1
|
Shang X, Zhang Z, Mao K, Tang H, Zhou G, Mao Y, Li Y, Luo Z, Zhao P, Wang C, Ma H. The clinical value of autologous platelet-rich plasma extraction and injection as an adjunct to urethroplasty in the treatment of penile hypospadias in children. Front Pediatr 2025; 13:1470092. [PMID: 40370973 PMCID: PMC12075130 DOI: 10.3389/fped.2025.1470092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Objective To evaluate the clinical efficacy and safety of autologous platelet-rich plasma (PRP) as an adjunctive treatment for penile hypospadias repair in children, and to explore its independent role in reducing postoperative complications. Methods We retrospectively analyzed clinical data from 103 pediatric patients undergoing penile hypospadias repair between December 2019 and December 2021 at the Affiliated Hospital of Zunyi Medical University. All patients received standard penile straightening and tubularized incised plate (TIP) urethroplasty. Patients in the study group (n = 53) additionally received intraoperative autologous PRP injections, whereas the control group (n = 50) did not. Outcomes analyzed included operation time, postoperative ambulation time, pain scores, length of hospital stay, incision infection rates at postoperative day 7, surgical success rates, and incidence of complications within 2 years postoperatively. Statistical analyses incorporated 95% confidence intervals (CIs), effect sizes (Cohen's d and relative risk, RR), and multivariate logistic regression analyses adjusting for potential confounders such as patient age and hypospadias severity. Results No significant differences were observed between groups regarding operation time, postoperative ambulation time, or length of hospital stay (p > 0.05). Patients in the PRP group experienced significantly reduced postoperative pain (mean difference -2.14; 95% CI: -2.46 to -1.81; p < 0.001; Cohen's d = 2.35) and notably lower incision infection rates on postoperative day 7 (RR = 0.13; 95% CI: 0.03-0.60; p = 0.006). Surgical success rates were significantly higher in the PRP group compared to controls (94.3% vs. 72.0%; RR = 1.31; 95% CI: 1.09-1.58; p = 0.002). Multivariate logistic regression analysis confirmed that PRP injection remained independently associated with a significant reduction in postoperative complications after adjusting for age and severity of hypospadias (adjusted OR = 0.14; 95% CI: 0.04-0.52; p = 0.003). Conclusion Adjunctive autologous PRP treatment in pediatric penile hypospadias repair effectively alleviates postoperative pain, enhances wound healing, significantly reduces short-term complications, and improves surgical success rates. Future randomized, multicenter trials with extended follow-up periods are required to further evaluate long-term outcomes and to compare PRP efficacy directly with other biomaterials used in urethroplasty.
Collapse
Affiliation(s)
- Xianhui Shang
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Zhendong Zhang
- Department of Gynaecology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kaiyi Mao
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Hongyanng Tang
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Guangxu Zhou
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Yuchen Mao
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Yingbo Li
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Zhen Luo
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Peng Zhao
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Cao Wang
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Hong Ma
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| |
Collapse
|
2
|
Vrapcea A, Pisoschi CG, Ciupeanu-Calugaru ED, Traşcă ET, Tutunaru CV, Rădulescu PM, Rădulescu D. Inflammatory Signatures and Biological Markers in Platelet-Rich Plasma Therapy for Hair Regrowth: A Comprehensive Narrative Analysis. Diagnostics (Basel) 2025; 15:1123. [PMID: 40361941 DOI: 10.3390/diagnostics15091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Context: Hair loss (alopecia) presents both aesthetic and psychological challenges, significantly impacting quality of life. Platelet-rich plasma (PRP) therapy has gained prominence due to its ability to deliver growth factors and modulate local inflammation. However, uncertainties remain regarding the mechanisms through which systemic inflammation, oxidative stress, and coagulation factors influence PRP's efficacy. Objectives: This narrative review explores the impact of inflammatory biomarkers (e.g., NLR, PLR, IL-6, TNF-α) and growth factors (VEGF, TGF-β, FGF) on hair regeneration in PRP therapy. It discusses how oxidative stress and vitamin status (B12, D, folate) correlate with therapeutic success. Additionally, it examines the PRP preparation protocols and combined approaches (microneedling, minoxidil, LLLT) that may amplify clinical responses. Results: The synthesized data highlight that elevated systemic inflammation (increased NLR/PLR values) can limit PRP's effectiveness, while the regulation of inflammation and optimization of antioxidant status can enhance hair density and thickness. Integrating vitamins and an anti-inflammatory diet into the therapeutic protocol is associated with more stable hair growth and reduced adverse reactions. The variability in PRP's preparation and activation methods remains a major obstacle, underscoring the need for standardization. Conclusions: Integrating inflammatory biomarkers with oxidative stress indicators provides fresh insights for tailoring PRP therapies in alopecia. Multimodal treatment strategies combined with collaborative multicenter studies-in which biological markers are embedded within rigorous protocols-could establish standardized methodologies and significantly enhance the treatment success.
Collapse
Affiliation(s)
- Adelina Vrapcea
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200585 Craiova, Romania
| | - Cătălina Gabriela Pisoschi
- Biochemistry Department, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200585 Craiova, Romania
| | | | - Emil-Tiberius Traşcă
- Department of Surgery, The Military Emergency Clinical Hospital 'Dr. Stefan Odobleja', University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | | | - Dumitru Rădulescu
- Department of Surgery, The Military Emergency Clinical Hospital 'Dr. Stefan Odobleja', University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
3
|
Coenen DM, Alfar HR, Whiteheart SW. Platelet endocytosis and α-granule cargo packaging are essential for normal skin wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636051. [PMID: 39975047 PMCID: PMC11838500 DOI: 10.1101/2025.02.01.636051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The high prevalence of chronic wounds, i.e., 2.5-3% of the US population, causes a large social and financial burden. Physiological wound healing is a multi-step process that involves different cell types and growth factors. Platelet-rich plasma or platelet-derived factors have been used to accelerate wound repair, but their use has been controversial with mixed results. Thus, a detailed functional understanding of platelet functions in wound healing beyond hemostasis is needed. This study investigated the importance of platelet α-granule cargo packaging and endocytosis in a dorsal full-thickness excisional skin wound model using mice with defects in α-granule cargo packaging (Nbeal2 -/- mice) and endocytosis (platelet-specific Arf6 -/- and VAMP2/3 Δ mice). We found that proper kinetic and morphological healing of dorsal skin wounds in mice requires both de novo as well as endocytosed platelet α-granule cargo. Histological and morphometric analyses of cross-sectional wound sections illustrated that mice with defects in α-granule cargo packaging or platelet endocytosis had delayed (epi)dermal regeneration in both earlier and advanced healing. This was reflected by reductions in wound collagen and muscle/keratin content, delayed scab formation and/or resolution, re-epithelialization, and cell migration and proliferation. Molecular profiling analysis of wound extracts showed that the impact of platelet function extends beyond hemostasis to the inflammation, proliferation, and tissue remodeling phases via altered expression of several bioactive molecules, including IL-1β, VEGF, MMP-9, and TIMP-1. These findings provide a basis for advances in clinical wound care through a better understanding of key mechanistic processes and cellular interactions in (patho)physiological wound healing. Key points De novo and endocytosed platelet α-granule cargo support physiological skin wound healing Platelet function in wound healing extends to the inflammation, proliferation, and tissue remodeling phases.
Collapse
|
4
|
Bartold M, Ivanovski S. Biological processes and factors involved in soft and hard tissue healing. Periodontol 2000 2025; 97:16-42. [PMID: 38243683 PMCID: PMC11808446 DOI: 10.1111/prd.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 01/21/2024]
Abstract
Wound healing is a complex and iterative process involving myriad cellular and biologic processes that are highly regulated to allow satisfactory repair and regeneration of damaged tissues. This review is intended to be an introductory chapter in a volume focusing on the use of platelet concentrates for tissue regeneration. In order to fully appreciate the clinical utility of these preparations, a sound understanding of the processes and factors involved in soft and hard tissue healing. This encompasses an appreciation of the cellular and biological mediators of both soft and hard tissues in general as well as specific consideration of the periodontal tissues. In light of good advances in this basic knowledge, there have been improvements in clinical strategies and therapeutic management of wound repair and regeneration. The use of platelet concentrates for tissue regeneration offers one such strategy and is based on the principles of cellular and biologic principles of wound repair discussed in this review.
Collapse
Affiliation(s)
- Mark Bartold
- University of QueenslandBrisbaneQueenslandAustralia
| | | |
Collapse
|
5
|
Szunerits S, Chuang EY, Yang JC, Boukherroub R, Burnouf T. Platelet extracellular vesicles-loaded hydrogel bandages for personalized wound care. Trends Biotechnol 2025:S0167-7799(24)00393-7. [PMID: 39863439 DOI: 10.1016/j.tibtech.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
Autologous or allogeneic platelet-derived extracellular vesicles (pEVs) show potential in enhancing tissue recovery and healing chronic wounds. pEVs promote neovascularization and cell migration while reducing inflammation, oxidative stress, and scarring. However, their efficacy in clinical settings is challenged by their susceptibility to washout by wound exudate. Hydrogel-based bandages are effective carriers that stabilize pEVs for optimal personalized wound care. These bandages can be tailored for easy removal to minimize damage to regenerated tissue and can incorporate antibacterial or moisture-retaining properties. Furthermore, the possibility of integrating sensors in the wound bed will enable a theragnostic approach to healing. This review explores advancements in pEV-loaded hydrogels and their potential for personalized clinical applications.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France; Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria.
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan
| | - Jen-Chang Yang
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
6
|
Cai Z, Wang Y, Hu S, Yuan Q, Liu J, Luo C, Jiang L, Huang Y. The efficacy of platelet-derived extracellular vesicles in the treatment of diabetic wounds: a systematic review and meta-analysis of animal studies. Arch Dermatol Res 2025; 317:244. [PMID: 39812853 DOI: 10.1007/s00403-024-03781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
Platelet-derived extracellular vesicles (PEVs) are rich in growth factors and have significant potential for facilitating tissue repair and regeneration. Therefore, we conducted this meta-analysis to assess the efficacy of PEVs in treating diabetic wounds. To assess the efficacy and safety of PEVs in treating diabetic wounds, we conducted a systematic review of several databases and performed a meta-analysis using a random effects model. Nine studies (n = 128 animals) meeting the inclusion criteria for this review were identified. The pooled analysis revealed that compared to the control group, wounds treated with PEVs had a higher healing rate (SMD = 4.43, 95% CI = 2.85-6.01, P < 0.00001). In subgroup analysis, PEVs combined with hydrogel showed better efficacy than PEVs alone (SMD = 7.96, 95% CI = 5.05-10.87, P < 0.00001). Additionally, the PEVs treatment group outperformed the control group in other outcomes, such as vessel density and number, re-epithelialization rate, and collagen deposition. PEVs have the potential to promote angiogenesis at diabetic wound sites and alleviate inflammatory responses, ultimately aiding in wound healing, especially when combined with hydrogels or other medications.
Collapse
Affiliation(s)
- Zhi Cai
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, Luzhou, People's Republic of China
| | - Yuhan Wang
- Department of Clinical Laboratory, Longmatan District People's Hospital of Luzhou, Luzhou, People's Republic of China
| | - Shan Hu
- Department of Transfusion, Guanghan People's Hospital, Deyang, People's Republic of China
| | - Qiong Yuan
- Department of Transfusion, Zigong First People's Hospital, Zigong, People's Republic of China
| | - Jusong Liu
- Department of Transfusion, Zigong First People's Hospital, Zigong, People's Republic of China
| | - Chengcen Luo
- Department of Transfusion, Zigong Fourth People's Hospital, Zigong, People's Republic of China
| | - Ling Jiang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, Luzhou, People's Republic of China.
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, Luzhou, People's Republic of China.
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| |
Collapse
|
7
|
Zhang J, Shang S, Liu W, Cheng Y, Hu F, Cao Z, Yue L, Xiang G, Li T. Effect of aspirin on platelet-rich plasma of diabetes mellitus with lower extremity atherosclerosis. Future Sci OA 2024; 10:2413827. [PMID: 39440536 PMCID: PMC11508953 DOI: 10.1080/20565623.2024.2413827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Aim: Platelet-rich plasma (PRP), enriched with multiple growth factors, is a promising adjunctive therapy for diabetic foot ulcers (DFUs). As a classic anti-platelet drug for diabetic patients, the effects of aspirin on the content of growth factors in PRP remains unclear.Methods: Our study enrolled diabetic patients who were currently taking or not taking aspirin as the research subjects, with healthy volunteers as the control. PRP from these individuals was activated with glucose calcium and thrombin. Growth factors levels in PRP activated supernatant (PRP-AS) and wound healing ability of platelet gel (PG) in the full-thickness skin defect diabetic mouse model were compared.Results: We found the level of growth factors in PRP-AS derived from two groups of diabetic patients were not statistically different, whereas both lower than that from healthy volunteers. Similarly, we found better wound healing ability of PG from healthy volunteers than those from diabetic patients, but no difference between the two groups of diabetic patients in the mouse model.Discussion: Aspirin does not interfere with autologous PRP therapy when using calcium gluconate and thrombin as agonists. However considering the content of growth factors, PRP from healthy volunteers is a preferable option for promoting DFU repair.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Shenglan Shang
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Wanbing Liu
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Yangyang Cheng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Fan Hu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Zhengwang Cao
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Ling Yue
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - GuangDa Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Tao Li
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
8
|
Booth GS, Adkins BD, Figueroa Villalba CA, Stephens LD, Jacobs JW. Outpatient elective intravenous hydration therapy: Should blood donors be deferred for medical spa hydration? Vox Sang 2024; 119:1310-1312. [PMID: 39375323 DOI: 10.1111/vox.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024]
Affiliation(s)
- Garrett S Booth
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brian D Adkins
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Laura D Stephens
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Jeremy W Jacobs
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Smith J, Rai V. Platelet-Rich Plasma in Diabetic Foot Ulcer Healing: Contemplating the Facts. Int J Mol Sci 2024; 25:12864. [PMID: 39684575 PMCID: PMC11641766 DOI: 10.3390/ijms252312864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Diabetic foot ulcers (DFUs), debilitating complication of diabetes, often lead to amputation even in the presence of current advanced treatment for DFUs. Platelet-rich plasma (PRP) containing growth factors and other proteins has been suggested as a potent therapeutic in promoting DFU healing. PRP is safe and effective in improving the DFU healing rate, decreasing healing time, and making chronic wounds viable for treatment. Though PRP is safe and effective in promoting DFU healing, there are inconsistencies in clinical outcomes. These varying results may be due to various concentrations of PRP being used. Most studies report dosage and timing, but none have reported the concentration of various factors. This is important, as the concentration of factors in PRP can vary significantly with each preparation and may directly impact the healing outcome. This critical review discusses the limiting factors and issues related to PRP therapy and future directives. A systematic search of PubMed and Google Scholar was performed with keywords including diabetic foot ulcer, ulcer healing, platelet-rich plasma, DFU treatment, and PRP limitations and efficacy, alone or in combination, to search the related articles. The articles describing DFU and the use of PRP in DFU healing were included. The existing literature suggests that PRP is effective and safe for promoting DFU healing, but larger clinical trials are needed to improve clinical outcomes. There is a need to consider multiple factors including the role of epigenetics, lifestyle modification, and the percentage composition of each constituent in PRP.
Collapse
Affiliation(s)
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
10
|
Jiang J, Man T, Kirsch M, Knoedler S, Andersen K, Reiser J, Werner J, Trautz B, Cong X, Forster S, Alageel S, Dornseifer U, Schilling AF, Machens HG, Kükrek H, Moog P. Hypoxia Preconditioned Serum Hydrogel (HPS-H) Accelerates Dermal Regeneration in a Porcine Wound Model. Gels 2024; 10:748. [PMID: 39590104 PMCID: PMC11593443 DOI: 10.3390/gels10110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Harnessing the body's intrinsic resources for wound healing is becoming a rapidly advancing field in regenerative medicine research. This study investigates the effects of the topical application of a novel porcine Hypoxia Preconditioned Serum Hydrogel (HPS-H) on wound healing using a minipig model over a 21-day period. Porcine HPS exhibited up to 2.8× elevated levels of key angiogenic growth factors (VEGF-A, PDGF-BB, and bFGF) and demonstrated a superior angiogenic effect in a tube formation assay with human umbilical endothelial cells (HUVECs) in comparison to porcine normal serum (NS). Incorporating HPS into a hydrogel carrier matrix (HPS-H) facilitated the sustained release of growth factors for up to 5 days. In the in vivo experiment, wounds treated with HPS-H were compared to those treated with normal serum hydrogel (NS-H), hydrogel only (H), and no treatment (NT). At day 10 post-wounding, the HPS-H group was observed to promote up to 1.7× faster wound closure as a result of accelerated epithelialization and wound contraction. Hyperspectral imaging revealed up to 12.9% higher superficial tissue oxygenation and deep perfusion in HPS-H-treated wounds at day 10. The immunohistochemical staining of wound biopsies detected increased formation of blood vessels (CD31), lymphatic vessels (LYVE-1), and myofibroblasts (alpha-SMA) in the HPS-H group. These findings suggest that the topical application of HPS-H can significantly accelerate dermal wound healing in an autologous porcine model.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Tanita Man
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Manuela Kirsch
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Samuel Knoedler
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Kirstin Andersen
- Center for Preclinical Research, Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Judith Reiser
- Center for Preclinical Research, Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Julia Werner
- Center for Preclinical Research, Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Benjamin Trautz
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Xiaobin Cong
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Selma Forster
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Sarah Alageel
- Cellular Therapy and Immunobiology, Research and Innovation, King Faisal Specialist Hospital & Research Center, Al Mathar Ash Shamali, Riyadh 11564, Saudi Arabia
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, 80331 Munich, Germany
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Haydar Kükrek
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
11
|
Gomez PT, Andrews KL, Arthurs JR, Bruce AJ, Wyles SP. Platelet-Rich Plasma in the Treatment of Diabetic Foot Ulcers. Adv Skin Wound Care 2024; 37:608-615. [PMID: 39792512 DOI: 10.1097/asw.0000000000000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Chronic nonhealing neuropathic foot ulcers affect approximately 15% to 30% of patients with diabetes mellitus and are associated with significant morbidity and mortality. Although current strategies to address these chronic wounds include a multifactorial approach, clinical outcomes remain poor and warrant improvement. Platelet-rich plasma (PRP), derived from autologous or allogeneic blood, is an emerging regenerative product that aims to serve as an adjuvant to standard diabetic foot ulcer (DFU) treatment. OBJECTIVE To examine controlled clinical trials investigating the efficacy of platelet-rich therapies in promoting healing of chronic DFUs. DATA SOURCES The PubMed/MEDLINE database. STUDY SELECTION Researchers selected 11 controlled clinical trials published between 2011 and 2021 that investigated the efficacy of PRP treatments for chronic DFUs. DATA EXTRACTION Extracted data included study type and size, participant sex and age, duration of diabetes, glycated hemoglobin levels, baseline ulcer area, wound duration, healing parameters, PRP preparation approach, and application type. DATA SYNTHESIS Randomized prospective studies (n = 8), prospective controlled studies (n = 2), and a double-blind, randomized controlled study (n = 1) were included in the review. In general, PRP plus standard of care provided superior wound healing, in both percentage of wound closure and healing rate, compared with standard of care alone. CONCLUSIONS Use of PRP as an adjuvant for healing chronic DFUs appears to improve wound healing. Further research on optimizing PRP preparation and exploring combinatorial approaches will be important in advancing this avenue for chronic wound healing.
Collapse
Affiliation(s)
- Paul T Gomez
- At Mayo Clinic, Rochester, Minnesota, United States, Paul T. Gomez, BS, is Summer Research Fellow, Regenerative Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences; Saranya P. Wyles, MD, PhD, is Consultant, Department of Dermatology; and Karen L. Andrews, MD, is Director, Vascular Ulcer and Wound Healing Clinic/Gonda Vascular Center, and Consultant, Department of Physical Medicine and Rehabilitation. At Mayo Clinic, Jacksonville, Florida, Jennifer R. Arthurs is APRN, Center for Regenerative Medicine; and Alison J. Bruce, MB, ChB, is Consultant, Department of Dermatology
| | | | | | | | | |
Collapse
|
12
|
Manole CG, Voiculescu VM, Soare C, Ceafalan LC, Gherghiceanu M, Hinescu ME. Skin Telocytes Could Fundament the Cellular Mechanisms of Wound Healing in Platelet-Rich Plasma Administration. Cells 2024; 13:1321. [PMID: 39195210 PMCID: PMC11353115 DOI: 10.3390/cells13161321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
For more than 40 years, autologous platelet concentrates have been used in clinical medicine. Since the first formula used, namely platelet-rich plasma (PRP), other platelet concentrates have been experimented with, including platelet-rich fibrin and concentrated growth factor. Platelet concentrates have three standard characteristics: they act as scaffolds, they serve as a source of growth factors and cytokines, and they contain live cells. PRP has become extensively used in regenerative medicine for the successful treatment of a variety of clinical (non-)dermatological conditions like alopecies, acne scars, skin burns, skin ulcers, muscle, cartilage, and bone repair, and as an adjuvant in post-surgery wound healing, with obvious benefits in terms of functionality and aesthetic recovery of affected tissues/organs. These indications were well documented, and a large amount of evidence has already been published supporting the efficacy of this method. The primordial principle behind minimally invasive PRP treatments is the usage of the patient's own platelets. The benefits of the autologous transplantation of thrombocytes are significant, representing a fast and economic method that requires only basic equipment and training, and it is biocompatible, thus being a low risk for the patient (infection and immunological reactions can be virtually disregarded). Usually, the structural benefits of applying PRP are attributed to fibroblasts only, as they are considered the most numerous cell population within the interstitium. However, this apparent simplistic explanation is still eluding those different types of interstitial cells (distinct from fibroblasts) that are residing within stromal tissue, e.g., telocytes (TCs). Moreover, dermal TCs have an already documented potential in angiogenesis (extra-cutaneous, but also within skin), and their implication in skin recovery in a few dermatological conditions was attested and described ultrastructurally and immunophenotypically. Interestingly, PRP biochemically consists of a series of growth factors, cytokines, and other molecules, to which TCs have also proven to have a positive expression. Thus, it is attractive to hypothesize and to document any tissular collaboration between cutaneous administered PRP and local dermal TCs in skin recovery/repair/regeneration. Therefore, TCs could be perceived as the missing link necessary to provide a solid explanation of the good results achieved by administering PRP in skin-repairing processes.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihail E. Hinescu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
13
|
Esmaeilzadeh A, Yeganeh PM, Nazari M, Esmaeilzadeh K. Platelet-derived extracellular vesicles: a new-generation nanostructured tool for chronic wound healing. Nanomedicine (Lond) 2024; 19:915-941. [PMID: 38445377 DOI: 10.2217/nnm-2023-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Chronic nonhealing wounds pose a serious challenge to regaining skin function and integrity. Platelet-derived extracellular vesicles (PEVs) are nanostructured particles with the potential to promote wound healing since they can enhance neovascularization and cell migration and reduce inflammation and scarring. This work provides an innovative overview of the technical laboratory issues in PEV production, PEVs' role in chronic wound healing and the benefits and challenges in its clinical translation. The article also explores the challenges of proper sourcing, extraction techniques and storage conditions, and discusses the necessity of further evaluations and combinational therapeutics, including dressing biomaterials, M2-derived exosomes, mesenchymal stem cells-derived extracellular vesicles and microneedle technology, to boost their therapeutic efficacy as advanced strategies for wound healing.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| | | | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| |
Collapse
|
14
|
Pai SN, Jeyaraman N, Venkatasalam R, Vr R, Ramasubramanian S, Balaji S, Nallakumarasamy A, Sharma S, Patro BP, Jeyaraman M. Standardized Informed Consent Form for Clinicians Administering Platelet-Rich Plasma. Cureus 2024; 16:e57565. [PMID: 38707034 PMCID: PMC11068980 DOI: 10.7759/cureus.57565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction When it comes to medico-legal malpractice suits, lawyers and insurers tend to focus on informed consent documentation. Unfortunately, there is no standard protocol for obtaining informed consent for the use of platelet-rich plasma (PRP) injections, which might cause problems. This study aimed to mitigate this concern through the development of a standardized informed consent document for PRP injections, grounded in evidence-based practices. Materials and methods An examination of databases was conducted to explore the medico-legal ramifications associated with PRP injections, as well as the broader topic of informed consent, with a particular focus on the context of PRP injections. Moreover, interviews were carried out with healthcare providers and individuals who had received PRP injections within the preceding year, utilizing a semi-structured methodology. Results We developed an evidence-based informed consent document tailored for PRP injections. To guarantee its legal validity, the document underwent review by a legal specialist. Subsequently, our institutions implemented the finalized form for PRP injection procedures over one year. Conclusion A legally valid and evidence-based informed consent form for PRP injections would ensure patient's rights, and encourage open communication and transparency between them and the doctor. Moreover, if a lawsuit were to arise, it would serve as a critical document in the doctor's defense and withstand scrutiny from lawyers and the judiciary.
Collapse
Affiliation(s)
- Satvik N Pai
- Orthopaedic Surgery, Hospital for Orthopedics, Sports Medicine, Arthritis & Trauma (HOSMAT) Hospital, Bangalore, IND
- Orthopaedic Surgery, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Naveen Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, IND
| | | | - Ravi Vr
- Regenerative Medicine, Mothercell Regenerative Centre, Tiruchirappalli, IND
| | | | - Sangeetha Balaji
- Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, IND
| | - Arulkumar Nallakumarasamy
- Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER) - Karaikal, Karaikal, IND
| | - Shilpa Sharma
- Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, IND
| | - Bishnu P Patro
- Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, IND
| | - Madhan Jeyaraman
- Clinical Research, Viriginia Tech India, Dr MGR Educational and Research Institute, Chennai, IND
- Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, IND
| |
Collapse
|
15
|
Gabusi A, Loi C, Gissi DB, Buzzi M, LA Placa M, Bardazzi F. Topical applications of heterologous platelet rich plasma (PRP) for refractory gingival lesions in autoimmune blistering diseases. Ital J Dermatol Venerol 2024; 159:55-59. [PMID: 38059779 DOI: 10.23736/s2784-8671.23.07696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
BACKGROUND Recalcitrant gingival erosions, blisters and desquamative gingivitis are common features in oral autoimmune blistering diseases (AIBD). First line treatments include high-dosage corticosteroids and other immunosuppressive drugs, with several side effects and elevated number of recurrences. Autologous platelet-rich plasma (PRP) has been recently introduced as an alternative treatment and its use seems to be promising and safe. METHODS In this study we describe the use of topical application of heterologous PRP in nine patients affected by mucous membrane pemphigoid, with gingival lesions refractory to previous treatments. Topical applications of PRP were performed once a week for 2 months and the endpoint for clinical evaluation was set 3 months after the last session. Oral disease severity score (ODSS) and VAS scores for pain measurement were recorded before and after treatment. RESULTS The procedure was painless, well accepted, and free from adverse reactions. All patients (100%) reported a reduction in VAS whereas reduction in ODSS was observed in 89% of patients. CONCLUSIONS Within the limits of the study, topical heterologous PRP is a safe and promising procedure to be studied in future controlled randomized trials as adjuvant treatment for refractory gingival lesions in patients with AIBDs.
Collapse
Affiliation(s)
- Andrea Gabusi
- Section of Oral Sciences, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Loi
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
- Division of Dermatology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide B Gissi
- Section of Oral Sciences, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy -
| | - Marina Buzzi
- Section of Cord Blood Bank and Cardiovascular Tissue Bank, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Michelangelo LA Placa
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
- Division of Dermatology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federico Bardazzi
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
- Division of Dermatology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
16
|
Chen N, Wang H, Shao Y, Yang J, Song G. A Comparative Study on Platelet-Rich Plasma From Elderly Individuals and Young Adults to Treat Pressure Ulcers in Mice. J Surg Res 2024; 294:198-210. [PMID: 37913727 DOI: 10.1016/j.jss.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE The aim of the present study was to compare the therapeutic effects of activated platelet-rich plasma (PRP) prepared from elderly individuals and young adults to treat pressure ulcers (PUs), and to accumulate a theoretical basis for allogeneic PRP treatment of PUs in elderly patients. MATERIALS AND METHODS Whole blood was extracted from elderly individuals aged >65 y and young adult volunteers for PRP preparation, and platelet concentrations in whole blood and PRP were compared. Growth factors released from activated PRP were assayed using the enzyme-linked immunosorbent assay. C57BL/6 mice were divided into three groups: the control saline, elderly-PRP (Group A), and young adult-PRP (Group B). Ischemia-reperfusion injury-induced PUs were established on the backs of mice. PUs were photographed on days 0, 5, and 10 to assess their sizes. Specimens were collected on day 10 and subjected to hematoxylin and eosin and Masson's staining. Immunohistochemical staining for CD31 was conducted to evaluate vascular formation, and cell invasion was assessed using a Transwell assay. The action of PRP on transforming growth factor-beta (TGF-β)-dependent fibroblast activity and epithelial-mesenchymal transition was analyzed using immunofluorescence and Western blotting in vitro. RESULTS The platelet concentrations in whole blood and PRP of young adults were significantly higher than that in elderly individuals. The two PRP treatment groups had similar platelet enrichment coefficients of PRP. After activation, PRP from young adults produced significantly higher levels of platelet-derived growth factor, TGF-β, and vascular endothelial growth factor than PRP from elderly individuals (P < 0.05). The concentrations of platelet-derived growth factor, TGF-β, and vascular endothelial growth factor were positively correlated with the platelet concentrations in whole blood and PRP. The effects of PRP in regulating the expressions of TGF-β, α-smooth muscle actin, vimentin, and E-cadherin were observed in vivo and in vitro. The two PRP treatment groups exhibited better wound healing than the control group, as evidenced by more re-epithelialization, higher collagen content, skin fibrosis, and more blood vessel formation over time. Group B exhibited better wound healing than Group A (P < 0.05). CONCLUSION PRP exhibits potent wound healing ability in PU therapy, and PRP from young adults is seemingly superior to that from elderly individuals because of a higher concentration of platelets and increased production of growth factors.
Collapse
Affiliation(s)
- Ningjie Chen
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Burns and Plastic Surgery, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, China
| | - Haitao Wang
- Department of Burns and Plastic Surgery, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, China
| | - Yang Shao
- Department of Burns and Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Jincun Yang
- Department of Burns and Plastic Surgery, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, China
| | - Guodong Song
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Burns and Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
17
|
Grzelak A, Hnydka A, Higuchi J, Michalak A, Tarczynska M, Gaweda K, Klimek K. Recent Achievements in the Development of Biomaterials Improved with Platelet Concentrates for Soft and Hard Tissue Engineering Applications. Int J Mol Sci 2024; 25:1525. [PMID: 38338805 PMCID: PMC10855389 DOI: 10.3390/ijms25031525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Platelet concentrates such as platelet-rich plasma, platelet-rich fibrin or concentrated growth factors are cost-effective autologous preparations containing various growth factors, including platelet-derived growth factor, transforming growth factor β, insulin-like growth factor 1 and vascular endothelial growth factor. For this reason, they are often used in regenerative medicine to treat wounds, nerve damage as well as cartilage and bone defects. Unfortunately, after administration, these preparations release growth factors very quickly, which lose their activity rapidly. As a consequence, this results in the need to repeat the therapy, which is associated with additional pain and discomfort for the patient. Recent research shows that combining platelet concentrates with biomaterials overcomes this problem because growth factors are released in a more sustainable manner. Moreover, this concept fits into the latest trends in tissue engineering, which include biomaterials, bioactive factors and cells. Therefore, this review presents the latest literature reports on the properties of biomaterials enriched with platelet concentrates for applications in skin, nerve, cartilage and bone tissue engineering.
Collapse
Affiliation(s)
- Agnieszka Grzelak
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Aleksandra Hnydka
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Prymasa Tysiaclecia Avenue 98, 01-142 Warsaw, Poland;
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4 a Street, 20-093 Lublin, Poland;
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| |
Collapse
|
18
|
Mazzucco L, Balbo V, Zingarelli EM, Desilvestri M, Marchioni M, Perrero L, Pollis F, Varvello I. Treatment of severe pressure ulcers with protein-enriched filtered platelet-rich plasma (PEF PRP): a possible management. Front Bioeng Biotechnol 2024; 11:1279149. [PMID: 38288245 PMCID: PMC10823015 DOI: 10.3389/fbioe.2023.1279149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024] Open
Abstract
Background: Biological dressings with non-transfusion blood components are among the treatments available for pressure ulcers (PUs). Biological dressings contain active concentrated pro-regenerative molecules that can modify and switch off local inflammatory pathways. This re-establishes the physiological homing, which results in healing. In our study, we used a biological component obtained by ultrafiltration of plasma-platelet concentrate: protein-enriched filtered platelet-rich plasma (PEFPRP) with a higher platelet and higher plasma protein concentration. We tested whether treatment with PEFPRP could improve healing in advanced-stage pressure ulcers with a large surface area. All the patients in this study had a surgical indication but were not able to undergo surgery for various reasons. Materials and methods: Ten patients with severe neurological disability and advanced-stage sacral pressure ulcers were treated with allogenic PEFPRP. The mean lesion surface area at T0 was 13.4 cm2 ( ± 9.8 SD). PEFPRP was derived from allogenic plasma-platelet apheresis that had been pre-ultrafiltered with a ProSmart™ filter (Medica, Italy) to obtain a concentration after filtration of the plasma protein (12-16 g/dL) and platelet (1-1.2 x 106 microL). Results and Conclusion: All cases showed a reduction in the surface area of the pressure ulcer and in the Pressure Ulcer Scale for Healing (PUSH) score. The mean reduction values at week 6 were as follows: -52% for surface area and -21% for PUSH. Rapid wound healing is fundamental to avoid infections and improve patients' quality of life. This blood component builds new tissue by creating a new extracellular matrix. This, in turn, promotes rapid restoration of the three-dimensional structure of the tissue necessary for healing deeper wounds. PEFPRP shrinks the PU and improves its morphological features (reducing undermining and boosting granulation tissue). PEFPRP also promotes tissue restoration, obtaining an optimal scar. It is a safe and feasible treatment, and these preliminary results support the use of PEFPRP in the treatment of pressure ulcers. PEFPRP dressings could be integrated in the standard treatment of advanced-stage PU.
Collapse
Affiliation(s)
- Laura Mazzucco
- Transfusion Medicine and Regeneration Medicine, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Valeria Balbo
- Transfusion Medicine and Regeneration Medicine, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Enrico Maria Zingarelli
- Department of Plastic and Reconstructive Surgery, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Manuela Desilvestri
- Neuro-Rehabilitation Unit, Rehabilitation Department, Azienda Ospedaliera Nazionale SS Antonio e Biagio e Cesare Arrigo-Alessandria, Alessandria, Italy
| | - Manuela Marchioni
- Neuro-Rehabilitation Unit, Rehabilitation Department, Azienda Ospedaliera Nazionale SS Antonio e Biagio e Cesare Arrigo-Alessandria, Alessandria, Italy
| | - Luca Perrero
- Department of Plastic and Reconstructive Surgery, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Francesca Pollis
- Transfusion Medicine and Regeneration Medicine, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Ilaria Varvello
- Neuro-Rehabilitation Unit, Rehabilitation Department, Azienda Ospedaliera Nazionale SS Antonio e Biagio e Cesare Arrigo-Alessandria, Alessandria, Italy
| |
Collapse
|
19
|
Fareez IM, Liew FF, Widera D, Mayeen NF, Mawya J, Abu Kasim NH, Haque N. Application of Platelet-Rich Plasma as a Stem Cell Treatment - an Attempt to Clarify a Common Public Misconception. Curr Mol Med 2024; 24:689-701. [PMID: 37171013 DOI: 10.2174/1566524023666230511152646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
In recent years, there has been a significant increase in the practice of regenerative medicine by health practitioners and direct-to-consumer businesses globally. Among different tools of regenerative medicine, platelet-rich plasma (PRP) and stem cell-based therapies have received considerable attention. The use of PRP, in particular, has gained popularity due to its easy access, simple processing techniques, and regenerative potential. However, it is important to address a common misconception amongst the general public equating to PRP and stem cells due to the demonstrated efficacy of PRP in treating musculoskeletal and dermatological disorders. Notably, PRP promotes regeneration by providing growth factors or other paracrine factors only. Therefore, it cannot replenish or replace the lost cells in conditions where a large number of cells are required to regenerate tissues and/or organs. In such cases, cellbased therapies are the preferred option. Additionally, other tools of regenerative medicine, such as bioprinting, organoids, and mechanobiology also rely on stem cells for their success. Hence, healthcare and commercial entities offering direct-to-customer regenerative therapies should not mislead the public by claiming that the application of PRP is a stem cell-based therapy. Furthermore, it is important for regulatory bodies to strictly monitor these profit-driven entities to prevent them from providing unregulated regenerative treatments and services that claim a broad variety of benefits with little proof of efficacy, safety concerns, and obscure scientific justification.
Collapse
Affiliation(s)
- Ismail M Fareez
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
| | - Fong Fong Liew
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor, 42610, Malaysia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, UK
| | - Naiyareen Fareeza Mayeen
- Faculty of Biology, Ludwig-Maximilians-University of Munich, Planegg- Martinsried, 82152, Germany
- TotiCell Limited, Dhaka, 1209, Bangladesh
| | | | - Noor Hayaty Abu Kasim
- Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Faculty of Dentistry, University Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | | |
Collapse
|
20
|
Deng Z, Long ZS, Chen G. Mini-Review: Tendon-Exposed Wound Treatments. J INVEST SURG 2023; 36:2266758. [PMID: 37813390 DOI: 10.1080/08941939.2023.2266758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Tendon-exposed wounds are complex injuries with challenging reconstructions and no unified treatment mode. Furthermore, insufficient tissue volume and blood circulation disorders affect healing, which increases pain for the patient and affects their families and caretakers. REVIEW As modern medicine advances, considerable progress has been made in understanding and treating tendon-exposed wounds, and current research encompasses both macro-and micro-studies. Additionally, new treatment methods have emerged alongside the classic surgical methods, such as new dressing therapies, vacuum sealing drainage combination therapy, platelet-rich plasma therapy, and live-cell bioengineering. CONCLUSIONS This review summarizes the latest treatment methods for tendon-exposed wounds to provide ideas and improve their treatment.
Collapse
Affiliation(s)
- Zhuan Deng
- Department of Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zhi-Sheng Long
- Department of Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Gang Chen
- Department of Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
21
|
Fang Q, Zhang Y, Tang L, Li X, Zhang X, Gang JJ, Xu G. Clinical Study of Platelet-Rich Plasma (PRP) for Lower Extremity Venous Ulcers: A Meta-Analysis and Systematic Review. INT J LOW EXTR WOUND 2023; 22:641-653. [PMID: 34665051 DOI: 10.1177/15347346211046203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To systematically evaluate the clinical effects of platelet-rich plasma in the treatment of lower limb venous ulcers by applying a meta-analysis method. The Pubmed, Cochrance Library, Embase, and OVID EBM Reviews databases were searched for the search terms'platelet-rich plasma" or "Plasma, Platelet-Rich" or "Platelet Rich Plasma" and "lower extremity venous ulcers' or "Leg Ulcers' or "Ulcer, Leg", and a meta-analysis was performed on the published research literature on platelet-rich plasma for lower extremity venous ulcers from January 1900 to April 2021. The outcome indicators were: post-treatment trauma area and healing rate. Revman 5.3 statistical software was applied for meta-analysis. A total of 294 patients with lower extremity venous ulcers were included in six publications, including 148 patients in the experimental group treated with PRP versus 146 patients in the control group treated with conventional therapy. There was a statistically significant difference in the Formula of an ellipse at the end of treatment (CM²) between the experimental group and the control group, with a mean difference of -1.19 (95% CI -1.80 to -0.58, P = .0001; 6 studies, 294 participants moderate quality of evidence). The difference between the healing rate of the experimental group and the control group was statistically significant, with a risk ratio (RR) of 5.73 (95% CI 3.29 - 9.99, P < .00001; 5 studies, 248 participants moderate quality of evidence).There may be publication bias for both Formula of an ellipse at the end of treatment and healing rate. This comprehensive meta-analysis of available evidence suggests that the application of PRP for lower extremity venous ulcers accelerates the wound healing process and improves wound healing rates.
Collapse
Affiliation(s)
| | | | - Lijun Tang
- Dalian Medical University, Dalian, China
| | - Xiaomei Li
- Dalian Medical University, Dalian, China
| | - Xiaowei Zhang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University
| | - Junjun Jin Gang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University
| | - Gang Xu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University
| |
Collapse
|
22
|
Bakadia BM, Qaed Ahmed AA, Lamboni L, Shi Z, Mutu Mukole B, Zheng R, Pierre Mbang M, Zhang B, Gauthier M, Yang G. Engineering homologous platelet-rich plasma, platelet-rich plasma-derived exosomes, and mesenchymal stem cell-derived exosomes-based dual-crosslinked hydrogels as bioactive diabetic wound dressings. Bioact Mater 2023; 28:74-94. [PMID: 37234363 PMCID: PMC10206161 DOI: 10.1016/j.bioactmat.2023.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
The management of diabetic wounds remains a critical therapeutic challenge. Platelet-rich plasma (PRP) gel, PRP-derived exosomes (PRP-Exos), and mesenchymal stem cell-derived exosomes (MSC-Exos) have demonstrated therapeutic potential in wound treatment. Unfortunately, their poor mechanical properties, the short half-lives of growth factors (GFs), and the burst release of GFs and exosomes have limited their clinical applications. Furthermore, proteases in diabetic wounds degrade GFs, which hampers wound repair. Silk fibroin is an enzyme-immobilization biomaterial that could protect GFs from proteases. Herein, we developed novel dual-crosslinked hydrogels based on silk protein (SP) (sericin and fibroin), including SP@PRP, SP@MSC-Exos, and SP@PRP-Exos, to promote diabetic wound healing synergistically. SP@PRP was prepared from PRP and SP using calcium gluconate/thrombin as agonist, while SP@PRP-Exos and SP@MSC-Exos were derived from exosomes and SP with genipin as crosslinker. SP provided improved mechanical properties and enabled the sustained release of GFs and exosomes, thereby overcoming the limitations of PRP and exosomes in wound healing. The dual-crosslinked hydrogels displayed shear-induced thinning, self-healing, and eradication of microbial biofilms in a bone-mimicking environment. In vivo, the dual-crosslinked hydrogels contributed to faster diabetic wound healing than PRP and SP by upregulating GFs expression, down-regulating matrix metalloproteinase-9 expression, and by promoting an anti-NETotic effect, angiogenesis, and re-epithelialization. Hence, these dual-crosslinked hydrogels have the potential to be translated into a new generation of diabetic wound dressings.
Collapse
Affiliation(s)
- Bianza Moise Bakadia
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institut Supérieur des Techniques Médicales de Lubumbashi, Lubumbashi, Congo
| | - Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100, Pavia, Italy
| | - Lallepak Lamboni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Ruizhu Zheng
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mazono Pierre Mbang
- Institut Supérieur des Techniques Médicales de Lubumbashi, Lubumbashi, Congo
| | - Bi Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Mario Gauthier
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
23
|
Burnouf T, Chou ML, Lundy DJ, Chuang EY, Tseng CL, Goubran H. Expanding applications of allogeneic platelets, platelet lysates, and platelet extracellular vesicles in cell therapy, regenerative medicine, and targeted drug delivery. J Biomed Sci 2023; 30:79. [PMID: 37704991 PMCID: PMC10500824 DOI: 10.1186/s12929-023-00972-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Platelets are small anucleated blood cells primarily known for their vital hemostatic role. Allogeneic platelet concentrates (PCs) collected from healthy donors are an essential cellular product transfused by hospitals to control or prevent bleeding in patients affected by thrombocytopenia or platelet dysfunctions. Platelets fulfill additional essential functions in innate and adaptive immunity and inflammation, as well as in wound-healing and tissue-repair mechanisms. Platelets contain mitochondria, lysosomes, dense granules, and alpha-granules, which collectively are a remarkable reservoir of multiple trophic factors, enzymes, and signaling molecules. In addition, platelets are prone to release in the blood circulation a unique set of extracellular vesicles (p-EVs), which carry a rich biomolecular cargo influential in cell-cell communications. The exceptional functional roles played by platelets and p-EVs explain the recent interest in exploring the use of allogeneic PCs as source material to develop new biotherapies that could address needs in cell therapy, regenerative medicine, and targeted drug delivery. Pooled human platelet lysates (HPLs) can be produced from allogeneic PCs that have reached their expiration date and are no longer suitable for transfusion but remain valuable source materials for other applications. These HPLs can substitute for fetal bovine serum as a clinical grade xeno-free supplement of growth media used in the in vitro expansion of human cells for transplantation purposes. The use of expired allogeneic platelet concentrates has opened the way for small-pool or large-pool allogeneic HPLs and HPL-derived p-EVs as biotherapy for ocular surface disorders, wound care and, potentially, neurodegenerative diseases, osteoarthritis, and others. Additionally, allogeneic platelets are now seen as a readily available source of cells and EVs that can be exploited for targeted drug delivery vehicles. This article aims to offer an in-depth update on emerging translational applications of allogeneic platelet biotherapies while also highlighting their advantages and limitations as a clinical modality in regenerative medicine and cell therapies.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - David J Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| |
Collapse
|
24
|
Sharun K, Chandran D, Manjusha KM, Mankuzhy PD, Kumar R, Pawde AM, Dhama K, El-Husseiny HM, Amarpal. Advances and prospects of platelet-rich plasma therapy in veterinary ophthalmology. Vet Res Commun 2023; 47:1031-1045. [PMID: 36607500 DOI: 10.1007/s11259-022-10064-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
In the recent decades, there has been a significant uptick on the use of platelet-rich plasma (PRP) as a better alternative for ophthalmologic therapies in pathologies, primarily of the ocular surface. PRP is a class of liquid platelet concentrate containing a supra-physiological concentration of platelets in a relatively small amount of plasma. Its potential to heal various tissues has piqued interest in its therapeutic application as a biomaterial in regenerative medicine. It is currently a popular therapeutic agent in plastic surgery, cardiothoracic surgery, reconstructive surgery, and even oral and maxillofacial surgery. Based on the data from in vitro and in vivo studies, it can be concluded that PRP possesses adequate therapeutic potential in ocular pathologies, especially those involving cornea. In addition, the high concentrations of growth factors (TGF-β, VEGF, EGF) present in the PRP accelerate the healing of the corneal epithelium. PRP has great therapeutic prospects in veterinary ophthalmology as a regenerative therapeutic modality. However, several variables are yet to be defined and standardized that can directly affect the efficacy of PRP application in different ophthalmic conditions. There is a shortage of research on the use of PRP in ocular surface defects compared to the number of studies and reports on the use of autologous and allogeneic serum eye drops. Therefore, a data-driven approach is required to generate consensus/guidelines for the preparation, characterization, and therapeutic use of PRP in veterinary ophthalmology. This review aims to inform readers of the latest research on PRP, including its preparation methods, physiological and biochemical properties, clinical applications in veterinary ophthalmology, and their safety and efficacy.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, 642109, India
| | - K M Manjusha
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Pratheesh D Mankuzhy
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, 183-0054, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, 13736, Toukh, Egypt
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
25
|
Chen T, Song P, He M, Rui S, Duan X, Ma Y, Armstrong DG, Deng W. Sphingosine-1-phosphate derived from PRP-Exos promotes angiogenesis in diabetic wound healing via the S1PR1/AKT/FN1 signalling pathway. BURNS & TRAUMA 2023; 11:tkad003. [PMID: 37251708 PMCID: PMC10208895 DOI: 10.1093/burnst/tkad003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P), a key regulator of vascular homeostasis and angiogenesis, is enriched in exosomes derived from platelet-rich plasma (PRP-Exos). However, the potential role of PRP-Exos-S1P in diabetic wound healing remains unclear. In this study, we investigated the underlying mechanism of PRP-Exos-S1P in diabetic angiogenesis and wound repair. METHODS Exosomes were isolated from PRP by ultracentrifugation and analysed by transmission electron microscopy, nanoparticle tracking analysis and western blotting. The concentration of S1P derived from PRP-Exos was measured by enzyme-linked immunosorbent assay. The expression level of S1P receptor1-3 (S1PR1-3) in diabetic skin was analysed by Q-PCR. Bioinformatics analysis and proteomic sequencing were conducted to explore the possible signalling pathway mediated by PRP-Exos-S1P. A diabetic mouse model was used to evaluate the effect of PRP-Exos on wound healing. Immunofluorescence for cluster of differentiation 31 (CD31) was used to assess angiogenesis in a diabetic wound model. RESULTS In vitro, PRP-Exos significantly promoted cell proliferation, migration and tube formation. Furthermore, PRP-Exos accelerated the process of diabetic angiogenesis and wound closure in vivo. S1P derived from PRP-Exos was present at a high level, and S1PR1 expression was significantly elevated compared with S1PR2 and S1PR3 in the skin of diabetic patients and animals. However, cell migration and tube formation were not promoted by PRP-Exos-S1P in human umbilical vein endothelial cells treated with shS1PR1. In the diabetic mouse model, inhibition of S1PR1 expression at wounding sites decreased the formation of new blood vessels and delayed the process of wound closure. Bioinformatics analysis and proteomics indicated that fibronectin 1 (FN1) was closely related to S1PR1 due to its colocalization in the endothelial cells of human skin. Further study supported that FN1 plays an important role in the PRP-Exos-S1P-mediated S1PR1/protein kinase B signalling pathway. CONCLUSIONS PRP-Exos-S1P promotes angiogenesis in diabetic wound healing via the S1PR1/protein kinase B/FN1 signalling pathway. Our findings provide a preliminary theoretical foundation for the treatment of diabetic foot ulcers using PRP-Exos in the future.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Peiyang Song
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Min He
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Shunli Rui
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Xiaodong Duan
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yu Ma
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - David G Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Wuquan Deng
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
| |
Collapse
|
26
|
Role of Innate Immune Cells in Chronic Diabetic Wounds. J Indian Inst Sci 2023. [DOI: 10.1007/s41745-022-00355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
27
|
Secretome of Adipose-Derived Stem Cells Cultured in Platelet Lysate Improves Migration and Viability of Keratinocytes. Int J Mol Sci 2023; 24:ijms24043522. [PMID: 36834932 PMCID: PMC9962933 DOI: 10.3390/ijms24043522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Chronic wounds depict a silent epidemic challenging medical professionals worldwide. Regenerative medicine uses adipose-derived stem cells (ADSC) in promising new therapies. In this study, platelet lysate (PL) as a xenogen-free substitute for foetal bovine serum (FBS) in ADSC culture was used to create an ADSC secretome containing cytokines for optimal wound healing conditions. The ADSC secretome was tested on keratinocytes for migrational behaviour and viability. Therefore, human ADSC were characterized under FBS (10%) and PL (5% and 10%) substitution, regarding morphology, differentiation, viability, gene and protein expression. ADSC were then cultured in 5% PL and their secretome was used for stimulation of keratinocyte migration and viability. To enhance the effect, ADSC were treated with Epithelial Growth Factor (EGF, 100 ng/mL) and hypoxia (1% O₂). In both PL and FBS groups, ADSC expressed typical stem cell markers. PL induced a significantly higher increase in cell viability compared to FBS substitution. ADSC secretome contained various beneficial proteins which enhance the wound healing capacity of keratinocytes. This could be optimized treating ADSC with hypoxia and EGF. In conclusion, the study shows that ADSC cultivated in 5% PL can effectively support wound healing conditions and can be considered as a promising new therapy for individual treatment of chronic wound disorders.
Collapse
|
28
|
Troha K, Vozel D, Arko M, Bedina Zavec A, Dolinar D, Hočevar M, Jan Z, Kisovec M, Kocjančič B, Pađen L, Pajnič M, Penič S, Romolo A, Repar N, Spasovski V, Steiner N, Šuštar V, Iglič A, Drobne D, Kogej K, Battelino S, Kralj-Iglič V. Autologous Platelet and Extracellular Vesicle-Rich Plasma as Therapeutic Fluid: A Review. Int J Mol Sci 2023; 24:3420. [PMID: 36834843 PMCID: PMC9959846 DOI: 10.3390/ijms24043420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The preparation of autologous platelet and extracellular vesicle-rich plasma (PVRP) has been explored in many medical fields with the aim to benefit from its healing potential. In parallel, efforts are being invested to understand the function and dynamics of PVRP that is complex in its composition and interactions. Some clinical evidence reveals beneficial effects of PVRP, while some report that there were no effects. To optimize the preparation methods, functions and mechanisms of PVRP, its constituents should be better understood. With the intention to promote further studies of autologous therapeutic PVRP, we performed a review on some topics regarding PVRP composition, harvesting, assessment and preservation, and also on clinical experience following PVRP application in humans and animals. Besides the acknowledged actions of platelets, leukocytes and different molecules, we focus on extracellular vesicles that were found abundant in PVRP.
Collapse
Affiliation(s)
- Kaja Troha
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Domen Vozel
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Matevž Arko
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Apolonija Bedina Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubjana, Slovenia
| | - Drago Dolinar
- Department of Orthopedic Surgery, University Medical Centre, Zaloška 9, SI-1000 Ljubljana, Slovenia
- MD-RI Institute for Materials Research in Medicine, Bohoričeva 5, SI-1000 Ljubljana, Slovenia
| | - Matej Hočevar
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology, SI-1000 Ljubljana, Slovenia
| | - Zala Jan
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubjana, Slovenia
| | - Boštjan Kocjančič
- Department of Orthopedic Surgery, University Medical Centre, Zaloška 9, SI-1000 Ljubljana, Slovenia
| | - Ljubiša Pađen
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Manca Pajnič
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Samo Penič
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Anna Romolo
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Neža Repar
- University of Ljubljana, Research Group for Nanobiology and Nanotoxicology, Biotechnical Faculty, SI-1000 Ljubljana, Slovenia
| | - Vesna Spasovski
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Nejc Steiner
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Vid Šuštar
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Research Group for Nanobiology and Nanotoxicology, Biotechnical Faculty, SI-1000 Ljubljana, Slovenia
| | - Ksenija Kogej
- University of Ljubljana, Chair of Physical Chemistry, Faculty of Chemistry and Chemical Technology, SI-1000 Ljubljana, Slovenia
| | - Saba Battelino
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
29
|
Porcine Platelet Lysate Intra-articular Knee Joint Injections for the Treatment of Rabbit Cartilage Lesions and Osteoarthritis. J Med Biol Eng 2023. [DOI: 10.1007/s40846-023-00776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Abstract
Purpose
At present, autologous platelet-derived therapies such as platelet-rich plasma is widely used in the clinic, but allogeneic and xenogeneic therapies are currently in the research stage, mainly due to their biocompatibility in vivo. Platelet lysates depleted of antigens such as blood cells are a potential solution for allogeneic or xenogeneic applications. Platelet lysates can successfully promote the growth and differentiation of xenogeneic cells in vitro, but in vivo data are not yet available. This study aims to evaluate whether porcine platelet lysate can effectively avoid inflammatory reaction in rabbit knee joint, and then treat cartilage defect and arthritis.
Methods
We developed porcine platelet lysates containing undetectable antigens such as blood cells and complement. For xenogeneic application, platelet lysate was injected into rabbit knee joints to observe joint responses. To examine cartilage repair, osteochondral defects were created in rabbit knee joints. Rabbits were sacrificed three months after treatment with platelet lysate to observe cartilage regeneration and arthritis.
Results
The tissue sections in the rabbit knee joints showed no inflammatory reaction. Furthermore, the injection of platelet lysate was found to effectively inhibit the formation of cartilage arthritis in rabbit knee joints.
Conclusion
Our experimental results show that xenogeneic platelet lysate is a safe and effective method in the treatment of arthritis, which can be used as a research basis for future medical applications. The use of xenogeneic platelet lysate for regenerative therapy in vivo is feasible.
Collapse
|
30
|
Rao SS, Venkatesan J, Yuvarajan S, Rekha PD. Self-assembled polyelectrolyte complexes of chitosan and fucoidan for sustained growth factor release from PRP enhance proliferation and collagen deposition in diabetic mice. Drug Deliv Transl Res 2022; 12:2838-2855. [PMID: 35445942 DOI: 10.1007/s13346-022-01144-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
Abstract
Diabetic wound management is a serious health care challenge due to higher rates of relapse, expensive treatment approaches, and poor healing outcomes. Among cell-based therapies, use of platelet-rich plasma (PRP) has been shown to be effective for diabetic wounds, but its poor shelf-life limits its clinical use. Here, we demonstrate a simple but effective polymer system to increase the shelf-life of PRP by developing a polyelectrolyte complex with dropwise addition of chitosan solution containing PRP by simple mixing at room temperature. Thus, prepared chitosan-fucoidan (CF) carrier complex encapsulated more than 95% of the loaded PRP. The resulting CF/PRP colloids were spherical in shape and ensured extended PRP release up to 72 h at 37 °C. Routine characterization (FT-IR, XRD, SEM) showed the material properties. The biological assays showed that CF complexes were biocompatible while CF/PRP enhanced the proliferation of fibroblasts and keratinocytes via higher Ki67 expression and fibroblast migration. Further investigations using a diabetic mouse model demonstrated significantly higher wound contraction and histopathological observations showed increased fibroblast migration, and collagen and cytokeratin deposition in treatment groups. The results are suggestive of the efficacy of CF/PRP as a cost-effective topical formulation for the sustained delivery of growth factors in treating chronic diabetic wounds.
Collapse
Affiliation(s)
- Sneha Subramanya Rao
- Yenepoya Research Centre, Yenepoya (Deemed To Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Jayachandran Venkatesan
- Yenepoya Research Centre, Yenepoya (Deemed To Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Subramaniyan Yuvarajan
- Yenepoya Research Centre, Yenepoya (Deemed To Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Punchappady-Devasya Rekha
- Yenepoya Research Centre, Yenepoya (Deemed To Be University), Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
31
|
Cialdai F, Risaliti C, Monici M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front Bioeng Biotechnol 2022; 10:958381. [PMID: 36267456 PMCID: PMC9578548 DOI: 10.3389/fbioe.2022.958381] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Wound healing (WH) and the role fibroblasts play in the process, as well as healing impairment and fibroblast dysfunction, have been thoroughly reviewed by other authors. We treat these topics briefly, with the only aim of contextualizing the true focus of this review, namely, the microgravity-induced changes in fibroblast functions involved in WH. Microgravity is a condition typical of spaceflight. Studying its possible effects on fibroblasts and WH is useful not only for the safety of astronauts who will face future interplanetary space missions, but also to help improve the management of WH impairment on Earth. The interesting similarity between microgravity-induced alterations of fibroblast behavior and fibroblast dysfunction in WH impairment on Earth is highlighted. The possibility of using microgravity-exposed fibroblasts and WH in space as models of healing impairment on Earth is suggested. The gaps in knowledge on fibroblast functions in WH are analyzed. The contribution that studies on fibroblast behavior in weightlessness can make to fill these gaps and, consequently, improve therapeutic strategies is considered.
Collapse
|
32
|
He M, Chen T, Lv Y, Song P, Deng B, Guo X, Rui S, Boey J, Armstrong DG, Ma Y, Deng W. The role of allogeneic platelet-rich plasma in patients with diabetic foot ulcer: Current perspectives and future challenges. Front Bioeng Biotechnol 2022; 10:993436. [PMID: 36246379 PMCID: PMC9557159 DOI: 10.3389/fbioe.2022.993436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
The frequency of chronic cutaneous wounds are sharply increasing in aging populations. Patients with age-related diseases, such as diabetes, tumors, renal failure and stroke are prone to soft tissue and skin injury, compounded by slowed healing in aging. Imbalance of wound inflammation, loss of growth factor secretion, and impairment of tissue repair abilities are all possible reasons for failed healing. Therefore, it is vital to explore novel approaches to accelerate wound healing. Platelet-rich plasma (PRP) as a cell therapy has been widely applied for tissue repair and regeneration. PRP promotes wound healing by releasing antimicrobial peptides, growth factors and micro-RNAs. Medical evidence indicates that autologous platelet-rich plasma (au-PRP) can promote wound healing effectively, safely and rapidly. However, its clinical application is usually restricted to patients with chronic cutaneous wounds, generally because of other severe complications and poor clinical comorbidities. Allogeneic platelet-rich plasma (al-PRP), with abundant sources, has demonstrated its superiority in the field of chronic wound treatment. Al-PRP could overcome the limitations of au-PRP and has promising prospects in clinical applications. The aim of this review is to summarize the current status and future challenges of al-PRP in chronic cutaneous wound management. We also summarized clinical cases to further describe the application of al-PRP for chronic wounds in clinical practice.
Collapse
Affiliation(s)
- Min He
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
- General Practice Department, Chongqing Southwest Hospital, Chongqing, China
| | - Tianyi Chen
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yuhuan Lv
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Peiyang Song
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Bo Deng
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xuewen Guo
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Shunli Rui
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Johnson Boey
- Department of Podiatry, National University Hospital, Singapore, Singapore
| | - David G. Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Yu Ma
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Wuquan Deng
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
33
|
Liang Y, Li J, Wang Y, He J, Chen L, Chu J, Wu H. Platelet Rich Plasma in the Repair of Articular Cartilage Injury: A Narrative Review. Cartilage 2022; 13:19476035221118419. [PMID: 36086807 PMCID: PMC9465610 DOI: 10.1177/19476035221118419] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE This paper reviews the research of platelet-rich plasma (PRP) in articular cartilage injury repair, to assess the mechanism, utilization, and efficacy of PRP in the treatment of articular cartilage injury, hoping to provide a theoretical basis for the clinical application of PRP in the future. MATERIALS AND METHODS A comprehensive database search on PRP applications in cartilage repair was performed. Among them, the retrieval time range of PRP in clinical trials of repairing knee cartilage injury was from January 1, 2021 to January 1, 2022. Non-clinical trials and studies unrelated to cartilage injury were excluded. RESULT PRP can affect inflammation, angiogenesis, cartilage protection, and cellular proliferation and differentiation after articular cartilage injury through different pathways. In all, 13 clinical trials were included in the analysis. CONCLUSION PRP is an emergent therapeutic approach in tissue engineering. Most studies reported that PRP has a positive effect on cartilage injury, improving the joint function, meanwhile there is a lack of standardized standards. The technology of PRP in the repair and treatment of articular cartilage injury is worthy of further research.
Collapse
Affiliation(s)
- Yinru Liang
- Stem Cell Research & Cellular
Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang,
China,Key Laboratory of Stem Cell and
Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, China
| | - Juan Li
- Department of Plastic Surgery,
Guangzhou Huadu Affiliated Hospital of Guangdong Medical University (Guangzhou Huadu
District Maternal and Child Health Care Hospital), Guangzhou, China
| | - Yuhui Wang
- Department of Surgery, The Third
Affiliated Hospital of Guangdong Medical University (Longjiang Hospital of Shunde
District), Foshan, China
| | - Junchu He
- Key Laboratory of Stem Cell and
Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, China
| | - Liji Chen
- Key Laboratory of Stem Cell and
Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, China
| | - Jiaqi Chu
- Stem Cell Research & Cellular
Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang,
China,Jiaqi Chu, Stem Cell Research &
Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University,
Zhanjiang 524001, China.
| | - Hongfu Wu
- Stem Cell Research & Cellular
Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang,
China,Key Laboratory of Stem Cell and
Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, China
| |
Collapse
|
34
|
Wu S, Guo W, Li R, Zhang X, Qu W. Progress of Platelet Derivatives for Cartilage Tissue Engineering. Front Bioeng Biotechnol 2022; 10:907356. [PMID: 35782516 PMCID: PMC9243565 DOI: 10.3389/fbioe.2022.907356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Articular cartilage has limited self-regeneration ability for lacking of blood vessels, nerves, and lymph that makes it a great challenge to repair defects of the tissue and restore motor functions of the injured or aging population. Platelet derivatives, such as platelet-rich plasma, have been proved effective, safe, and economical in musculoskeletal diseases for their autologous origin and rich in growth factors. The combination of platelet derivatives with biomaterials provides both mechanical support and localized sustained release of bioactive molecules in cartilage tissue engineering and low-cost efficient approaches of potential treatment. In this review, we first provide an overview of platelet derivatives and their application in clinical and experimental therapies, and then we further discuss the techniques of the addition of platelet derivatives and their influences on scaffold properties. Advances in cartilage tissue engineering with platelet derivatives as signal factors and structural components are also introduced before prospects and concerns in this research field. In short, platelet derivatives have broad application prospects as an economical and effective enhancement for tissue engineering–based articular cartilage repair.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Wenrui Qu,
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Wenrui Qu,
| |
Collapse
|
35
|
Simão VP, Cury CS, Tavares GMZ, Ortega GC, Ribeiro AC, Santos GS, Lana JFSD. Platelet-rich plasma application in diabetic ulcers: A review. World J Dermatol 2022; 10:1-9. [DOI: 10.5314/wjd.v10.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/29/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
There are 422 million diabetic people in the world. 25% of these individuals are diagnosed with diabetic foot ulcer (DFU). 20% of patients with DFU will suffer amputation of the lower limbs. Following amputation procedures, the mortality rate of patients is over 70% in 5 years. Diabetes has no cure and, therefore, treatment aims to prevent and treat its complications. Autologous platelet-rich plasma (PRP) has been shown to be a therapeutic tool for many types of disorders, including the treatment of DFU. This manuscript aims to carry out a review to provide more knowledge about the efficacy and safety of autologous PRP for wound closure in patients with DFU. The majority of studies included in this review state that PRP promotes improvement of DFU lesions by accelerating tissue healing processes. However, many studies have a small sample size and thus require larger sample range in order to improve robustness of data in the literature.
Collapse
Affiliation(s)
| | - Carolina Souza Cury
- Medical School, Centro Universitário Lusíada, Santos 11045-101, São Paulo, Brazil
| | | | | | | | - Gabriel Silva Santos
- Biomedical Science, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | | |
Collapse
|
36
|
Garraud O. Platelet therapy and regenerative medicine: a need for clarification and controlled trials, and a desirable intervention for blood establishments. Transfus Apher Sci 2022; 61:103463. [DOI: 10.1016/j.transci.2022.103463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Allogeneic platelet-derived growth factors local injection in treatment of tennis elbow: a prospective randomized controlled study. INTERNATIONAL ORTHOPAEDICS 2022; 46:581-588. [PMID: 35020026 PMCID: PMC8840929 DOI: 10.1007/s00264-022-05300-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE The purpose of this study aimed to evaluate the efficacy of local injection of allogeneic platelet-derived growth factors in treatment of patients with tennis elbow. PATIENTS AND METHODS This study included 120 tennis elbow patients randomly divided into two groups. The patients were locally injected with allogeneic growth factors (treatment group) or with normal saline (control group). The outcomes were assessed using Patient-Related Tennis Elbow Evaluation (PRTEE) and quick Disabilities of the Arm, Shoulder and Hand (qDASH) scales. The clinical outcomes were accordingly classified as excellent, good and poor. The patient's satisfaction and adverse effects were also recorded. RESULTS There was no statistically significant difference between the two groups regarding the age, gender, dominant arm or the pre-injection scores. At three month follow-up, the reductions in the mean PRTEE and qDASH scores were 88.7% and 70.6% in the treatment group versus 21.8% and 14.9% in the control group, respectively. At the last follow-up, the outcomes in the treatment group were excellent in 85% of patients and good in 15%, versus 8% and 32% in the control group. Overall, 95% were satisfied in the treatment group compared to 25% in control group. Forty patients in the treatment group experienced mild transient post-injection pain. CONCLUSION This study strongly suggests that local injection of allogeneic platelet-derived growth factors could be a promising safe treatment option for tennis elbow with significant pain relief, functional improvement and patient's satisfaction. Yet, additional larger studies are needed to assess the durability of these outcomes.
Collapse
|
38
|
Vågesjö E, Grigoleit P, Fasth A, Phillipson M. How can we optimize the development of drugs for wound healing? Expert Opin Drug Discov 2021; 17:93-96. [PMID: 34651533 DOI: 10.1080/17460441.2022.1992381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Evelina Vågesjö
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Ilya Pharma AB, Uppsala, Sweden
| | | | | | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,The Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Giorgetti G, Gazzini L, Fazio E, Nucera G, Calabrese L, Fontanella F. Use of platelet-rich plasma (PRP) to heal post-operative defects at the radial forearm free flap donor site. EUROPEAN JOURNAL OF PLASTIC SURGERY 2021. [DOI: 10.1007/s00238-021-01885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|