1
|
O'Donnell E, Muñoz M, Davis R, Bergonio J, Randall RL, Tepper C, Carr-Ascher J. Genetic and epigenetic characterization of sarcoma stem cells across subtypes identifies EZH2 as a therapeutic target. NPJ Precis Oncol 2025; 9:7. [PMID: 39789291 PMCID: PMC11717953 DOI: 10.1038/s41698-024-00776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
High-grade soft tissue sarcomas (STS) are a heterogeneous and aggressive set of cancers. Failure to respond anthracycline chemotherapy, standard first-line treatment, is associated with poor outcomes. We investigated the contribution of STS cancer stem cells (STS-CSCs) to doxorubicin resistance. We identified a positive correlation between CSC abundance and doxorubicin IC50. Utilizing patient-derived samples from five sarcoma subtypes we investigated if a common genetic signature across STS-CSCs could be targeted. We identified Enhancer of Zeste homolog 2 (EZH2), a member of the polycomb repressive complex 2 (PRC2) responsible for H3K27 methylation as being enriched in CSCs. EZH2 activity and a shared epigenetic profile was observed across subtypes and targeting of EZH2 ablated the STS-CSC population. Treatment of doxorubicin-resistant cell lines with tazemetostat resulted in a decrease in the STS-CSC population. These data confirm the presence of shared genetic programs across distinct subtypes of CSC-STS that can be therapeutically targeted.
Collapse
Affiliation(s)
- Edmond O'Donnell
- Department of Orthopedic Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Maria Muñoz
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, CA, 95817, USA
| | - Ryan Davis
- Department of Pathology and Laboratory, University of California Davis, Sacramento, CA, 95817, USA
| | - Jessica Bergonio
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, CA, 95817, USA
| | - R Lor Randall
- Department of Orthopedic Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Clifford Tepper
- Department of Pathology and Laboratory, University of California Davis, Sacramento, CA, 95817, USA
| | - Janai Carr-Ascher
- Department of Orthopedic Surgery, University of California Davis, Sacramento, CA, 95817, USA.
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
2
|
Curylova L, Staniczkova Zambo I, Neradil J, Kyr M, Jurackova N, Pavlova S, Polaskova K, Mudry P, Sterba J, Veselska R, Skoda J. Dysregulation of the p53 pathway provides a therapeutic target in aggressive pediatric sarcomas with stem-like traits. Cell Oncol (Dordr) 2024; 47:2317-2334. [PMID: 39630408 DOI: 10.1007/s13402-024-01020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE Pediatric sarcomas are bone and soft tissue tumors that often exhibit high metastatic potential and refractory stem-like phenotypes, resulting in poor outcomes. Aggressive sarcomas frequently harbor a disrupted p53 pathway. However, whether pediatric sarcoma stemness is associated with abrogated p53 function and might be attenuated via p53 reactivation remains unclear. METHODS We utilized a unique panel of pediatric sarcoma models and tumor tissue cohorts to investigate the correlation between the expression of stemness-related transcription factors, p53 pathway dysregulations, tumorigenicity in vivo, and clinicopathological features. TP53 mutation status was assessed by next-generation sequencing. Major findings were validated via shRNA-mediated silencing and functional assays. The p53 pathway-targeting drugs were used to explore the effects and selectivity of p53 reactivation against sarcoma cells with stem-like traits. RESULTS We found that highly tumorigenic stem-like sarcoma cells exhibit dysregulated p53, making them vulnerable to drugs that restore wild-type p53 activity. Immunohistochemistry of mouse xenografts and human tumor tissues revealed that p53 dysregulations, together with enhanced expression of the stemness-related transcription factors SOX2 or KLF4, are crucial features in pediatric osteosarcoma, rhabdomyosarcoma, and Ewing's sarcoma development. p53 dysregulation appears to be an important step for sarcoma cells to acquire a fully stem-like phenotype, and p53-positive pediatric sarcomas exhibit a high frequency of early metastasis. Importantly, reactivating p53 signaling via MDM2/MDMX inhibition selectively induces apoptosis in aggressive, stem-like Ewing's sarcoma cells while sparing healthy fibroblasts. CONCLUSIONS Our results indicate that restoring canonical p53 activity provides a promising strategy for developing improved therapies for pediatric sarcomas with unfavorable stem-like traits.
Collapse
Affiliation(s)
- Lucie Curylova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 656 91, Czech Republic
| | - Iva Staniczkova Zambo
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 656 91, Czech Republic
- 1st Department of Pathology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jakub Neradil
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 656 91, Czech Republic
| | - Michal Kyr
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, 613 00, Czech Republic
| | - Nicola Jurackova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
- 1st Department of Pathology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pavlova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, 625 00, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, 625 00, Czech Republic
| | - Kristyna Polaskova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, 613 00, Czech Republic
| | - Peter Mudry
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, 613 00, Czech Republic
| | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, 613 00, Czech Republic
| | - Renata Veselska
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 656 91, Czech Republic
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, 656 91, Czech Republic.
| |
Collapse
|
3
|
O'Donnell E, Muñoz M, Davis R, Randall RL, Tepper C, Carr-Ascher J. Genetic and Epigenetic Characterization of Sarcoma Stem Cells Across Subtypes Identifies EZH2 as a Therapeutic Target. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594060. [PMID: 38798385 PMCID: PMC11118861 DOI: 10.1101/2024.05.14.594060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
High-grade complex karyotype soft tissue sarcomas (STS) are a heterogeneous and aggressive set of cancers that share a common treatment strategy. Disease progression and failure to respond to anthracycline based chemotherapy, standard first-line treatment, is associated with poor patient outcomes. To address this, we investigated the contribution of STS cancer stem cells (STS-CSCs) to doxorubicin resistance. We identified a positive correlation between CSC abundance and doxorubicin IC 50 in resistant cell lines. We investigated if a common genetic signature across STS-CSCs could be targeted. Utilizing patient derived samples from five sarcoma subtypes we identified Enhancer of Zeste homolog 2 (EZH2), a member of the polycomb repressive complex 2 (PRC2) responsible for H3K27 methylation as being enriched in the CSC population. EZH2 activity and a shared epigenetic profile was observed across subtypes. Targeting of EZH2 using Tazemetostat, an FDA approved inhibitor specifically ablated the STS-CSC population. Treatment of doxorubicin resistant cell lines with tazemetostat resulted in a decrease in the STS-CSC population. Further, co-treatment was not only synergistic in the parent cell lines, but restored chemosensitivity in doxorubicin resistant lines. These data confirm the presence of shared genetic programs across distinct subtypes of CSC-STS that can be therapeutically targeted.
Collapse
|
4
|
Chang MR, Rusanov DA, Arakelyan J, Alshehri M, Asaturova AV, Kireeva GS, Babak MV, Ang WH. Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
5
|
Martin J, Islam F. Detection and Isolation of Cancer Stem Cells. CANCER STEM CELLS: BASIC CONCEPT AND THERAPEUTIC IMPLICATIONS 2023:45-69. [DOI: 10.1007/978-981-99-3185-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Barrios O, Sánchez BG, Rodríguez-Prieto T, Cano J, Bort A, Gómez R, Díaz-Laviada I. Alteration of the HIF-1α/VEGF Signaling Pathway and Disruption of the Cell Cycle by Second Generation Carbosilan Dendrimers. Biomacromolecules 2022; 23:5043-5055. [PMID: 36445323 DOI: 10.1021/acs.biomac.2c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Current therapies against prostate cancer (PCa) disease, such as surgery, radiotherapy, or in last term chemical castration by androgen deprivation, have led to significant reduction of the incidence of PCa throughout the world. Worse prognosis is found in those patients which exhibit castration resistance, relapsing into the disease with even greater aggressiveness. Hypoxia cancer cell adaption has been observed to be closely connected to fatal prognostic tumor features. Therefore, hypoxia adaptive mechanisms of cancer cells have attracted large interest as a relevant biological target for treatment-resistant patients. Dendrimers have been established as a promising nanotechnological tool owing to their beneficial physicochemical features such as multivalency and monodispersity. Herein, we have completed a thorough study to better understand the effect within the cell of the already published ruthenium(II)-N-heterocyclic carbene metallodendrimer (G2Ru) that was able to drastically reduce HIF-1α stabilization and exhibited antiproliferative capability against androgen-sensitive (LNCaP) and androgen-resistant prostate cancer cells (LNFLU) in vitro. G2Ru, as well as its cationic imidazolium precursor (G2P), displayed scavenging properties against intracellular and externally stimulated ROS levels, which would presumably hinder the stabilization of HIF-1α by prolyl hydroxylase (PHD) inhibition. Furthermore, these dendrimers have shown considerably beneficial properties against tumor progression capability in terms of apoptosis, cell cycle, CSCs expression, and epithelial phenotype promotion. Taken all together, in this study we could demonstrate the extraordinary anticancer properties of NHC-based carbosilane dendrimers against androgen-resistant prostate cancer cells in vitro.
Collapse
Affiliation(s)
- Oscar Barrios
- University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, 28871, Spain
| | - Belén G Sánchez
- University of Alcalá, Biochemistry and Molecular Biology Unit. Department of Systems Biology and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, 28871, Spain
| | - Tamara Rodríguez-Prieto
- University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, 28871, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain.,Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid, 28034, Spain
| | - Jesús Cano
- University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, 28871, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain.,Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid, 28034, Spain
| | - Alicia Bort
- University of Alcalá, Biochemistry and Molecular Biology Unit. Department of Systems Biology and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, 28871, Spain.,Yale University School of Medicine, Vascular Biology and Therapeutics Program, New Haven, Connecticut 06520, United States
| | - Rafael Gómez
- University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, 28871, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain.,Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid, 28034, Spain
| | - Inés Díaz-Laviada
- University of Alcalá, Biochemistry and Molecular Biology Unit. Department of Systems Biology and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, 28871, Spain
| |
Collapse
|
7
|
EID3 Promotes Cancer Stem Cell-Like Phenotypes in Osteosarcoma through the Activation of PI3K-AKT Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5941562. [PMID: 36071872 PMCID: PMC9441394 DOI: 10.1155/2022/5941562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 06/04/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study is to elucidate molecular mechanism by which E1A-like inhibitor of differentiation 3 (EID3) promotes cancer stem cell-like phenotypes in osteosarcoma. Overexpression of EID3 in osteosarcoma cells generated more spherical clones, enhanced the expression of stemness-associated genes, and promoted chemoresistance, invasion, and metastasis. Furthermore, osteosarcoma cells overexpressing EID3 had increased ability to grow in suspension as osteospheres with high expression of Sox2 and stem cell marker CD133. In addition, knockdown of EID3 reduced sphere formation and inhibited osteosarcoma cell migration and invasion. RNA sequencing and bioinformatics analysis revealed that PI3K-Akt signaling pathway and MAPK pathwayrelated genes were enriched in osteosarcoma cells with high expression of EID3. Taken together, EID3 promotes osteosarcoma, and EID3–PI3K-Akt axis is a potential therapeutic target for osteosarcoma treatment.
Collapse
|
8
|
Le Minh G, Reginato MJ. Role of O-GlcNAcylation on cancer stem cells: Connecting nutrient sensing to cell plasticity. Adv Cancer Res 2022; 157:195-228. [PMID: 36725109 PMCID: PMC9895886 DOI: 10.1016/bs.acr.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor growth and metastasis can be promoted by a small sub-population of cancer cells, termed cancer stem-like cells (CSCs). While CSCs possess capability in self-renewing and differentiating, the hierarchy of CSCs during tumor growth is highly plastic. This plasticity in CSCs fate and function can be regulated by signals from the tumor microenvironment. One emerging pathway in CSCs that connects the alteration in microenvironment and signaling network in cancer cells is the hexosamine biosynthetic pathway (HBP). The final product of HBP, UDP-N-acetylglucosamine (UDP-GlcNAc), is utilized for glycosylating of membrane and secreted proteins, but also nuclear and cytoplasmic proteins by the post-translational modification O-GlcNAcylation. O-GlcNAcylation and its enzyme, O-GlcNAc transferase (OGT), are upregulated in nearly all cancers and been linked to regulate many cancer cell phenotypes. Recent studies have begun to connect OGT and O-GlcNAcylation to regulation of CSCs. In this review, we will discuss the emerging role of OGT and O-GlcNAcylation in regulating fate and plasticity of CSCs, as well as the potential in targeting OGT/O-GlcNAcylation in CSCs.
Collapse
Affiliation(s)
- Giang Le Minh
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States; Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Sung K, Hosoya K, Murase Y, Deguchi T, Kim S, Sunaga T, Okumura M. Visualizing the cancer stem-like properties of canine tumour cells with low proteasome activity. Vet Comp Oncol 2021; 20:324-335. [PMID: 34719098 DOI: 10.1111/vco.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
Cancer stem-like cells (CSCs) cause treatment failure in various tumours; however, establishing CSC-targeted therapies has been hampered by difficulties in the identification and isolation of this small sub-population of cells. Recent studies have revealed that tumour cells with low proteasome activity display a CSC phenotype that can be utilized to image CSCs in canines. This study visualizes and reveals the CSC-like properties of tumour cells with low proteasome activity in HMPOS (osteosarcoma) and MegTCC (transitional cell carcinoma), which are canine cell lines. The parent cells were genetically engineered to express ZsGreen1, a fluorescent protein connected to the carboxyl-terminal degron of canine ornithine decarboxylase that accumulates with low proteasome activity (ZsG+ cells). ZsG+ cells were imaged and the mode of action of this system was confirmed using a proteasome inhibitor (MG-132), which increased the ZsGreen1 fluorescence intensity. The CSC-like properties of ZsG+ cells were evaluated on the basis of cell divisions, cell cycle, the expression of CSC markers and tumourigenicity. ZsG+ cells underwent asymmetric divisions and had a low percentage of G0/G1 phase cells; moreover, ZsG+ cells expressed CSC markers such as CD133 and showed a large tumourigenic capability. In histopathological analysis, ZsG+ cells were widely distributed in the tumour samples derived from ZsG+ cells and in the proliferative regions of the tumours. The results of this study indicate that visualized canine tumour cells with low proteasome activity have a CSC-like phenotype and that this visualization system can be utilized to identify and isolate canine CSCs.
Collapse
Affiliation(s)
- Koangyong Sung
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Hosoya
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Murase
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Deguchi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Sangho Kim
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Rijal G. Understanding the Role of Fibroblasts following a 3D Tumoroid Implantation for Breast Tumor Formation. Bioengineering (Basel) 2021; 8:bioengineering8110163. [PMID: 34821729 PMCID: PMC8615023 DOI: 10.3390/bioengineering8110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
An understanding of the participation and modulation of fibroblasts during tumor formation and growth is still unclear. Among many speculates, one might be the technical challenge to reveal the versatile function of fibroblasts in tissue complexity, and another is the dynamics in tissue physiology and cell activity. The histology of most solid tumors shows a predominant presence of fibroblasts, suggesting that tumor cells recruit fibroblasts for breast tumor growth. In this review paper, therefore, the migration, activation, differentiation, secretion, and signaling systems that are associated with fibroblasts and cancer-associated fibroblasts (CAFs) after implantation of a breast tumoroid, i.e., a lab-generated tumor tissue into an animal, are discussed.
Collapse
Affiliation(s)
- Girdhari Rijal
- Department of Medical Laboratory Sciences and Public Health, Tarleton State University, a Member of Texas A & M University System, Fort Worth, TX 76104, USA
| |
Collapse
|
11
|
Roundhill EA, Chicon-Bosch M, Jeys L, Parry M, Rankin KS, Droop A, Burchill SA. RNA sequencing and functional studies of patient-derived cells reveal that neurexin-1 and regulators of this pathway are associated with poor outcomes in Ewing sarcoma. Cell Oncol (Dordr) 2021; 44:1065-1085. [PMID: 34403115 PMCID: PMC8516792 DOI: 10.1007/s13402-021-00619-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
PURPOSE The development of biomarkers and molecularly targeted therapies for patients with Ewing sarcoma (ES) in order to minimise morbidity and improve outcome is urgently needed. Here, we set out to isolate and characterise patient-derived ES primary cell cultures and daughter cancer stem-like cells (CSCs) to identify biomarkers of high-risk disease and candidate therapeutic targets. METHODS Thirty-two patient-derived primary cultures were established from treatment-naïve tumours and primary ES-CSCs isolated from these cultures using functional methods. By RNA-sequencing we analysed the transcriptome of ES patient-derived cells (n = 24) and ES-CSCs (n = 11) to identify the most abundant and differentially expressed genes (DEGs). Expression of the top DEG(s) in ES-CSCs compared to ES cells was validated at both RNA and protein levels. The functional and prognostic potential of the most significant gene (neurexin-1) was investigated using knock-down studies and immunohistochemistry of two independent tumour cohorts. RESULTS ES-CSCs were isolated from all primary cell cultures, consistent with the premise that ES is a CSC driven cancer. Transcriptional profiling confirmed that these cells were of mesenchymal origin, revealed novel cell surface targets for therapy that regulate cell-extracellular matrix interactions and identified candidate drivers of progression and relapse. High expression of neurexin-1 and low levels of regulators of its activity, APBA1 and NLGN4X, were associated with poor event-free and overall survival rates. Knock-down of neurexin-1 decreased viable cell numbers and spheroid formation. CONCLUSIONS Genes that regulate extracellular interactions, including neurexin-1, are candidate therapeutic targets in ES. High levels of neurexin-1 at diagnosis are associated with poor outcome and identify patients with localised disease that will relapse. These patients could benefit from more intensive or novel treatment modalities. The prognostic significance of neurexin-1 should be validated independently.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Antineoplastic Agents/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Line, Tumor
- Child
- Doxorubicin/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neural Cell Adhesion Molecules/genetics
- Neural Cell Adhesion Molecules/metabolism
- Prognosis
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sequence Analysis, RNA/methods
- Transcriptome/genetics
- Tumor Cells, Cultured
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Elizabeth Ann Roundhill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Mariona Chicon-Bosch
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Lee Jeys
- Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Michael Parry
- Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4AD, UK
| | - Alastair Droop
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Susan Ann Burchill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|
12
|
Raman S, Buongervino SN, Lane MV, Zhelev DV, Zhu Z, Cui H, Martinez B, Martinez D, Wang Y, Upton K, Patel K, Rathi KS, Navia CT, Harmon DB, Li Y, Pawel B, Dimitrov DS, Maris JM, Julien JP, Bosse KR. A GPC2 antibody-drug conjugate is efficacious against neuroblastoma and small-cell lung cancer via binding a conformational epitope. Cell Rep Med 2021; 2:100344. [PMID: 34337560 PMCID: PMC8324494 DOI: 10.1016/j.xcrm.2021.100344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/19/2021] [Accepted: 06/15/2021] [Indexed: 01/17/2023]
Abstract
Glypican 2 (GPC2) is a MYCN-regulated, differentially expressed cell-surface oncoprotein and target for immune-based therapies in neuroblastoma. Here, we build on GPC2's immunotherapeutic attributes by finding that it is also a highly expressed, MYCN-driven oncoprotein on small-cell lung cancers (SCLCs), with significantly enriched expression in both the SCLC and neuroblastoma stem cell compartment.By solving the crystal structure of the D3-GPC2-Fab/GPC2 complex at 3.3 Å resolution, we further illustrate that the GPC2-directed antibody-drug conjugate (ADC; D3-GPC2-PBD), that links a human GPC2 antibody (D3) to DNA-damaging pyrrolobenzodiazepine (PBD) dimers, binds a tumor-specific, conformation-dependent epitope of the core GPC2 extracellular domain. We then show that this ADC induces durable neuroblastoma and SCLC tumor regression via induction of DNA damage, apoptosis, and bystander cell killing, notably with no signs of ADC-induced in vivo toxicity. These studies provide preclinical data to support the clinical translation of ADCs targeting GPC2.
Collapse
Affiliation(s)
- Swetha Raman
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Samantha N. Buongervino
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maria V. Lane
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Doncho V. Zhelev
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Zhongyu Zhu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Hong Cui
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Benjamin Martinez
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Daniel Martinez
- Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yanping Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Kristen Upton
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Khushbu Patel
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Komal S. Rathi
- Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | - Yimei Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Dimiter S. Dimitrov
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Philippe Julien
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Zając A, Król SK, Rutkowski P, Czarnecka AM. Biological Heterogeneity of Chondrosarcoma: From (Epi) Genetics through Stemness and Deregulated Signaling to Immunophenotype. Cancers (Basel) 2021; 13:1317. [PMID: 33804155 PMCID: PMC8001927 DOI: 10.3390/cancers13061317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chondrosarcoma (ChS) is a primary malignant bone tumor. Due to its heterogeneity in clinical outcomes and resistance to chemo- and radiotherapies, there is a need to develop new potential therapies and molecular targets of drugs. Many genes and pathways are involved in in ChS progression. The most frequently mutated genes are isocitrate dehydrogenase ½ (IDH1/2), collagen type II alpha 1 chain (COL2A1), and TP53. Besides the point mutations in ChS, chromosomal aberrations, such as 12q13 (MDM2) amplification, the loss of 9p21 (CDKN21/p16/INK4A and INK4A-p14ARF), and several gene fusions, commonly occurring in sarcomas, have been found. ChS involves the hypermethylation of histone H3 and the decreased methylation of some transcription factors. In ChS progression, changes in the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-AKT-mTOR) and hedgehog pathways are known to play a role in tumor growth and chondrocyte proliferation. Due to recent discoveries regarding the potential of immunotherapy in many cancers, in this review we summarize the current state of knowledge concerning cellular markers of ChS and tumor-associated immune cells. This review compares the latest discoveries in ChS biology from gene alterations to specific cellular markers, including advanced molecular pathways and tumor microenvironment, which can help in discovering new potential checkpoints in inhibitory therapy.
Collapse
Affiliation(s)
- Agnieszka Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Sylwia K. Król
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| |
Collapse
|
14
|
Roessner A, Lohmann C, Jechorek D. Translational cell biology of highly malignant osteosarcoma. Pathol Int 2021; 71:291-303. [PMID: 33631032 DOI: 10.1111/pin.13080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/31/2021] [Indexed: 12/19/2022]
Abstract
Highly malignant osteosarcoma (HMO) is the most frequent malignant bone tumor preferentially occurring in adolescents and children with a second more flat peak in patients over the age of 60. The younger patients benefit from combined neoadjuvant chemotherapy with 65-70% 5-year survival rate. In patients with metastatic HMO the 5-year survival rate is consistently poor with approximately 30%. In the last several years strategies for target therapies have been developed by using next generation sequencing (NGS) for defining targetable molecular factors. However, it has so far been challenging to establish an effective target therapy for so-called 'orphan tumors' without recognizable driver mutations, including HMO. The molecular genetic studies using NGS have shown that HMOs are genomically unstable tumors with highly complex chaotic karyotypes. Before the background of this genetic complexity more investigations should be performed in the future for defining targetable biological factors. As the prognosis could not be improved for 40 years one may expect improvements for patients only by gaining a deeper understanding of the cell and molecular biology of HMO. The cell of origin of HMO is being clarified now. The majority of studies indicate that an osteoblastic progenitor cell is probably the cell of origin of HMO and not an undifferentiated mesenchymal stem cell. This means that the established histopathological definition of HMO through verification of osteoid production by the osteoblastic cells is well justified and will probably be the cornerstone for a precise differential diagnosis of HMO also in the years to come.
Collapse
Affiliation(s)
- Albert Roessner
- Department of Pathology, Otto-von-Guericke University, Magdeburg, Germany
| | - Christoph Lohmann
- Department of Orthopedics, Otto-von-Guericke University, Magdeburg, Germany
| | - Doerthe Jechorek
- Department of Pathology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
15
|
Mechanisms of Resistance to Conventional Therapies for Osteosarcoma. Cancers (Basel) 2021; 13:cancers13040683. [PMID: 33567616 PMCID: PMC7915189 DOI: 10.3390/cancers13040683] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor, mainly occurring in children and adolescents. Current standard therapy includes tumor resection associated with multidrug chemotherapy. However, patient survival has not evolved for the past decades. Since the 1970s, the 5-year survival rate is around 75% for patients with localized OS but dramatically drops to 20% for bad responders to chemotherapy or patients with metastases. Resistance is one of the biological processes at the origin of therapeutic failure. Therefore, it is necessary to better understand and decipher molecular mechanisms of resistance to conventional chemotherapy in order to develop new strategies and to adapt treatments for patients, thus improving the survival rate. This review will describe most of the molecular mechanisms involved in OS chemoresistance, such as a decrease in intracellular accumulation of drugs, inactivation of drugs, improved DNA repair, modulations of signaling pathways, resistance linked to autophagy, disruption in genes expression linked to the cell cycle, or even implication of the micro-environment. We will also give an overview of potential therapeutic strategies to circumvent resistance development.
Collapse
|
16
|
FOLFOX Therapy Induces Feedback Upregulation of CD44v6 through YB-1 to Maintain Stemness in Colon Initiating Cells. Int J Mol Sci 2021; 22:ijms22020753. [PMID: 33451103 PMCID: PMC7828641 DOI: 10.3390/ijms22020753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer initiating cells (CICs) drive tumor formation and drug-resistance, but how they develop drug-resistance characteristics is not well understood. In this study, we demonstrate that chemotherapeutic agent FOLFOX, commonly used for drug-resistant/metastatic colorectal cancer (CRC) treatment, induces overexpression of CD44v6, MDR1, and oncogenic transcription/translation factor Y-box-binding protein-1 (YB-1). Our study revealed that CD44v6, a receptor for hyaluronan, increased the YB-1 expression through PGE2/EP1-mTOR pathway. Deleting CD44v6, and YB-1 by the CRISPR/Cas9 system attenuates the in vitro and in vivo tumor growth of CICs from FOLFOX resistant cells. The results of DNA:CD44v6 immunoprecipitated complexes by ChIP (chromatin-immunoprecipitation) assay showed that CD44v6 maintained the stemness traits by promoting several antiapoptotic and stemness genes, including cyclin-D1,BCL2,FZD1,GINS-1, and MMP9. Further, computer-based analysis of the clones obtained from the DNA:CD44v6 complex revealed the presence of various consensus binding sites for core stemness-associated transcription factors “CTOS” (c-Myc, TWIST1, OCT4, and SOX2). Simultaneous expressions of CD44v6 and CTOS in CD44v6 knockout CICs reverted differentiated CD44v6-knockout CICs into CICs. Finally, this study for the first time describes a positive feedback loop that couples YB-1 induction and CD44 alternative splicing to sustain the MDR1 and CD44v6 expressions, and CD44v6 is required for the reversion of differentiated tumor cells into CICs.
Collapse
|
17
|
Yan S, Tang D, Hong Z, Wang J, Yao H, Lu L, Yi H, Fu S, Zheng C, He G, Zou H, Hou X, He Q, Xiong L, Li Q, Deng X. CD133 peptide-conjugated pyropheophorbide-a as a novel photosensitizer for targeted photodynamic therapy in colorectal cancer stem cells. Biomater Sci 2021; 9:2020-2031. [PMID: 33439161 DOI: 10.1039/d0bm01874k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer around the world. Recent findings suggest that cancer stem cells (CSCs) play a pivotal role in the resistance to current therapeutic modalities, including surgery and chemotherapy. Photodynamic therapy (PDT) is a promising non-invasive therapeutic strategy for advanced metastatic CRC. Traditional photosensitizers such as pyropheophorbide-a (Pyro) lack tumor selectivity, causing unwanted treatment-related toxicity to the surrounding normal tissue. In order to enhance the targeting properties of Pyro, we synthesize a novel photosensitizer, CD133-Pyro, via the conjugation of Pyro to a peptide domain targeting CD133, which is highly expressed on CRC CSCs and correlated with poor prognosis of CRC patients. We demonstrate that CD133-Pyro possesses the targeted delivery capacity both in CRC CSCs derived from HT29 and SW620 cell lines and in a xenograft mouse model of tumor growth. CD133-Pyro PDT can promote the production of reactive oxygen species (ROS), suppress the stemness properties, and induce autophagic cell death in CRC CSCs. Furthermore, CD133-Pyro PDT has a potent inhibitory effect on CRC CSC-derived xenograft tumors in nude mice. These findings may offer a useful and important strategy for the treatment of CRC through targeting CSCs.
Collapse
Affiliation(s)
- Shichao Yan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Singla A, Wang J, Yang R, Geller DS, Loeb DM, Hoang BH. Wnt Signaling in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:125-139. [PMID: 32767238 DOI: 10.1007/978-3-030-43085-6_8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt molecules are a class of cysteine-rich secreted glycoproteins that participate in various developmental events during embryogenesis and adult tissue homeostasis. Since its discovery in 1982, the roles of Wnt signaling have been established in various key regulatory systems in biology. Wnt signals exert pleiotropic effects, including mitogenic stimulation, cell fate specification, and differentiation. The Wnt signaling pathway in humans has been shown to be involved in a wide variety of disorders including colon cancer, sarcoma, coronary artery disease, tetra-amelia, Mullerian duct regression, eye vascular defects, and abnormal bone mass. The canonical Wnt pathway functions by regulating the function of the transcriptional coactivator β-catenin, whereas noncanonical pathways function independent of β-catenin. Although the role of Wnt signaling is well established in epithelial malignancies, its role in mesenchymal tumors is more controversial. Some studies have suggested that Wnt signaling plays a pro-oncogenic role in various sarcomas by driving cell proliferation and motility; however, others have reported that Wnt signaling acts as a tumor suppressor by committing tumor cells to differentiate into a mature lineage. Wnt signaling pathway also plays an important role in regulating cancer stem cell function. In this review, we will discuss Wnt signaling pathway and its role in osteosarcoma.
Collapse
Affiliation(s)
- Amit Singla
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Musculoskeletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People's Hospital, Beijing, China
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David S Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David M Loeb
- Departments of Pediatrics and Developmental and Molecular Biology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang H Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
19
|
Differentiation of Tumorigenic C6 Glioma Cells Induced by Enhanced IL-6 Signaling. ACTA ACUST UNITED AC 2020; 56:medicina56110625. [PMID: 33227992 PMCID: PMC7699282 DOI: 10.3390/medicina56110625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
Background and objectives: Cancer stem cells (CSCs) are obstacles to cancer therapy due to their therapeutic resistance, ability to initiate neoplasia, and roles in tumor relapse and metastasis. Efforts have been made to cure CSCs, such as the use of differentiation therapy, which induces cancer stem-like cells to undergo differentiation and decrease their tumorigenicity. Interleukin 6 (IL-6) upregulates the expression of glial fibrillary acidic protein (GFAP) in C6 glioma cells, indicating that it is able to induce the differentiation of these cells. The C6 glioma cell line forms a high percentage of cancer stem-like cells, leading us to speculate whether IL-6 signaling could modulate the differentiation of tumorigenic C6 glioma cells. However, we observed that IL-6 alone could not efficiently induce the differentiation of these cells. Therefore, different IL-6 signaling elicitors, including IL-6 alone, a combination of IL-6 and soluble IL-6 receptor (IL-6/sIL-6R), and tumor necrosis factor-α (TNF-α) plus IL-6/sIL-6R (TNF-α/IL-6/sIL-6R), were evaluated for their potential use in differentiation therapy. Materials and Methods: The potential of IL-6 signaling elicitors in differentiation therapy were examined by assessing changes in biomarker levels, the rate of cell proliferation, and tumorigenicity, respectively. Results: Enhanced IL-6 signaling could effectively induce C6 glioma cell differentiation, as determined by observed variations in the expression of differentiation, cell cycle, and stem cell biomarkers. Additionally, the total cell population and the tumorigenicity of glioma cells were all considerably reduced after TNF-α/IL-6/sIL-6R treatment. Conclusions: Our findings provide evidence that enhanced IL-6 signaling can efficiently promote tumorigenic C6 glioma cells to undergo differentiation.
Collapse
|
20
|
Fujiwara S, Kawamoto T, Kawakami Y, Koterazawa Y, Hara H, Takemori T, Kitayama K, Yahiro S, Kakutani K, Matsumoto T, Matsushita T, Niikura T, Koyanagi-Aoi M, Aoi T, Kuroda R, Akisue T. Acquisition of cancer stem cell properties in osteosarcoma cells by defined factors. Stem Cell Res Ther 2020; 11:429. [PMID: 33008481 PMCID: PMC7532109 DOI: 10.1186/s13287-020-01944-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022] Open
Abstract
Background Cancer stem cells (CSCs) are considered to be responsible for tumor initiation, formation, and poor prognosis of cancer patients. However, the rarity of CSCs in clinical samples makes it difficult to elucidate characteristics of CSCs, especially in osteosarcoma (OS). The aim of this study is to verify whether it is possible to generate CSC-like cells by transducing defined factors into an OS cell line. Methods We retrovirally transduced the Octamer-binding transcription factor 3/4 (OCT3/4), Kruppel-like factor 4 (KLF4), and SRY-box transcription factor 2 (SOX2) genes into the MG-63 human OS cell line (MG-OKS). Parental and GFP-transduced MG-63 cells were used as negative control. We assessed the properties of the generated cells in vitro and in vivo. Multiple comparisons among groups were made using a one-way analysis of variance (ANOVA) followed by post hoc testing with Tukey’s procedure. Results MG-OKS cells in vitro exhibited the significantly increased mRNA expression levels of CSC markers (CD24, CD26, and CD133), decreased cell growth, increased chemoresistance and cell migration, and enhanced sphere formation. Notably, MG-OKS cells cultured under osteogenic differentiation conditions showed strongly positive staining for both Alizarin Red S and alkaline phosphatase, indicating osteogenesis of the cells. Gene ontology analysis of microarray data revealed significant upregulation of epidermal-related genes. Tumors derived from MG-OKS cells in vivo were significantly larger than those from other cells in μCT analysis, and immunohistochemical staining showed that Ki-67, osteocalcin, and HIF-1α-positive cells were more frequently detected in the MG-OKS-derived tumors. Conclusions In this study, we successfully generated OS CSC-like cells with significantly enhanced CSC properties following transduction of defined factors.
Collapse
Affiliation(s)
- Shuichi Fujiwara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Teruya Kawamoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan. .,Division of Orthopaedic Surgery, Kobe University Hospital International Clinical Cancer Research Center, Kobe, Japan.
| | - Yohei Kawakami
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yasufumi Koterazawa
- Department of iPS Cell Applications, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Division of Gastrointestinal Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hitomi Hara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Toshiyuki Takemori
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kazumichi Kitayama
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shunsuke Yahiro
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kenichiro Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Michiyo Koyanagi-Aoi
- Department of iPS Cell Applications, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Center for Human Resource development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| | - Takashi Aoi
- Department of iPS Cell Applications, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Center for Human Resource development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Toshihiro Akisue
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
21
|
Czarnecka AM, Synoradzki K, Firlej W, Bartnik E, Sobczuk P, Fiedorowicz M, Grieb P, Rutkowski P. Molecular Biology of Osteosarcoma. Cancers (Basel) 2020; 12:E2130. [PMID: 32751922 PMCID: PMC7463657 DOI: 10.3390/cancers12082130] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary bone cancer in children and adolescents and the third most frequent in adults. Many inherited germline mutations are responsible for syndromes that predispose to osteosarcomas including Li Fraumeni syndrome, retinoblastoma syndrome, Werner syndrome, Bloom syndrome or Diamond-Blackfan anemia. TP53 is the most frequently altered gene in osteosarcoma. Among other genes mutated in more than 10% of OS cases, c-Myc plays a role in OS development and promotes cell invasion by activating MEK-ERK pathways. Several genomic studies showed frequent alterations in the RB gene in pediatric OS patients. Osteosarcoma driver mutations have been reported in NOTCH1, FOS, NF2, WIF1, BRCA2, APC, PTCH1 and PRKAR1A genes. Some miRNAs such as miR-21, -34a, -143, -148a, -195a, -199a-3p and -382 regulate the pathogenic activity of MAPK and PI3K/Akt-signaling pathways in osteosarcoma. CD133+ osteosarcoma cells have been shown to exhibit stem-like gene expression and can be tumor-initiating cells and play a role in metastasis and development of drug resistance. Although currently osteosarcoma treatment is based on adriamycin chemoregimens and surgery, there are several potential targeted therapies in development. First of all, activity and safety of cabozantinib in osteosarcoma were studied, as well as sorafenib and pazopanib. Finally, novel bifunctional molecules, of potential imaging and osteosarcoma targeting applications may be used in the future.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Wiktoria Firlej
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Pawel Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Interinstitute Laboratory of New Diagnostic Applications of MRI, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Pawel Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
| |
Collapse
|
22
|
Pushpam D, Garg V, Ganguly S, Biswas B. Management of Refractory Pediatric Sarcoma: Current Challenges and Future Prospects. Onco Targets Ther 2020; 13:5093-5112. [PMID: 32606731 PMCID: PMC7293381 DOI: 10.2147/ott.s193363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Paediatric sarcomas are a heterogeneous group of disorders constituting bone sarcoma and various soft tissue sarcomas. Almost one-third of these presents with metastasis at baseline and another one-third recur after initial curative treatment. There is a huge unmet need in this cohort in terms of curative options and/or prolongation of survival. In this review, we have discussed the current treatment options, challenges and future strategies of managing relapsed/refractory paediatric sarcomas. Upfront risk-adapted treatment with multidisciplinary management remains the main strategy to prevent future recurrence or relapse of the disease. In the case of limited local and/or systemic relapse or late relapse, initial multimodality management can be administered. In treatment-refractory cases or where cure is not feasible, the treatment options are limited to novel therapeutics, immunotherapeutic approach, targeted therapies, and metronomic therapies. A better understanding of disease biology, mechanism of treatment refractoriness, identifications of driver mutation, the discovery of novel targeted therapies, cellular vaccine and adapted therapies should be explored in relapsed/refractory cases. Close national and international collaboration for translation research is needed to fulfil the unmet need.
Collapse
Affiliation(s)
| | - Vikas Garg
- Department of Medical Oncology, AIIMS, New Delhi, India
| | - Sandip Ganguly
- Department of Medical Oncology, Tata Medical Center, Kolkata, India
| | - Bivas Biswas
- Department of Medical Oncology, Tata Medical Center, Kolkata, India
| |
Collapse
|
23
|
Ozturk S, Gorgun C, Gokalp S, Vatansever S, Sendemir A. Development and characterization of cancer stem cell-based tumoroids as an osteosarcoma model. Biotechnol Bioeng 2020; 117:2527-2539. [PMID: 32391924 DOI: 10.1002/bit.27381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022]
Abstract
Three-dimensional (3D) cancer tumor models are becoming vital approaches for high-throughput drug screening, drug targeting, development of novel theranostic systems, and personalized medicine. Yet, it is becoming more evident that the tumor progression and metastasis is fueled by a subpopulation of stem-like cells within the tumor that are also called cancer stem cells (CSCs). This study aimed to develop a tumoroid model using CSCs. For this purpose CD133+ cells were isolated from SaOS-2 osteosarcoma cell line with magnetic-activated cell sorting. To evaluate tumoroid formation ability, the cells were incubated in different cell numbers in agar gels produced by 3D Petri Dish® method. Subsequently, CD133+ cells and CD133- cells were co-cultured to investigate CD133+ cell localization in tumoroids. The characterization of tumoroids was performed using Live&Dead staining, immunohistochemistry, and quantitative polymerase chain reaction analysis. The results showed that, CD133+ , CD133- and SaOS-2 cells were all able to form 3D tumoroids regardless of the initial cell number, but, while 72 hr were needed for CD133+ cells to self-assemble, 24 hr were enough for CD133- and SaOS-2 cells. CD133+ cells were located within tumoroids randomly with high cell viability. Finally, when compared to two-dimensional (2D) cultures, there were 5.88, 4.14, 6.95, and 1.68-fold higher messenger RNA expressions for Sox2, OCT3/4, Nanog, and Nestin, respectively, in CD133+ cells that were cultured within 3D tumoroids, showing longer maintenance of stem cell phenotype in 3D, that can allow more relevant screening and targeting efficiency in pharmaceutical testing. It was concluded that CSC-based tumoroids are propitious as 3D tumor models to fill the gap between conventional 2D in vitro culture and in vivo animal experiments for cancer research.
Collapse
Affiliation(s)
- Sukru Ozturk
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.,Bioengineering Division, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey.,Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey
| | - Cansu Gorgun
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Sevtap Gokalp
- Department of Histology and Embryology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Seda Vatansever
- Department of Histology and Embryology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey.,Research Center of Experimental Health Sciences (DESAM), Near East University, Mersin, Turkey
| | - Aylin Sendemir
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey.,Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| |
Collapse
|
24
|
Mineo PG, Foti C, Vento F, Montesi M, Panseri S, Piperno A, Scala A. Salinomycin-loaded PLA nanoparticles: drug quantification by GPC and wave voltammetry and biological studies on osteosarcoma cancer stem cells. Anal Bioanal Chem 2020; 412:4681-4690. [DOI: 10.1007/s00216-020-02721-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
|
25
|
Tumorigenic and Metastatic Role of CD44 -/low/CD24 -/low Cells in Luminal Breast Cancer. Cancers (Basel) 2020; 12:cancers12051239. [PMID: 32423137 PMCID: PMC7281029 DOI: 10.3390/cancers12051239] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cells with high CD44 but low CD24 expression (CD44high/CD24-/low) and high aldehyde dehydrogenase activity (ALDHbr) are widely considered to be drivers of metastasis, therapy resistance and tumor recurrence in breast cancer. However, the role of the CD44high/CD24-/low and ALDHbr phenotypes in identifying tumorigenic cells in breast cancer remains controversial due to the discrepancy in their distribution and tumorigenic potential in intrinsic breast cancer subtypes. In this study, we analyzed the cells expressing these markers in six different breast cancer cell lines representing major breast cancer subtypes (T47D, MCF-7, BT-474, AU-565, Hs578T and MDA-MB-231). CD44high/CD24-/low, ALDHbr and CD44-/low/CD24-/low cell populations were isolated by flow cytometry and analyzed for hallmark stem cell characteristics of differentiation, migration, invasiveness and metastasis using in vitro and in vivo techniques. Our results demonstrate that the CD44-/low/CD24-/low cell population, which is enriched in luminal cell lines (T47D, MCF-7 and BT-474), possesses metastatic and tumorigenic properties. We also show that, contrary to previous claims, the expression of the ALDH1 isoform ALDH1A1 does not affect the tumorigenic potential of cell lines with high ALDH activity (BT-474 and AU-565). Further transcriptomic and clinical studies are needed to determine the potential of these markers as early diagnostic tools and treatment targets.
Collapse
|
26
|
Xu L, Sun Z, Wei X, Tan H, Kong P, Li Z, Yang Q, Dai E, Li J. The inhibition of MARK2 suppresses cisplatin resistance of osteosarcoma stem cells by regulating DNA damage and repair. J Bone Oncol 2020; 23:100290. [PMID: 32368441 PMCID: PMC7184251 DOI: 10.1016/j.jbo.2020.100290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022] Open
Abstract
MARK2 plays an important role in the chemoresistance mechanism of osteosarcoma stem cells. Down-regulation of MARK2 in CD133+ MG-63 and MNNG/HOS cells inhibits the expression of DNA-PKcs by inhibiting the activity of the PI3K/Akt/mTOR pathway. New clues for the osteosarcoma chemotherapy strategy. Objective This study aims to explore the role of MARK2 in chemotherapeutic resistance and potential mechanism within cisplatin resistance models of CD133+ MG-63 and MNNG/HOS cells. Methods CD133− and CD133+ MG-63 and MNNG/HOS cells were differentiated and obtained by MACS(Magnetic bead sorting). Cell activity was determined by CCK-8 assay. siRNA was employed to down regulate the Microtubule Affinity Regulated Kinase 2 (MARK2) expression. Immunofluorescence detection and RT-qPCR were used to measure the expressions of MARK2 and DNA-PKcs at both protein and mRNA levels. Western blot was applied to test the levels of MARK2, γH2AX (S139), DNA-PKcs, Phospho-PI3 Kinase p85 (Tyr458), Akt, phospho-Akt (T308) antibodies, mTOR, phospho-mTOR (Ser2448). Results Compared with CD133− MG-63 cells, CD133+ MG-63 cells showed significantly strong cisplatin resistance, with high levels of MARK2, DNA-PKcs and potent DNA damage repair ability (p<0.05). Down regulation of MARK2 reduced the cisplatin resistance of CD133+ MG-63 cells, with deceasing expression of DNA-PKcs (p<0.05). PI3K/Akt/mTOR pathway was potentially activated in CD133+ MG-63 cells, and involved in the cisplatin resistance of MG-63 cells. The similar results were observed in CD133+ MNNG/HOS cells. The reduction of MARK2 retarded the activity of PI3K/Akt/mTOR pathway and further impeded the cisplatin resistance in CD133+ MG-63 and MNNG/HOS cell. Conclusion Our data suggested that MARK2 was related to cisplatin resistance in CD133+ MG-63 and MNNG/HOS cells. The decrease of MARK2 restricted the cisplatin resistance of CD133+ MG-63 and MNNG/HOS cells by down regulating the expression of DNA dependent protein kinase catalytic subunit (DNA-PKcs) and inhibiting activity of PI3K/Akt/mTOR signaling pathway, which provides new clues for the osteosarcoma chemotherapy strategy.
Collapse
Affiliation(s)
- Liang Xu
- Department of Orthopaedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Rd, Lixia District, Jinan 250012, Shandong, China.,Department of Orthopaedics, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan 250012, Shandong, China.,Department of Orthopaedics, Shandong Provincial Chest Hospital, Jinan 250013, Shandong, China
| | - Zhengkao Sun
- Department of Orthopaedics, Qilu Hospital of Shandong University (Qingdao), 758 Hefei Rd, North District, Qingdao 266035, Shandong, China
| | - Xianfu Wei
- Department of Orthopaedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Rd, Lixia District, Jinan 250012, Shandong, China
| | - Hongdong Tan
- Department of Orthopaedics, Shandong Provincial Chest Hospital, Jinan 250013, Shandong, China
| | - Peng Kong
- Department of Orthopaedics, Shandong Traditional Chinese Medicine Hospital, Jinan 250014, Shandong, China
| | - Zhenfeng Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Rd, Lixia District, Jinan 250012, Shandong, China
| | - Qiang Yang
- Department of Orthopaedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Rd, Lixia District, Jinan 250012, Shandong, China
| | - E'nuo Dai
- Department of Orthopaedics, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan 250012, Shandong, China
| | - Jianmin Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Rd, Lixia District, Jinan 250012, Shandong, China
| |
Collapse
|
27
|
Xu N, Kang Y, Wang W, Zhou J. The prognostic role of CD133 expression in patients with osteosarcoma. Clin Exp Med 2020; 20:261-267. [PMID: 32048073 DOI: 10.1007/s10238-020-00607-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Osteosarcoma (OS), a malignant bone tumor, mainly occurs in adolescents. Cluster of differentiation 133 (CD133) is one of the most common tumor stem cell biomarkers. The prognostic significance of CD133 in OS has been reported, while the conclusions of these study were inconsistent. This study was conducted to investigate the association between CD133 expression and OS. We performed a search using several database including NCBI PubMed, Springer, CNKI, Web of Science and Wanfang for relevant papers about the prognostic value of CD133 on OS published before October 19, 2019. Pooled odds ratio (OR) and 95% CI were used to evaluate the outcomes. Seven reports including 498 OS patients were used for evaluating the association between CD133 positive expression and OS clinicopathological features. CD133 positive expression was not related to the age, gender, tumor size, tumor location and pathological type of OS. The expression of CD133 was significantly associated with high ennecking stage of OS (OR 9.67, 95% CI 5.56-16.80, P < 0.05) and OS local recurrence (OR 3.02, 95% CI 1.84-4.94, P < 0.05). In addition, the expressions of CD133 predict metastasis (OR 7.64, 95% CI 4.93-11.85, P < 0.05). Moreover, this study indicated that CD133 expression was correlated to lower 5-year overall survival in OS with the pooled OR of 5.85 (95% CI 3.30-10.37, P < 0.05). Our reported shown that positive expression of CD133 is significantly correlated with ennecking stage, local recurrence, metastasis and low 5-year overall survival rate of OS patients.
Collapse
Affiliation(s)
- Nuo Xu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yijun Kang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
28
|
Zhou Z, Li Y, Kuang M, Wang X, Jia Q, Cao J, Hu J, Wu S, Wang Z, Xiao J. The CD24 + cell subset promotes invasion and metastasis in human osteosarcoma. EBioMedicine 2020; 51:102598. [PMID: 31901872 PMCID: PMC6948162 DOI: 10.1016/j.ebiom.2019.102598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary aggressive bone tumor affecting children and young adolescents. Metastases are often resistant to conventional chemotherapy and mean short-term survival. Development of valuable diagnostic indicators and targeting agents will have important implications for clinical diagnosis by the identification and characterization of molecules that contribute to its aggressive behavior. METHODS We examined differential expression levels of common stem cell markers in osteosarcoma parental and sphere cells. In addition, we further analyzed the changes of candidate common stem cell markers before and after in vitro chemotherapy of osteosarcoma cells. The biological functions of CD24+ subpopulation in osteosarcoma such as proliferation, migration, invasion, tumorigenesis and metastasis were systematically investigated, and the correlations of CD24 levels with prognosis in patients with osteosarcoma were analyzed. FINDINGS CD24+ Cells presented characteristics of TICs and resist drug-induced apoptosis. The prevention of tumor formation and metastasis by CD24 knockdown highlights the potential of CD24 as a therapeutic target for osteosarcoma. Moreover, the levels of CD24 in osteosarcoma samples were significantly correlated with the prognosis of patients. INTERPRETATION CD24+ cell subset played an important role in osteosarcoma invasion and metastasis. FUNDING National Natural Science Foundation of China (No.81772857); Shanghai Science and Technology Commission (18140902000); Shanghai Municipal Health Commission (2017ZZ01017; 17411950301).
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China
| | - Yan Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032,China
| | - Muyu Kuang
- Huadong Hospital, Fudan University, Shanghai,200040, China
| | - Xudong Wang
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China
| | - Qi Jia
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China
| | - Jiashi Cao
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China
| | - Jingjing Hu
- Clinical Research Center, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai 200433, China
| | - Sujia Wu
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Region, Nanjing, Jiangsu, 210002, China
| | - Zhiwei Wang
- Department of Orthopedics, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200433, China.
| | - Jianru Xiao
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China.
| |
Collapse
|
29
|
Mardani A, Gheytanchi E, Mousavie SH, Madjd Jabari Z, Shooshtarizadeh T. Clinical Significance of Cancer Stem Cell Markers CD133 and CXCR4 in Osteosarcomas. Asian Pac J Cancer Prev 2020; 21:67-73. [PMID: 31983166 PMCID: PMC7294029 DOI: 10.31557/apjcp.2020.21.1.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: Osteosarcomas (OS) is one the most common primary bone malignancy in humans with the lungs metastasis in most cases. Metastasis and recurrence of OS is attributed to cancer stem cells (CSCs). Our study aimed to evaluate the clinical significance of CD133 and C-X-C chemokine receptor type 4 (CXCR4) as the frequently applied markers for CSCs in OS patients. Methods: In this cross-sectional, a total of 50 tissue samples from the patients with primary OS were immunohistochemically examined to detect the expression of CD133 and CXCR4. The associations of the relative expression and clinical significance of each marker were also evaluated. Results: High level expression of CD133 was detected in 26% of OS patient tissues. Of the 12 patients who showed lung metastasis, 5 cases showed high expression of CD133 with marginal trend correlation (P=0.06). No significant correlation was observed between CD133 expression and clinicopathological factors. Only 36% of cases showed CXCR4 expression which was not significantly correlated with gender, age, tumor size, necrosis, stage and metastasis (P>0.05). Clinically, patients with concomitant CD133/CXCR4 expression had significant association with lung metastasis (P=0.05). Conclusion: Our findings showed that concomitant expression of CSC markers CD133/CXCR4 might had a synergistic effect on the OS poor prognosis. These markers could be considered as potential therapeutic candidates of OS targeted therapy.
Collapse
Affiliation(s)
- Azam Mardani
- Department of Pathology, Iran University of Medical Science, Tehran, Iran
| | - Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Seyed Hamzeh Mousavie
- Department of Surgery, Rasool-Akram Hospital, Iran University of Medical Science, Tehran, Iran
| | - Zahra Madjd Jabari
- Oncopathology Research Center, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
30
|
Kim H, Ju JH, Son S, Shin I. Silencing of CD133 inhibits GLUT1-mediated glucose transport through downregulation of the HER3/Akt/mTOR pathway in colon cancer. FEBS Lett 2019; 594:1021-1035. [PMID: 31736063 DOI: 10.1002/1873-3468.13686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/09/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022]
Abstract
Cluster of differentiation 133 (CD133) is a transmembrane glycoprotein that has been reported as a marker of cancer stem cells or cancer-initiating cells in various cancers. However, its contribution to tumorigenesis and differentiation remains to be elucidated. To determine the role of CD133 in colon cancer, we silenced CD133 in human colon cancer cells. Silencing of CD133 results in decreased cell proliferation, survival, migration, invasion, and glucose transport. These effects are mediated by downregulation of the human epidermal growth factor receptor 3 (HER3)/Akt/mTOR signaling pathway, culminating in reduced expression of the glucose transporter GLUT1. We also confirm that the cellular phenotypes of CD133-silenced cells are mediated by GLUT1 downregulation. We conclude that CD133 is a potential tumor initiator that positively regulates GLUT1 expression through modulation of HER3/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul, Korea
| | - Ji-Hyun Ju
- Department of Life Science, Hanyang University, Seoul, Korea
| | - Seogho Son
- Department of Life Science, Hanyang University, Seoul, Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, Korea.,Natural Science Institute, Hanyang University, Seoul, Korea
| |
Collapse
|
31
|
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbanzadeh A, Fotouhi A, Bisadi A, Aghebati-Maleki L, Baradaran B. Prospects for the involvement of cancer stem cells in the pathogenesis of osteosarcoma. J Cell Physiol 2019; 235:4167-4182. [PMID: 31709547 DOI: 10.1002/jcp.29344] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
Osteosarcoma (OS) is one of the most common bone tumors in children and adolescents that cause a high rate of mortality in this age group and tends to be metastatic, in spite of chemotherapy and surgery. The main reason for this can be returned to a small group of malignant cells called cancer stem cells (CSCs). OS-CSCs play a key role in the resistance to treatment and relapse and metastasis through self-renewal and differentiation abilities. In this review, we intend to go through the different aspects of this malignant disease, including the cancer stem cell-phenotype, methods for isolating CSCs, signaling pathways, and molecular markers in this disease, and drugs showing resistance in treatment efforts of OS.
Collapse
Affiliation(s)
- Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Bisadi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Wang Y, Zeng L, Liang C, Zan R, Ji W, Zhang Z, Wei Y, Tu S, Dong Y. Integrated analysis of transcriptome-wide m 6A methylome of osteosarcoma stem cells enriched by chemotherapy. Epigenomics 2019; 11:1693-1715. [PMID: 31650864 DOI: 10.2217/epi-2019-0262] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: To analyze the m6A methylome of osteosarcoma stem cells (OSCs). Materials & methods: Chemoresistant OSCs were enriched by doxorubicin treatment. Expression of m6A-related enzymes was detected by quantitative real-time-PCR and western blot. MeRIP-seq and RNA-seq were performed to identify differences in m6A methylation and gene expression. Data analysis was conducted to explore the modified genes and their clinical significance. Results: Three m6A-related enzymes were altered in OSCs. Differentially methylated genes were enriched in some pathways regulating pluripotency of stem cells. The expression of several candidate genes were found consistent with that in GSE33458 dataset, and associated with poor prognosis in osteosarcoma patients. Conclusion: m6A may play a role in the emergence and maintaining of OSCs and affect the prognosis.
Collapse
Affiliation(s)
- Yongjie Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, PR China
| | - Lin Zeng
- CloudSeq Biotech Inc., Shanghai 201612, PR China
| | - Chao Liang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, PR China
| | - Rui Zan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Weiping Ji
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, PR China
| | - Zhichang Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, PR China
| | - Yuxuan Wei
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, PR China
| | - Shikui Tu
- Department of Computer Science & Engineering, & Center for Cognitive Machines & Computational Health, SEIEE School, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yang Dong
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, PR China
| |
Collapse
|
33
|
Akbari M, Shomali N, Faraji A, Shanehbandi D, Asadi M, Mokhtarzadeh A, Shabani A, Baradaran B. CD133: An emerging prognostic factor and therapeutic target in colorectal cancer. Cell Biol Int 2019; 44:368-380. [PMID: 31579983 DOI: 10.1002/cbin.11243] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of death worldwide. Recently, the role of cancer stem cells (CSCs) has been highlighted as a crucial emerging factor in chemoresistance, cancer relapse, and metastasis. CD133 is a surface marker of CSCs and has been argued to have prognostic and therapeutic values in CRC along with its related pathways such as Wnt, Notch, and hedgehog. Several studies have successfully applied targeted therapies against CD133 in CRC models namely bispecific antibodies (BiAbs) and anti-Wnt and notch pathways agents. These studies have yielded initial promising results in this regard. However, none of the therapeutics have been used in the clinical setting and their efficacy and adverse effects profile are yet to be elucidated. This review aims to gather the old and most recent data on the prognostic and therapeutic values of CD133 and CD133-targeted therapies in CRC.
Collapse
Affiliation(s)
- Morteza Akbari
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 3514799422, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Semnan Biotechnology Research Center, Semnan University of Medical sciences, Semnan, 3514799422, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Afsaneh Faraji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Aliakbar Shabani
- Semnan Biotechnology Research Center, Semnan University of Medical sciences, Semnan, 3514799422, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| |
Collapse
|
34
|
Wu HJ, Chu PY. Role of Cancer Stem Cells in Cholangiocarcinoma and Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20174154. [PMID: 31450710 PMCID: PMC6747544 DOI: 10.3390/ijms20174154] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common type of liver cancer, and is highly aggressive with very poor prognosis. CCA is classified into intrahepatic cholangiocarcinoma (iCCA) and extra-hepatic cholangiocarcinoma (eCCA), which is further stratified into perihilar (pCCA) and distal (dCCA). Cancer stem cells (CSCs) are a subpopulation of cancer cells capable of tumor initiation and malignant growth, and are also responsible for chemoresistance. Thus, CSCs play an important role in CCA carcinogenesis. Surface markers such as CD133, CD24, CD44, EpCAM, Sox2, CD49f, and CD117 are important for identifying and isolating CCA CSCs. CSCs are present in the tumor microenvironment (TME), termed ‘CSC niche’, where cellular components and soluble factors interact to promote tumor initiation. Epithelial-to-mesenchymal transition (EMT) is another important mechanism underlying carcinogenesis, involved in the invasiveness, metastasis and chemoresistance of cancer. It has been demonstrated that EMT plays a critical role in generating CSCs. Therapies targeting the surface markers and signaling pathways of CCA CSCs, proteins involved in TME, and immune checkpoint proteins are currently under investigation. Therefore, this review focuses on recent studies on the roles of CSCs in CCA; the possible therapeutic strategies targeting CSCs of CCA are also discussed.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua County 505, Taiwan
| | - Pei-Yi Chu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan.
| |
Collapse
|
35
|
Schiavone K, Garnier D, Heymann MF, Heymann D. The Heterogeneity of Osteosarcoma: The Role Played by Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:187-200. [PMID: 31134502 DOI: 10.1007/978-3-030-14366-4_11] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is the most common bone sarcoma and is one of the cancer entities characterized by the highest level of heterogeneity in humans. This heterogeneity takes place not only at the macroscopic and microscopic levels, with heterogeneous micro-environmental components, but also at the genomic, transcriptomic and epigenetic levels. Recent investigations have revealed the existence in osteosarcoma of cancer cells with stemness properties. Cancer stem cells are characterized by their specific phenotype and low cycling capacity, and are linked to drug resistance, tumour growth and the metastatic process. In addition, cancer stem cells contribute to the enrichment of tumour heterogeneity. The present manuscript will describe the main characteristic features of cancer stem cells in osteosarcoma and will discuss their impact on maintaining tumour heterogeneity. Their clinical implications will also be briefly addressed.
Collapse
Affiliation(s)
- Kristina Schiavone
- INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Delphine Garnier
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France
| | - Marie-Francoise Heymann
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France
| | - Dominique Heymann
- INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France.
| |
Collapse
|
36
|
Park YY, An CH, Oh ST, Chang ED, Lee J. Expression of CD133 is associated with poor prognosis in stage II colorectal carcinoma. Medicine (Baltimore) 2019; 98:e16709. [PMID: 31393377 PMCID: PMC6708874 DOI: 10.1097/md.0000000000016709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
CD133 is currently believed to be one of the best colorectal cancer stem cell markers. This study aimed to evaluate prognostic significance of CD133 expression in colorectal cancer patients.A total of 303 patients with stage I to III colorectal cancer who underwent curative surgical resection from 2003 to 2008 at a single institution were included. CD133 expression was evaluated using immunohistochemical staining, and clinicopathological data were retrospectively reviewed. The patients were dichotomized after scoring CD133 expression (0 to 2+: low CD133 expression vs 3+ to 4+: high CD133 expression) according to the extent of area of CD133 positive tumor cells (<50% vs ≥50%) and pattern of staining (membranous staining of the luminal surface and/or staining of cellular debris in the tumor glands and cytoplasm).The 5-year overall survival (OS) (61.9% vs 80.2%, P = .001) and disease-free survival (64.8% vs 75.8%, P = .026) were poorer in the high CD133 expression group than the low CD133 expression group. In the multivariate analysis for risk factors of OS in the whole population, higher nodal stage (N2 compared to N0: hazard ratio [HR] 3.141; 95% confidence interval [CI] 1.718-5.744, P < .001), perineural invasion (HR 2.262; 95% CI 1.347-3.798, P = .002) and high CD133 expression (HR 1.929; 95% CI 1.221-3.048, P = .005) were independent poor prognostic factors of OS. Subgroup analyses according to each TNM stage revealed that CD133 expression was associated with OS only within the stage II patients (HR 3.167 95% CI 1.221-8.216, P = .018). Furthermore, the stage II patients demonstrating the high CD133 expression showed survival benefit of adjuvant chemotherapy, regardless of high-risk feature positivity (HR 0.201 95% CI 0.054-0.750, P = .017).High CD133 expression is correlated with poor prognosis in colorectal cancer patients after radical resection. The CD133 expression may serve as a more potent and informative biomarker for prognosis than conventional high-risk features in the stage II colorectal cancer patients.
Collapse
Affiliation(s)
| | | | | | - Eun Deock Chang
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | |
Collapse
|
37
|
Marzagalli M, Raimondi M, Fontana F, Montagnani Marelli M, Moretti RM, Limonta P. Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Semin Cancer Biol 2019; 59:221-235. [PMID: 31265892 DOI: 10.1016/j.semcancer.2019.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/27/2019] [Indexed: 01/17/2023]
Abstract
Malignant melanoma is a tumor characterized by a very high level of heterogeneity, responsible for its malignant behavior and ability to escape from standard therapies. In this review we highlight the molecular and biological features of the subpopulation of cancer stem cells (CSCs), well known to be characterized by self-renewal properties, deeply involved in triggering the processes of tumor generation, metastasis, progression and drug resistance. From the molecular point of view, melanoma CSCs are identified and characterized by the expression of stemness markers, such as surface markers, ATP-binding cassette (ABC) transporters, embryonic stem cells and intracellular markers. These cells are endowed with different functional features. In particular, they play pivotal roles in the processes of tumor dissemination, epithelial-to-mesenchymal transition (EMT) and angiogenesis, mediated by specific intracellular signaling pathways; moreover, they are characterized by a unique metabolic reprogramming. As reported for other types of tumors, the CSCs subpopulation in melanoma is also characterized by a low immunogenic profile as well as by the ability to escape the immune system, through the expression of a negative modulation of T cell functions and the secretion of immunosuppressive factors. These biological features allow melanoma CSCs to escape standard treatments, thus being deeply involved in tumor relapse. Targeting the CSCs subpopulation is now considered an attractive treatment strategy; in particular, combination treatments, based on both CSCs-targeting and standard drugs, will likely increase the therapeutic options for melanoma patients. The characterization of CSCs in liquid biopsies from single patients will pave the way towards precision medicine.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | | | - Roberta M Moretti
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy.
| |
Collapse
|
38
|
Skubitz KM, Wilson JD, Cheng EY, Lindgren BR, Boylan KLM, Skubitz APN. Effect of chemotherapy on cancer stem cells and tumor-associated macrophages in a prospective study of preoperative chemotherapy in soft tissue sarcoma. J Transl Med 2019; 17:130. [PMID: 30999901 PMCID: PMC6471853 DOI: 10.1186/s12967-019-1883-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background Cancer stem cells (CSC) may respond to chemotherapy differently from other tumor cells. Methods This study examined the expression of the putative cancer stem cell markers ALDH1, CD44, and CD133; the angiogenesis marker CD31; and the macrophage marker CD68 in soft tissue sarcomas (STS) before and after 4 cycles of chemotherapy with doxorubicin and ifosfamide in 31 patients with high-grade soft tissue sarcoma in a prospective clinical trial. Results None of the markers clearly identified CSCs in STS samples. Macrophages represented a prominent component in viable tumor areas in pre-treatment STS biopsies, ranging from < 5 to > 50%. Furthermore, macrophages expressed CD44 and ALDH1. Macrophage density correlated with baseline maximum standardized uptake value (SUVmax) on fluoro-deoxyglucose positron emission tomography (PET) imaging. Pre-chemotherapy CD68 staining correlated positively with the baseline SUVmax, and negatively with the percent of viable tumor cells in post-chemotherapy resection samples. In particular, cases with more CD68-positive cells at biopsy had fewer viable tumor cells at resection, suggesting a better response to chemotherapy. Conclusions In conclusion, ALDH1, CD44, and CD133 are not likely to be useful markers of CSCs in STS. However, our observation of infiltrating macrophages in STS specimens indicates that these immune cells may contribute significantly to STS biology and response to chemotherapy, and could provide a potential target of therapy. Future studies should investigate macrophage contribution to STS pathophysiology by cytokine signaling. Electronic supplementary material The online version of this article (10.1186/s12967-019-1883-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keith M Skubitz
- Department of Medicine, University of Minnesota Medical School, Box 286 University Hospital, Minneapolis, MN, 55455, USA. .,Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Jon D Wilson
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA.,Arkana Laboratories, Little Rock, AR, USA
| | - Edward Y Cheng
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Orthopaedic Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Bruce R Lindgren
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.,Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Kristin L M Boylan
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Amy P N Skubitz
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| |
Collapse
|
39
|
Lee KS, Choi JS, Cho YW. Reprogramming of cancer stem cells into non-tumorigenic cells using stem cell exosomes for cancer therapy. Biochem Biophys Res Commun 2019; 512:511-516. [PMID: 30905410 DOI: 10.1016/j.bbrc.2019.03.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) are a small population of cells with stem cell-like properties found in tumors. CSCs are closely associated with tumor heterogeneity, which influences tumor progress, metastasis, and drug resistance. Here, we propose a concept to enhance efficacy of cancer therapy through CSC reprogramming into non-tumorigenic cells using stem cell-derived exosomes with osteoinductive potential. We hypothesized that exosomes derived from osteogenic differentiating human adipose-derived stem cells (OD-EXOs) contain specific cargos capable of inducing osteogenic differentiation of CSCs. Quantitative RT-PCR analysis revealed that OD-EXOs enhanced the expression of osteogenic-related genes, such as alkaline phosphatase (ALPL), osteocalcin (BGLAP), and runt-related transcription factor 2 (RUNX2). In addition, expression of drug-resistance genes such as ATP binding cassette (ABC) transporter, the breast cancer gene family (BCRA1 and BCRA2), and the ErbB gene family were significantly decreased in OD-EXO-treated CSCs. Our findings suggest that OD-EXOs function as a biochemical cue for CSC reprogramming and contribute to overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Kyoung Soo Lee
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 426-791, Republic of Korea
| | - Ji Suk Choi
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 426-791, Republic of Korea; Exostemtech Inc., Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Yong Woo Cho
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 426-791, Republic of Korea; Exostemtech Inc., Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
40
|
Zahran AM, Rayan A, Fakhry H, Attia AM, Ashmawy AM, Soliman A, Elkady A, Hetta HF. Pretreatment detection of circulating and tissue CD133 + CD44 + cancer stem cells as a prognostic factor affecting the outcomes in Egyptian patients with colorectal cancer. Cancer Manag Res 2019; 11:1237-1248. [PMID: 30799951 PMCID: PMC6369859 DOI: 10.2147/cmar.s189653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background and aim Colorectal cancer is one of the most common malignant tumors worldwide. As CD133 and CD44 are notable markers of cancer stem cells (CSCs) identity, it is thought to be a predictive indicator for colorectal cancer. The aim of this study was to investigate the cell cycle state of CD133+ CD44+ and CD133− CD44−cells, isolated from primary human colorectal tumors, and to assess the clinical impact of CD133+ CD44+ CSCs on patients’ outcome regarding disease-free survival (DFS) and overall survival (OS). Materials and methods Tissue samples were collected from 50 primary colorectal cancer patients. Flow cytometric analysis was performed to isolate tissue CD133+ CD44+ CSCs and CD133− CD44− tumor cells from primary colorectal cancer tissue to compare the cell cycle of both types of cells. Also circulating CSCs were assessed by flow cytometry. Results Higher percentage of tissue CD133+ CD44+ CSCs isolated from colorectal cancer patients was found in G0/G1 phase. However, tissue CD133− CD44− tumor cells were predominantly found in the S phase; there were significant negative correlations between tissue CD133+ CD44+ CSCs and DFS and OS (r=−0.470, P<0.001, respectively and r=−0.487, P<0.001, respectively), also significant negative correlations between tissue CSCs and DFS and OS (r=−0.548, P<0.001, respectively and r=−0.497, P<0.001, respectively). Only the pathological grade (P<0.004) and T stage (P<0.004) had a significant effect on circulating CSC counts. Conclusion Tissue CD133+ CD44+ CSCs were more quiescent than tissue CD133− CD44− tumor cells and both circulating CSCs and tissue CSCs were considered independent negative prognostic factors on OS and DFS.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Amal Rayan
- Department of Clinical Oncology, Assiut University Hospital, Assiut University, Assiut, Egypt
| | - Hussein Fakhry
- Department of Surgical Oncology, South Egypt Cancer Institute, Assiut, Egypt
| | - Alia M Attia
- Department of Radiation Oncology, South Egypt Cancer Institute, Assiut, Egypt
| | - Ahmed M Ashmawy
- Department of Internal Medicine, Assiut University Hospital, Assiut, Egypt
| | - Ahmed Soliman
- Department of General Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Azza Elkady
- Sohag University Medical Administration, Sohag, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt, .,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA,
| |
Collapse
|
41
|
La Noce M, Paino F, Mele L, Papaccio G, Regad T, Lombardi A, Papaccio F, Desiderio V, Tirino V. HDAC2 depletion promotes osteosarcoma's stemness both in vitro and in vivo: a study on a putative new target for CSCs directed therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:296. [PMID: 30509303 PMCID: PMC6276256 DOI: 10.1186/s13046-018-0978-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023]
Abstract
Background Cancer stem cells (CSCs) play a key role in cancer initiation, progression and chemoresistance. Epigenetic alterations have been identified as prominent factors that contribute to the CSCs phenotype. Here, we investigated the effects of the HDAC inhibitor valproic acid (VPA) and the demethylating agent, 5’azacytidine (DAC) on the stem phenotype of MG63 and Saos2 osteosarcoma cell lines. Methods Saos2 and MG63 cells were treated with DAC and VPA, alone and in combination. Untreated and treated cells were examined for stemness phenotype by cytometry and real-time PCR. Sarcospheres and colonies formation were also evaluated. Moreover, histone modification and methylation were tested by flow cytomery and western blotting. HDAC2 depleted cells were examined for stemness phenotype and their ability to generate tumors in NOD/SCID IL2R-gamma-0 (NSG) mice. HDAC2 expression on human osteosarcoma tissues was evaluated. Results We found that DAC and VPA induce an increased expression of stem markers including CD133, OCT4, SOX2 and NANOG, and an increased ability in sarcospheres and colonies formation efficiency. Interestingly, we showed that DAC and VPA treatment decreased repressive histone markers, while increased the active ones. These histone modifications were also associated with an increase of acetylation of histones H3, a decrease of DNA global methylation, HDAC2 and DNMT3a. Furthermore, HDAC2 silenced-MG63 and Saos2 cells acquired a stem phenotype, and promoted in vivo tumorigenesis. In human osteosarcoma tissues, HDAC2 was strongly expressed in nucleus. Conclusions Collectively, our results suggest that VPA and DAC induce an expansion of osteosarcoma CSCs, and we report for the first time that HDAC2 is a key factor regulating both CSCs phenotype and in vivo cancer growth. In conclusion, we have identified HDAC2 as a potential therapeutic target in human osteosarcoma treatment. Electronic supplementary material The online version of this article (10.1186/s13046-018-0978-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcella La Noce
- Dipartimento di Medicina Sperimentale, Sezione di Biotecnologie, Istologia Medica e Biologia Molecolare, Università degli Studi della Campania "L. Vanvitelli", Napoli, via L. Armanni, 5, 80138, Naples, Italy
| | - Francesca Paino
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Commenda,10, 20122, Milan, Milano, Italy
| | - Luigi Mele
- Dipartimento di Medicina Sperimentale, Sezione di Biotecnologie, Istologia Medica e Biologia Molecolare, Università degli Studi della Campania "L. Vanvitelli", Napoli, via L. Armanni, 5, 80138, Naples, Italy
| | - Gianpaolo Papaccio
- Dipartimento di Medicina Sperimentale, Sezione di Biotecnologie, Istologia Medica e Biologia Molecolare, Università degli Studi della Campania "L. Vanvitelli", Napoli, via L. Armanni, 5, 80138, Naples, Italy.
| | - Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Angela Lombardi
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Napoli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Federica Papaccio
- Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi", Università degli Studi della Campania "L. Vanvitelli", via S. Pansini-Cappella Cangiani, 80131, Naples, Italy
| | - Vincenzo Desiderio
- Dipartimento di Medicina Sperimentale, Sezione di Biotecnologie, Istologia Medica e Biologia Molecolare, Università degli Studi della Campania "L. Vanvitelli", Napoli, via L. Armanni, 5, 80138, Naples, Italy
| | - Virginia Tirino
- Dipartimento di Medicina Sperimentale, Sezione di Biotecnologie, Istologia Medica e Biologia Molecolare, Università degli Studi della Campania "L. Vanvitelli", Napoli, via L. Armanni, 5, 80138, Naples, Italy.
| |
Collapse
|
42
|
Pišlar A, Jewett A, Kos J. Cysteine cathepsins: Their biological and molecular significance in cancer stem cells. Semin Cancer Biol 2018; 53:168-177. [DOI: 10.1016/j.semcancer.2018.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022]
|
43
|
Moise S, Byrne JM, El Haj AJ, Telling ND. The potential of magnetic hyperthermia for triggering the differentiation of cancer cells. NANOSCALE 2018; 10:20519-20525. [PMID: 30397703 DOI: 10.1039/c8nr05946b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic hyperthermia is a potential technique for cancer therapy that exploits heat generated by magnetic nanoparticles to kill cancerous cells. Many studies have shown that magnetic hyperthermia is effective at killing cancer cells both in vitro and in vivo, however little attention has been paid to the cellular functioning of the surviving cells. We report here new evidence demonstrating the onset of thermally triggered differentiation in osteosarcoma cancer cells that survive magnetic hyperthermia treatment. This raises the possibility that in addition to causing cell death, magnetic hyperthermia could induce surviving cancer cells to form more mature cell types and thereby inhibit their capacity to self-renew. Such processes could prove to be as important as cell death when considering magnetic hyperthermia for treating cancer.
Collapse
Affiliation(s)
- Sandhya Moise
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK.
| | | | | | | |
Collapse
|
44
|
Otoukesh B, Boddouhi B, Moghtadaei M, Kaghazian P, Kaghazian M. Novel molecular insights and new therapeutic strategies in osteosarcoma. Cancer Cell Int 2018; 18:158. [PMID: 30349420 PMCID: PMC6192346 DOI: 10.1186/s12935-018-0654-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is one of the most prevalent malignant cancers with lower survival and poor overall prognosis mainly in children and adolescents. Identifying the molecular mechanisms and OS stem cells (OSCs) as new concepts involved in disease pathogenesis and progression may potentially lead to new therapeutic targets. Therefore, therapeutic targeting of OSCs can be one of the most important and effective strategies for the treatment of OS. This review describes the new molecular targets of OS as well as novel therapeutic approaches in the design of future investigations and treatment.
Collapse
Affiliation(s)
- Babak Otoukesh
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, 1445613131 Iran
| | - Bahram Boddouhi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, 1445613131 Iran
| | - Mehdi Moghtadaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, 1445613131 Iran
| | - Peyman Kaghazian
- Department of Orthopedic and Traumatology, Universitätsklinikum Bonn, Bonn, Germany
| | - Maria Kaghazian
- Department of Biology, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
45
|
Koka P, Mundre RS, Rangarajan R, Chandramohan Y, Subramanian RK, Dhanasekaran A. Uncoupling Warburg effect and stemness in CD133 +ve cancer stem cells from Saos-2 (osteosarcoma) cell line under hypoxia. Mol Biol Rep 2018; 45:1653-1662. [PMID: 30128626 DOI: 10.1007/s11033-018-4309-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/13/2018] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) which are known to be residing deep inside the core of the tumor in its hypoxia niche is responsible for relapse of cancers. Owing to this hypoxic niche, the residing CSCs simultaneously fuel their stemness, cancerous and drug resistance properties. Attributes of CSCs are still not properly understood in its hypoxia niche. Addressing this, we sorted CSCs from Saos-2 (osteosarcoma) cell line using CD133 antibody. The CD133+ve CSCs exhibited quiescent cell proliferation in DNA doubling, Ca2+ signaling and cell cycle analysis. CD133+ve CSCs exhibited increased production of ATP and lactate dehydrogenase (LDH) activity under hypoxia. CD133+ve cells exhibited decreased glucose uptake compared to ATP levels under hypoxia. Moreover, there was only negligible LDH activity in CD133+ve cells under normoxia which do not rely on Warburg effect. Stemness markers (such as c-Myc, SOX2, Oct4 and TERT), metastasis marker (CD44) and drug resistance marker (ABCG2) were highly expressed in CD133+ve cells. In summary, both CD133+ve/-ve cells of Saos-2 (osteosarcoma) cell line did not exhibit Warburg effect under normoxic condition. Moreover, this significantly indicates an uncoupling between stemness and Warburg effect in CD133+ve. This work provides a novel insight into the metabolic and functional features of CSCs in a hypoxic environment which could open new avenues for therapeutic strategies aimed to target CSCs.
Collapse
Affiliation(s)
- Pavani Koka
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, 600025, India
| | | | - Rohini Rangarajan
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Yamini Chandramohan
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, 600025, India
| | | | | |
Collapse
|
46
|
Withers SS, York D, Johnson E, Al-Nadaf S, Skorupski KA, Rodriguez CO, Burton JH, Guerrero T, Sein K, Wittenburg L, Rebhun RB. In vitro and in vivo activity of liposome-encapsulated curcumin for naturally occurring canine cancers. Vet Comp Oncol 2018; 16:571-579. [PMID: 30088848 DOI: 10.1111/vco.12424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022]
Abstract
Curcumin has well-established anti-cancer properties in vitro, however, its therapeutic potential has been hindered by its poor bioavailability. Lipocurc is a proprietary liposome-encapsulated curcumin formulation that enables intravenous delivery and has been shown to reach its highest concentration within lung tissue. The goal of this study was to characterize the anti-cancer and anti-angiogenic activity of Lipocurc in vitro, in addition to evaluating Lipocurc infusions in dogs with naturally occurring cancer. We therefore evaluated the effect of Lipocurc, relative to free curcumin, on the viability of canine osteosarcoma, melanoma and mammary carcinoma cell lines, as well as the ability of Lipocurc to inhibit endothelial cell viability, migration and tube formation. We also undertook a pilot clinical trial consisting of four weekly 8-hour Lipocurc infusions in 10 cancer-bearing dogs. Tumour cell proliferation was inhibited by curcumin at concentrations exceeding those achievable in the lung tissue of dogs. Similarly, equivalent high concentrations of Lipocurc and curcumin also inhibited endothelial cell viability, migration and tube formation. Four out of six dogs completing planned infusions of Lipocurc experienced stable disease; however, no radiographic responses were detected.
Collapse
Affiliation(s)
- Sita S Withers
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Daniel York
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Eric Johnson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Sami Al-Nadaf
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Katherine A Skorupski
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | | | - Jenna H Burton
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Teri Guerrero
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Kriste Sein
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Luke Wittenburg
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Robert B Rebhun
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| |
Collapse
|
47
|
Terai K, Bi D, Liu Z, Kimura K, Sanaat Z, Dolatkhah R, Soleimani M, Jones C, Bright A, Esfandyari T, Farassati F. A Novel Oncolytic Herpes Capable of Cell-Specific Transcriptional Targeting of CD133± Cancer Cells Induces Significant Tumor Regression. Stem Cells 2018; 36:1154-1169. [PMID: 29658163 DOI: 10.1002/stem.2835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 02/16/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
The topic of cancer stem cells (CSCs) is of significant importance due to its implications in our understanding of the tumor biology as well as the development of novel cancer therapeutics. However, the question of whether targeting CSCs can hamper the growth of tumors remains mainly unanswered due to the lack of specific agents for this purpose. To address this issue, we have developed the first mutated version of herpes simplex virus-1 that is transcriptionally targeted against CD133+ cells. CD133 has been portrayed as one of the most important markers in CSCs involved in the biology of a number of human cancers, including liver, brain, colon, skin, and pancreas. The virus developed in this work, Signal-Smart 2, showed specificity against CD133+ cells in three different models (hepatocellular carcinoma, colorectal cancer, and melanoma) resulting in a loss of viability and invasiveness of cancer cells. Additionally, the virus showed robust inhibitory activity against in vivo tumor growth in both preventive and therapeutic mouse models as well as orthotopic model highly relevant to potential clinical application of this virus. Therefore, we conclude that targeting CD133+ CSCs has the potential to be pursued as a novel strategy against cancer. Stem Cells 2018;36:1154-1169.
Collapse
Affiliation(s)
- Kaoru Terai
- Molecular Medicine Laboratory, The University of Kansas Medical School, Kansas, Missouri, USA
| | - Danse Bi
- Molecular Medicine Laboratory, The University of Kansas Medical School, Kansas, Missouri, USA
| | - Zhengian Liu
- Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center, Kansas, Missouri, USA
| | - Kyle Kimura
- Molecular Medicine Laboratory, The University of Kansas Medical School, Kansas, Missouri, USA
| | - Zohreh Sanaat
- Molecular Medicine Laboratory, The University of Kansas Medical School, Kansas, Missouri, USA
| | - Roya Dolatkhah
- Molecular Medicine Laboratory, The University of Kansas Medical School, Kansas, Missouri, USA
| | - Mina Soleimani
- Molecular Medicine Laboratory, The University of Kansas Medical School, Kansas, Missouri, USA
| | - Christopher Jones
- Molecular Medicine Laboratory, The University of Kansas Medical School, Kansas, Missouri, USA
| | - Allison Bright
- Molecular Medicine Laboratory, The University of Kansas Medical School, Kansas, Missouri, USA
| | - Tuba Esfandyari
- Molecular Medicine Laboratory, The University of Kansas Medical School, Kansas, Missouri, USA
| | - Faris Farassati
- Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center, Kansas, Missouri, USA.,Saint Luke's Cancer Institute-Saint Luke's Marion Bloch Neuroscience Institute, Kansas, Missouri, USA
| |
Collapse
|
48
|
Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med 2018; 7:18. [PMID: 29984391 PMCID: PMC6035906 DOI: 10.1186/s40169-018-0198-1] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
Abstract
Despite the abundant ongoing research efforts, cancer remains one of the most challenging diseases to treat globally. Due to the heterogenous nature of cancer, one of the major clinical challenges in therapeutic development is the cancer’s ability to develop resistance. It has been hypothesized that cancer stem cells are the cause for this resistance, and targeting them will lead to tumor regression. A pentaspan transmembrane glycoprotein, CD133 has been suggested to mark cancer stem cells in various tumor types, however, the accuracy of CD133 as a cancer stem cell biomarker has been highly controversial. There are numerous speculations for this, including differences in cell culture conditions, poor in vivo assays, and the inability of current antibodies to detect CD133 variants and deglycosylated epitopes. This review summarizes the most recent and relevant research regarding the controversies surrounding CD133 as a normal stem cell and cancer stem cell biomarker. Additionally, it aims to establish the overall clinical significance of CD133 in cancer. Recent clinical studies have shown that high expression of CD133 in tumors has been indicated as a prognostic marker of disease progression. As such, a spectrum of immunotherapeutic strategies have been developed to target these CD133pos cells with the goal of translation into the clinic. This review compiles the current therapeutic strategies targeting CD133 and discusses their prognostic potential in various cancer subtypes.
Collapse
Affiliation(s)
- Paige M Glumac
- Department of Pharmacology, University of Minnesota Medical School, Nils Hasselmo Hall 3-104, 312 Church St. SE, Minneapolis, MN, 55455, USA
| | - Aaron M LeBeau
- Department of Pharmacology, University of Minnesota Medical School, Nils Hasselmo Hall 3-104, 312 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
49
|
Abstract
The ribosome has long been considered as a consistent molecular factory, with a rather passive role in the translation process. Recent findings have shifted this obsolete view, revealing a remarkably complex and multifaceted machinery whose role is to orchestrate spatiotemporal control of gene expression. Ribosome specialization discovery has raised the interesting possibility of the existence of its malignant counterpart, an 'oncogenic' ribosome, which may promote tumor progression. Here we weigh the arguments supporting the existence of an 'oncogenic' ribosome and evaluate its role in cancer evolution. In particular, we provide an analysis and perspective on how the ribosome may play a critical role in the acquisition and maintenance of cancer stem cell phenotype.
Collapse
|
50
|
Sun R, Shen J, Gao Y, Zhou Y, Yu Z, Hornicek F, Kan Q, Duan Z. Overexpression of EZH2 is associated with the poor prognosis in osteosarcoma and function analysis indicates a therapeutic potential. Oncotarget 2018; 7:38333-38346. [PMID: 27223261 PMCID: PMC5122393 DOI: 10.18632/oncotarget.9518] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/08/2016] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma is a primary malignant bone tumor that has a poor prognosis due to local recurrence, metastasis, and chemotherapy resistance. Therefore, there is an urgent need to develop novel potential therapeutic targets for osteosarcoma. Enhancer of zeste homologue 2 (EZH2) is a member of the polycomb group of proteins, which has important functions in epigenetic silencing and cell cycle regulation. Overexpression of EZH2 has been found in several malignancies, however, its expression and the role of EZH2 in osteosarcoma is largely unknown. In this study, we examined EZH2 expression by immunohistochemistry in a large series of osteosarcoma tissues in association with tumor characteristics and patient outcomes. EZH2 expression was also analyzed in a microarray dataset of osteosarcoma. Results showed that higher expression of EZH2 was significantly associated with more aggressive tumor behavior and poor patient outcomes of osteosarcoma. We subsequently investigated the functional and therapeutic relevance of EZH2 as a target in osteosarcoma. Immunohistochemical analysis indicated that EZH2 expression was significantly associated with more aggressive tumor behavior and poorer patient outcomes of osteosarcoma. EZH2 silencing by siRNA inhibited osteosarcoma cell growth, proliferation, migration, and invasion. Moreover, suppression of EZH2 attenuated cancer stem cell functions. Similar results were observed in osteosarcoma cells treated with EZH2 specific inhibitor 3-deazaneplanocin A (DZNep), which exhausted cellular levels of EZH2. These results suggest that EZH2 is critical for the growth and metastasis of osteosarcoma, and an epigenetic therapy that pharmacologically targets EZH2 via specific inhibitors may constitute a novel approach to the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Ranran Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jacson Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Yan Gao
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Yubing Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Quancheng Kan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Zhenfeng Duan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|