1
|
Alswat AS. The Influence of the Gut Microbiota on Host Health: A Focus on the Gut-Lung Axis and Therapeutic Approaches. Life (Basel) 2024; 14:1279. [PMID: 39459579 PMCID: PMC11509314 DOI: 10.3390/life14101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
The human gut microbiota is a complex ecosystem harboring thousands of microbial strains that play a crucial role in maintaining the overall well-being of its host. The composition of the gut microbiota varies with age from infancy to adulthood and is influenced by dietary habits, environment, and genetic disposition. Recent advances in culture-independent techniques and nucleic acid sequencing have improved our understanding of the diversity of the gut microbiota. The microbial species present in the gut release short-chain fatty acids (SCFAs), which have anti-inflammatory properties. The gut microbiota also plays a substantial role in modulating the host's immune system, promoting immune tolerance, and maintaining homeostasis. The impact of the gut microbiota on the health of the host is quite evident, as gut dysbiosis has been linked to various diseases, including metabolic disorders, autoimmune diseases, allergies, and inflammatory bowel diseases. The gut microbiota has bidirectional communication with the respiratory system, creating the gut-lung axis, which has been associated with different respiratory diseases. Therapeutic approaches targeting the gut microbiota, such as probiotics, prebiotics, dietary interventions, and fecal microbiota transplantation (FMT), aim to restore microbial balance and promote the growth of beneficial strains in the gut. Nonetheless, gaining knowledge of the complex interactions between the gut microbiota and the host is necessary to develop personalized medicine approaches and microbiota-based therapies for various conditions. This review summarizes studies related to the gut-lung axis with particular emphasis on the role of the microbiota. Future research directions are also discussed.
Collapse
Affiliation(s)
- Amal S Alswat
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
2
|
Wu YH, Zhang QL, Mai SY, Ming GX, Zheng CF, Liang CF, Xue FM, He XN, Li YH. Strictosamide alleviates acute lung injury via regulating T helper 17 cells, regulatory T cells, and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155490. [PMID: 38460358 DOI: 10.1016/j.phymed.2024.155490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Nauclea officinalis (Pierre ex Pit.) Merr. & Chun (Rubiaceae) is widely used to treat respiratory diseases in China. Strictosamide is its main active component and has significant anti-inflammatory activity. However, the effects and molecular mechanisms of strictosamide in the treatment of acute lung injury (ALI) remain largely unknown. PURPOSE This study aimed to examine the regulatory effects of strictosamide on T helper 17 cells (Th17 cells)/Regulatory T cells (Treg cells) and gut microbiota in ALI-affected mice. MATERIALS AND METHODS The ALI model was induced using lipopolysaccharide (LPS) intraperitoneal injection. Hematoxylin-eosin (H&E) staining, the number of inflammatory cells in broncho-alveolar lavage fluid (BALF), the Wet/Dry (W/D) ratio, and myeloperoxidase (MPO) activity were utilized as evaluation indices for the therapeutic efficacy of strictosamide on ALI. Flow cytometry (FCM), enzyme-linked immune sorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR), and western blotting were used to determine the regulation of strictosamide on the Th17/Treg cells and the STAT3/STAT5 signaling pathway. The analysis of gut microbiota was conducted using 16S rDNA sequencing. The verification of the relationship between the gut microbiome and immune function was conducted using Spearman analysis. RESULTS Strictosamide attenuated inflammation on ALI induced by LPS, which reduced the levels of Th17-related factors interleukin (IL)-6 and IL-17 and increased Treg-related factors IL-10 and transforming growth factor (TGF)-β. In the spleens and whole blood, strictosamide reduced the proportion of Th17 cells and increased the proportion of Treg cells. Furthermore, strictosamide increased Forkhead/winged helix transcription factor 3 (Foxp3) and p-STAT5 protein expression while inhibiting Retinoid-related orphan nuclear receptors-γt (RORγt) and p-STAT3 expression. Moreover, strictosamide reshaped the diversity and structure of the gut microbiota, and influence the associations between immune parameters and gut microbiota in ALI mice. CONCLUSIONS In summary, the results of the current investigation showed that strictosamide has a therapeutic impact on LPS-induced ALI. The mechanism of action of this effect may be associated with the modulation of Th17 and Treg cells differentiation via the SATA signaling pathway, as well as the impact of the gut microbiota.
Collapse
Affiliation(s)
- Yu-Huang Wu
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Qiao-Ling Zhang
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Shi-Ying Mai
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Gu-Xu Ming
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Cheng-Feng Zheng
- The Second Affiliated Hospital, Hainan Medical University, Haikou 570216, China
| | - Chang-Fu Liang
- The Second Affiliated Hospital, Hainan Medical University, Haikou 570216, China
| | - Feng-Ming Xue
- The Second Affiliated Hospital, Hainan Medical University, Haikou 570216, China
| | - Xiao-Ning He
- The Second Affiliated Hospital, Hainan Medical University, Haikou 570216, China.
| | - Yong-Hui Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, School of Pharmacy, Hainan Medical University, Haikou 571199, China; The Second Affiliated Hospital, Hainan Medical University, Haikou 570216, China.
| |
Collapse
|
3
|
Zhang S, Zhong R, Tang S, Chen L, Zhang H. Metabolic regulation of the Th17/Treg balance in inflammatory bowel disease. Pharmacol Res 2024; 203:107184. [PMID: 38615874 DOI: 10.1016/j.phrs.2024.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a long-lasting and inflammatory autoimmune condition affecting the gastrointestinal tract, impacting millions of individuals globally. The balance between T helper 17 (Th17) cells and regulatory T cells (Tregs) is pivotal in the pathogenesis and progression of IBD. This review summarizes the pivotal role of Th17/Treg balance in maintaining intestinal homeostasis, elucidating how its dysregulation contributes to the development and exacerbation of IBD. It comprehensively synthesizes the current understanding of how dietary factors regulate the metabolic pathways influencing Th17 and Treg cell differentiation and function. Additionally, this review presents evidence from the literature on the potential of dietary regimens to regulate the Th17/Treg balance as a strategy for the management of IBD. By exploring the intersection between diet, metabolic regulation, and Th17/Treg balance, the review reveals innovative therapeutic approaches for IBD treatment, offering a promising perspective for future research and clinical practice.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Guo J, Wang L, Han N, Yuan C, Yin Y, Wang T, Sun J, Jin P, Liu Y, Jia Z. People are an organic unity: Gut-lung axis and pneumonia. Heliyon 2024; 10:e27822. [PMID: 38515679 PMCID: PMC10955322 DOI: 10.1016/j.heliyon.2024.e27822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
People are an organic unity. Every organ of our body doesn't exist alone. They are a part of our body and have important connections with other tissues or organs. The gut-lung axis is a typical example. Here, we reviewed the current research progress of the gut-lung axis. The main cross-talk between the intestine and lungs was sorted out, i.e. the specific interaction content contained in the gut-lung axis. We determine a relatively clear concept for the gut-lung axis, that is, the gut-lung axis is a cross-talk that the gut and lungs interact with each other through microorganisms and the immune system to achieve bidirectional regulation. The gut and lungs communicate with each other mainly through the immune system and symbiotic microbes, and these two pathways influence each other. The portal vein system and mesenteric lymphatics are the primary communication channels between the intestine and lungs. We also summarized the effects of pneumonia, including Coronavirus disease 2019 (COVID-19) and Community-Acquired Pneumonia (CAP), on intestinal microbes and immune function through the gut-lung axis, and discussed the mechanism of this effect. Finally, we explored the value of intestinal microbes and the gut-lung axis in the treatment of pneumonia through the effect of intestinal microbes on pneumonia.
Collapse
Affiliation(s)
- Jing Guo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Le Wang
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ningxin Han
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Caiyun Yuan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Yujie Yin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| | - Tongxing Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| | - Jiemeng Sun
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Peipei Jin
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zhenhua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| |
Collapse
|
5
|
Li Q, Liu T, Bai C, Ma X, Liu H, Zheng Z, Wan Y, Yu H, Ma Y, Gu X. iTRAQ-based proteomics reveals the mechanism of action of Yinlai decoction in treating pneumonia in mice consuming a high-calorie diet. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2024; 11:21-32. [DOI: 10.1016/j.jtcms.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025] Open
|
6
|
D'Alessandro VF, D'Alessandro-Gabazza CN, Yasuma T, Toda M, Takeshita A, Tomaru A, Tharavecharak S, Lasisi IO, Hess RY, Nishihama K, Fujimoto H, Kobayashi T, Cann I, Gabazza EC. Inhibition of a Microbiota-derived Peptide Ameliorates Established Acute Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00113-X. [PMID: 36965776 PMCID: PMC10035802 DOI: 10.1016/j.ajpath.2023.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Acute lung injury is a clinical syndrome characterized by a diffuse lung inflammation that commonly evolves into acute respiratory distress syndrome and respiratory failure. The lung microbiota is involved in the pathogenesis of acute lung injury. Corisin, a proapoptotic peptide derived from the lung microbiota, plays a role in acute lung injury and acute exacerbation of pulmonary fibrosis. Preventive therapeutic intervention with a monoclonal anticorisin antibody inhibits acute lung injury in mice. However, whether inhibition of corisin with the antibody ameliorates established acute lung injury is unknown. Here, the therapeutic effectiveness of the anticorisin antibody in already established acute lung injury in mice was assessed. Lipopolysaccharide was used to induce acute lung injury in mice. After causing acute lung injury, the mice were treated with a neutralizing anticorisin antibody. Mice treated with the antibody showed significant improvement in lung radiological and histopathological findings, decreased lung infiltration of inflammatory cells, reduced markers of lung tissue damage, and inflammatory cytokines in bronchoalveolar lavage fluid compared to untreated mice. In addition, the mice treated with anticorisin antibody showed significantly increased expression of antiapoptotic proteins with decreased caspase-3 activation in the lungs compared to control mice treated with an irrelevant antibody. In conclusion, these observations suggest that the inhibition of corisin is a novel and promising approach for treating established acute lung injury.
Collapse
Affiliation(s)
- Valeria Fridman D'Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Corina N D'Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Center for Intractable Diseases, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Taro Yasuma
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Atsushi Tomaru
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Suphachai Tharavecharak
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Isaiah O Lasisi
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rebecca Y Hess
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Isaac Cann
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Animal Science, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Microbiology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Division of Nutritional Sciences, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Center for East Asian & Pacific Studies, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Esteban C Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Center for Intractable Diseases, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
7
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. Advantageous tactics with certain probiotics for the treatment of graft-versus-host-disease after hematopoietic stem cell transplantation. World J Hematol 2023; 10:15-24. [DOI: 10.5315/wjh.v10.i2.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 01/17/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) becomes a standard form of cellular therapy for patients with malignant diseases. HSCT is the first-choice of immunotherapy, although HSCT can be associated with many complications such as graft-versus-host disease (GVHD) which is a major cause of morbidity and mortality after allogeneic HSCT. It has been shown that certain gut microbiota could exert protective and/or regenerative immunomodulatory effects by the production of short-chain fatty acids (SCFAs) such as butyrate in the experimental models of GVHD after allogeneic HSCT. Loss of gut commensal bacteria which can produce SCFAs may worsen dysbiosis, increasing the risk of GVHD. Expression of G-protein coupled receptors such as GPR41 seems to be upre-gulated in the presence of commensal bacteria, which might be associated with the biology of regulatory T cells (Tregs). Treg cells are a suppressive subset of CD4 positive T lymphocytes implicated in the prevention of GVHD after allogeneic HSCT. Here, we discuss the current findings of the relationship between the modification of gut microbiota and the GVHD-related immunity, which suggested that tactics with certain probiotics for the beneficial symbiosis in gut-immune axis might lead to the elevation of safety in the allogeneic HSCT.
Collapse
Affiliation(s)
- Sayuri Yoshikawa
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Haruka Sawamura
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yuka Ikeda
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
8
|
Ma PJ, Wang MM, Wang Y. Gut microbiota: A new insight into lung diseases. Biomed Pharmacother 2022; 155:113810. [DOI: 10.1016/j.biopha.2022.113810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022] Open
|
9
|
Hashimoto Y, Eguchi A, Wei Y, Shinno-Hashimoto H, Fujita Y, Ishima T, Chang L, Mori C, Suzuki T, Hashimoto K. Antibiotic-induced microbiome depletion improves LPS-induced acute lung injury via gut-lung axis. Life Sci 2022; 307:120885. [PMID: 35981631 DOI: 10.1016/j.lfs.2022.120885] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022]
Abstract
AIMS Acute lung injury (ALI) is an acute inflammatory disorder. However, the precise mechanisms underlying the pathology of ALI remain elusive. An increasing evidence suggests the role of the gut-microbiota axis in the pathology of lung injury. This study aimed to investigate whether antibiotic-induced microbiome depletion could affect ALI in mice after lipopolysaccharide (LPS) administration. MAIN METHODS The effects of antibiotic cocktail (ABX) on ALI in the mice after intratracheally administration of LPS (5 mg/kg) were examined. Furthermore, 16s rRNA analysis and measurement of short-chain fatty acids in feces samples and metabolomics analysis of blood samples were performed. KEY FINDINGS LPS significantly increased the interleukin-6 (IL-6) levels in the bronchoalveolar lavage fluid (BALF) of water-treated mice. Interestingly, an ABX significantly attenuated the LPS-induced increase in IL-6 in BALF and lung injury scores. Furthermore, ABX and/or LPS treatment markedly altered the α- and β-diversity of the gut microbiota. There were significant differences in the α- and β-diversity of the water + LPS group and ABX + LPS group. LEfSe analysis identified Enterococusfaecalis, Clostriumtertium, and Bacteroidescaecimyris as potential microbial markers for ABX + LPS group. Untargeted metabolomics analysis identified several plasma metabolites responsible for discriminating water + LPS group from ABX + LPS group. There were correlations between the relative abundance of the microbiome and plasma metabolites. Integrative network analysis showed correlations between IL-6 levels in BALF and several gut microbes (or plasma metabolites). SIGNIFICANCE These data suggest that ABX-induced microbiome depletion could protect against LPS-induced ALI via the gut-microbiota-lung axis.
Collapse
Affiliation(s)
- Yaeko Hashimoto
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Hiroyo Shinno-Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Dermatology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Takuji Suzuki
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|