Pharmacology, Perelman School of Medicine (M.P.), and Department of Pathology and Laboratory Medicine (D.L.F., P.G.), University of Pennsylvania, Philadelphia; and Center for Cellular and Molecular Therapeutics (S.B., X.S., D.L.F., P.G.) and Division of Hematology (M.P.), Children's Hospital of Philadelphia, PA.
| |
Collapse
|
34
|
Abstract
Stem cell niches are specialized microenvironments that promote the maintenance of stem cells and regulate their function. Recent advances have improved our understanding of the niches that maintain adult haematopoietic stem cells (HSCs). These advances include new markers for HSCs and niche cells, systematic analyses of the expression patterns of niche factors, genetic tools for functionally identifying niche cells in vivo, and improved imaging techniques. Together, they have shown that HSC niches are perivascular in the bone marrow and spleen. Endothelial cells and mesenchymal stromal cells secrete factors that promote HSC maintenance in these niches, but other cell types also directly or indirectly regulate HSC niches.
Collapse
|
35
|
Peck-Radosavljevic M. Thrombocytopenia in chronic liver disease. Liver Int 2017; 37:778-793. [PMID: 27860293 DOI: 10.1111/liv.13317] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022]
Abstract
Thrombocytopenia is a common haematological disorder in patients with chronic liver disease. It is multifactorial and severity of liver disease is the most influential factor. As a result of the increased risk of bleeding, thrombocytopenia may impact upon medical procedures, such as surgery or liver biopsy. The pathophysiology of thrombocytopenia in chronic liver disease has long been associated with the hypothesis of hypersplenism, where portal hypertension causes pooling and sequestration of all corpuscular elements of the blood, predominantly thrombocytes, in the enlarged and congested spleen. Other mechanisms of importance include bone marrow suppression by toxic substances, such as alcohol or viral infection, and immunological removal of platelets from the circulation. However, insufficient platelet recovery after relief of portal hypertension by shunt procedures or minor and transient recovery after splenic artery embolization have caused many to question the importance and relative contribution of this mechanism to thrombocytopenia. The discovery of the cytokine thrombopoietin has led to the elucidation of a central mechanism. Thrombopoietin is predominantly produced by the liver and is reduced when liver cell mass is severely damaged. This leads to reduced thrombopoiesis in the bone marrow and consequently to thrombocytopenia in the peripheral blood of patients with advanced-stage liver disease. Restoration of adequate thrombopoietin production post-liver transplantation leads to prompt restoration of platelet production. A number of new treatments that substitute thrombopoietin activity are available or in development.
Collapse
Affiliation(s)
- Markus Peck-Radosavljevic
- Department of Gastroenterology, Hepatology, Endocrinology and Nephrology, Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
| |
Collapse
|
36
|
Wang JY, Ye S, Zhong H. The role of bone marrow microenvironment in platelet production and their implications for the treatment of thrombocytopenic diseases. ACTA ACUST UNITED AC 2017; 22:630-639. [PMID: 28569613 DOI: 10.1080/10245332.2017.1333274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Impaired platelet production has been found to be an important pathological mechanism of thrombocytopenia in many diseases. Platelet generation is a complex process that mainly occurs in the bone marrow, and thus is closely regulated by the bone marrow microenvironment. This review attempts to summarize the most current knowledge referring the role of bone marrow microenvironment in the regulation of platelet production. METHODS The effects of multiple microenvironment ingredients in regulating megakaryopoiesis and thrombocytopoiesis have been discussed. Abnormalities of these components in thrombocytopenic diseases are also described. DISCUSSIONS Thrombocytopenia is a common clinical manifestation of a variety of diseases. The functional importance of platelets has driven the developments of a broad range of studies. Platelet generation mainly occurs within the bone marrow, where the cells, soluble factors, and extracellular matrix proteins collaboratively form a complex regulatory network, directing megakaryocytic proliferation and differentiation. Alteration in any part of the regulating network may result in defective platelet formation, and eventually lead to thrombocytopenia. A variety of thrombocytopenic diseases have been found to be related with the disregulated bone marrow microenvironment. Identification of the variations of these niche ingredients in certain diseases has facilitated the developments of multiple therapeutic regimes. Further studies that can combine these niche factors with their downstream regulatory factors will be beneficial for developing more effective therapies. CONCLUSIONS Further definition of the role of bone marrow microenvironment in platelet generation may deepen our understanding of the underlying mechanisms as well as provide new therapeutic targets for thrombocytopenic diseases.
Collapse
Affiliation(s)
- Jun-Ying Wang
- a Department of Hematology, South Campus Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , PR China
| | - Shuang Ye
- b Department of Rheumatology, South Campus Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , PR China
| | - Hua Zhong
- a Department of Hematology, South Campus Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , PR China
| |
Collapse
|
37
|
Hammond WP, Wun T, Kaplan A, Kaplan S, Paglieroni T, Kaushansky K, Foster DC. High Concentrations of Thrombopoietin Activate Platelets In Vitro. Clin Appl Thromb Hemost 2016. [DOI: 10.1177/107602969800400306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thrombopoietin (TPO), the ligand for the proto- oncogene c-mpl, has been cloned and expressed from both human and murine sources. Thrombopoietin increases platelet counts when given in vivo and acts on progenitor cells to in crease their proliferation and maturation into megakaryocytes. The effects of TPO on mature platelets were investigated by evaluating platelet aggregation and platelet activation- dependent antigen expression. Platelet aggregation score, a quantitative representation of aggregation, showed potentiation of response to ADP-induced aggregation but no direct agonist response to TPO alone. Soluble c-mpl blocked the effect of TPO on the platelet aggregation score. Flow cytometry showed that TPO at concentrations >250 U/ml (50 ng/ml) caused a minority population of platelets to express the activation mark ers CD62, CD63 and activated glycoprotein IIb/IIIa. While stem cell factor and interleukins-3 and -6 did not affect platelet activation antigen expression, interleukin-11 increased CD62 expression on platelets in vitro. The effects of TPO on antigenic expression and aggregability were partially inhibited in vitro by preincubation with aspirin. We conclude that high concentra tions of TPO promote platelet activation antigen expression on a proportion of platelets and potentiate platelet aggregability to ADP in vitro by a process that is partially inhibited by aspirin.
Collapse
Affiliation(s)
- William P. Hammond
- Departments of Chemistry/Hematology and Molecular Biology and Division of Applied Mathematics and Engineering, The Hope Heart Institute, Providence Seattle Medical Center, Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle
| | - Theodore Wun
- Sacramento Medical Foundation Center for Blood Research, the University of California, Davis Cancer Center, Sacramento, California
| | - Alexander Kaplan
- Departments of Chemistry/Hematology and Molecular Biology and Division of Applied Mathematics and Engineering, The Hope Heart Institute, Providence Seattle Medical Center
| | - Svetlana Kaplan
- Departments of Chemistry/Hematology and Molecular Biology and Division of Applied Mathematics and Engineering, The Hope Heart Institute, Providence Seattle Medical Center
| | - Teresa Paglieroni
- Sacramento Medical Foundation Center for Blood Research, the University of California, Davis Cancer Center, Sacramento, California
| | - Kenneth Kaushansky
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle
| | | |
Collapse
|
38
|
Liu HD, Zhang AJ, Xu JJ, Chen Y, Zhu YC. H2S protects against fatal myelosuppression by promoting the generation of megakaryocytes/platelets. J Hematol Oncol 2016; 9:13. [PMID: 26912146 PMCID: PMC4766725 DOI: 10.1186/s13045-016-0244-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 12/13/2022] Open
Abstract
Background Our previous pilot studies aimed to examine the role of hydrogen sulfide (H2S) in the generation of endothelial progenitor cells led to an unexpected result, i.e., H2S promoted the differentiation of certain hematopoietic stem/progenitor cells in the bone marrow. This gave rise to an idea that H2S might promote hematopoiesis. Methods To test this idea, a mice model of myelosuppression and cultured fetal liver cells were used to examine the role of H2S in hematopoiesis. Results H2S promoted the generation of megakaryocytes, increased platelet levels, ameliorate entorrhagia, and improved survival. These H2S effects were blocked in both in vivo and in vitro models with thrombopoietin (TPO) receptor knockout mice (c-mpl−/− mice). In contrast, H2S promoted megakaryocytes/platelets generation in both in vivo and in vitro models with TPO knockout mice (TPO−/− mice). Conclusions H2S is a novel promoter for megakaryopoiesis by acting on the TPO receptors but not TPO to generate megakaryocytes/platelets. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0244-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huan-Di Liu
- Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, 138 Yi Xue Yuan Road, Shanghai, 200032, China.,Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine in Henan Province, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ai-Jie Zhang
- Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Jing-Jing Xu
- Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, 138 Yi Xue Yuan Road, Shanghai, 200032, China.,Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Chen
- Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
39
|
KUROKAWA TOMOHIRO, MURATA SOICHIRO, ZHENG YUNWEN, IWASAKI KENICHI, KOHNO KEISUKE, FUKUNAGA KIYOSHI, OHKOHCHI NOBUHIRO. The Eltrombopag antitumor effect on hepatocellular carcinoma. Int J Oncol 2015; 47:1696-1702. [PMID: 26397763 PMCID: PMC4599203 DOI: 10.3892/ijo.2015.3180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/21/2015] [Indexed: 12/13/2022] Open
Abstract
Currently, sorafenib is the only available chemotherapeutic agent for advanced hepatocellular carcinoma (HCC), but it cannot be used in patients with liver cirrhosis (LC) or thrombocytopenia. In these cases, sorafenib is likely effective if given in combination with treatments that increase the number of platelets, such as thrombopoietin (TPO) receptor agonists. Increasing the platelet count via TPO treatment resulted in reduction of LC. Eltrombopag (EP), a TPO receptor agonist, has been reported to have antitumor effects against certain cancers, despite their lack of TPO receptor expression. We hypothesized that EP may possess antitumor activity against HCC in addition to its ability to suppress hepatic fibrosis by increasing the platelet count. In the present study, the antitumor activity of EP was examined by assessing the inhibition of cell proliferation and then ascertaining the ability of iron supplementation to reverse these effects in HepG2, Hep3B and Huh7 cells. In addition, a cell cycle assay was performed using flow cytometry, and signal transduction was evaluated by analyzing cell cycle-related protein expression. The results of EP were compared with those of the most common iron chelator, deferoxamine (DFO). The combined effect of EP and sorafenib was also assessed. The results revealed that EP exerts antitumor activity in HCC that is mediated by the modulation of intracellular iron content. EP suppressed the expression of the cell cycle-related protein cyclin D1 and elicited cell cycle arrest in the G0/G1 phase. The activity of EP was comparable to that of DFO in HCC, and EP did not compete with sorafenib at low concentrations. In conclusion, our findings suggest that EP is a good candidate chemotherapeutic agent for the treatment of HCC in patients with LC and thrombocytopenia.
Collapse
Affiliation(s)
- TOMOHIRO KUROKAWA
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - SOICHIRO MURATA
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - YUN-WEN ZHENG
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - KENICHI IWASAKI
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - KEISUKE KOHNO
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - KIYOSHI FUKUNAGA
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - NOBUHIRO OHKOHCHI
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
40
|
Michiels JJ, Valster F, Wielenga J, Schelfout K, Raeve HD. European vs 2015-World Health Organization clinical molecular and pathological classification of myeloproliferative neoplasms. World J Hematol 2015; 4:16-53. [DOI: 10.5315/wjh.v4.i3.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/15/2014] [Accepted: 04/30/2015] [Indexed: 02/05/2023] Open
Abstract
The BCR/ABL fusion gene or the Ph1-chromosome in the t(9;22)(q34;q11) exerts a high tyrokinase acticity, which is the cause of chronic myeloid leukemia (CML). The 1990 Hannover Bone Marrow Classification separated CML from the myeloproliferative disorders essential thrombocythemia (ET), polycythemia vera (PV) and chronic megakaryocytic granulocytic myeloproliferation (CMGM). The 2006-2008 European Clinical Molecular and Pathological (ECMP) criteria discovered 3 variants of thrombocythemia: ET with features of PV (prodromal PV), “true” ET and ET associated with CMGM. The 2008 World Health Organization (WHO)-ECMP and 2014 WHO-CMP classifications defined three phenotypes of JAK2V617F mutated ET: normocellular ET (WHO-ET), hypercelluar ET due to increased erythropoiesis (prodromal PV) and ET with hypercellular megakaryocytic-granulocytic myeloproliferation. The JAK2V617F mutation load in heterozygous WHO-ET is low and associated with normal life expectance. The hetero/homozygous JAK2V617F mutation load in PV and myelofibrosis is related to myeloproliferative neoplasm (MPN) disease burden in terms of symptomatic splenomegaly, constitutional symptoms, bone marrow hypercellularity and myelofibrosis. JAK2 exon 12 mutated MPN presents as idiopathic eryhrocythemia and early stage PV. According to 2014 WHO-CMP criteria JAK2 wild type MPL515 mutated ET is the second distinct thrombocythemia featured by clustered giant megakaryocytes with hyperlobulated stag-horn-like nuclei, in a normocellular bone marrow consistent with the diagnosis of “true” ET. JAK2/MPL wild type, calreticulin mutated hypercellular ET appears to be the third distinct thrombocythemia characterized by clustered larged immature dysmorphic megakaryocytes and bulky (bulbous) hyperchromatic nuclei consistent with CMGM or primary megakaryocytic granulocytic myeloproliferation.
Collapse
|
41
|
Mouse prenatal platelet-forming lineages share a core transcriptional program but divergent dependence on MPL. Blood 2015; 126:807-16. [DOI: 10.1182/blood-2014-12-616607] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/15/2015] [Indexed: 01/15/2023] Open
Abstract
Key Points
Prenatal platelet-forming lineages are subject to common transcription factor controls despite distinct spatial and ancestral origins. Platelet-forming lineage production is MPL-independent on emergence, but MPL is required in the late fetus for efficient thrombopoiesis.
Collapse
|
42
|
Bethel M, Barnes CLT, Taylor AF, Cheng YH, Chitteti BR, Horowitz MC, Bruzzaniti A, Srour EF, Kacena MA. A novel role for thrombopoietin in regulating osteoclast development in humans and mice. J Cell Physiol 2015; 230:2142-51. [PMID: 25656774 DOI: 10.1002/jcp.24943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 11/10/2022]
Abstract
Emerging data suggest that megakaryocytes (MKs) play a significant role in skeletal homeostasis. Indeed, osteosclerosis observed in several MK-related disorders may be a result of increased numbers of MKs. In support of this idea, we have previously demonstrated that MKs increase osteoblast (OB) proliferation by a direct cell-cell contact mechanism and that MKs also inhibit osteoclast (OC) formation. As MKs and OCs are derived from the same hematopoietic precursor, in these osteoclastogenesis studies we examined the role of the main MK growth factor, thrombopoietin (TPO) on OC formation and bone resorption. Here we show that TPO directly increases OC formation and differentiation in vitro. Specifically, we demonstrate the TPO receptor (c-mpl or CD110) is expressed on cells of the OC lineage, c-mpl is required for TPO to enhance OC formation in vitro, and TPO activates the mitogen-activated protein kinases, Janus kinase/signal transducer and activator of transcription, and nuclear factor-kappaB signaling pathways, but does not activate the PI3K/AKT pathway. Further, we found TPO enhances OC resorption in CD14+CD110+ human OC progenitors derived from peripheral blood mononuclear cells, and further separating OC progenitors based on CD110 expression enriches for mature OC development. The regulation of OCs by TPO highlights a novel therapeutic target for bone loss diseases and may be important to consider in the numerous hematologic disorders associated with alterations in TPO/c-mpl signaling as well as in patients suffering from bone disorders.
Collapse
Affiliation(s)
- Monique Bethel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Calvin L T Barnes
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Amanda F Taylor
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Angela Bruzzaniti
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, Indiana.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Edward F Srour
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
43
|
Guo T, Wang X, Qu Y, Yin Y, Jing T, Zhang Q. Megakaryopoiesis and platelet production: insight into hematopoietic stem cell proliferation and differentiation. Stem Cell Investig 2015; 2:3. [PMID: 27358871 DOI: 10.3978/j.issn.2306-9759.2015.02.01] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) undergo successive lineage commitment steps to generate megakaryocytes (MKs) in a process referred to as megakaryopoiesis. MKs undergo a unique differentiation process involving endomitosis to eventually produce platelets. Many transcription factors participate in the regulation of this complex progress. Chemokines and other factors in the microenvironment where megakaryopoiesis and platelet production occur play vital roles in the regulation of HSC lineage commitment and MK maturation; among these factors, thrombopoietin (TPO) is the most important. Endomitosis is a vital process of MK maturation, and granules that are formed in MKs are important for platelet function. Proplatelets are firstly generated from mature MKs and then become platelets. The proplatelet production process was verified by novel studies that revealed that the mechanism is partially regulated by the invaginated membrane system (IMS), microtubules and Rho GTPases. The extracellular matrices (ECMs) and shear stress also affect and regulate the process while the mature MKs migrate from the marrow to the sub-endothelium region near the venous sinusoids leading to the release of platelets into the circulation. This review describes the entire process of megakaryopoiesis in detail, illustrates both the transcriptional and microenvironmental regulation of MKs and provides insight into platelet biogenesis.
Collapse
Affiliation(s)
- Tianyu Guo
- 1 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China ; 2 Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
| | - Xuejun Wang
- 1 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China ; 2 Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
| | - Yigong Qu
- 1 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China ; 2 Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
| | - Yu Yin
- 1 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China ; 2 Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
| | - Tao Jing
- 1 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China ; 2 Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
| | - Qing Zhang
- 1 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China ; 2 Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
44
|
Hatami J, Andrade PZ, Alves de Matos AP, Djokovic D, Lilaia C, Ferreira FC, Cabral JMS, da Silva CL. Developing a co-culture system for effective megakaryo/thrombopoiesis from umbilical cord blood hematopoietic stem/progenitor cells. Cytotherapy 2015; 17:428-42. [PMID: 25680300 DOI: 10.1016/j.jcyt.2014.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS Platelet transfusion can be a life-saving procedure in different medical settings. Thus, there is an increasing demand for platelets, of which shelf-life is only 5 days. The efficient ex vivo biomanufacturing of platelets would allow overcoming the shortages of donated platelets. METHODS We exploited a two-stage culture protocol aiming to study the effect of different parameters on the megakaryo/thrombopoiesis ex vivo. In the expansion stage, human umbilical cord blood (UCB)-derived CD34(+)-enriched cells were expanded in co-culture with human bone marrow mesenchymal stromal cells (BM-MSCs). The megakaryocytic commitment and platelet generation were studied, considering the impact of exogenous addition of thrombopoietin (TPO) in the expansion stage and a cytokine cocktail (Cyt) including TPO and interleukin-3 in the differentiation stage, with the use of different culture medium formulations, and in the presence/absence of BM-MSCs (direct versus non-direct cell-cell contact). RESULTS Our results suggest that an early megakaryocytic commitment, driven by TPO addition during the expansion stage, further enhanced megakaryopoiesis. Importantly, the results suggest that co-culture with BM-MSCs under serum-free conditions combined with Cyt addition, in the differentiation stage, significantly improved the efficiency yield of megakaryo/thrombopoiesis as well as increasing %CD41, %CD42b and polyploid content; in particular, direct contact of expanded cells with BM-MSCs, in the differentiation stage, enhanced the efficiency yield of megakaryo/thrombopoiesis, despite inhibiting their maturation. CONCLUSIONS The present study established an in vitro model for the hematopoietic niche that combines different biological factors, namely, the presence of stromal/accessory cells and biochemical cues, which mimics the BM niche and enhances an efficient megakaryo/thrombopoiesis process ex vivo.
Collapse
Affiliation(s)
- Javad Hatami
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Z Andrade
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - António Pedro Alves de Matos
- Centro de Estudos do Ambiente e do Mar (CESAM/FCUL)-Faculdade de Ciências da Universidade de Lisboa and Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Campus Universitário, Quinta da Granja, Monte de Caparica, Caparica, Portugal
| | - Dusan Djokovic
- Department of Obstetrics, Centro Hospitalar Lisboa Ocidental E.P.E., Hospital São Francisco Xavier, Lisboa, Portugal
| | - Carla Lilaia
- Department of Obstetrics, Centro Hospitalar Lisboa Ocidental E.P.E., Hospital São Francisco Xavier, Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| | - Joaquim M S Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
45
|
Haegele S, Offensperger F, Pereyra D, Lahner E, Assinger A, Fleischmann E, Gruenberger B, Gruenberger T, Brostjan C, Starlinger P. Deficiency in thrombopoietin induction after liver surgery is associated with postoperative liver dysfunction. PLoS One 2015; 10:e0116985. [PMID: 25611592 PMCID: PMC4303418 DOI: 10.1371/journal.pone.0116985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/17/2014] [Indexed: 12/27/2022] Open
Abstract
Background and Aims Thrombopoietin (TPO) has been implicated in the process of liver regeneration and was found to correlate with hepatic function in patients with liver disease. With this investigation we aimed to determine if perioperative TPO levels were associated with postoperative outcome in patients undergoing liver resection. Methods Perioperative TPO was analyzed prior to liver resection as well as on the first and fifth postoperative day in 46 colorectal cancer patients with liver metastasis (mCRC) as well as 23 hepatocellular carcinoma patients (HCC). Serum markers of liver function within the first postoperative week were used to define liver dysfunction. Results While circulating TPO levels significantly increased one day after liver resection in patients without liver cirrhosis (mCRC) (P < 0.001), patients with underlying liver disease (HCC) failed to significantly induce TPO postoperatively. Accordingly, HCC patients had significantly lower TPO levels on POD1 and 5. Similarly, patients with major resections failed to increase circulating TPO levels. Perioperative dynamics of TPO were found to specifically predict liver dysfunction (AUC: 0.893, P < 0.001) after hepatectomy and remained an independent predictor upon multivariate analysis. Conclusions We here demonstrate that perioperative TPO dynamics are associated with postoperative LD. Postoperative TPO levels were found to be lowest in high-risk patients (HCC patients undergoing major resection) but showed an independent predictive value. Thus, a dampened TPO increase after liver resection reflects a poor capacity for hepatic recovery and may help to identify patients who require close monitoring or intervention for potential complications.
Collapse
Affiliation(s)
- Stefanie Haegele
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Florian Offensperger
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - David Pereyra
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Elisabeth Lahner
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Alice Assinger
- Institute of Physiology, Medical University of Vienna, Vienna, Austria
| | - Edith Fleischmann
- Department of Anesthesiology, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Birgit Gruenberger
- Department of Internal Medicine, Brothers of Charity Hospital, Vienna, Austria
| | - Thomas Gruenberger
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
- Department of Surgery I, Rudolf Foundation Clinic, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
- * E-mail: (CB); (PS)
| | - Patrick Starlinger
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
- * E-mail: (CB); (PS)
| |
Collapse
|
46
|
Kostyak JC, Bhavanasi D, Liverani E, McKenzie SE, Kunapuli SP. Protein kinase C δ deficiency enhances megakaryopoiesis and recovery from thrombocytopenia. Arterioscler Thromb Vasc Biol 2014; 34:2579-85. [PMID: 25359855 DOI: 10.1161/atvbaha.114.304492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We previously determined that protein kinase C δ (PKCδ) regulates platelet function. However, the function of PKCδ in megakaryopoiesis is unknown. APPROACH AND RESULTS Using PKCδ(-/-) and wild-type littermate mice, we found that deficiency of PKCδ caused an increase in white blood cells and platelet counts, as well as in bone marrow and splenic megakaryocytes (P<0.05). Additionally, the megakaryocyte number and DNA content were enhanced in PKCδ(-/-) mouse bone marrow after culturing with exogenous thrombopoietin compared with wild-type (P<0.05). Importantly, thrombopoietin-induced signaling was also altered with PKCδ deletion because both extracellular signal-regulated kinase and Akt308 phosphorylation were heightened in PKCδ(-/-) megakaryocytes compared with wild-type. Finally, PKCδ(-/-) mice recovered faster and had a heightened rebound thrombocytosis after thrombocytopenic challenge. CONCLUSIONS These data suggest that PKCδ is an important megakaryopoietic protein, which regulates signaling induced by thrombopoietin and represents a potential therapeutic target.
Collapse
Affiliation(s)
- John C Kostyak
- From the Sol Sherry Thrombosis Research Center (J.C.K., D.B, S.P.K.), Department of Pharmacology and Department of Physiology (S.P.K.), Temple University School of Medicine, Philadelphia, PA; and Cardeza Division of Hematology, Department of Medicine, Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA (S.E.M.)
| | - Dheeraj Bhavanasi
- From the Sol Sherry Thrombosis Research Center (J.C.K., D.B, S.P.K.), Department of Pharmacology and Department of Physiology (S.P.K.), Temple University School of Medicine, Philadelphia, PA; and Cardeza Division of Hematology, Department of Medicine, Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA (S.E.M.)
| | - Elisabeta Liverani
- From the Sol Sherry Thrombosis Research Center (J.C.K., D.B, S.P.K.), Department of Pharmacology and Department of Physiology (S.P.K.), Temple University School of Medicine, Philadelphia, PA; and Cardeza Division of Hematology, Department of Medicine, Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA (S.E.M.)
| | - Steven E McKenzie
- From the Sol Sherry Thrombosis Research Center (J.C.K., D.B, S.P.K.), Department of Pharmacology and Department of Physiology (S.P.K.), Temple University School of Medicine, Philadelphia, PA; and Cardeza Division of Hematology, Department of Medicine, Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA (S.E.M.)
| | - Satya P Kunapuli
- From the Sol Sherry Thrombosis Research Center (J.C.K., D.B, S.P.K.), Department of Pharmacology and Department of Physiology (S.P.K.), Temple University School of Medicine, Philadelphia, PA; and Cardeza Division of Hematology, Department of Medicine, Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA (S.E.M.).
| |
Collapse
|
47
|
Huang H, Li Y, Qi X. Cytokine signaling in the differentiation of innate effector cells. JAKSTAT 2014; 2:e23531. [PMID: 24058796 PMCID: PMC3670272 DOI: 10.4161/jkst.23531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 12/24/2022] Open
Abstract
Innate effector cells, including innate effector cells of myeloid and lymphoid lineages, are crucial components of various types of immune responses. Bone marrow progenitors differentiate into many subsets of innate effector cells after receiving instructional signals often provided by cytokines. Signal transducer and activator of transcription (STATs) have been shown to be essential in the differentiation of various types of innate effector cells. In this review, we focus specifically on the differentiation of innate effector cells, particularly the role of cytokine signaling in the differentiation of innate effector cells.
Collapse
Affiliation(s)
- Hua Huang
- Division of Allergy and Immunology; Department of Medicine; National Jewish Health; Denver, CO USA ; Integrated Department of Immunology; University of Colorado School of Medicine; Denver, CO USA
| | | | | |
Collapse
|
48
|
Kostyak JC, Kunapuli SP. PKCθ is dispensable for megakaryopoiesis. Platelets 2014; 26:610-1. [PMID: 24955517 DOI: 10.3109/09537104.2014.926474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- John C Kostyak
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine , Philadelphia, PA , USA
| | | |
Collapse
|
49
|
Abstract
In the two decades since its cloning, thrombopoietin (TPO) has emerged not only as a critical haematopoietic cytokine, but also serves as a great example of bench-to-bedside research. Thrombopoietin, produced by the liver, is the primary regulator of megakaryocyte progenitor expansion and differentiation. Additionally, as TPO is vital for the maintenance of haematopoietic stem cells, it can truly be described as a pan-haematopoietic cytokine. Since recombinant TPO became available, the molecular mechanisms of TPO function have been the subject of extensive research. Via its receptor, c-Mpl (also termed MPL), TPO activates a wide array of downstream signalling pathways, promoting cellular survival and proliferation. Due to its central, non-redundant role in haematopoiesis, alterations of both the hormone and its receptor contribute to human disease; congenital and acquired states of thrombocytosis and thrombocytopenia and aplastic anaemia as a result from dysregulated TPO expression or functional alterations of c-Mpl. With TPO mimetics now in clinical use, the story of this haematopoietic cytokine represents a great success for biomedical research.
Collapse
Affiliation(s)
- Ian S Hitchcock
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
50
|
Li Y, Zhou M, Zhou H, Ning Y. The last intron of the human thrombopoietin gene enhances expression in milk of transgenic mice. Funct Integr Genomics 2013; 14:229-36. [PMID: 24287579 DOI: 10.1007/s10142-013-0348-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 11/29/2022]
Abstract
Introns can enhance gene expression levels. This effect is known as intron-mediated enhancement, which is different from that of enhancers or promoters. In our previous study, under the control of the cytomegalovirus or goat β-casein promoter, the vector containing intron V-TPOcDNA expressed the highest thrombopoietin (TPO) level, whereas the vector containing TPOgDNA expressed the lowest level. In order to verify whether intron V also improves TPO expression in the milk of transgenic mice, rat whey acidic protein promoter was used as regulatory element to construct mammary gland expression vectors including pTPOWA (containing TPOcDNA), pTPOWB (containing intron V-TPOcDNA), and pTPOWC (containing TPOgDNA). These vectors were transfected into HC-11 cells and the supernatants were analyzed at 48 h. The highest TPO level was found in pTPOWB (795 pg/mL) and the lowest level in pTPOWC (193 pg/mL). Then, corresponding vectors were microinjected into fertilized mice zygotes. Transgenic mice were identified by polymerase chain reaction and Southern blot. Enzyme-linked immunosorbent assay was performed to measure TPO levels in the milk of lactating transgenic mice. The highest and lowest TPO levels were found in transgenic mice carrying intron V-TPOcDNA (2,307 pg/mL) and in transgenic mice carrying TPOgDNA (242 pg/mL), respectively. Thus, intron V remarkably improved TPO expression in transgenic mice.
Collapse
Affiliation(s)
- Yan Li
- School of Biotechnology, Southern Medical University, North1838 Guangzhou Road, Guangzhou, 510515, People's Republic of China,
| | | | | | | |
Collapse
|