1
|
Hasbani DJ, Hamie L, Eid E, Tamer C, Abbas O, Kurban M. Treatments for Non-Syndromic Inherited Ichthyosis, Including Emergent Pathogenesis-Related Therapy. Am J Clin Dermatol 2022; 23:853-867. [PMID: 35960486 DOI: 10.1007/s40257-022-00718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
Abstract
The term 'inherited ichthyosis' refers to a heterogeneous group of mendelian disorders of cornification that involve the integument with varying degrees of scaling. The management of ichthyosis poses a challenge for most physicians. Treatment options proposed in the literature include moisturizers, topical keratolytics, topical and systemic vitamin D analogues, and topical and systemic retinoids; however, some of these modalities are less reliable than others. Despite the therapeutic impasse imposed by the options above, the emergence of pathogenesis-based treatments along with novel gene therapies appear promising and hold the potential to halt or even revert disorders that arise from single genetic mutations, although research is still quite lacking in this domain. Hence, this review aims to highlight the various treatment modalities available for the management of the cutaneous manifestations of non-syndromic inherited ichthyosis, with an added emphasis on pathogenesis-targeted therapies.
Collapse
Affiliation(s)
- Divina Justina Hasbani
- Department of Dermatology, American University of Beirut Medical Center, Riad El Solh/Beirut 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Lamiaa Hamie
- Department of Dermatology, Division of Pediatric Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Edward Eid
- Department of Dermatology, American University of Beirut Medical Center, Riad El Solh/Beirut 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Christel Tamer
- Department of Radiology, American University of Beirut, Beirut, Lebanon
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Riad El Solh/Beirut 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut Medical Center, Riad El Solh/Beirut 1107 2020, P.O. Box 11-0236, Beirut, Lebanon.
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
2
|
Veit JGS, Poumay Y, Mendes D, Kreitinger J, Walker L, Paquet A, Menigot C, Zolezzi F, Paller AS, Diaz P. Preclinical assessment of dual CYP26[A1/B1] inhibitor, DX308, as an improved treatment for keratinization disorders. SKIN HEALTH AND DISEASE 2021; 1:e22. [PMID: 35664983 PMCID: PMC9060145 DOI: 10.1002/ski2.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
Background Retinoid‐based therapies are commonly used in the treatment of disorders of keratinization and other skin disorders but can result in non‐specific effects and adverse reactions. Use of retinoic acid metabolism blocking agents (RAMBAs) such as DX308 may address these shortcomings. Objectives Characterize the therapeutic potential of recently discovered, CYP26‐selective RAMBA, DX308. Materials and Methods Preliminary in vitro assessment of potential off‐target activity, metabolic and toxicologic profiling. Studies to assess safety and efficacy of topical treatment in correcting abnormal skin morphology in rhino mice. Extensive gene expression profiling by RNA sequencing and qPCR in 3D epidermis grown with keratinocytes (KCs) from keratinization disorders and healthy controls, to investigate modulation of retinoid biopathways. Results In vitro, DX308 does not interact with off‐target nuclear receptors or CYP450s, is not genotoxic, and is stable in skin, despite vigorous hepatic metabolism. In vivo, topical DX308 induces comedolysis and epidermal thickening without apparent adverse effects. Gene expression profiling shows potent modulation of retinoid‐responsive genes by DX308 in both healthy and keratinization disorder KCs. Pathway analysis suggests DX308 may inhibit inflammatory and immune responses in KCs. Conclusions These preliminary studies suggest that DX308 is an efficacious topical therapeutic with a favourable metabolic and safety profiles. DX308 may present an improved therapeutic alternative for the treatment of keratinization disorders and other retinoid‐responsive skin ailments.
Collapse
Affiliation(s)
- J G S Veit
- Department of Biomedical and Pharmaceutical Sciences University of Montana Missoula Montana USA.,URPHYM-NARILIS University of Namur Namur Belgium.,R&D DermaXon LLC Missoula Montana USA
| | - Y Poumay
- URPHYM-NARILIS University of Namur Namur Belgium
| | - D Mendes
- R&D DermaXon LLC Missoula Montana USA
| | | | - L Walker
- R&D DermaXon LLC Missoula Montana USA
| | | | | | | | - A S Paller
- Department of Dermatology Northwestern University Feinberg School of Medicine Chicago Illinois USA
| | - P Diaz
- Department of Biomedical and Pharmaceutical Sciences University of Montana Missoula Montana USA.,R&D DermaXon LLC Missoula Montana USA
| |
Collapse
|
3
|
Veit JGS, De Glas V, Balau B, Liu H, Bourlond F, Paller AS, Poumay Y, Diaz P. Characterization of CYP26B1-Selective Inhibitor, DX314, as a Potential Therapeutic for Keratinization Disorders. J Invest Dermatol 2020; 141:72-83.e6. [PMID: 32505549 DOI: 10.1016/j.jid.2020.05.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 01/15/2023]
Abstract
Inhibition of CYP450-mediated retinoic acid (RA) metabolism by RA metabolism blocking agents increases endogenous retinoids and is an alternative to retinoid therapy. Currently available RA metabolism blocking agents (i.e., liarozole and talarozole) tend to have fewer adverse effects than traditional retinoids but lack target specificity. Substrate-based inhibitor DX314 has enhanced selectivity for RA-metabolizing enzyme CYP26B1 and may offer an improved treatment option for keratinization disorders such as congenital ichthyosis and Darier disease. In this study, we used RT-qPCR, RNA sequencing, pathway, upstream regulator, and histological analyses to demonstrate that DX314 can potentiate the effects of all-trans-RA in healthy and diseased reconstructed human epidermis. We unexpectedly discovered that DX314, but not all-trans-RA or previous RA metabolism blocking agents, appears to protect epidermal barrier integrity. In addition, DX314-induced keratinization and epidermal proliferation effects are observed in a rhino mice model. Altogether, the results indicate that DX314 inhibits all-trans-RA metabolism with minimal off-target activity and shows therapeutic similarity to topical retinoids in vitro and in vivo. Findings of a barrier-protecting effect require further mechanistic study but may lead to a unique strategy in barrier-reinforcing therapies. DX314 is a promising candidate compound for further study and development in the context of keratinization disorders.
Collapse
Affiliation(s)
- Joachim G S Veit
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, USA
| | | | - Benoît Balau
- URPHYM-NARILIS, University of Namur, Namur, Belgium
| | - Haoming Liu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Florence Bourlond
- Service de Dermatologie, Hôpital Erasme, Université Libre de Bruxelles, Belgique
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yves Poumay
- URPHYM-NARILIS, University of Namur, Namur, Belgium
| | - Philippe Diaz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, USA; DermaXon LLC, Missoula, Montana, USA.
| |
Collapse
|
4
|
Hawkins S, Adamus J, Chiang CY, Covell E, O'Leary J, Lee JM. Retinyl propionate and climbazole combination demonstrates clinical improvement to the appearance of hyperpigmentation and deep wrinkling with minimal irritation. Int J Cosmet Sci 2017; 39:589-599. [DOI: 10.1111/ics.12412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 11/30/2022]
Affiliation(s)
- S. Hawkins
- Unilever Research and Development; Trumbull CT 06611 USA
| | - J. Adamus
- Unilever Research and Development; Trumbull CT 06611 USA
| | - C.-y. Chiang
- Unilever Research and Development; Trumbull CT 06611 USA
| | - E. Covell
- Unilever Research and Development; Trumbull CT 06611 USA
| | - J. O'Leary
- Unilever Research and Development; Trumbull CT 06611 USA
| | - J.-m. Lee
- Unilever Research and Development; Trumbull CT 06611 USA
| |
Collapse
|
5
|
Toral-López J, González-Huerta LM, Cuevas-Covarrubias SA. X linked recessive ichthyosis: Current concepts. World J Dermatol 2015; 4:129. [DOI: 10.5314/wjd.v4.i3.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/31/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023] Open
|
6
|
Nelson CH, Buttrick BR, Isoherranen N. Therapeutic potential of the inhibition of the retinoic acid hydroxylases CYP26A1 and CYP26B1 by xenobiotics. Curr Top Med Chem 2014; 13:1402-28. [PMID: 23688132 DOI: 10.2174/1568026611313120004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 02/21/2013] [Indexed: 12/27/2022]
Abstract
Retinoic acid (RA), the active metabolite of vitamin A, is an important endogenous signaling molecule regulating cell cycle and maintenance of epithelia. RA isomers are also used as drugs to treat various cancers and dermatological diseases. However, the therapeutic uses of RA isomers are limited due to side effects such as teratogenicity and resistance to treatment emerging mainly from autoinduction of RA metabolism. To improve the therapeutic usefulness of retinoids, RA metabolism blocking agents (RAMBAs) have been developed. These inhibitors generally target the cytochrome P450 (CYP) enzymes because RA clearance is predominantly mediated by P450s. Since the initial identification of inhibitors of RA metabolism, CYP26 enzymes have been characterized as the main enzymes responsible for RA clearance. This makes CYP26 enzymes an attractive target for the development of novel therapeutics for cancer and dermatological conditions. The basic principle of development of CYP26 inhibitors is that endogenous RA concentrations will be increased in the presence of a CYP26 inhibitor, thus, potentiating the activity of endogenous RA in a cell-type specific manner. This will reduce side effects compared to administration of RA and allow for more targeted therapy. In clinical trials, inhibitors of RA metabolism have been effective in treatment of psoriasis and other dermatological conditions as well as in some cancers. However, no CYP26 inhibitor has yet been approved for clinical use. This review summarizes the history of development of RAMBAs, the clinical and preclinical studies with the various structural series and the available knowledge of structure activity relationships of CYP26 inhibitors.
Collapse
Affiliation(s)
- Cara H Nelson
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
7
|
Digiovanna JJ, Mauro T, Milstone LM, Schmuth M, Toro JR. Systemic retinoids in the management of ichthyoses and related skin types. Dermatol Ther 2013; 26:26-38. [PMID: 23384018 DOI: 10.1111/j.1529-8019.2012.01527.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The term retinoid includes both natural and synthetic derivatives of vitamin A. Retinoid-containing treatments have been used since ~1550BC by the early Egyptians. Treatment of ichthyosiform disorders with retinoids dates back at least to the 1930s. Early use of high-dose vitamin A demonstrated efficacy, but because vitamin A is stored in the liver, toxicity limited usefulness. Interest turned to synthetic retinoids in an effort to enhance efficacy and limit toxicity. Acetretin, isotretinoin and, in the past etretinate, have provided the most effective therapy for ichthyosiform conditions. They have been used for a variety of ages, including in newborns with severe ichthyosis and for decades in some patients. Careful surveillance and management of mucous membrane, laboratory, skeletal, and teratogenic side effects has made systemic retinoids the mainstay of therapy for ichthyosis and related skin types.
Collapse
Affiliation(s)
- John J Digiovanna
- DNA Repair Section, Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
8
|
Hernández-Martin A, Aranegui B, Martin-Santiago A, Garcia-Doval I. A systematic review of clinical trials of treatments for the congenital ichthyoses, excluding ichthyosis vulgaris. J Am Acad Dermatol 2013; 69:544-549.e8. [PMID: 23870202 DOI: 10.1016/j.jaad.2013.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 05/13/2013] [Accepted: 05/17/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND The ichthyoses comprise a group of inherited disorders of keratinization. Because of the need for lifelong treatment, it is important that therapies are beneficial, safe, and well tolerated. OBJECTIVES We sought to review the evidence on existing treatments for the congenital ichthyoses, excluding ichthyosis vulgaris. METHOD We undertook a systematic review using the methodology of the Cochrane Collaboration. Articles published in MEDLINE, EMBASE, and CENTRAL and registered clinical trials were screened. Randomized controlled trials involving patients with the inherited ichthyoses, either syndromic or nonsyndromic but excluding ichthyosis vulgaris, were considered. RESULTS Six trials met the inclusion criteria. Topical treatments including 5% urea, 20% propylene glycol alone or in combination with 5% lactic acid, calcipotriol ointment, and liarozole 5% cream showed therapeutic benefit. Oral liarozole, a retinoic acid metabolism blocking agent, showed no advantage over oral acitretin. LIMITATIONS Most studies were performed on a small sample of patients and lacked methodological and reporting quality. The small number of trials and the nearly constant positive results make publication bias likely. The absence of standardization of outcome measures precluded the comparison of studies. CONCLUSIONS Topical treatments including emollients, calcipotriol ointment, and liarozole cream seem to have therapeutic benefit and a good safety profile, although the use of topical calcipotriol is limited by a maximum weekly dose of 100 g. The advantage of oral liarozole over acitretin is uncertain. Multicenter trials comparing oral and topical interventions and evaluation of long-term outcomes are needed.
Collapse
|
9
|
|
10
|
Chiavérini C. Ichtyoses génétiques. Ann Dermatol Venereol 2009; 136:923-34. [DOI: 10.1016/j.annder.2009.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 01/23/2009] [Indexed: 01/07/2023]
|
11
|
Abstract
Ichthyoses constitute a large group of cornification disorders that affect the entire integument. The skin is characterized by visible scaling and in many cases by inflammation, for example, in bullous/keratinopathic ichthyosis or Netherton syndrome. From the viewpoint of classification it is useful to distinguish non-syndromic from syndromic types of ichthyosis. Ichthyosis vulgaris and recessive X-linked ichthyosis are common disorders - often of delayed onset, in contrast to congenital ichthyoses, which belong to the group of rare diseases and present at birth with either the features of collodion membrane or congenital ichthyosiform erythroderma. The diagnostic steps are based on clinical data, analyses such as the steroid sulfatase activity test, skin biopsies, and genetic results. However, the dramatic increase in knowledge about the pathophysiology of these conditions has not led to a curative therapy so far. The therapeutic management is multidisciplinary and involves ichthyosis patient organizations in many countries. The mainstay of treatment remains with moisturizing creams containing, for example, urea, lactic acid and other humectants and keratolytics, regular bathing, and mechanical scale removal. Patients with lamellar ichthyosis or ichthyosiform erythroderma in particular profit from oral therapy with retinoids or retinoic acid metabolism-blocking agents.
Collapse
Affiliation(s)
- Vinzenz Oji
- Department of Dermatology, University of Münster, Münster, Germany.
| | | |
Collapse
|
12
|
Both all-trans retinoic acid and cytochrome P450 (CYP26) inhibitors affect the expression of vitamin A metabolizing enzymes and retinoid biomarkers in organotypic epidermis. Arch Dermatol Res 2009; 301:475-85. [PMID: 19294396 DOI: 10.1007/s00403-009-0937-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 02/17/2009] [Accepted: 02/27/2009] [Indexed: 12/21/2022]
Abstract
The biosynthesis of retinoic acid (RA) from retinol is controlled by several enzymes, e.g. dehydrogenases (RalDH2, RoDH-4) and retinol-esterifying enzyme (LRAT), whereas its degradation mainly involves CYP26 enzymes. In keratinocytes, RA activates the nuclear retinoid-receptors inducing the transcription of many genes. Here, we examined the effects of RA and the CYP26 inhibitors, liarozole and talarozole, on retinoid metabolism and RA-regulated genes in organotypic epidermis. RA induced the expression of CYP26 enzymes already after 8 h, whereas LRAT exhibited a later response and peaked at 48 h, indicating a feedback induction of retinol esterification. In line with a reduced biosynthesis of RA from retinol after exogenous RA, the expression of RDH16 reduced 80% in response to exogenous RA. The mRNA expression of RA-regulated genes (KRT2, KRT4, CRABPII and HBEGF) was altered within 24 h after RA exposure. In contrast, the CYP26 inhibitors caused only minor effects, except for a clear-cut induction of CYP26A1 only when combined with minute amounts of exogenous RA. Cellular accumulation of exogenous [3H]RA was higher after talarozole than after liarozole, probably indicating a greater CYP26-inhibitory potency of the former drug. The present study shows that CYP26A1 expression is extremely sensitive to both exogenous RA and increased endogenous RA levels, i.e. due to CYP26 inhibition, and thus an excellent biomarker for retinoid signalling in organotypic epidermis.
Collapse
|
13
|
Pavez Loriè E, Cools M, Borgers M, Wouters L, Shroot B, Hagforsen E, Törmä H, Vahlquist A. Topical treatment with CYP26 inhibitor talarozole (R115866) dose dependently alters the expression of retinoid-regulated genes in normal human epidermis. Br J Dermatol 2008; 160:26-36. [PMID: 19016711 DOI: 10.1111/j.1365-2133.2008.08895.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND An alternative approach to retinoid therapy is to inhibit the cytochrome P450 (CYP)-mediated catabolism of endogenous all-trans retinoic acid in the skin by applying retinoic acid metabolism blocking agents such as talarozole (R115866). OBJECTIVES To study the effects of topical talarozole on retinoid biomarkers in normal skin in a randomized phase I trial. METHODS Gels containing talarozole (0.35% or 0.07%) and vehicle were applied once daily for 9 days on either buttock of 16 healthy volunteers. Epidermal shave biopsies (for mRNA analysis) and punch biopsies (for histology and immunofluorescence analysis) were collected from the treatment areas. Genes encoding the following were studied by quantitative real-time polymerase chain reaction: cellular retinoic acid binding protein 2 (CRABP2), cytokeratins (KRT2 and KRT4), CYP26A1, CYP26B1, CYP26C1 and CYP2S1, two enzymes in the retinol metabolism (retinal dehydrogenase-2 and retinol acyltransferase) and two proinflammatory cytokines [interleukin (IL)-1alpha and tumour necrosis factor-alpha]. RESULTS Talarozole treatment increased the mRNA expression of CRABP2, KRT4, CYP26A1 and CYP26B1 dose dependently, and decreased the expression of KRT2 and IL-1alpha compared with vehicle-treated skin. No mRNA change in retinol-metabolizing enzymes was obtained. There was no induction of epidermal thickness or overt skin inflammation in talarozole-treated skin. Immunofluorescence analysis confirmed an upregulation of KRT4 protein, but no upregulation of CYP26A1 and CYP26B1 expression was detected. CONCLUSIONS Talarozole influences the biomarker pattern consistently with increased retinoic acid stimulation. The low irritancy of talarozole at the two examined dosages is a possible advantage over topical retinoids.
Collapse
Affiliation(s)
- E Pavez Loriè
- Department of Medical Sciences/Dermatology, Uppsala University, SE-751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Verfaille CJ, Borgers M, van Steensel MAM. Retinoic acid metabolism blocking agents (RAMBAs): a new paradigm in the treatment of hyperkeratotic disorders. J Dtsch Dermatol Ges 2007; 6:355-64. [PMID: 17941881 DOI: 10.1111/j.1610-0387.2007.06541.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Synthetic vitamin A derivatives, retinoids,have long been the mainstay of treatment for several disorders of keratinization, notably the ichthyoses and severe acne. Some forms of psoriasis also respond well. Their considerable power comes at a price. They have dose-limiting side effects and can be highly teratogenic, limiting their use in women of childbearing age.Thus, retinoids are used less often than their potential would warrant. However, the recent development of compounds that block the catabolism of endogenous vitamin A, called Retinioic Acid Metabolism Blocking Agents or RAMBAs, offers new possibilities. With these drugs, retinoid effects with less side effects and a reduction of the post-treatment teratogenicity period due to their favourable pharmacokinetic profile might be expected. In this review, we discuss how retinoids work, how they are metabolized and how RAMBAs influence this process. We also review the presently available data from clinical trials with RAMBAs.
Collapse
Affiliation(s)
- Christel J Verfaille
- Barrier Therapeutics NV, Geel, Belgium, and Department of Dermatology, University Hospital Maastricht, The Netherlands
| | | | | |
Collapse
|
15
|
Verfaille CJ, Vanhoutte FP, Blanchet-Bardon C, van Steensel MA, Steijlen PM. Oral liarozole vs. acitretin in the treatment of ichthyosis: a phase II/III multicentre, double-blind, randomized, active-controlled study. Br J Dermatol 2007; 156:965-73. [PMID: 17263800 DOI: 10.1111/j.1365-2133.2006.07745.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Liarozole, a retinoic acid metabolism blocking agent, has been granted orphan drug status for congenital ichthyosis by the European Commission and the U.S. Food and Drug Administration. OBJECTIVES The purpose of this trial was to investigate the efficacy, tolerability and safety of oral liarozole vs. acitretin in patients with ichthyosis. METHODS In this double-blind comparative trial of liarozole vs. acitretin, 32 patients with ichthyosis were randomized to be treated with either oral liarozole 75 mg in the morning and 75 mg in the evening or with acitretin 10 mg in the morning and 25 mg in the evening for 12 weeks. Clinical efficacy, tolerability and safety were monitored. RESULTS Between-group comparisons for efficacy and tolerability revealed no statistically significant differences except for scaling on the trunk at baseline which was significantly worse in the liarozole group (P = 0.024) and showed a more pronounced improvement in this group than in the acitretin-treated patients (P = 0.047). Based on the overall evaluation of the response to treatment at endpoint, 10 of 15 patients in the liarozole group and 13 of 16 patients in the acitretin group were considered by the investigator to be at least markedly improved. The expected retinoic acid-related adverse events were mostly mild to moderate and tended to occur less frequently in the liarozole group. No serious adverse events related to the drugs occurred. CONCLUSIONS The present study indicates that liarozole at a daily dose of 150 mg is equally effective as a treatment for ichthyosis as acitretin but shows a trend towards a more favourable tolerability profile. The results of this trial warrant further clinical trials to confirm efficacy and safety of liarozole as an orphan drug in ichthyosis.
Collapse
Affiliation(s)
- C J Verfaille
- Department of Dermatology, GROW, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Njar VCO, Gediya L, Purushottamachar P, Chopra P, Vasaitis TS, Khandelwal A, Mehta J, Huynh C, Belosay A, Patel J. Retinoic acid metabolism blocking agents (RAMBAs) for treatment of cancer and dermatological diseases. Bioorg Med Chem 2006; 14:4323-40. [PMID: 16530416 DOI: 10.1016/j.bmc.2006.02.041] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 11/23/2022]
Abstract
The naturally occurring retinoids and their synthetic analogs play a key role in differentiation, proliferation, and apoptosis, and their use/potential in oncology, dermatology and a variety of diseases are well documented. This review focuses on the role of all-trans-retinoic acid (ATRA), the principal endogenous metabolite of vitamin A (retinol) and its metabolism in oncology and dermatology. ATRA has been used successfully in differentiated therapy of acute promyelocytic leukemia, skin cancer, Kaposi's sarcoma, and cutaneous T-cell lymphoma, and also in the treatment of acne and psoriasis. However, its usefulness is limited by the rapid emergence of acquired ATRA resistance involving multifactoral mechanisms. A key mechanism of resistance involves ATRA-induced catabolism of ATRA. Thus, a novel strategy to overcome the limitation associated with exogenous ATRA therapy has been to modulate and/or increase the levels of endogenous ATRA by inhibiting the cytochrome P450-dependent ATRA-4-hydroxylase enzymes (particularly CYP26s) responsible for ATRA metabolism. These inhibitors are also referred to as retinoic acid metabolism blocking agents (RAMBAs). This review highlights development in the design, synthesis, and evaluation of RAMBAs. Major emphasis is given to liarozole, the most studied and only RAMBA in clinical use and also the new RAMBAs in development and with clinical potential.
Collapse
Affiliation(s)
- Vincent C O Njar
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, 21201-1559, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|