1
|
Zhang X, Nguyen MH. Metabolic dysfunction-associated steatotic liver disease: A sexually dimorphic disease and breast and gynecological cancer. Metabolism 2025; 167:156190. [PMID: 40081614 DOI: 10.1016/j.metabol.2025.156190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become a global public health and economic burden worldwide in the past few decades. Epidemiological studies have shown that MASLD is a multisystem disease that is associated not only with liver-related complications but also with an increased risk of developing extrahepatic cancers. MASLD is a sexually dimorphic disease with sex hormones playing an important role in the development and progression of MASLD, especially by the levels and ratios of circulating estrogens and androgens. MASLD is associated with hormone-sensitive cancers including breast and gynecological cancer. The risk of breast and gynecological cancer is elevated in individuals with MASLD driven by shared metabolic risk factors including obesity and insulin resistance. Multiple potential mechanisms underline these associations including metabolic dysfunction, gut dysbiosis, chronic inflammation and dysregulated release of hepatokines. However, the effect of hormone therapy including hormone replacement therapy and anti-estrogen treatment on MASLD and female-specific cancers remains debatable at this time. This synopsis will review the associations between MASLD and breast and gynecological cancer, their underlying mechanisms, implications of hormonal therapies, and their future directions.
Collapse
Affiliation(s)
- Xinrong Zhang
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University Medical Center, Palo Alto, CA, United States
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University Medical Center, Palo Alto, CA, United States; Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, CA, United States; Stanford Cancer Institute, Stanford University Medical Center, Palo Alto, CA, United States.
| |
Collapse
|
2
|
Kumari S, Peela S, Srilatha M, Girish BP, Nagaraju GP. Adiponectin: its role in diabetic and pancreatic cancer. Mol Aspects Med 2025; 103:101370. [PMID: 40403652 DOI: 10.1016/j.mam.2025.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/24/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Adiponectin (ApN) is an antidiabetic and anti-inflammatory protein synthesized by adipose tissue. It is essential in regulating insulin sensitivity, glucose, and lipid metabolism by controlling AMPK, PPARα, and MAPK signals. It is an anti-inflammatory property that protects pancreatic β-cells. Often, low levels of ApN are linked to obesity, type II diabetes and the development of PDAC. However, changes in lifestyle and the use of certain drugs can improve ApN function and insulin sensitivity. PDAC is a highly aggressive cancer linked to obesity, type II diabetes, and insulin resistance. ApN plays a complex role in PDAC progression and can suppress PDAC development by weakening β-catenin signaling. Decreases in ApN levels are associated with increased PDAC risk in diabetic patients. PDAC and diabetes are interconnected through the development of insulin resistance, islet dysfunction, change in immunological response, inflammation, oxidative stress, and altered hormone secretion. Genetic studies highlight specific genes like HNF4G and PDX1 that influence both conditions and miRNAs such as miR-19a promote tumor progression through the PI3K/AKT pathway. This review discusses the role of ApN in diabetes and PDAC and the interrelation between diabetes and PDAC.
Collapse
Affiliation(s)
- Seema Kumari
- Department of Biotechnology, Dr.B.R. Ambedkar University, Srikakulam, 532410, AP, India
| | - Sujatha Peela
- Department of Biotechnology, Dr.B.R. Ambedkar University, Srikakulam, 532410, AP, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India
| | - Bala Prabhakar Girish
- Regional Agricultural Research Station, Institute of Frontier Technology, Acharya N G Ranga Agricultural University, Tirupati, India
| | - Ganji Purnachandra Nagaraju
- School of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
3
|
Chu AH, Lin K, Croker H, Kefyalew S, Markozannes G, Tsilidis KK, Park Y, Krebs J, Weijenberg MP, Baskin ML, Copson E, Lewis SJ, Seidell JC, Chowdhury R, Hill L, Chan DS, Lee DH, Giovannucci EL. Dietary-Lifestyle Patterns and Colorectal Cancer Risk: Global Cancer Update Programme (CUP Global) Systematic Literature Review. Am J Clin Nutr 2025; 121:986-998. [PMID: 39805561 DOI: 10.1016/j.ajcnut.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Although healthy dietary and lifestyle factors have been individually linked to lower colorectal cancer (CRC) risks, recommendations for whole diet-lifestyle patterns remained unestablished because of limited studies and inconsistent pattern definitions. OBJECTIVES This updated review synthesized literature on dietary-lifestyle patterns and CRC risk/mortality. METHODS PubMed and Embase were searched through March 31, 2023 for randomized controlled trials and prospective cohort studies examining adulthood dietary patterns combined with modifiable lifestyle factors such as adiposity, smoking, alcohol consumption, physical activity, and/or others. Patterns were categorized by derivation methods: a priori, a posteriori, and a hybrid combining both; and were then descriptively reviewed for the primary outcomes: CRC risk or mortality. The Global Cancer Update Programme Expert Committee and Expert Panel independently graded the evidence on the likelihood of causality using predefined grading criteria. RESULTS Thirty-three observational studies were reviewed. "Strong-probable" evidence was concluded for higher levels of alignment with the a priori-derived World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) recommendations score and lower CRC risk; and "limited-suggestive" evidence for the American Cancer Society guidelines and Healthy Lifestyle Index with lower CRC risk (mainly because of concerns about risk of bias for confounding). A posteriori-derived patterns lack firm evidence (only 1 study). "Strong-probable" evidence was concluded for higher levels of alignment with the Empirical Lifestyle Index for Hyperinsulinemia hybrid pattern and higher CRC risk. By cancer subsite, only the WCRF/AICR recommendations score showed "strong-probable" evidence with lower colon cancer risk. All exposure-mortality pairs were graded "limited-no conclusion." The evidence for other pattern-outcome associations was graded as "limited-no conclusion." CONCLUSIONS Adopting a healthy pattern of diet, maintaining a healthy weight, staying physically active, and embracing health-conscious habits, such as avoiding tobacco and moderating alcohol, are collectively associated with a lower CRC risk. Healthy lifestyle habits are key to primary CRC prevention. This study was registered at PROSPERO as CRD42022324327 (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022324327).
Collapse
Affiliation(s)
- Anne Hy Chu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Kehuan Lin
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Helen Croker
- World Cancer Research Fund International, London, United Kingdom
| | - Sarah Kefyalew
- World Cancer Research Fund International, London, United Kingdom
| | - Georgios Markozannes
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Yikyung Park
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, United States
| | - John Krebs
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Matty P Weijenberg
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands
| | | | - Ellen Copson
- Cancer Sciences Academic Unit, University of Southampton, Southampton, United Kingdom
| | - Sarah J Lewis
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jacob C Seidell
- Faculty of Science, Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Rajiv Chowdhury
- Department of Global Health, Florida International University, Miami, FL, United States
| | - Lynette Hill
- World Cancer Research Fund International, London, United Kingdom
| | - Doris Sm Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Dong Hoon Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Sport Industry Studies, Yonsei University, Seoul, Republic of Korea.
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| |
Collapse
|
4
|
Basu R, Boguszewski CL, Kopchick JJ. Growth Hormone Action as a Target in Cancer: Significance, Mechanisms, and Possible Therapies. Endocr Rev 2025; 46:224-280. [PMID: 39657053 DOI: 10.1210/endrev/bnae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/29/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Growth hormone (GH) is a pituitary-derived endocrine hormone required for normal postnatal growth and development. Hypo- or hypersecretion of endocrine GH results in 2 pathologic conditions, namely GH deficiency (GHD) and acromegaly. Additionally, GH is also produced in nonpituitary and tumoral tissues, where it acts rather as a cellular growth factor with an autocrine/paracrine mode of action. An increasingly persuasive and large body of evidence over the last 70 years concurs that GH action is implicit in escalating several cancer-associated events, locally and systemically. This pleiotropy of GH's effects is puzzling, but the association with cancer risk automatically raises a concern for patients with acromegaly and for individuals treated with GH. By careful assessment of the available knowledge on the fundamental concepts of cancer, suggestions from epidemiological and clinical studies, and the evidence from specific reports, in this review we aimed to help clarify the distinction of endocrine vs autocrine/paracrine GH in promoting cancer and to reconcile the discrepancies between experimental and clinical data. Along this discourse, we critically weigh the targetability of GH action in cancer-first by detailing the molecular mechanisms which posit GH as a critical node in tumor circuitry; and second, by enumerating the currently available therapeutic options targeting GH action. On the basis of our discussion, we infer that a targeted intervention on GH action in the appropriate patient population can benefit a sizable subset of current cancer prognoses.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
| | - Cesar L Boguszewski
- SEMPR, Endocrine Division, Department of Internal Medicine, Federal University of Parana, Curitiba 80060-900, Brazil
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
5
|
Bai Z, Liang J, Nie Y, Wang S, Chang D. The mediating role of the TyG index in the relationship between circadian syndrome and cancer among middle-aged and elderly Chinese. BMC Cancer 2025; 25:431. [PMID: 40065285 PMCID: PMC11895363 DOI: 10.1186/s12885-025-13816-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Circadian Syndrome (CircS) is a significant marker of metabolic imbalance and has been linked to various chronic diseases. However, its relationship with cancer risk remains underexplored. This research aims to explore the relationship between CircS and cancer, while also assessing the possible mediating role of the triglyceride glucose (TyG) index. METHODS Baseline data from the 2011 China Health and Retirement Longitudinal Study (CHARLS) and follow-up data from 2015 were analyzed, including participants' sociodemographic characteristics, health behaviors, and metabolic indicators. Linear regression, mediation analysis, and logistic regression were employed to explore relationships between CircS, cancer risk, and the TyG index, with a dose-response analysis conducted on TyG index and cancer risk. RESULTS Among 7,864 middle-aged and elderly participants, CircS was significantly and positively associated with cancer risk (r = 0.17, P < 0.001). The TyG index showed a significant correlation with both CircS (r = 0.52, P < 0.001) and cancer (r = 0.15, P < 0.001). Mediation modeling indicated that the TyG index partially mediated the association between CircS and cancer, accounting for 23% of this relationship. Additionally, a significant nonlinear dose-response relationship was observed between the TyG index and cancer risk (Pnonlinear = 0.0024). CONCLUSION Circadian syndrome is associated with increased cancer risk, with the TyG index partially mediating this relationship.
Collapse
Affiliation(s)
- Zilong Bai
- Department of Surgical Oncology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Jiale Liang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Yuanhua Nie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Shilong Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Dongmin Chang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
6
|
Feng X, Li R, Yi H, Chen S, Liu M, Wu Y. Global cancer burden attributable to excess body weight, 1990 to 2021, decomposed by population size, aging, and epidemiological change. Obesity (Silver Spring) 2025; 33:567-577. [PMID: 39978407 DOI: 10.1002/oby.24219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 02/22/2025]
Abstract
OBJECTIVE The objective of this study was to estimate cancer burden attributable to excess body weight (EBW) and identify its main source. METHODS We obtained relative risks from meta-analyses, cancer and population data from the Global Burden of Disease Study (GBD) 2021, and BMI prevalence data from the NCD Risk Factor Collaboration (NCD-RisC). We calculated the incidence of 11 cancers attributable to high BMI from 1990 to 2021, analyzed trends using joinpoint regression, and assessed cohort effects with the age-period-cohort model. Decomposition analysis was conducted by cancer-specific risk factors and by population size, aging, and epidemiological changes. RESULTS The incidence of 11 EBW-related cancers has increased from 1990 to 2021. Later-born cohorts and older age groups had higher cancer incidence rates. High BMI was the top contributor to changes in cancer burden (15.96% of all disability-adjusted life years [DALYs]), particularly in high Sociodemographic Index (SDI) regions. Colorectal, esophageal, and liver cancer had the highest burden due to high BMI (1,349,622; 1,284,385; and 944,616 DALYs, respectively). Epidemiological changes in BMI contributed to the rising DALY burden, ranging from 7.88% for postmenopausal breast cancer to 49.20% for liver cancer. CONCLUSIONS The rising prevalence of EBW contributed to the global cancer burden, showing a significant birth cohort effect. High BMI was the top contributing factor to obesity-related cancers, surpassing other epidemiological risk factors.
Collapse
Affiliation(s)
- Xiaoru Feng
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua University, Beijing, China
- Institute for Hospital Management, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Ruoqian Li
- College of Humanities and Economic Management, China Agricultural University, Beijing, China
| | - Hang Yi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyi Chen
- Institute for Hospital Management, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
- Department of Statistics and Department of Health Policy, London School of Economics and Political Science, London, UK
| | - Meng Liu
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - You Wu
- Institute for Hospital Management, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Naimo GD, Forestiero M, Giordano F, Leonetti AE, Gelsomino L, Panno ML, Andò S, Mauro L. Adiponectin Influences the Behavior of Stem Cells in Hormone-Resistant Breast Cancer. Cells 2025; 14:286. [PMID: 39996758 PMCID: PMC11853953 DOI: 10.3390/cells14040286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
In the breast tumor microenvironment (TME), adipocytes exert a selective pressure on the behavior of breast cancer stem cells (BCSCs), which are involved in endocrine therapy resistance. In obesity, adipocytes secrete reduced levels of adiponectin, which promotes the growth and progression of ERα-positive breast cancer (BC). Here, we examined how low adiponectin levels affect the enrichment of the BCSC subpopulation and the mechanisms contributing to the maintenance of endocrine therapy resistance in BC. Flow cytometry, qRT-PCR, and Western blotting analysis were performed to assess stemness, the cell cycle, and apoptosis markers in MCF-7 wild-type (WT) and tamoxifen-resistant (TR) mammospheres. nLC-MS/MS was employed to profile and compare the proteome of BCSCs. Differentially expressed proteins were intersected with data from the MetacoreTM dataset. Our study demonstrated that adiponectin increased the percentage of CD44+/CD24-/ALDH1+ stem-like cells in TR MCF-7 mammospheres. Specifically, adiponectin contributed to the maintenance of BCSC bulk in TR MCF-7 cells through a slow cycling rate, supported by decreased levels of Cyclin D1 and Ki67 and increased p21 and p27 expression, and through escape from apoptosis, sustained by reduced ROS production and preserved maintenance of mitochondrial membrane potential. Our results provide new insights into the contribution of adiponectin to poor ERα-positive BC outcomes. Deeply understanding adiponectin's role in stemness may disclose novel therapeutic approaches to treat hormone-resistant obese BC patients.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
| | - Martina Forestiero
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
| | - Francesca Giordano
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
| | - Adele Elisabetta Leonetti
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
| | - Luca Gelsomino
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
| | - Maria Luisa Panno
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
| | - Sebastiano Andò
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Loredana Mauro
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (G.D.N.); (M.F.); (F.G.); (A.E.L.); (L.G.); (M.L.P.)
| |
Collapse
|
8
|
Nagasaka H, Sato S, Suzuki A, Terao H, Nakamura Y, Yoshihara M, Okubo Y, Washimi K, Yokose T, Kishida T, Miyagi Y. Clinicopathological Significance of Extranodal Adipose Tissue Invasion in Metastatic Lymph Nodes in Patients With Prostate Cancer. Prostate 2025; 85:283-293. [PMID: 39567857 DOI: 10.1002/pros.24825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Lymph node (LN) metastasis is a poor prognostic factor in patients with prostate cancer. Elucidating the mechanisms underlying cancer progression in the metastatic microenvironment of LNs is crucial to establishing novel therapies. Adipocytes interact with cancer cells and regulate cancer progression. In this study, we aimed to clarify the clinicopathological significance of extranodal adipose tissue invasion in metastatic LNs and preoperative adipokine concentration in patients with prostate cancer exhibiting metastatic LNs. METHODS We examined the pathological findings of primary and metastatic nodes and clinical information of 66 specimens from 46 patients with prostate cancer. A sub-analysis was performed to assess the relationship between preoperative adiponectin/leptin concentrations and clinical/pathological findings in the blood samples of 56 patients with prostate cancer who either did or did not show LN metastasis. RESULTS The number of metastatic LNs in patients correlated with the involvement of adipose tissue and lymphovascular invasion (p = 0.039 and < 0.001, respectively). Preoperative adiponectin concentration was lower in patients with resected margin-positive and extraprostatic extension-positive primary cancers (p = 0.0071 and 0.02, respectively). Preoperative adiponectin concentrations were significantly lower in patients with metastatic LNs than in patients without LN metastasis (p < 0.001). Moreover, leptin concentrations were significantly higher in patients with metastatic LNs than in patients without LN metastasis (p < 0.001). In patients with metastatic LNs, preoperative adiponectin concentrations were significantly lower in patients with biochemical recurrence than in patients without biochemical recurrence (p = 0.031). There was no correlation between biochemical recurrence and pathological findings. CONCLUSIONS This is the first report on the detailed histopathological characteristics of prostate cancer with LN metastases and the significance of preoperative adiponectin concentration in predicting the pathological features of primary cancers. Also, adipokines are a significant prediction factor of LN metastases for prostate cancer patients. Adipose tissue and adipose-secreting factors may be involved in the progression of metastatic and primary prostate cancer.
Collapse
Affiliation(s)
- Hirotaka Nagasaka
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Atsuto Suzuki
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hideyuki Terao
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yoshiyasu Nakamura
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Mitsuyo Yoshihara
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Yoichiro Okubo
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kota Washimi
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yohei Miyagi
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| |
Collapse
|
9
|
Chen T, Yang W, Dong R, Yao H, Sun M, Wang J, Zhou Q, Xu J. The effect and application of adiponectin in hepatic fibrosis. Gastroenterol Rep (Oxf) 2024; 12:goae108. [PMID: 39737222 PMCID: PMC11683834 DOI: 10.1093/gastro/goae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 09/24/2024] [Indexed: 01/01/2025] Open
Abstract
Hepatic fibrosis, a degenerative liver lesion, significantly contributes to the deterioration and mortality among patients with chronic liver diseases. The condition arises from various factors including toxins, such as alcohol, infections like different types of viral hepatitis, and metabolic diseases. Currently, there are no effective treatments available for liver fibrosis. Recent research has shown that adiponectin (ADPN) exhibits inhibitory effects on hepatic fibrosis. ADPN, an adipocytokine secreted by mature adipocytes, features receptors that are widely distributed across multiple tissues, especially the liver. In the liver, direct effects of ADPN on liver fibrosis include reducing inflammation and regulating hepatic stellate cell proliferation and migration. And its indirect effects include alleviating hepatic endoplasmic reticulum stress and reducing inflammation in hepatic lobules, thereby mitigating hepatic fibrosis. This review aims to elucidate the regulatory role of ADPN in liver fibrosis, explore how ADPN and its receptors alleviate endoplasmic reticulum stress, summarize ADPN detection methods, and discuss its potential as a novel marker and therapeutic agent in combating hepatic fibrosis.
Collapse
Affiliation(s)
- Taoran Chen
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Wenjing Yang
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Rongrong Dong
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Han Yao
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Miao Sun
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Jiaxin Wang
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Qi Zhou
- Department of Pediatrics, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Jiancheng Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| |
Collapse
|
10
|
Stanisławowski M. Effect of adipose tissue on the development of multiple myeloma. Mol Biol Rep 2024; 52:74. [PMID: 39708277 DOI: 10.1007/s11033-024-10174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Multiple myeloma (MM), also referred to as Kahler's disease, is a cancer characterized by the uncontrolled growth of abnormal plasma cells and is associated with alterations in the bone tissue microenvironment. Bone marrow adipose tissue (BMAT), which comprises approximately ten percent of total body fat, can influence the progression, survival, and drug resistance of MM cells through paracrine, hormonal, and metabolic pathways. Obesity can lead to an increase in BMAT mass, which not only disrupts bone metabolism but also reduces bone density, potentially progressing from monoclonal gammopathy of undetermined significance, a benign condition, to MM. A range of factors, including impaired fatty acid metabolism, increased production of adipokines that support myeloma, and heightened expression of oncogenic microRNAs in multiple myeloma, contribute to the progression of this incurable blood cancer. To better understand the relationship between excess adipose tissue accumulation and the risk of developing multiple myeloma, a comprehensive review of published data was conducted.
Collapse
Affiliation(s)
- Marcin Stanisławowski
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| |
Collapse
|
11
|
Zhang J, Lu E, Deng L, Zhu Y, Lu X, Li X, Li F, Yan Y, Han JY, Li Y, Zhang Y. Immunological roles for resistin and related adipokines in obesity-associated tumors. Int Immunopharmacol 2024; 142:112911. [PMID: 39232363 DOI: 10.1016/j.intimp.2024.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Rationale Obesity is an independent risk factor for the occurrence and development of tumors. Obesity is influenced by signaling of adipokines, which are secreted factors from adipocytes and resident immune cells within adipose tissues that mediate lipid metabolism. More recently, adipokines have been implicated in chronic inflammation as well as in tumor formation and growth. Among them, resistin has received increasing attention in research related to the growth and expansion of solid tumors and hematological cancers through various signaling pathways. Objective and findings We reviewed the physiological, biochemical, and immune functions of adipose tissue, with a focus on the structure and expression of resistin and adipokines within multiple adipose cell types, their signaling pathways and putative effects on tumor cells, as well as their in vivo regulation. Current evidence indicates that adipokines such as resistin act as pro-inflammatory factors to stimulate immune cells which, in turn, promotes tumor angiogenesis, connective tissue proliferation, and matrix fibrosis. Concurrently, in states of metabolic dysfunction and lipotoxicity in obese individuals, the numbers and functions of immune cells are compromised, leading to an immunosuppressive environment that fosters tumor cell survival and weak cancer immune monitoring. Conclusion Adipokines such as resistin are important to the development of obesity-related tumors. Clarifying the roles for obesity-related factors in immune regulation and tumor progression may lead to the discovery of novel anti-tumor strategies for targeting obesity factors such as resistin to limit tumor growth and manage obesity, or both.
Collapse
Affiliation(s)
- Jingxin Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Enting Lu
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Deng
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yaoxuan Zhu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaoqing Lu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xinyuan Li
- School of Nursing, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangmei Li
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yan Yan
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Yi Zhang
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
12
|
Wang W, Sheng R, Liao S, Wu Z, Wang L, Liu C, Yang C, Jiang R. LightGBM is an Effective Predictive Model for Postoperative Complications in Gastric Cancer: A Study Integrating Radiomics with Ensemble Learning. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:3034-3048. [PMID: 38940888 PMCID: PMC11612084 DOI: 10.1007/s10278-024-01172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024]
Abstract
Postoperative complications of radical gastrectomy seriously affect postoperative recovery and require accurate risk prediction. Therefore, this study aimed to develop a prediction model specifically tailored to guide perioperative clinical decision-making for postoperative complications in patients with gastric cancer. A retrospective analysis was conducted on patients who underwent radical gastrectomy at the First Affiliated Hospital of Nanjing Medical University between April 2022 and June 2023. A total of 166 patients were enrolled. Patient demographic characteristics, laboratory examination results, and surgical pathological features were recorded. Preoperative abdominal CT scans were used to segment the visceral fat region of the patients through 3Dslicer, a 3D Convolutional Neural Network (3D-CNN) to extract image features and the LASSO regression model was employed for feature selection. Moreover, an ensemble learning strategy was adopted to train the features and predict postoperative complications of gastric cancer. The prediction performance of the LGBM (Light Gradient Boosting Machine), XGB (XGBoost), RF (Random Forest), and GBDT (Gradient Boosting Decision Tree) models was evaluated through fivefold cross-validation. This study successfully constructed a model for predicting early complications following radical gastrectomy based on the optimal algorithm, LGBM. The LGBM model yielded an AUC value of 0.9232 and an accuracy of 87.28% (95% CI, 75.61-98.95%), surpassing the performance of other models. Through ensemble learning and integration of perioperative clinical data and visceral fat radiomics, a predictive LGBM model was established. This model has the potential to facilitate individualized clinical decision-making and the early recovery of patients with gastric cancer post-surgery.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rongrong Sheng
- Information Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shumei Liao
- Information Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Linjun Wang
- Department of Gastric Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Riyue Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
13
|
Zebene ED, Lombardi R, Pucci B, Medhin HT, Seife E, Di Gennaro E, Budillon A, Woldemichael GB. Proteomic Analysis of Biomarkers Predicting Treatment Response in Patients with Head and Neck Cancers. Int J Mol Sci 2024; 25:12513. [PMID: 39684225 DOI: 10.3390/ijms252312513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Head and neck cancers (HNCs) are the sixth most commonly diagnosed cancer and the eighth leading cause of cancer-related mortality worldwide, with squamous cell carcinoma being the most prevalent type. The global incidence of HNCs is steadily increasing, projected to rise by approximately 30% per year by 2030, a trend observed in both developed and undeveloped countries. This study involved serum proteomic profiling to identify predictive clinical biomarkers in cancer patients undergoing chemoradiotherapy (CRT). Fifteen HNC patients at Tikur Anbessa Specialized Hospital, Radiotherapy (RT) center in Addis Ababa were enrolled. Serum samples were collected before and after RT, and patients were classified as responders (R) or non-responders (NR). Protein concentrations in the serum were determined using the Bradford assay, followed by nano-HPLC-MS/MS for protein profiling. Progenesis QI for proteomics identified 55 differentially expressed proteins (DEPs) between R and NR, with a significance of p < 0.05 and a fold-change (FC) ≥ 1.5. The top five-up-regulated proteins included MAD1L1, PSMC2, TRIM29, C5, and SERPING1, while the top five-down-regulated proteins were RYR1, HEY2, HIF1A, TF, and CNN3. Notably, about 16.4% of the DEPs were involved in cellular responses to DNA damage from cancer treatments, encompassing proteins related to deoxyribonucleic acid (DNA) damage sensing, checkpoint activation, DNA repair, and apoptosis/cell cycle regulation. The analysis of the relative abundance of ten proteins with high confidence scores identified three DEPs: ADIPOQ, HEY2, and FUT10 as potential predictive biomarkers for treatment response. This study highlighted the identification of three potential predictive biomarkers-ADIPOQ, HEY2, and FUT10-through serum proteomic profiling in HNC patients undergoing RT, emphasizing their significance in predicting treatment response.
Collapse
Affiliation(s)
- Emeshaw Damtew Zebene
- Nuclear Medicine Unit, Department of Internal Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia
- Department of Microbial Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia
| | - Rita Lombardi
- Experimental Animal Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Biagio Pucci
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Hagos Tesfay Medhin
- Nuclear Medicine Unit, Department of Internal Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia
| | - Edom Seife
- Radiotherapy Center, College of Health Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia
| | - Elena Di Gennaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Gurja Belay Woldemichael
- Department of Microbial Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia
| |
Collapse
|
14
|
Georgakopoulou VE, Lempesis IG, Trakas N, Sklapani P, He Y, Spandidos DA. Lung cancer and obesity: A contentious relationship (Review). Oncol Rep 2024; 52:158. [PMID: 39497438 PMCID: PMC11462394 DOI: 10.3892/or.2024.8817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
The global obesity epidemic, attributed to sedentary lifestyles, unhealthy diets, genetics and environmental factors, has led to over 1.9 billion adults being classified as overweight and 650 million living with obesity. Despite advancements in early detection and treatment, lung cancer prognosis remains poor due to late diagnoses and limited therapies. The obesity paradox challenges conventional thinking by suggesting that individuals with obesity and certain diseases, including cancer, may have an improved prognosis compared with their counterparts of a normal weight. This observation has prompted investigations to understand protective mechanisms, including potentially favorable adipokine secretion and metabolic reserves that contribute to tolerating cancer treatments. However, understanding the association between obesity and lung cancer is complex. While smoking is the primary risk factor of lung cancer, obesity may independently impact lung cancer risk, particularly in non‑smokers. Adipose tissue dysfunction, including low‑grade chronic inflammation, and hormonal changes contribute to lung cancer development and progression. Obesity‑related factors may also influence treatment responses and survival outcomes in patients with lung cancer. The impact of obesity on treatment modalities such as chemotherapy, radiotherapy and surgery is still under investigation. Challenges in managing patients with obesity and cancer include increased surgical complexity, higher rates of postoperative complications and limited treatment options due to comorbidities. Targeted interventions aimed at reducing obesity prevalence and promoting healthy lifestyles are crucial for lung cancer prevention. The impact of obesity on lung cancer is multifaceted and requires further research to elucidate the underlying mechanisms and develop personalized interventions for prevention and treatment.
Collapse
Affiliation(s)
| | - Ioannis G. Lempesis
- Medical Chronobiology Program, Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, Athens 15126, Greece
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, Athens 15126, Greece
| | - Yutong He
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050010, P.R. China
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
15
|
Naeimzadeh Y, Tajbakhsh A, Nemati M, Fallahi J. Exploring the anti-cancer potential of SGLT2 inhibitors in breast cancer treatment in pre-clinical and clinical studies. Eur J Pharmacol 2024; 978:176803. [PMID: 38950839 DOI: 10.1016/j.ejphar.2024.176803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
The link between type 2 diabetes mellitus (T2DM) and an increased risk of breast cancer (BC) has prompted the exploration of novel therapeutic strategies targeting shared metabolic pathways. This review focuses on the emerging evidence surrounding the potential anti-cancer effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors in the context of BC. Preclinical studies have demonstrated that various SGLT2 inhibitors, such as canagliflozin, dapagliflozin, ipragliflozin, and empagliflozin, can inhibit the proliferation of BC cells, induce apoptosis, and modulate key cellular signaling pathways. These mechanisms include the activation of AMP-activated protein kinase (AMPK), suppression of mammalian target of rapamycin (mTOR) signaling, and regulation of lipid metabolism and inflammatory mediators. The combination of SGLT2 inhibitors with conventional treatments, including chemotherapy and radiotherapy, as well as targeted therapies like phosphoinositide 3-kinases (PI3K) inhibitors, has shown promising results in enhancing the anti-cancer efficacy and potentially reducing treatment-related toxicities. The identification of specific biomarkers or genetic signatures that predict responsiveness to SGLT2 inhibitor therapy could enable more personalized treatment selection and optimization, particularly for challenging BC subtypes [e, g., triple negative BC (TNBC)]. Ongoing and future clinical trials investigating the use of SGLT2 inhibitors, both as monotherapy and in combination with other agents, will be crucial in elucidating their translational potential and guiding their integration into comprehensive BC care. Overall, SGLT2 inhibitors represent a novel and promising therapeutic approach with the potential to improve clinical outcomes for patients with various subtypes of BC, including the aggressive and chemo-resistant TNBC.
Collapse
Affiliation(s)
- Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| |
Collapse
|
16
|
Suzuki A, Sato S, Nakaigawa N, Kishida T, Miyagi Y. Combination of Blood Adiponectin and Leptin Levels Is a Predictor of Biochemical Recurrence in Prostate Cancer Invading the Surrounding Adipose Tissue. Int J Mol Sci 2024; 25:8970. [PMID: 39201655 PMCID: PMC11354761 DOI: 10.3390/ijms25168970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Biochemical recurrence is a process that progresses to castration-resistant prostate cancer (CRPC) and prediction of biochemical recurrence is useful in determining early therapeutic intervention and disease treatment. Prostate cancer is surrounded by adipose tissue, which secretes adipokines, affecting cancer progression. This study aimed to investigate the correlation between blood adipokines and CRPC biochemical recurrence. We retrospectively analyzed the clinical data, including preoperative serum adipokine levels, of 99 patients with pT3a pN0 prostate cancer who underwent proctectomy between 2011 and 2019. The primary outcome was biochemical recurrence (prostate-specific antigen: PSA > 0.2). We identified 65 non-recurrences and 34 biochemical recurrences (one progressed to CRPC). The initial PSA level was significantly higher (p = 0.006), but serum adiponectin (p = 0.328) and leptin (p = 0.647) levels and their ratio (p = 0.323) were not significantly different in the biochemical recurrence group compared with the non-recurrence group. In contrast, significantly more biochemical recurrences were observed in the group with adiponectin < 6 μg/mL and Leptin < 4 ng/mL (p = 0.046), initial PSA > 15 ng/mL, clinical Gleason pattern ≥ 4, and positive resection margin. A significant difference was also observed in the multivariate analysis (hazard ratio: 4.04, 95% confidence interval: 1.21-13.5, p = 0.0232). Thus, low preoperative serum adiponectin and high leptin levels were significantly associated with biochemical recurrence in adipose tissue-invasive prostate cancer, suggesting that they may be useful predictors of biochemical recurrence. Further studies with larger cases are needed to increase the validity of this study.
Collapse
Affiliation(s)
- Atsuto Suzuki
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Kanagawa, Japan;
- Department of Urology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Kanagawa, Japan;
- Department of Pathology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Kanagawa, Japan
| | - Noboru Nakaigawa
- Department of Urology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Yohei Miyagi
- Department of Pathology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Kanagawa, Japan
| |
Collapse
|
17
|
Kafeel S, Ragone A, Salzillo A, Palmiero G, Naviglio S, Sapio L. Adiponectin Receptor Agonist AdipoRon Inhibits Proliferation and Drives Glycolytic Dependence in Non-Small-Cell Lung Cancer Cells. Cancers (Basel) 2024; 16:2633. [PMID: 39123363 PMCID: PMC11312309 DOI: 10.3390/cancers16152633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Despite the countless therapeutic advances achieved over the years, non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. To this primacy contribute both non-oncogene addicted and advanced NSCLCs, in which conventional therapies are only partially effective. The adiponectin receptor agonist AdipoRon has revealed antiproliferative action in different cancers, including osteosarcoma and pancreatic cancer. Herein, we investigated its potential anticancer role in NSCLC for the first time. We proved that AdipoRon strongly inhibits viability, growth and colony formation in H1299 and A549 NSCLC cells, mainly through a slowdown in cell cycle progression. Along with the biological behaviors, a metabolic switching was observed after AdipoRon administration in NSCLC cells, consisting of higher glucose consumption and lactate accumulation. Remarkably, both 2-Deoxy Glucose and Oxamate glycolytic-interfering agents greatly enhanced AdipoRon's antiproliferative features. As a master regulator of cell metabolism, AMP-activated protein kinase (AMPK) was activated by AdipoRon. Notably, the ablation of AdipoRon-induced AMPK phosphorylation by Compound-C significantly counteracted its effectiveness. However, the engagement of other pathways should be investigated afterwards. With a focus on NSCLC, our findings further support the ability of AdipoRon in acting as an anticancer molecule, driving its endorsement as a future candidate in NSCLC therapy.
Collapse
Affiliation(s)
| | | | | | | | - Silvio Naviglio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.K.); (A.R.); (A.S.); (G.P.); (L.S.)
| | | |
Collapse
|
18
|
Macis D, Bellerba F, Aristarco V, Johansson H, Guerrieri-Gonzaga A, Lazzeroni M, Sestak I, Cuzick J, DeCensi A, Bonanni B, Gandini S. A Mediation Analysis of Obesity and Adiponectin Association with Postmenopausal Breast Cancer Risk: A Nested Cohort Study in the International Breast Cancer Intervention Study II (IBIS-II) Prevention Trial. Nutrients 2024; 16:2098. [PMID: 38999846 PMCID: PMC11242930 DOI: 10.3390/nu16132098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Obesity is a risk factor for postmenopausal breast cancer (BC), and evidence suggests a role for adiponectin in the relationship between obesity and BC. We investigated whether adiponectin or other biomarkers mediate the effect of body mass index (BMI) on postmenopausal BC risk in a cohort study nested in the IBIS-II Prevention Trial. We measured adiponectin, leptin, IGF-I, IGFBP-1, high-sensitivity C-reactive protein, glycemia, insulin, HOMA-IR index, and SHBG in baseline and 12-month serum samples from 123 cases and 302 matched controls in the placebo arm of the IBIS-II Prevention trial. We conducted the main mediation analysis considering baseline BMI as an exposure and the 12-month adiponectin increase as a mediator after adjustment for the Tyrer-Cuzick score and the lipid-lowering medications/supplements use. In the multivariable Cox model, both the 12-month adiponectin increase (HR, 0.60; 95%CI, 0.36-1.00) and BMI were associated with BC risk (HR, 1.05; 95%CI, 1.00-1.09), with a 40% reduction in women with a 12-month increase in adiponectin. A significantly higher cumulative hazard of BC events was observed in obese women (BMI > 30) with decreased adiponectin (p = 0.0087). No mediating effect of the adiponectin increase on the total effect of BMI on BC risk was observed (natural indirect effect: HR, 1.00; 95%CI, 0.98-1.02). Raising adiponectin levels might be an attractive target for postmenopausal BC prevention.
Collapse
Affiliation(s)
- Debora Macis
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Federica Bellerba
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20139 Milan, Italy; (F.B.); (S.G.)
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Ivana Sestak
- Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK; (I.S.); (J.C.); (A.D.)
| | - Jack Cuzick
- Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK; (I.S.); (J.C.); (A.D.)
| | - Andrea DeCensi
- Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK; (I.S.); (J.C.); (A.D.)
- Division of Medical Oncology, Ente Ospedaliero Galliera, 16128 Genoa, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20139 Milan, Italy; (F.B.); (S.G.)
| |
Collapse
|
19
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Anazco D, Acosta A, Cathcart-Rake EJ, D'Andre SD, Hurtado MD. Weight-centric prevention of cancer. OBESITY PILLARS 2024; 10:100106. [PMID: 38495815 PMCID: PMC10943063 DOI: 10.1016/j.obpill.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Background The link between excess adiposity and carcinogenesis has been well established for multiple malignancies, and cancer is one of the main contributors to obesity-related mortality. The potential role of different weight-loss interventions on cancer risk modification has been assessed, however, its clinical implications remain to be determined. In this clinical review, we present the data assessing the effect of weight loss interventions on cancer risk. Methods In this clinical review, we conducted a comprehensive search of relevant literature using MEDLINE, Embase, Web of Science, and Google Scholar databases for relevant studies from inception to January 20, 2024. In this clinical review, we present systematic reviews and meta-analysis, randomized clinical trials, and prospective and retrospective observational studies that address the effect of different treatment modalities for obesity in cancer risk. In addition, we incorporate the opinions from experts in the field of obesity medicine and oncology regarding the potential of weight loss as a preventative intervention for cancer. Results Intentional weight loss achieved through different modalities has been associated with a reduced cancer incidence. To date, the effect of weight loss on the postmenopausal women population has been more widely studied, with multiple reports indicating a protective effect of weight loss on hormone-dependent malignancies. The effect of bariatric interventions as a protective intervention for cancer has been studied extensively, showing a significant reduction in cancer incidence and mortality, however, data for the effect of bariatric surgery on certain specific types of cancer is conflicting or limited. Conclusion Medical nutrition therapy, exercise, antiobesity medication, and bariatric interventions, might lead to a reduction in cancer risk through weight loss-dependent and independent factors. Further evidence is needed to better determine which population might benefit the most, and the amount of weight loss required to provide a clinically significant preventative effect.
Collapse
Affiliation(s)
- Diego Anazco
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Maria D. Hurtado
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
21
|
Nguyen MLT, Pham C, Pham VT, Nham PLT, Ta BT, Le DT, Le QV, Hoang XC, Bozko P, Nguyen LT, Bui KC. Adiponectin Receptor Agonist Effectively Suppresses Hepatocellular Carcinoma Growth. Cell Biochem Biophys 2024; 82:687-695. [PMID: 38243102 DOI: 10.1007/s12013-024-01217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is the second lethal cancer. Short overall survival, low five-year survival rate, and unimproved treatment efficacy urge the need to improve HCC prognosis. Adiponectin is key protector against cancer and hepatic abnormalities. Hypoadiponectinemia occurs in and promotes carcinogenesis and hepatic diseases. Adiponectin reactivation by different methods showed impressive effect against cancer and hepatic diseases. Recently, AdipoRon, an adiponectin receptor agonist, can interact with both Adiponectin receptors. AdipoRon showed promising anti-cancer effect in some cancers, but no study on HCC yet. The in vitro effect of AdipoRon on HCC was investigated by cell viability, migration, invasion, colony formation and apoptosis assays. The signalling alteration was determined by RT-qPCR and Western blot. The effect of treatment was interpreted by comparison between treatments and control. The difference between two cell lines was relatively compared. Our results showed significant in vitro anti-cancer effect of AdipoRon via AMPK- and dose-dependent manner. Huh7 cells showed a lower level of AdipoR1/2 and a superior proliferation and aggressiveness, compared to Hep3B. In addition, Huh7 cells were more sensitive to AdipoRon treatment (lower IC50, less cell growth, migration, invasion and colonies upon AdipoRon treatment) than Hep3B cells. In conclusion, AdipoRon effectively inhibited HCC growth and invasiveness in vitro. The deficient expression of adiponectin receptors affects efficacy of AdipoRon and aggressiveness of HCC cells.
Collapse
Affiliation(s)
- Mai Ly Thi Nguyen
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Biochemistry, Military Hospital 103, Hanoi, Vietnam
| | - Chi Pham
- Laboratory Animal Research Centre, Vietnam Military Medical University, Hanoi, Vietnam
| | - Van Tran Pham
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Biochemistry, Military Hospital 103, Hanoi, Vietnam
| | - Phuong Linh Thi Nham
- Laboratory Animal Research Centre, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ba Thang Ta
- Vietnam Military Medical University, Hanoi, Vietnam
- Respiratory Centre, Military Hospital 103, Hanoi, Vietnam
| | - Dinh Tuan Le
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Rheumatology and Endocrinology, Military Hospital 103, Hanoi, Vietnam
| | - Quoc Vuong Le
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Medical Examination, Le Huu Trac National Burn Hospital, Hanoi, Vietnam
| | | | - Przemyslaw Bozko
- Department of Internal medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
- The M3 Research Institute, Tübingen, Germany
| | - Linh Toan Nguyen
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Khac Cuong Bui
- Vietnam Military Medical University, Hanoi, Vietnam.
- Laboratory Animal Research Centre, Vietnam Military Medical University, Hanoi, Vietnam.
- Department of Internal medicine I, Universitätsklinikum Tübingen, Tübingen, Germany.
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam.
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam.
| |
Collapse
|
22
|
Poznyak AV, Yakovlev AA, Popov MА, Zhuravlev AD, Sukhorukov VN, Orekhov AN. WITHDRAWN: Coronary atherosclerotic plaque regression strategies. J Biomed Res 2024; 39:1-21. [PMID: 38808553 DOI: 10.7555/jbr.37.20230223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Ahead of Print article withdrawn by publisher.
Collapse
Affiliation(s)
| | - Alexey A Yakovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 109240, Russia
| | - Mikhail А Popov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia
| | - Alexander D Zhuravlev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia
| | - Vasily N Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia
| |
Collapse
|
23
|
Arakil N, Akhund SA, Elaasser B, Mohammad KS. Intersecting Paths: Unraveling the Complex Journey of Cancer to Bone Metastasis. Biomedicines 2024; 12:1075. [PMID: 38791037 PMCID: PMC11117796 DOI: 10.3390/biomedicines12051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The phenomenon of bone metastases presents a significant challenge within the context of advanced cancer treatments, particularly pertaining to breast, prostate, and lung cancers. These metastatic occurrences stem from the dissemination of cancerous cells into the bone, thereby interrupting the equilibrium between osteoblasts and osteoclasts. Such disruption results in skeletal complications, adversely affecting patient morbidity and quality of life. This review discusses the intricate interplay between cancer cells and the bone microenvironment, positing the bone not merely as a passive recipient of metastatic cells but as an active contributor to cancer progression through its distinctive biochemical and cellular makeup. A thorough examination of bone structure and the dynamics of bone remodeling is undertaken, elucidating how metastatic cancer cells exploit these processes. This review explores the genetic and molecular pathways that underpin the onset and development of bone metastases. Particular emphasis is placed on the roles of cytokines and growth factors in facilitating osteoclastogenesis and influencing osteoblast activity. Additionally, this paper offers a meticulous critique of current diagnostic methodologies, ranging from conventional radiography to advanced molecular imaging techniques, and discusses the implications of a nuanced understanding of bone metastasis biology for therapeutic intervention. This includes the development of targeted therapies and strategies for managing bone pain and other skeletal-related events. Moreover, this review underscores the imperative of ongoing research efforts aimed at identifying novel therapeutic targets and refining management approaches for bone metastases. It advocates for a multidisciplinary strategy that integrates advancements in medical oncology and radiology with insights derived from molecular biology and genetics, to enhance prognostic outcomes and the quality of life for patients afflicted by this debilitating condition. In summary, bone metastases constitute a complex issue that demands a comprehensive and informed approach to treatment. This article contributes to the ongoing discourse by consolidating existing knowledge and identifying avenues for future investigation, with the overarching objective of ameliorating patient care in the domain of oncology.
Collapse
Affiliation(s)
| | | | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (N.A.); (S.A.A.); (B.E.)
| |
Collapse
|
24
|
Tahergorabi Z, Lotfi H, Rezaei M, Aftabi M, Moodi M. Crosstalk between obesity and cancer: a role for adipokines. Arch Physiol Biochem 2024; 130:155-168. [PMID: 34644215 DOI: 10.1080/13813455.2021.1988110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Adipose tissue is a complex organ that is increasingly being recognised as the largest endocrine organ in the body. Adipocytes among multiple cell types of adipose tissue can secrete a variety of adipokines, which are involved in signalling pathways and these can be changed by obesity and cancer. There are proposed mechanisms to link obesity/adiposity to cancer development including adipocytokine dysregulation. Among these adipokines, leptin acts through multiple pathways including the STAT3, MAPK, and PI3K pathways involved in cell growth. Adiponectin has the opposite action from leptin in tumour growth partly because of increased apoptotic responses of p53 and Bax. Visfatin increases cancer cell proliferation through ERK1/2, PI3K/AKT, and p38 which are stimulated by proinflammatory cytokines. Omentin through the PI3K/Akt-Nos pathway is involved in cancer-tumour development. Apelin might be involved through angiogenesis in tumour progressions. PAI-1 via its anti-fibrinolytic activity on cell adhesion and uPA/uPAR activity influence cancer cell growth.
Collapse
Affiliation(s)
- Zoya Tahergorabi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Department of Physiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Lotfi
- Khatamolanbia Hospital, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Maryam Rezaei
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Department of Internal Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Aftabi
- Faculty of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mitra Moodi
- Social Determinants of Health Research Center, Department of Health Promotion and Education, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
25
|
Harborg S, Kjærgaard KA, Thomsen RW, Borgquist S, Cronin-Fenton D, Hjorth CF. New Horizons: Epidemiology of Obesity, Diabetes Mellitus, and Cancer Prognosis. J Clin Endocrinol Metab 2024; 109:924-935. [PMID: 37552777 DOI: 10.1210/clinem/dgad450] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
The global prevalence of obesity and diabetes mellitus has increased in parallel with increasing cancer incidence, due to environmental and lifestyle factors and population aging. Metabolic diseases are associated with increased cancer risk, so a growing number of patients with cancer have coexistent obesity and/or diabetes mellitus. In this narrative review, we highlight recent evidence on the clinical impact of obesity and diabetes mellitus on the prognosis of prostate, breast, and colorectal cancer, and provide an overview of the underlying mechanisms. There is evidence that obesity is associated with increased risk of recurrence, and all-cause and cancer-specific mortality among adults with prostate, breast, and colorectal cancer. Diabetes mellitus is associated with increased all-cause and cancer-specific mortality for these 3 cancers, beyond any impact of obesity. Evidence also suggests increased risk of colorectal cancer recurrence in patients with diabetes mellitus. The underlying mechanisms are multifactorial and likely include hormonal imbalances and chronic inflammation that promote cancer cell growth. Obesity and diabetes mellitus are associated with increased risk of complications and side effects of cancer treatment. Associated comorbidities such as impaired kidney function, cardiovascular disease, and neuropathies may preclude the use of guideline cancer treatment and are competing causes of death. Cancer patients with metabolic diseases require a designated clinical program and a multidisciplinary approach involving oncologists, endocrinologists, surgeons, nutritionists, and physiotherapists, to ensure coordinated and optimized patient care.
Collapse
Affiliation(s)
- Sixten Harborg
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200 Aarhus N, Denmark
| | - Kasper A Kjærgaard
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200 Aarhus N, Denmark
| | - Reimar Wernich Thomsen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200 Aarhus N, Denmark
| | - Signe Borgquist
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Deirdre Cronin-Fenton
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200 Aarhus N, Denmark
| | - Cathrine F Hjorth
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200 Aarhus N, Denmark
| |
Collapse
|
26
|
Tan DJH, Ng CH, Muthiah M, Yong JN, Chee D, Teng M, Wong ZY, Zeng RW, Chin YH, Wang JW, Danpanichkul P, Rajaram RB, DasGupta R, Suzuki H, Takahashi H, Tamaki N, Dan YY, Lui R, Duseja A, Siddiqui MS, Yeoh KG, Sanyal A, Wijarnpreecha K, Loomba R, Mantzoros CS, Huang DQ. Rising global burden of cancer attributable to high BMI from 2010 to 2019. Metabolism 2024; 152:155744. [PMID: 38029839 PMCID: PMC11321712 DOI: 10.1016/j.metabol.2023.155744] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND High body mass index (BMI) is a major risk factor for cancer development, but its impact on the global burden of cancer remains unclear. METHODS We estimated global and regional temporal trends in the burden of cancer attributable to high BMI, and the contributions of various cancer types using the framework of the Global Burden of Disease Study. RESULTS From 2010 to 2019, there was a 35 % increase in deaths and a 34 % increase in disability-adjusted life-years from cancers attributable to high BMI. The age-standardized death rates for cancer attributable to high BMI increased over the study period (annual percentage change [APC] +0.48 %, 95 % CI 0.22 to 0.74 %). The greatest number of deaths from cancer attributable to high BMI occurred in Europe, but the fastest-growing age-standardized death rates and disability-adjusted life-years occurred in Southeast Asia. Liver cancer was the fastest-growing cause of cancer mortality (APC: 1.37 %, 95 % CI 1.25 to 1.49 %) attributable to high BMI. CONCLUSION The global burden of cancer-related deaths attributable to high BMI has increased substantially from 2010 to 2019. The greatest increase in age-standardized death rates occurred in Southeast Asia, and liver cancer is the fastest-growing cause of cancer mortality attributable to high BMI. Urgent and sustained measures are required at a global and regional level to reverse these trends and slow the growing burden of cancer attributed to high BMI.
Collapse
Affiliation(s)
- Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore.
| | - Mark Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Jie Ning Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Douglas Chee
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Margaret Teng
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Zhen Yu Wong
- Nottingham Hospitals University Trust, Nottingham, England, United Kingdom
| | | | - Yip Han Chin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jiong-Wei Wang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Pojsakorn Danpanichkul
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ruveena Bhavani Rajaram
- Department of Medicine, Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Ramanuj DasGupta
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Yock Young Dan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Rashid Lui
- Department of Medicine and Therapeutics, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Ajay Duseja
- Department of Hepatology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Mohammad Shadab Siddiqui
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, United States
| | - Khay Guan Yeoh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Arun Sanyal
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, United States
| | - Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, CA, United States; Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, CA, United States
| | - Christos Socrates Mantzoros
- Departments of Internal Medicine, Boston VA Healthcare System, and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Faculty of Medicine, Harvard University, Boston, MA, United States
| | - Daniel Q Huang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore.
| |
Collapse
|
27
|
Joseph JM, Hillengass J, Tang L, Lesokhin AM, Landgren O, Usmani SZ, Moysich KB, McCann SE, Shah UA. Dietary risk factors for monoclonal gammopathy of undetermined significance in a racially diverse population. Blood Adv 2024; 8:538-548. [PMID: 38055924 PMCID: PMC10835229 DOI: 10.1182/bloodadvances.2023011608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
ABSTRACT Monoclonal gammopathy of undetermined significance (MGUS), a precursor of multiple myeloma, is associated with shorter lifespan and cardiac, renal, neurologic, and immune-related comorbidities. There is little known about modifiable risk factors for this condition. To determine whether the risk of MGUS is associated with dietary factors in a racially diverse population, we conducted a US population-based case-control study from the National Health and Nutrition Examination Survey (1988-2004), which included 373 individuals with MGUS and 1406 matched controls. Diet was characterized by one 24-hour dietary recall, with gram intake of individual foods and beverages aggregated into groups. Unconditional multivariable logistic regressions were used to model associations between intake of several food groups and MGUS, with odds ratios (ORs) and 95% confidence intervals (CIs) reported for the highest relative to the lowest quantile of intake. Daily gram intake of several food and beverage groups were significantly associated with MGUS. MGUS was inversely associated with whole-grain bread, oats, and rice (OR, 0.70; 95% CI, 0.48-1.00; P < .05), fruits (excluding juice) and vegetables (OR, 0.69; 95% CI, 0.52-0.93; P = .02), vegetables (OR, 0.75; 95% CI, 0.56-0.99; P < .05), tomatoes (OR, 0.72; 95% CI, 0.51-1.00; P < .05), and cruciferous vegetables (OR, 0.44; 95% CI, 0.26-0.74; P < .01). Direct associations were observed for sugar-sweetened beverages (OR, 1.34; 95% CI, 1.00-1.78; P < .05), sugar-sweetened soft drinks (OR, 1.41; 95% CI, 1.01-1.96; P = .04), and artificially sweetened soft drinks (OR, 1.55; 95% CI, 1.04-2.33; P = .03). Our study shows that diet is potentially a modifiable risk factor for MGUS.
Collapse
Affiliation(s)
- Janine M. Joseph
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Jens Hillengass
- Myeloma Section, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Li Tang
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Alexander M. Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ola Landgren
- Myeloma Service, Department of Medicine, Sylvester Comprehensive Cancer Center at the University of Miami, Miami, FL
| | - Saad Z. Usmani
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kirsten B. Moysich
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Susan E. McCann
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Urvi A. Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
28
|
Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, Ghavami S. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol 2024; 99:24-44. [PMID: 38309540 DOI: 10.1016/j.semcancer.2024.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
29
|
Di Fusco SA, Spinelli A, Castello L, Marino G, Maraschi I, Gulizia MM, Gabrielli D, Colivicchi F. Do Pathophysiologic Mechanisms Linking Unhealthy Lifestyle to Cardiovascular Disease and Cancer Imply Shared Preventive Measures? - A Critical Narrative Review. Circ J 2024; 88:189-197. [PMID: 34544961 DOI: 10.1253/circj.cj-21-0459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Growing evidence has shown a bidirectional link between the cardiologic and oncologic fields. Several investigations support the role of unhealthy behaviors as pathogenic factors of both cardiovascular disease and cancer. We report epidemiological and research findings on the pathophysiological mechanisms linking unhealthy lifestyle to cardiovascular disease and cancer. For each unhealthy behavior, we also discuss the role of preventive measures able to affect both cardiovascular disease and cancer occurrence and progression.
Collapse
Affiliation(s)
| | | | - Lorenzo Castello
- Clinical and Rehabilitation Cardiology Unit, San Filippo Neri Hospital
| | - Gaetano Marino
- Clinical and Rehabilitation Cardiology Unit, San Filippo Neri Hospital
| | - Ilaria Maraschi
- Clinical and Rehabilitation Cardiology Unit, San Filippo Neri Hospital
| | | | | | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Unit, San Filippo Neri Hospital
| |
Collapse
|
30
|
Chen K, Li J, Ouyang Y, Liu G, Xie Y, Xu G, Peng W, Liu Y, He H, Huang R. Blood Lipid Metabolic Profiles and Causal Links to Site-Specific Cancer Risks: A Mendelian Randomization Study. Nutr Cancer 2024; 76:175-186. [PMID: 38166549 DOI: 10.1080/01635581.2023.2294521] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/04/2024]
Abstract
Observational and Mendelian randomization (MR) studies have established links between dyslipidemia and select cancer susceptibilities. However, there is a lack of comprehensive exploration of causal relationships spanning diverse cancer types. Here, we conducted a two-sample MR analysis to elucidate the causative connections between 9 blood lipid metabolic profiles (namely, adiponectin, leptin, lipoprotein A, apolipoprotein A1, apolipoprotein B, cholesterol, triglycerides, LDL-cholesterol, and HDL-cholesterol) and 21 site-specific cancer risks. Our findings reveal genetically predicted adiponectin levels to be associated with a reduced ovarian cancer risk, while genetically determined leptin increases bladder cancer risk but decreases prostate cancer risk. Lipoprotein A elevates risk of prostate cancer while diminishing risk of endometrial cancer, while apolipoprotein A1 heightens risks of breast and cervical cancers. Furthermore, elevated levels of cholesterol are positively correlated with kidney cancer, and triglycerides demonstrate a positive association with non-melanoma skin cancer but a negative association with breast cancer. Protective effects of genetically predicted LDL-cholesterol on endometrial cancer and adverse effects of HDL-cholesterol on breast cancer are also observed. Our study conclusively establishes that blood lipid metabolic profiles exert causal effects on cancer susceptibility, providing more robust evidence for cancer prevention and prompting contemplation regarding the future health of the human populace.
Collapse
Affiliation(s)
- Kai Chen
- The First People's Hospital of Foshan, Foshan, Guangdong, China
- Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jin Li
- The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yanfeng Ouyang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Guichao Liu
- The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yulong Xie
- The People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Guiqiong Xu
- The People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Weibin Peng
- The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yonglin Liu
- The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Han He
- The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Rong Huang
- The First People's Hospital of Foshan, Foshan, Guangdong, China
| |
Collapse
|
31
|
Li H, Pei X, Yu H, Wang W, Mao D. Autophagic and apoptotic proteins in goat corpus luteum and the effect of Adiponectin/AdipoRon on luteal cell autophagy and apoptosis. Theriogenology 2024; 214:245-256. [PMID: 37944429 DOI: 10.1016/j.theriogenology.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The most abundant adipokine Adiponectin (APN) is present in ovaries. AdipoRon is a small molecule oral APN receptor agonist that binds and activates APN receptors. However, the function of APN/AdipoRon in regulation of luteal cell processes has not been elucidated. To investigate autophagic and apoptotic proteins in goat CLs and effects of APN/AdipoRon on goat luteal autophagy and apoptosis, goat CLs were collected during the early, mid and late luteal stages of the estrous cycle to evaluate autophagic and apoptotic protein patterns. LC3B, Beclin 1, Caspase-3 and Bax/Bcl-2 as well as p-AMPK were differentially abundant at different stages of CL development. All these proteins were primarily localized in large and small luteal steroidogenic cells. Then, isolated luteal steroidogenic cells were evaluated to ascertain the functions and mechanism of APN/AdipoRon in luteal autophagy and apoptosis. Treatment with AdipoRon (25 and 50 μM) and APN (1 μg/mL) for 48 h resulted in a decrease in cell viability and P4 level, increased autophagic and apoptotic proteins. Treatment with AdipoRon (25 μM) led to rapid and transient p-AMPK activation, with p-AMPK elevated at 30 min to 1 h with there being a return to a basal concentration at 2 h post-treatment. Moreover, treatment with AdipoRon led to an increase in autophagy by activating AMPK, which was markedly reduced with treatment with an AMPK inhibitor Compound C and siAMPK, however, abundances of apoptotic proteins were not affected by these treatments. In conclusion, autophagy and apoptosis are involved in the structural regression of goat CL. APN/AdipoRon led to a lesser cell viability and P4 concentration, and activated autophagy through induction of the AMPK while there was induction of apoptosis through an AMPK - independent pathway in goat luteal cells.
Collapse
Affiliation(s)
- Haolin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
32
|
Sarsani V, Brotman SM, Xianyong Y, Fernandes Silva L, Laakso M, Spracklen CN. A cross-ancestry genome-wide meta-analysis, fine-mapping, and gene prioritization approach to characterize the genetic architecture of adiponectin. HGG ADVANCES 2024; 5:100252. [PMID: 37859345 PMCID: PMC10652123 DOI: 10.1016/j.xhgg.2023.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
Previous genome-wide association studies (GWASs) for adiponectin, a complex trait linked to type 2 diabetes and obesity, identified >20 associated loci. However, most loci were identified in populations of European ancestry, and many of the target genes underlying the associations remain unknown. We conducted a cross-ancestry adiponectin GWAS meta-analysis in ≤46,434 individuals from the Metabolic Syndrome in Men (METSIM) cohort and the ADIPOGen and AGEN consortiums. We combined study-specific association summary statistics using a fixed-effects, inverse variance-weighted approach. We identified 22 loci associated with adiponectin (p < 5×10-8), including 15 known and seven previously unreported loci. Among individuals of European ancestry, Genome-wide Complex Traits Analysis joint conditional analysis (GCTA-COJO) identified 14 additional distinct signals at the ADIPOQ, CDH13, HCAR1, and ZNF664 loci. Leveraging the cross-ancestry data, FINEMAP + SuSiE identified 45 causal variants (PP > 0.9), which also exhibited potential pleiotropy for cardiometabolic traits. To prioritize target genes at associated loci, we propose a combinatorial likelihood scoring formalism (Gene Priority Score [GPScore]) based on measures derived from 11 gene prioritization strategies and the physical distance to the transcription start site. With GPScore, we prioritize the 30 most probable target genes underlying the adiponectin-associated variants in the cross-ancestry analysis, including well-known causal genes (e.g., ADIPOQ, CDH13) and additional genes (e.g., CSF1, RGS17). Functional association networks revealed complex interactions of prioritized genes, their functionally connected genes, and their underlying pathways centered around insulin and adiponectin signaling, indicating an essential role in regulating energy balance in the body, inflammation, coagulation, fibrinolysis, insulin resistance, and diabetes. Overall, our analyses identify and characterize adiponectin association signals and inform experimental interrogation of target genes for adiponectin.
Collapse
Affiliation(s)
- Vishal Sarsani
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sarah M Brotman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yin Xianyong
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Lillian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Cassandra N Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
33
|
Kim JW, Kim JH, Lee YJ. The Role of Adipokines in Tumor Progression and Its Association with Obesity. Biomedicines 2024; 12:97. [PMID: 38255203 PMCID: PMC10813163 DOI: 10.3390/biomedicines12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Obesity is a well-established risk factor for various malignancies and emerging evidence suggests that adipokines play a pivotal role in linking excess adiposity to tumorigenesis. Adipokines are bioactive molecules secreted by adipose tissue and their altered expression in obesity contributes to a pro-inflammatory, pro-angiogenic, and growth-promoting microenvironment conducive to tumorigenesis. Leptin, a key adipokine, activates survival and proliferative signaling pathways whereas adiponectin exhibits tumor-suppressive effects by inducing apoptosis and cell cycle arrest. Visfatin has also been documented to promote tumor growth, angiogenesis, migration, and invasion. Moreover, emerging studies suggest that adipokines, such as resistin, apelin, and chemerin, which are overexpressed in obesity, may also possess oncogenic functions. Despite advancements in our understanding of the roles of individual adipokines in cancer, the intricate interplay and crosstalk between adipokines, tumor cells, and the tumor microenvironment remain complex and multifaceted. This review highlights the evolving knowledge of how adipokines contribute to obesity-related tumorigenesis, shedding light on the potential of targeting adipokine signaling pathways as a novel therapeutic approach for obesity-associated cancers. Further research on the specific mechanisms and interactions between adipokines and tumor cells is crucial for a comprehensive understanding of obesity-associated cancer pathogenesis.
Collapse
Affiliation(s)
| | | | - Yoon Jae Lee
- Department of Plastic and Reconstructive Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea; (J.W.K.); (J.H.K.)
| |
Collapse
|
34
|
Kwon OC, Park MC. Patients with systemic lupus erythematosus who are underweight have distinct disease characteristics. Lupus 2024; 33:68-74. [PMID: 38050807 DOI: 10.1177/09612033231220726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
OBJECTIVE This study aimed to detail the disease characteristics of systemic lupus erythematosus (SLE) in individuals who are underweight and assess whether underweight status is associated with SLE disease activity. METHODS This was a retrospective cohort study involving 218 patients newly diagnosed with SLE. Patients were categorized as underweight (body mass index [BMI] <18.5 kg/m2) or not underweight (BMI ≥18.5 kg/m2). We reviewed disease characteristics including the SLE Disease Activity Index 2000 (SLEDAI-2K) at diagnosis. High disease activity was defined as SLEDAI-2K ≥10. Disease characteristics were compared between those who were underweight and not underweight. We used multivariable logistic regression analysis to determine whether underweight status is associated with high disease activity. RESULTS Out of the 218 patients, 35 (16.1%) were underweight and 183 (83.9%) were not. Underweight patients had less renal involvement (5.7% vs 20.2%, p = .040), lower C-reactive protein levels (1.0 [0.3-2.3] mg/L vs 1.2 [0.8-5.0] mg/L, p = .028), and lower SLEDAI-2K scores (6.7 ± 4.6 vs 9.1 ± 5.7, p = .009), and were less likely to be at high disease activity status (22.9% vs 42.6%, p = .028), compared with those who were not underweight. Following adjustment for multiple covariates, being underweight was inversely associated with high disease activity status (adjusted odds ratio = 0.38, 95% confidence interval = 0.16 to 0.92, p = .031). CONCLUSION Patients with SLE who were underweight showed less renal involvement and lower SLEDAI-2K scores compared with those who were not underweight. Moreover, those with SLE who were underweight had a 60% lower risk of exhibiting high disease activity.
Collapse
Affiliation(s)
- Oh Chan Kwon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Chan Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Bui KC, Nguyen TML, Barat S, Scholta T, Xing J, Bhuria V, Sipos B, Wilkens L, Nguyen LT, Le HS, Velavan TP, Bozko P, Plentz RR. Novel Adiponectin Receptor Agonist Inhibits Cholangiocarcinoma via Adenosine Monophosphate-activated Protein Kinase. Curr Med Chem 2024; 31:4534-4548. [PMID: 38361349 DOI: 10.2174/0109298673254969231122114107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) has a poor prognosis and only limited palliative treatment options. The deficiency of adiponectin and adenosine monophosphate-activated protein kinase (AMPK) signaling was reported in several malignancies, but the alteration of these proteins in CCA is still unclear. OBJECTIVES This study aimed to assess the role of adiponectin and AMPK signaling in CCA. Furthermore, AdipoRon, a novel adiponectin receptor (AdipoR) agonist, was evaluated in vitro and in vivo as a new anti-tumor therapy for CCA. METHODS The expression of AdipoR1 and p-AMPKα in human tissue microarrays (TMAs) was evaluated by immunohistochemistry staining (IHC). The effect of 2-(4-Benzoylphenoxy)-N-[1-(phenylmethyl)-4-piperidinyl]-acetamide (AdipoRon) was investigated in vitro with proliferation, crystal violet, migration, invasion, colony formation, senescence, cell cycle and apoptosis assays and in vivo using a CCA engineered mouse model (AlbCre/LSL-KRASG12D/p53L/L). RT-qPCR and western blot methods were applied to study molecular alterations in murine tissues. RESULTS AdipoR1 and p-AMPKα were impaired in human CCA tissues, compared to adjacent non-tumor tissue. There was a positive correlation between the AdipoR1 and p-AMPKα levels in CCA tissues. Treatment with AdipoRon inhibited proliferation, migration, invasion and colony formation and induced apoptosis in a time- and dose-dependent manner in vitro (p<0.05). In addition, AdipoRon reduced the number of CCA and tumor volume, prolonged survival, and decreased metastasis and ascites in the treated group compared to the control group (p<0.05). CONCLUSIONS AdipoR1 and p-AMPKα are impaired in CCA tissues, and AdipoRon effectively inhibits CCA in vitro and in vivo. Thus, AdipoRon may be considered as a potential anti-tumor therapy in CCA.
Collapse
Affiliation(s)
- Khac Cuong Bui
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Laboratory Animal Research Center, Vietnam Military Medical University, Hanoi, Vietnam
- Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Thi Mai Ly Nguyen
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Department of Biochemistry, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Samarpita Barat
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Tim Scholta
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Jun Xing
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Vikas Bhuria
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention-ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Bence Sipos
- Department of Internal Medicine VIII, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ludwig Wilkens
- Institute of Pathology, Nordstadt Krankenhaus, Hannover, Germany
| | - Linh Toan Nguyen
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Huu Song Le
- Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Faculty of Tropical and Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Thirumalaisamy P Velavan
- Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Duy Tan University, Da Nang, Vietnam
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ruben R Plentz
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
- Department of Internal Medicine, Klinikum Bremen Nord, Bremen, Germany
| |
Collapse
|
36
|
Engin A. Obesity-Associated Breast Cancer: Analysis of Risk Factors and Current Clinical Evaluation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:767-819. [PMID: 39287872 DOI: 10.1007/978-3-031-63657-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
37
|
Miao S, Jia H, Huang W, Cheng K, Zhou W, Wang R. Subcutaneous fat predicts bone metastasis in breast cancer: A novel multimodality-based deep learning model. Cancer Biomark 2024; 39:171-185. [PMID: 38043007 PMCID: PMC11091603 DOI: 10.3233/cbm-230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/24/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVES This study explores a deep learning (DL) approach to predicting bone metastases in breast cancer (BC) patients using clinical information, such as the fat index, and features like Computed Tomography (CT) images. METHODS CT imaging data and clinical information were collected from 431 BC patients who underwent radical surgical resection at Harbin Medical University Cancer Hospital. The area of muscle and adipose tissue was obtained from CT images at the level of the eleventh thoracic vertebra. The corresponding histograms of oriented gradients (HOG) and local binary pattern (LBP) features were extracted from the CT images, and the network features were derived from the LBP and HOG features as well as the CT images through deep learning (DL). The combination of network features with clinical information was utilized to predict bone metastases in BC patients using the Gradient Boosting Decision Tree (GBDT) algorithm. Regularized Cox regression models were employed to identify independent prognostic factors for bone metastasis. RESULTS The combination of clinical information and network features extracted from LBP features, HOG features, and CT images using a convolutional neural network (CNN) yielded the best performance, achieving an AUC of 0.922 (95% confidence interval [CI]: 0.843-0.964, P< 0.01). Regularized Cox regression results indicated that the subcutaneous fat index was an independent prognostic factor for bone metastasis in breast cancer (BC). CONCLUSION Subcutaneous fat index could predict bone metastasis in BC patients. Deep learning multimodal algorithm demonstrates superior performance in assessing bone metastases in BC patients.
Collapse
Affiliation(s)
- Shidi Miao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Haobo Jia
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Wenjuan Huang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang, China
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ke Cheng
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Wenjin Zhou
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Ruitao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
38
|
Li D, Ju F, Wang H, Fan C, Jacob JC, Gul S, Zaliani A, Wartmann T, Polidori MC, Bruns CJ, Zhao Y. Combination of the biomarkers for aging and cancer? - Challenges and current status. Transl Oncol 2023; 38:101783. [PMID: 37716258 PMCID: PMC10514562 DOI: 10.1016/j.tranon.2023.101783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The proportion of patients diagnosed with cancer has been shown to rise with the increasing aging global population. Advanced age is a major risk factor for morbidity and mortality in older adults. As individuals experience varying health statuses, particularly with age, it poses a challenge for medical professionals in the cancer field to obtain standardized treatment outcomes. Hence, relying solely on chronological age and disease-related parameters is inadequate for clinical decision-making for elderly patients. With functional, multimorbidity-related, and psychosocial changes that occur with aging, oncologic diseases may develop and be treated differently from younger patients, leading to unique challenges in treatment efficacy and tolerance. To overcome this challenge, personalized therapy using biomarkers has emerged as a promising solution. Various categories of biomarkers, including inflammatory, hematological, metabolic, endocrine, and DNA modification-related indicators, may display features related to both cancer and aging, aiding in the development of innovative therapeutic approaches for patients with cancer in old age. Furthermore, physical functional measurements as non-molecular phenotypic biomarkers are being investigated for their potential complementary role in structured multidomain strategies to combat age-related diseases such as cancer. This review provides insight into the current developments, recent discoveries, and significant challenges in cancer and aging biomarkers, with a specific focus on their application in advanced age.
Collapse
Affiliation(s)
- Dai Li
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Feng Ju
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Han Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chunfu Fan
- Medical faculty, University of Cologne, Germany
| | | | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology, Schnackenburgallee 114, d-22525 Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Schnackenburgallee 114, d-22525 Hamburg, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology, Schnackenburgallee 114, d-22525 Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Schnackenburgallee 114, d-22525 Hamburg, Germany
| | - Thomas Wartmann
- Department of General, Visceral und Vascular Surgery, Otto von Guericke University, Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress-Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne Germany
| | - Christiane J Bruns
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Integrated Oncology (CIO) Aachen, Bonn, Cologne and Düsseldorf, Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| |
Collapse
|
39
|
Li H, Li J, Qu X, Dai H, Liu J, Ma M, Wang J, Dong W, Wang W. Establishment and validation of a novel lysosome-related gene signature for predicting prognosis and immune landscape in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:17543-17557. [PMID: 37903936 DOI: 10.1007/s00432-023-05477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Recent studies have shown that lysosomes not only provide energy for tumor cell growth, but also participate in the occurrence and development of malignant tumors by regulating various ways of tumor cell death. However, the role of lysosome associated genes (LSAGs) in hepatocellular carcinoma (HCC) remains unclear. METHODS Transcriptome data and clinical data of HCC were downloaded from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. We identified differential expression of LSAGs by comparing tumor tissue with normal liver tissue. Subsequently, we used univariate COX analysis and least absolute shrinkage and selection operator (LASSO) COX regression to construct the prognostic feature of LSAGs. Kaplan-Meier survival curve and receiver operating characteristic curve were used to evaluate the predictive ability of LSAGs feature. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for functional enrichment analysis of risk differential genes. The relationship between LSAGs score and tumor microenvironment and chemotherapy drug sensitivity was analyzed. Finally, the cellular communication of tumor cells with high and low expression of model LSAGs was explored. RESULTS We identified sixteen prognostic associated LSAGs, four of which were selected to construct prognostic feature of LSAGs. Patients in the low LSAGs group had a better prognosis than those in the high LSAGs group. GO and KEGG analyses showed that risk differential genes were enriched in leukocyte migration, cytokine-cytokine receptor interaction and PI3K-Akt signaling pathway. The group with low LSAGs score had lower immune score. Patients in the high LSAGs group were more sensitive to drugs for chemotherapy. In addition, tumor cells with high expression of model LSAGs showed stronger association with immune cells through the interleukin-2 (IL2), fibroblast growth factor (FGF), adiponectin, and bone morphogenetic proteins (BMP) signaling pathways. CONCLUSION We established a LSAGs signature that had the ability to predict clinical prognosis and immune landscape, proposing potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Haoling Li
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui, 233030, China
- Department of Clinical Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Jing Li
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Xiangyu Qu
- Department of Clinical Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Hengwen Dai
- Department of Clinical Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Junjie Liu
- Department of Clinical Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Mengxi Ma
- Department of Clinical Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Jian Wang
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| | - Wei Dong
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China.
| | - Wenrui Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui, 233030, China.
- Department of Biotechnology, School of Life Sciences, Bengbu Medical College, Anhui, 233030, China.
| |
Collapse
|
40
|
Capuozzo M, Celotto V, Landi L, Ferrara F, Sabbatino F, Perri F, Cascella M, Granata V, Santorsola M, Ottaiano A. Beyond Body Size: Adiponectin as a Key Player in Obesity-Driven Cancers. Nutr Cancer 2023; 75:1848-1862. [PMID: 37873648 DOI: 10.1080/01635581.2023.2272343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023]
Abstract
Obesity, a complex and multifactorial disease influenced by genetic, environmental, and psychological factors, has reached epidemic proportions globally, posing a significant health challenge. In addition to its established association with cardiovascular disease and type II diabetes, obesity has been implicated as a risk factor for various cancers. However, the precise biological mechanisms linking obesity and cancer remain largely understood. Adipose tissue, an active endocrine organ, produces numerous hormones and bioactive molecules known as adipokines, which play a crucial role in metabolism, immune responses, and systemic inflammation. Notably, adiponectin (APN), the principal adipocyte secretory protein, exhibits reduced expression levels in obesity. In this scoping review, we explore and discuss the role of APN in influencing cancer in common malignancies, including lung, breast, colorectal, prostate, gastric, and endometrial cancers. Our review aims to emphasize the critical significance of investigating this field, as it holds great potential for the development of innovative treatment strategies that specifically target obesity-related malignancies. Furthermore, the implementation of more rigorous and comprehensive prevention and treatment policies for obesity is imperative in order to effectively mitigate the risk of associated diseases, such as cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Salerno, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | | | | |
Collapse
|
41
|
Begum M, Choubey M, Tirumalasetty MB, Arbee S, Mohib MM, Wahiduzzaman M, Mamun MA, Uddin MB, Mohiuddin MS. Adiponectin: A Promising Target for the Treatment of Diabetes and Its Complications. Life (Basel) 2023; 13:2213. [PMID: 38004353 PMCID: PMC10672343 DOI: 10.3390/life13112213] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes mellitus, a chronic metabolic disorder characterized by hyperglycemia, presents a formidable global health challenge with its associated complications. Adiponectin, an adipocyte-derived hormone, has emerged as a significant player in glucose metabolism and insulin sensitivity. Beyond its metabolic effects, adiponectin exerts anti-inflammatory, anti-oxidative, and vasoprotective properties, making it an appealing therapeutic target for mitigating diabetic complications. The molecular mechanisms by which adiponectin impacts critical pathways implicated in diabetic nephropathy, retinopathy, neuropathy, and cardiovascular problems are thoroughly examined in this study. In addition, we explore possible treatment options for increasing adiponectin levels or improving its downstream signaling. The multifaceted protective roles of adiponectin in diabetic complications suggest its potential as a novel therapeutic avenue. However, further translational studies and clinical trials are warranted to fully harness the therapeutic potential of adiponectin in the management of diabetic complications. This review highlights adiponectin as a promising target for the treatment of diverse diabetic complications and encourages continued research in this pivotal area of diabetes therapeutics.
Collapse
Affiliation(s)
- Mahmuda Begum
- Department of Internal Medicine, HCA-St David’s Medical Center, 919 E 32nd St, Austin, TX 78705, USA;
| | - Mayank Choubey
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA; (M.C.); (M.B.T.); (M.W.)
| | - Munichandra Babu Tirumalasetty
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA; (M.C.); (M.B.T.); (M.W.)
| | - Shahida Arbee
- Institute for Molecular Medicine, Aichi Medical University, 1-Yazako, Karimata, Aichi, Nagakute 480-1103, Japan;
| | - Mohammad Mohabbulla Mohib
- Julius Bernstein Institute of Physiology, Medical School, Martin Luther University of Halle-Wittenberg, Magdeburger Straße 6, 06112 Halle, Germany;
| | - Md Wahiduzzaman
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA; (M.C.); (M.B.T.); (M.W.)
| | - Mohammed A. Mamun
- CHINTA Research Bangladesh, Savar 1342, Bangladesh;
- Department of Public Health and Informatics, Jahangirnagar University, Savar 1342, Bangladesh
| | - Mohammad Borhan Uddin
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh;
| | - Mohammad Sarif Mohiuddin
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA; (M.C.); (M.B.T.); (M.W.)
| |
Collapse
|
42
|
Khaledian B, Thibes L, Shimono Y. Adipocyte regulation of cancer stem cells. Cancer Sci 2023; 114:4134-4144. [PMID: 37622414 PMCID: PMC10637066 DOI: 10.1111/cas.15940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Cancer stem cells (CSCs) are a highly tumorigenic subpopulation of the cancer cells within a tumor that drive tumor initiation, progression, and therapy resistance. In general, stem cell niche provides a specific microenvironment in which stem cells are present in an undifferentiated and self-renewable state. CSC niche is a specialized tumor microenvironment for CSCs which provides cues for their maintenance and propagation. However, molecular mechanisms for the CSC-niche interaction remain to be elucidated. We have revealed that adipsin (complement factor D) and its downstream effector hepatocyte growth factor are secreted from adipocytes and enhance the CSC properties in breast cancers in which tumor initiation and progression are constantly associated with the surrounding adipose tissue. Considering that obesity, characterized by excess adipose tissue, is associated with an increased risk of multiple cancers, it is reasonably speculated that adipocyte-CSC interaction is similarly involved in many types of cancers, such as pancreas, colorectal, and ovarian cancers. In this review, various molecular mechanisms by which adipocytes regulate CSCs, including secretion of adipokines, extracellular matrix production, biosynthesis of estrogen, metabolism, and exosome, are discussed. Uncovering the roles of adipocytes in the CSC niche will propose novel strategies to treat cancers, especially those whose progression is linked to obesity.
Collapse
Affiliation(s)
- Behnoush Khaledian
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| | - Lisa Thibes
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| | - Yohei Shimono
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
43
|
Shakeri F, Mohamadynejad P, Moghanibashi M. Identification of autophagy and angiogenesis modulators in colorectal cancer based on bioinformatics analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:340-355. [PMID: 37791824 DOI: 10.1080/15257770.2023.2259431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth leading cause of cancer-related death worldwide. The purpose of this study was to discover novel molecular pathways and potential prognosis biomarkers. To achieve this, we acquired five microarray datasets from the Gene Expression Omnibus (GEO) database. We identified differentially expressed genes between CRC and adjacent normal tissue samples and further validated them using The Cancer Genome Atlas (TCGA) database. Using various analytical approaches, including the construction of a competing endogenous RNA (ceRNA) network, Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses, as well as survival analysis, we identified key genes and pathways associated with the diagnosis and prognosis of CRC. We obtained a total of 185 differentially expressed genes, comprising 17 lncRNAs, 30 miRNAs, and 138 mRNAs. The ceRNA network consisted of 17 lncRNAs, 25 miRNAs, and 7 mRNAs. Among the 7 mRNAs involved in the ceRNA network, SLC7A5 and KRT80 were found to be upregulated, while ADIPOQ, CCBE1, KCNB1, CADM2, and CHRDL1 were downregulated in CRC. Further analysis revealed that ADIPOQ and SLC7A5 are involved in the AMPK and mTOR signaling pathway, respectively. In addition, survival analysis demonstrated a statistically significant relationship between ADIPOQ, SLC7A5, and overall survival rates in CRC patients. In conclusion, our findings suggest that downregulation of ADIPOQ and upregulation of SLC7A5 in tumor cells lead to increased mTORC1 activity, reduced autophagy, enhanced angiogenesis, and ultimately contribute to cancer progression and decreased survival in CRC patients.
Collapse
Affiliation(s)
- Fariba Shakeri
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
44
|
James A, Akash K, Sharma A, Bhattacharyya S, Sriamornsak P, Nagraik R, Kumar D. Himalayan flora: targeting various molecular pathways in lung cancer. Med Oncol 2023; 40:314. [PMID: 37787816 DOI: 10.1007/s12032-023-02171-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The fatal amplification of lung cancer across the globe and the limitations of current treatment strategies emphasize the necessity for substitute therapeutics. The incorporation of phyto-derived components in chemo treatment holds promise in addressing those challenges. Despite the significant progressions in lung cancer therapeutics, the complexities of molecular mechanism and pathways underlying this disease remain inadequately understood, necessitating novel biomarker targeting. The Himalayas, abundant in diverse plant varieties with established chemotherapeutic potential, presents a promising avenue for investigating potential cures for lung carcinoma. The vast diversity of phytocompounds herein can be explored for targeting the disease. This review delves into the multifaceted targets of lung cancer and explores the established phytochemicals with their specific molecular targets. It emphasizes comprehending the intricate pathways that govern effective therapeutic interventions for lung cancer. Through this exploration of Himalayan flora, this review seeks to illuminate potential breakthroughs in lung cancer management using natural compounds. The amalgamation of Himalayan plant-derived compounds with cautiously designed combined therapeutic approaches such as nanocarrier-mediated drug delivery and synergistic therapy offers an opportunity to redefine the boundaries of lung cancer treatment by reducing the drug resistance and side effects and enabling an effective targeted delivery of drugs. Furthermore, additional studies are obligatory to understand the possible derivation of natural compounds used in current lung cancer treatment from plant species within the Himalayan region.
Collapse
Affiliation(s)
- Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - K Akash
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, 400715, Chongqing, People's Republic of China
- Department of Sciences, Nirma University, Ahmedabad, Gujarat, 382481, India
| | | | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
45
|
Babic A, Wang QL, Lee AA, Yuan C, Rifai N, Luo J, Tabung FK, Shadyab AH, Wactawski-Wende J, Saquib N, Kim J, Kraft P, Sesso HD, Buring JE, Giovannucci EL, Manson JE, Stampfer MJ, Ng K, Fuchs CS, Wolpin BM. Sex-Specific Associations between Adiponectin and Leptin Signaling and Pancreatic Cancer Survival. Cancer Epidemiol Biomarkers Prev 2023; 32:1458-1469. [PMID: 37555827 PMCID: PMC10592159 DOI: 10.1158/1055-9965.epi-23-0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Circulating adiponectin and leptin have been associated with risk of pancreatic cancer. However, the relationship between long-term exposure to these adipokines in the prediagnostic period with patient survival has not been investigated. METHODS Adipokine levels were measured in prospectively collected samples from 472 patients with pancreatic cancer. Because of sex-specific differences in adipokine levels, associations were evaluated separately for men and women. In a subset of 415 patients, we genotyped 23 SNPs in adiponectin receptor genes (ADIPOR1 and ADIPOR2) and 30 SNPs in the leptin receptor gene (LEPR). RESULTS Adiponectin levels were inversely associated with survival in women [HR, 1.71; 95% confidence interval (CI), 1.15-2.54]; comparing top with bottom quartile but not in men (HR, 0.89; 95% CI, 0.46-1.70). The SNPs rs10753929 and rs1418445 in ADIPOR1 were associated with survival in the combined population (per minor allele HR, 0.66; 95% CI, 0.51-0.84, and HR, 1.33; 95% CI, 1.12-1.58, respectively). Among SNPs in LEPR, rs12025906, rs3790431, and rs17127601 were associated with survival in the combined population [HRs, 1.54 (95% CI, 1.25-1.90), 0.72 (95% CI, 0.59-0.88), and 0.70 (95% CI, 0.56-0.89), respectively], whereas rs11585329 was associated with survival in men only (HR, 0.39; 95% CI, 0.23-0.66; Pinteraction = 0.0002). CONCLUSIONS High levels of adiponectin in the prediagnostic period were associated with shorter survival among women, but not among men with pancreatic cancer. Several polymorphisms in ADIPOR1 and LEPR are associated with patient survival. IMPACT Our findings reveal the association between adipokine signaling and pancreatic cancer survival and demonstrate the importance of examining obesity-associated pathways in relation to pancreatic cancer in a sex-specific manner.
Collapse
Affiliation(s)
- Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Qiao-Li Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Alice A. Lee
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Nader Rifai
- Department of Laboratory Medicine, Children’s Hospital Boston, Boston, MA
| | - Juhua Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN
| | - Fred K. Tabung
- Department of Internal Medicine, Ohio State University, Columbus, OH
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York, Buffalo, NY
| | - Nazmus Saquib
- College of Medicine, Sulaiman Al Rajhi University, Al Bukairiyah, Kingdom of Saudi Arabia
| | - Jihye Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Howard D. Sesso
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Julie E. Buring
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Ambulatory Care and Prevention, Harvard Medical School, Boston, MA
| | - Edward L. Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| | - JoAnn E. Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| | - Meir J. Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Charles S. Fuchs
- Hematology and Oncology Product Development, Genentech & Roche, South San Francisco, CA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| |
Collapse
|
46
|
Almanza-Aguilera E, Cano A, Gil-Lespinard M, Burguera N, Zamora-Ros R, Agudo A, Farràs M. Mediterranean diet and olive oil, microbiota, and obesity-related cancers. From mechanisms to prevention. Semin Cancer Biol 2023; 95:103-119. [PMID: 37543179 DOI: 10.1016/j.semcancer.2023.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Olive oil (OO) is the main source of added fat in the Mediterranean diet (MD). It is a mix of bioactive compounds, including monounsaturated fatty acids, phytosterols, simple phenols, secoiridoids, flavonoids, and terpenoids. There is a growing body of evidence that MD and OO improve obesity-related factors. In addition, obesity has been associated with an increased risk for several cancers: endometrial, oesophageal adenocarcinoma, renal, pancreatic, hepatocellular, gastric cardia, meningioma, multiple myeloma, colorectal, postmenopausal breast, ovarian, gallbladder, and thyroid cancer. However, the epidemiological evidence linking MD and OO with these obesity-related cancers, and their potential mechanisms of action, especially those involving the gut microbiota, are not clearly described or understood. The goals of this review are 1) to update the current epidemiological knowledge on the associations between MD and OO consumption and obesity-related cancers, 2) to identify the gut microbiota mechanisms involved in obesity-related cancers, and 3) to report the effects of MD and OO on these mechanisms.
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Ainara Cano
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Mercedes Gil-Lespinard
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Nerea Burguera
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain; Department of Nutrition, Food Sciences, and Gastronomy, Food Innovation Network (XIA), Institute for Research on Nutrition and Food Safety (INSA), Faculty of Pharmacy and Food Sciences University of Barcelona, Barcelona, Spain.
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Marta Farràs
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
47
|
Mallardo M, Scalia G, Raia M, Daniele A, Nigro E. The Effects of Adiponectin on the Behavior of B-Cell Leukemia Cells: Insights from an In Vitro Study. Biomedicines 2023; 11:2585. [PMID: 37761026 PMCID: PMC10527421 DOI: 10.3390/biomedicines11092585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Non-Hodgkin's lymphoma (NHL), the most frequent hematological neoplasm worldwide, represents a heterogeneous group of malignancies. The etiology of NHL remains to be fully elucidated, but the role of adipose tissue (AT) in immune function via the secretion of adipokines was recently recognized. Among adipokines, adiponectin has garnered attention for its beneficial properties. This study aimed to explore the in vitro effects of AdipoRon, an adiponectin agonist, on JVM-2, a lymphoblast cell line used as a representative disease model. Methods: JVM-2 cells were treated with different concentrations of AdipoRon to evaluate its effects on viability (via an MTT test), cell cycle distribution (via an FACS analysis), invasiveness (via a Matrigel assay) and colony-forming ability; protein expression was assessed via a real-time PCR (qPCR) and/or Western blotting (WB). Results: We found that the prolonged exposure of JVM-2 cells to AdipoRon led to a reduction in their viability due to a cytostatic effect. Additionally, AdipoRon stimulated both the formation of cell colonies and the expression of E-cadherin. Interestingly, the administration of AdipoRon increased the invasive potential of JVM-2 cells. Conclusions: Our findings indicate that adiponectin is involved in the regulation of different cellular processes of JVM-2 cells, supporting its potential association with a pro-tumorigenic phenotype and indicating that it might contribute to the increased aggressiveness and metastatic potential of B lymphoma cells. However, additional studies are required to fully understand the molecular mechanisms of adiponectin's actions on lymphoblasts and whether it may represent a marker of disease.
Collapse
Affiliation(s)
- Marta Mallardo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, Via A. Vivaldi, 81100 Caserta, Italy; (M.M.); (E.N.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore” Scarl, Via G. Salvatore 486, 80145 Napoli, Italy; (G.S.); (M.R.)
| | - Giulia Scalia
- CEINGE Biotecnologie Avanzate “Franco Salvatore” Scarl, Via G. Salvatore 486, 80145 Napoli, Italy; (G.S.); (M.R.)
| | - Maddalena Raia
- CEINGE Biotecnologie Avanzate “Franco Salvatore” Scarl, Via G. Salvatore 486, 80145 Napoli, Italy; (G.S.); (M.R.)
| | - Aurora Daniele
- CEINGE Biotecnologie Avanzate “Franco Salvatore” Scarl, Via G. Salvatore 486, 80145 Napoli, Italy; (G.S.); (M.R.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Via Pansini, 80131 Napoli, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, Via A. Vivaldi, 81100 Caserta, Italy; (M.M.); (E.N.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore” Scarl, Via G. Salvatore 486, 80145 Napoli, Italy; (G.S.); (M.R.)
| |
Collapse
|
48
|
Bocian-Jastrzębska A, Malczewska-Herman A, Kos-Kudła B. Role of Leptin and Adiponectin in Carcinogenesis. Cancers (Basel) 2023; 15:4250. [PMID: 37686525 PMCID: PMC10486522 DOI: 10.3390/cancers15174250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hormones produced by adipocytes, leptin and adiponectin, are associated with the process of carcinogenesis. Both of these adipokines have well-proven oncologic potential and can affect many aspects of tumorigenesis, from initiation and primary tumor growth to metastatic progression. Involvement in the formation of cancer includes interactions with the tumor microenvironment and its components, such as tumor-associated macrophages, cancer-associated fibroblasts, extracellular matrix and matrix metalloproteinases. Furthermore, these adipokines participate in the epithelial-mesenchymal transition and connect to angiogenesis, which is critical for cancer invasiveness and cancer cell migration. In addition, an enormous amount of evidence has demonstrated that altered concentrations of these adipocyte-derived hormones and the expression of their receptors in tumors are associated with poor prognosis in various types of cancer. Therefore, leptin and adiponectin dysfunction play a prominent role in cancer and impact tumor invasion and metastasis in different ways. This review clearly and comprehensively summarizes the recent findings and presents the role of leptin and adiponectin in cancer initiation, promotion and progression, focusing on associations with the tumor microenvironment and its components as well as roles in the epithelial-mesenchymal transition and angiogenesis.
Collapse
Affiliation(s)
- Agnes Bocian-Jastrzębska
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland; (A.M.-H.); (B.K.-K.)
| | | | | |
Collapse
|
49
|
He J, Li X. Relationship between chronic obstructive pulmonary disease and adiponectin concentrations: An updated meta-analysis and single-cell RNA sequencing. Medicine (Baltimore) 2023; 102:e34825. [PMID: 37603523 PMCID: PMC10443756 DOI: 10.1097/md.0000000000034825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Adipose tissue, being an organ of the endocrine system, can influence the severity of chronic obstructive pulmonary disease (COPD). Even though several inflammatory markers can potentially significantly influence lung function, the precise function of adipokines, like adiponectin, in COPD is still disputed. To analyze the association of COPD with adiponectin concentrations, a meta-analysis of the most recent literature and single-cell sequencing data were conducted. METHODS Studies in Embase, PubMed, Cochrane Library, and Web of Science were browsed to obtain relevant data, which were then assessed with the aid of R 4.1.3 and STATA 11.0 software. Standardized mean differences and correlation coefficients aided the analysis of effect values. Moreover, a single-cell sequencing GSE136831 dataset was retrieved to ascertain the mRNA expression of adiponectin gene (ADIPOQ) in the lung tissue of COPD patients to confirm the difference in the expression of adiponectin between the case and control groups. RESULTS This meta-analysis comprised 18 publications involving 24 studies. The overall combined data established the concentration of plasma/serum adiponectin as significantly higher in patients with COPD compared to healthy subjects. Subgroup analyses based on disease status, specimen type, ethnicity, study design method, measurement method, and age of COPD patients demonstrated that all patients with COPD had elevated levels of adiponectin compared to healthy controls. When subgroup analysis was performed for gender alone, the results depicted that male COPD patients had significantly higher adiponectin than healthy males, while female patients of COPD had elevated adiponectin compared to healthy females. Furthermore, it was found that plasma/serum adiponectin appeared to be positively correlated with tumor necrosis factor-α, and it was negatively correlated with FEV1% and FEV1/FVC. The results of single-cell sequencing data suggested that ADIPOQ mRNA was mainly expressed in alveolar epithelial cells, and the level of ADIPOQ mRNA was higher in lung tissues of patients with COPD than in lung tissues of healthy subjects. CONCLUSION This meta-analysis suggests that the levels of plasma/serum adiponectin are significantly elevated in patients with COPD versus controls. Tumor necrosis factor-α, FEV1/FVC, and FEV1% may all be associated with the concentrations of adiponectin.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Key Laboratory of Geriatric Respiratory Diseases of Sichuan Higher Education Institutes, Chengdu, China
| | - Xuemei Li
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Neurosurgery department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
50
|
Bombarda-Rocha V, Silva D, Badr-Eddine A, Nogueira P, Gonçalves J, Fresco P. Challenges in Pharmacological Intervention in Perilipins (PLINs) to Modulate Lipid Droplet Dynamics in Obesity and Cancer. Cancers (Basel) 2023; 15:4013. [PMID: 37568828 PMCID: PMC10417315 DOI: 10.3390/cancers15154013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1-5), each with specific expression patterns and metabolic activation, but all capable of regulating the activity of lipases on LD. This plurality creates a complex orchestrated mechanism that is directly related to the healthy balance between lipogenesis and lipolysis. Given the essential role of PLINs in the modulation of the lipid metabolism, these proteins can become interesting targets for the treatment of lipid-associated diseases. Since reprogrammed lipid metabolism is a recognized cancer hallmark, and obesity is a known risk factor for cancer and other comorbidities, the modulation of PLINs could either improve existing treatments or create new opportunities for the treatment of these diseases. Even though PLINs have not been, so far, directly considered for pharmacological interventions, there are many established drugs that can modulate PLINs activity. Therefore, the aim of this study is to assess the involvement of PLINs in diseases related to lipid metabolism dysregulation and whether PLINs can be viewed as potential therapeutic targets for cancer and obesity.
Collapse
Affiliation(s)
- Victória Bombarda-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Allal Badr-Eddine
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
| | - Patrícia Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|