1
|
Zareie P, Weiss ES, Kaplan DH, Mackay LK. Cutaneous T cell immunity. Nat Immunol 2025:10.1038/s41590-025-02145-3. [PMID: 40335684 DOI: 10.1038/s41590-025-02145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/13/2025] [Indexed: 05/09/2025]
Abstract
The skin is the primary barrier against environmental insults, safeguarding the body from mechanical, chemical and pathogenic threats. The frequent exposure of the skin to environmental challenges requires an immune response that incorporates a sophisticated combination of defenses. Tissue-resident lymphocytes are pivotal for skin immunity, working in tandem with commensal bacteria to maintain immune surveillance and homeostasis, as well as participating in the pathogenesis of several skin diseases. Indeed, it has been estimated that the human skin harbors nearly twice as many T cells as found in the circulation. Effective treatment of skin diseases and new therapy development require a thorough understanding of the complex interactions among skin tissue, immune cells and the microbiota, which together regulate the skin's immune balance. This Review explores the latest developments and understanding of this critical barrier organ, with a specific focus on the role of skin-resident T cells.
Collapse
Affiliation(s)
- Pirooz Zareie
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Eric S Weiss
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Metris A, Walker AW, Showering A, Doolan A, McBain AJ, Ampatzoglou A, Murphy B, O'Neill C, Shortt C, Darby EM, Aldis G, Hillebrand GG, Brown HL, Browne HP, Tiesman JP, Leng J, Lahti L, Jakubovics NS, Hasselwander O, Finn RD, Klamert S, Korcsmaros T, Hall LJ. Assessing the safety of microbiome perturbations. Microb Genom 2025; 11. [PMID: 40371892 DOI: 10.1099/mgen.0.001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Everyday actions such as eating, tooth brushing or applying cosmetics inherently modulate our microbiome. Advances in sequencing technologies now facilitate detailed microbial profiling, driving intentional microbiome-targeted product development. Inspired by an academic-industry workshop held in January 2024, this review explores the oral, skin and gut microbiomes, focussing on the potential long-term implications of perturbations. Key challenges in microbiome safety assessment include confounding factors (ecological variability, host influences and external conditions like geography and diet) and biases from experimental measurements and bioinformatics analyses. The taxonomic composition of the microbiome has been associated with both health and disease, and perturbations like regular disruption of the dental biofilm are essential for preventing caries and inflammatory gum disease. However, further research is required to understand the potential long-term impacts of microbiome disturbances, particularly in vulnerable populations including infants. We propose that emerging technologies, such as omics technologies to characterize microbiome functions rather than taxa, leveraging artificial intelligence to interpret clinical study data and in vitro models to characterize and measure host-microbiome interaction endpoints, could all enhance the risk assessments. The workshop emphasized the importance of detailed documentation, transparency and openness in computational models to reduce uncertainties. Harmonisation of methods could help bridge regulatory gaps and streamline safety assessments but should remain flexible enough to allow innovation and technological advancements. Continued scientific collaboration and public engagement are critical for long-term microbiome monitoring, which is essential to advancing safety assessments of microbiome perturbations.
Collapse
Affiliation(s)
- Aline Metris
- Unilever, Safety, Environmental and Regulatory Sciences (SERS), Sharnbrook, UK
| | - Alan W Walker
- Microbiome, Food Innovation and Food Security Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | | | | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Antonis Ampatzoglou
- Unilever, Safety, Environmental and Regulatory Sciences (SERS), Sharnbrook, UK
| | - Barry Murphy
- Unilever R&D Port Sunlight, Bebington, Wirral, UK
| | - Catherine O'Neill
- Division of Dermatology and Musculoskeletal Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Elizabeth M Darby
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | | | - Greg G Hillebrand
- University of Cincinnati, James L. Winkle College of Pharmacy, Cincinnati, OH, USA
| | - Helen L Brown
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Hilary P Browne
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College, Cork, Ireland
| | | | - Joy Leng
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Leo Lahti
- Department of Computing, University of Turku, Turku FI-20014, Finland
| | - Nicholas S Jakubovics
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Silvia Klamert
- Unilever, Safety, Environmental and Regulatory Sciences (SERS), Sharnbrook, UK
| | - Tamas Korcsmaros
- Food, Microbiomes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Division of Digestive Diseases, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
| | - Lindsay J Hall
- Food, Microbiomes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Cha J, Kim TG, Ryu JH. Conversation between skin microbiota and the host: from early life to adulthood. Exp Mol Med 2025; 57:703-713. [PMID: 40164684 PMCID: PMC12045987 DOI: 10.1038/s12276-025-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 04/02/2025] Open
Abstract
Host life is inextricably linked to commensal microbiota, which play a crucial role in maintaining homeostasis and immune activation. A diverse array of commensal microbiota on the skin interacts with the host, influencing the skin physiology in various ways. Early-life exposure to commensal microbiota has long-lasting effects, and disruption of the epidermal barrier or transient exposure to these microorganisms can lead to skin dysbiosis and inflammation. Several commensal skin microbiota have the potential to function as either commensals or pathogens, both influencing and being influenced by the pathogenesis of skin inflammatory diseases. Here we explore the impact of various commensal skin microbiota on the host and elucidate the interactions between skin microbiota and host systems. A deeper understanding of these interactions may open new avenues for developing effective strategies to address skin diseases.
Collapse
Affiliation(s)
- Jimin Cha
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Kim S, Ndwandwe C, Devotta H, Kareem L, Yao L, O'Mahony L. Role of the microbiome in regulation of the immune system. Allergol Int 2025; 74:187-196. [PMID: 39955207 DOI: 10.1016/j.alit.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/17/2025] Open
Abstract
Immune health and metabolic functions are intimately connected via diet and the microbiota. Immune cells are continuously exposed to a wide range of microbes and microbial-derived compounds, with important mucosal and systemic ramifications. Microbial fermentation of dietary components in vivo generates thousands of molecules, some of which are integral components of the molecular circuitry that regulates immune and metabolic functions. These in turn protect against aberrant inflammatory or hyper-reactive processes and promote effector immune responses that quickly eliminate pathogens, such as SARS-CoV-2. Potent tolerance mechanisms should ensure that these immune cells do not over-react to non-pathogenic factors (e.g. food proteins), while maintaining the ability to respond to infectious challenges in a robust, effective and well controlled manner. In this review we examine the factors and mechanisms that shape microbiota composition and interactions with the host immune system, their associations with immune mediated disorders and strategies for intervention.
Collapse
Affiliation(s)
- Songhui Kim
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Cebile Ndwandwe
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah Devotta
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lamiah Kareem
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lu Yao
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Liam O'Mahony
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Medicine, University College Cork, Cork, Ireland.
| |
Collapse
|
5
|
Qian X, Tong M, Zhang T, Li Q, Hua M, Zhou N, Zeng W. IL-24 promotes atopic dermatitis-like inflammation through driving MRSA-induced allergic responses. Protein Cell 2025; 16:188-210. [PMID: 38752989 PMCID: PMC11892005 DOI: 10.1093/procel/pwae030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/25/2024] [Indexed: 03/11/2025] Open
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin disorder in which patients experience recurrent eczematous lesions and intense itching. The colonization of Staphylococcus aureus (S. aureus) is correlated with the severity of the disease, but its role in AD development remains elusive. Using single-cell RNA sequencing, we uncovered that keratinocytes activate a distinct immune response characterized by induction of Il24 when exposed to methicillin-resistant S. aureus (MRSA). Further experiments using animal models showed that the administration of recombinant IL-24 protein worsened AD-like pathology. Genetic ablation of Il24 or the receptor Il20rb in keratinocytes alleviated allergic inflammation and atopic march. Mechanistically, IL-24 acted through its heterodimeric receptors on keratinocytes and augmented the production of IL-33, which in turn aggravated type 2 immunity and AD-like skin conditions. Overall, these findings establish IL-24 as a critical factor for onset and progression of AD and a compelling therapeutic target.
Collapse
Affiliation(s)
- Xinmin Qian
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Meiyi Tong
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianqing Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingqing Li
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Meng Hua
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Nan Zhou
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Wenwen Zeng
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
6
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
7
|
Scharschmidt TC, Segre JA. Skin microbiome and dermatologic disorders. J Clin Invest 2025; 135:e184315. [PMID: 39895627 PMCID: PMC11785926 DOI: 10.1172/jci184315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Human skin acts as a physical barrier to prevent the entry of pathogenic microbes while simultaneously providing a home for commensal bacteria and fungi. Microbiome sequencing studies have demonstrated the unappreciated diversity and selectivity of these microbes. Functional studies have demonstrated the impact of specific strains to tune the immune system, sculpt the microbial community, provide colonization resistance, and promote epidermal barrier integrity. Recent studies have integrated the microbiome, immunity, and tissue integrity to understand their interplay in common disorders such as atopic dermatitis. In this Review, we explore microbiome shifts associated with cutaneous disorders with an eye toward how the microbiome can be mined to identify new therapeutic opportunities.
Collapse
Affiliation(s)
- Tiffany C. Scharschmidt
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Julia A. Segre
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Pan Y, Hochgerner M, Cichoń MA, Benezeder T, Bieber T, Wolf P. Langerhans cells: Central players in the pathophysiology of atopic dermatitis. J Eur Acad Dermatol Venereol 2025; 39:278-289. [PMID: 39157943 PMCID: PMC11760705 DOI: 10.1111/jdv.20291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/21/2024] [Indexed: 08/20/2024]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease worldwide. AD is a highly complex disease with different subtypes. Many elements of AD pathophysiology have been described, but if/how they interact with each other or which mechanisms are important in which patients is still unclear. Langerhans cells (LCs) are antigen-presenting cells (APCs) in the epidermis. Depending on the context, they can act either pro- or anti-inflammatory. Many different studies have investigated LCs in the context of AD and found them to be connected to all major mechanisms of AD pathophysiology. As APCs, LCs recruit other immune cells and shape the immune response, especially adaptive immunity via polarization of T cells. As sentinel cells, LCs are primary sensors of the skin microbiome and are important for the decision of immunity versus tolerance. LCs are also involved with the integrity of the skin barrier by influencing tight junctions. Finally, LCs are important cells in the neuro-immune crosstalk in the skin. In this review, we provide an overview about the many different roles of LCs in AD. Understanding LCs might bring us closer to a more complete understanding of this highly complex disease. Potentially, modulating LCs might offer new options for targeted therapies for AD patients.
Collapse
Affiliation(s)
- Yi Pan
- Department of Dermatology and AllergyUniversity Hospital of BonnBonnGermany
- Department of Dermatology and VenerologyMedical University of GrazGrazAustria
| | - Mathias Hochgerner
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan UniversityShanghaiChina
| | | | - Theresa Benezeder
- Department of Dermatology and VenerologyMedical University of GrazGrazAustria
| | - Thomas Bieber
- Department of Dermatology and AllergyUniversity Hospital of BonnBonnGermany
- CK‐CARE, Medicine CampusDavosSwitzerland
- Department of DermatologyUniversity Hospital of ZürichZürichSwitzerland
| | - Peter Wolf
- Department of Dermatology and VenerologyMedical University of GrazGrazAustria
| |
Collapse
|
9
|
Kenney HM, Yoshida T, Berdyshev E, Calatroni A, Gill SR, Simpson EL, Lussier S, Boguniewicz M, Hata T, Chiesa Fuxench ZC, De Benedetto A, Ong PY, Ko J, Davidson W, David G, Schlievert PM, Leung DYM, Beck LA. CERS1 is a biomarker of Staphylococcus aureus abundance and atopic dermatitis severity. J Allergy Clin Immunol 2025; 155:479-490. [PMID: 39343173 PMCID: PMC11805642 DOI: 10.1016/j.jaci.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/15/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Atopic dermatitis (AD) is an inflammatory skin condition characterized by widely variable cutaneous Staphylococcus aureus abundance that contributes to disease severity and rapidly responds to type 2 immune blockade (ie, dupilumab). The molecular mechanisms regulating S aureus levels between AD subjects remain poorly understood. OBJECTIVE We investigated host genes that may be predictive of S aureus abundance and correspond with AD severity. METHODS We studied data derived from the National Institutes of Health/National Institute of Allergy and Infectious Diseases-funded (NCT03389893 [ADRN-09]) randomized, double-blind, placebo-controlled multicenter study of dupilumab in adults (n = 71 subjects) with moderate-to-severe AD. Bulk RNA sequencing of skin biopsy samples (n = 57 lesional, 55 nonlesional) was compared to epidermal S aureus abundance, lipidomic, and AD clinical measures. RESULTS S aureus abundance and ceramide synthase 1 (CERS1) expression positively correlated at baseline across both nonlesional (r = 0.29, P = .030) and lesional (r = 0.41, P = .0015) skin. Lesional CERS1 expression also positively correlated with AD severity (ie, SCORAD r = 0.44, P = .0006) and skin barrier dysfunction (transepidermal water loss area under the curve r = 0.31, P = .025) at baseline. CERS1 expression (forms C18:0 sphingolipids) was negatively associated with elongation of very long-chain fatty acids (ELOVL6; C16:0→C18:0) expression and corresponded with a shorter chain length sphingolipid composition. Dupilumab rapidly reduced CERS1 expression (day 7) and ablated the relationship with S aureus abundance and ELOVL6 expression by day 21. CONCLUSION CERS1 is a unique molecular biomarker of S aureus abundance and AD severity that may contribute to dysfunctional skin barrier and shorter-chain sphingolipid composition through fatty acid sequestration as a maladaptive compensatory response to reduced ELOVL6.
Collapse
Affiliation(s)
- H Mark Kenney
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | | | - Steven R Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY
| | - Eric L Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, Ore
| | | | - Mark Boguniewicz
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | - Tissa Hata
- Department of Dermatology, University of California, San Diego, Calif
| | | | - Anna De Benedetto
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY
| | - Peck Y Ong
- Department of Pediatrics, University of Southern California, Division of Clinical Immunology and Allergy Children's Hospital Los Angeles, Los Angeles, Calif
| | - Justin Ko
- Department of Dermatology, Stanford University, Stanford, Calif
| | - Wendy Davidson
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | | | - Donald Y M Leung
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | - Lisa A Beck
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY; Department of Dermatology, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
10
|
Liu AW, Zhang YR, Chen CS, Edwards TN, Ozyaman S, Ramcke T, McKendrick LM, Weiss ES, Gillis JE, Laughlin CR, Randhawa SK, Phelps CM, Kurihara K, Kang HM, Nguyen SLN, Kim J, Sheahan TD, Ross SE, Meisel M, Sumpter TL, Kaplan DH. Scratching promotes allergic inflammation and host defense via neurogenic mast cell activation. Science 2025; 387:eadn9390. [PMID: 39883751 PMCID: PMC11983162 DOI: 10.1126/science.adn9390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/22/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025]
Abstract
Itch is a dominant symptom in dermatitis, and scratching promotes cutaneous inflammation, thereby worsening disease. However, the mechanisms through which scratching exacerbates inflammation and whether scratching provides benefit to the host are largely unknown. We found that scratching was required for skin inflammation in mouse models dependent on FcεRI-mediated mast cell activation. Scratching-induced inflammation required pain-sensing nociceptors, the neuropeptide substance P, and the mast cell receptor MrgprB2. Scratching also increased cutaneous inflammation and augmented host defense to superficial Staphylococcus aureus infection. Thus, through the activation of nociceptor-driven neuroinflammation, scratching both exacerbated allergic skin disease and provided protection from S. aureus, reconciling the seemingly paradoxical role of scratching as a pathological process and evolutionary adaptation.
Collapse
Affiliation(s)
- Andrew W. Liu
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Youran R. Zhang
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chien-Sin Chen
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tara N. Edwards
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sumeyye Ozyaman
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Torben Ramcke
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay M. McKendrick
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric S. Weiss
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob E. Gillis
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Colin R. Laughlin
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Kazuo Kurihara
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hannah M. Kang
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sydney-Lam N. Nguyen
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiwon Kim
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tayler D. Sheahan
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah E. Ross
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Center for Pain Research, Pittsburgh, PA, USA
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Tina L. Sumpter
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel H. Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Lane Starr NM, Al-Rayyan N, Smith JM, Sandstrom S, Swaney MH, Salamzade R, Steidl O, Kalan LR, Singh AM. Combined metagenomic- and culture-based approaches to investigate bacterial strain-level associations with medication-controlled mild-moderate atopic dermatitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100259. [PMID: 38779310 PMCID: PMC11109885 DOI: 10.1016/j.jacig.2024.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 05/25/2024]
Abstract
Background The skin microbiome is disrupted in atopic dermatitis (AD). Existing research focuses on moderate to severe, unmedicated disease. Objective We sought to investigate metagenomic- and culture-based bacterial strain-level differences in mild, medicated AD and the effects these have on human keratinocytes (HKs). Methods Skin swabs from anterior forearms were collected from 20 pediatric participants (11 participants with AD sampled at lesional and nonlesional sites and 9 age- and sex-matched controls). Participants had primarily mild to moderate AD and maintained medication use. Samples were processed for microbial metagenomic sequencing and bacterial isolation. Isolates identified as Staphylococcus aureus were tested for enterotoxin production. HK cultures were treated with cell-free conditioned media from representative Staphylococcus species to measure barrier effects. Results Metagenomic sequencing identified significant differences in microbiome composition between AD and control groups. Differences were seen at the species and strain levels for Staphylococci, with S aureus found only in participants with AD and differences in Staphylococcus epidermidis strains between control and AD swabs. These strains showed differences in toxin gene presence, which was confirmed in vitro for S aureus enterotoxins. The strain from the participant with the most severe AD produced enterotoxin B levels more than 100-fold higher than the other strains (P < .001). Strains also displayed differential effects on HK metabolism and barrier function. Conclusions Strain-level differences in toxin genes from Staphylococcus strains may explain varying effects on HK, with S aureus and non-aureus strains negatively affecting viability and barrier function. These differences are likely important in AD pathogenesis.
Collapse
Affiliation(s)
- Nicole M. Lane Starr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Numan Al-Rayyan
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Jennifer M. Smith
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Mary Hannah Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Olivia Steidl
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Anne Marie Singh
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| |
Collapse
|
12
|
da Silva Duarte AJ, Sanabani SS. Deciphering epigenetic regulations in the inflammatory pathways of atopic dermatitis. Life Sci 2024; 348:122713. [PMID: 38735367 DOI: 10.1016/j.lfs.2024.122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Atopic dermatitis, commonly referred to as atopic eczema, is a persistent inflammatory skin disorder that predominantly manifests in children but may endure into adulthood. Its clinical management poses challenges due to the absence of a definitive cure, and its prevalence varies across ethnicities, genders, and geographic locations. The epigenetic landscape of AD includes changes in DNA methylation, changes in histone acetylation and methylation, and regulation by non-coding RNAs. These changes affect inflammatory and immune mechanisms, and research has identified AD-specific variations in DNA methylation, particularly in the affected epidermis. Histone modifications, including acetylation, have been associated with the disruption of skin barrier function in AD, suggesting the potential therapeutic benefit of histone deacetylase inhibitors such as belinostat. Furthermore, non-coding RNAs, particularly microRNAs and long non-coding RNAs (lncRNAs), have been implicated in modulating various cellular processes central to AD pathogenesis. Therapeutic implications in AD include the potential use of DNA methylation inhibitors and histone deacetylase inhibitors to correct aberrant methylation patterns and modulate gene expression related to immune responses and skin barrier functions. Additionally, the emerging role of lncRNAs suggests the possibility of using small interfering RNAs or antisense oligonucleotides to inhibit lncRNAs and adjust their regulatory impact on gene expression. In conclusion, the importance of epigenetic elements in AD is becoming increasingly clear as studies highlight the contribution of DNA methylation, histone modifications and, control by non-coding RNAs to the onset and progression of the disease. Understanding these epigenetic changes provides valuable insights for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil; Laboratory of Medical Investigation Unit 03, Clinics Hospital, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil.
| |
Collapse
|
13
|
Piewngam P, Otto M. Staphylococcus aureus colonisation and strategies for decolonisation. THE LANCET. MICROBE 2024; 5:e606-e618. [PMID: 38518792 PMCID: PMC11162333 DOI: 10.1016/s2666-5247(24)00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/24/2024]
Abstract
Staphylococcus aureus is a leading cause of death by infectious diseases worldwide. Treatment of S aureus infections is difficult due to widespread antibiotic resistance, necessitating alternative approaches and measures for prevention of infection. Because S aureus infections commonly arise from asymptomatic colonisation, decolonisation is considered a key approach for their prevention. Current decolonisation procedures include antibiotic-based and antiseptic-based eradication of S aureus from the nose and skin. However, despite the widespread implementation and partial success of such measures, S aureus infection rates remain worrisome, and resistance to decolonisation agents is on the rise. In this Review we outline the epidemiology and mechanisms of S aureus colonisation, describe how colonisation underlies infection, and discuss current and novel approaches for S aureus decolonisation, with a focus on the latest findings on probiotic strategies and the intestinal S aureus colonisation site.
Collapse
Affiliation(s)
- Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Kim S, Song Y, Kim J, Jeong B, Park N, Park YM, Kim YT, Rho D, Lee SJ, Choi BG, Im SG, Lee KG. Nanotopology-Enabled On-Site Pathogen Detection for Managing Atopic Dermatitis. Adv Healthc Mater 2024; 13:e2303272. [PMID: 38412280 DOI: 10.1002/adhm.202303272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/19/2024] [Indexed: 02/29/2024]
Abstract
Atopic dermatitis (AD), a prevalent skin condition often complicated by microbial infection, poses a significant challenge in identifying the responsible pathogen for its effective management. However, a reliable, safe tool for pinpointing the source of these infections remains elusive. In this study, a novel on-site pathogen detection that combines chemically functionalized nanotopology with genetic analysis is proposed to capture and analyze pathogens closely associated with severe atopic dermatitis. The chemically functionalized nanotopology features a 3D hierarchical nanopillar array (HNA) with a functional polymer coating, tailored to isolate target pathogens from infected skin. This innovative nanotopology demonstrates superior pathogenic capture efficiency, favorable entrapment patterns, and non-cytotoxicity. An HNA-assembled stick is utilized to directly retrieve bacteria from infected skin samples, followed by extraction-free quantitative loop-mediated isothermal amplification (direct qLAMP) for validation. To mimic human skin conditions, porcine skin is employed to successfully capture Staphylococcus aureus, a common bacterium exacerbating AD cases. The on-site detection method exhibits an impressive detection limit of 103 cells mL-1. The HNA-assembled stick represents a promising tool for on-site detection of bacteria associated with atopic dermatitis. This innovative approach enables to deepen the understanding of AD pathogenesis and open avenues for more effective management strategies for chronic skin conditions.
Collapse
Affiliation(s)
- Seongeun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Younseong Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jueun Kim
- Department of Chemical Engineering, Kangwon National University, Samcheok, 25913, Republic of Korea
| | - Booseok Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Nahyun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yoo Min Park
- Center for NanoBio Development, National NanoFab Center, Daejeon, 34141, Republic of Korea
| | - Yong Tae Kim
- Department of Chemical Engineering & Biotechnology, Tech University of Korea, Siheung-si, 15073, Republic of Korea
| | - Donggee Rho
- Center for NanoBio Development, National NanoFab Center, Daejeon, 34141, Republic of Korea
| | - Seok Jae Lee
- Center for NanoBio Development, National NanoFab Center, Daejeon, 34141, Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok, 25913, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kyoung G Lee
- Center for NanoBio Development, National NanoFab Center, Daejeon, 34141, Republic of Korea
| |
Collapse
|
15
|
Tham EH, Chia M, Riggioni C, Nagarajan N, Common JE, Kong HH. The skin microbiome in pediatric atopic dermatitis and food allergy. Allergy 2024; 79:1470-1484. [PMID: 38308490 PMCID: PMC11142881 DOI: 10.1111/all.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
The skin microbiome is an extensive community of bacteria, fungi, mites, viruses and archaea colonizing the skin. Fluctuations in the composition of the skin microbiome have been observed in atopic dermatitis (AD) and food allergy (FA), particularly in early life, established disease, and associated with therapeutics. However, AD is a multifactorial disease characterized by skin barrier aberrations modulated by genetics, immunology, and environmental influences, thus the skin microbiome is not the sole feature of this disease. Future research should focus on mechanistic understanding of how early-life skin microbial shifts may influence AD and FA onset, to guide potential early intervention strategies or as microbial biomarkers to identify high-risk infants who may benefit from possible microbiome-based biotherapeutic strategies. Harnessing skin microbes as AD biotherapeutics is an emerging field, but more work is needed to investigate whether this approach can lead to sustained clinical responses.
Collapse
Affiliation(s)
- Elizabeth Huiwen Tham
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System (NUHS), Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Minghao Chia
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Carmen Riggioni
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - John E.A. Common
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Heidi H. Kong
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Lai‐Foenander AS, Kuppusamy G, Manogoran J, Xu T, Chen Y, Tang SY, Ser H, Yow Y, Goh KW, Ming LC, Chuah L, Yap W, Goh B. Black soldier fly ( Hermetia illucens L.): A potential small mighty giant in the field of cosmeceuticals. Health Sci Rep 2024; 7:e2120. [PMID: 38831777 PMCID: PMC11144625 DOI: 10.1002/hsr2.2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 06/05/2024] Open
Abstract
Background and Aims Natural products are widely used in the pharmaceutical and cosmetics industries due to their high-value bioactive compounds, which make for "greener" and more environmentally friendly ingredients. These natural compounds are also considered a safer alternative to antibiotics, which may result in antibiotic resistance as well as unfavorable side effects. The development of cosmeceuticals, which combine the cosmetic and pharmaceutical fields to create skincare products with therapeutic value, has increased the demand for unique natural resources. The objective of this review is to discuss the biological properties of extracts derived from larvae of the black soldier fly (BSF; Hermetia illucens), the appropriate extraction methods, and the potential of this insect as a novel active ingredient in the formulation of new cosmeceutical products. This review also addresses the biological actions of compounds originating from the BSF, and the possible association between the diets of BSF larvae and their subsequent bioactive composition. Methods A literature search was conducted using PubMed and Google Scholar to identify and evaluate the various biological properties of the BSF. Results One such natural resource that may be useful in the cosmeceutical field is the BSF, a versatile insect with numerous potential applications due to its nutrient content and scavenging behavior. Previous research has also shown that the BSF has several biological properties, including antimicrobial, antioxidant, anti-inflammatory, and wound healing effects. Conclusion Given the range of biological activities and metabolites possessed by the BSF, this insect may have the cosmeceutical potential to treat a number of skin pathologies.
Collapse
Affiliation(s)
- Ashley Sean Lai‐Foenander
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
| | - Giva Kuppusamy
- Laboratory of Molecular Biology, Department of Research and DevelopmentGK Aqua Sdn Bhd, Port DicksonNegeri SembilanMalaysia
| | - Janaranjani Manogoran
- Laboratory of Molecular Biology, Department of Research and DevelopmentGK Aqua Sdn Bhd, Port DicksonNegeri SembilanMalaysia
| | - Tengfei Xu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yong Chen
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of EngineeringMonash University Malaysia, Bandar SunwaySelangor Darul EhsanMalaysia
| | - Hooi‐Leng Ser
- Department of Biological SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Yoon‐Yen Yow
- Department of Biological SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information TechnologyINTI International UniversityNilaiMalaysia
| | - Long Chiau Ming
- Department of Medical SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Lay‐Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
| | - Wei‐Hsum Yap
- School of BiosciencesTaylor's University, Subang JayaSelangorMalaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP)Faculty of Health and Medical Sciences (FHMS), Taylor's University, Subang JayaSelangorMalaysia
| | - Bey‐Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Sunway Biofunctional Molecules Discovery Centre (SBMDC)School of Medical and Life Sciences, Sunway UniversitySunwayMalaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNSWAustralia
| |
Collapse
|
17
|
Saheb Kashaf S, Kong HH. Adding Fuel to the Fire? The Skin Microbiome in Atopic Dermatitis. J Invest Dermatol 2024; 144:969-977. [PMID: 38530677 PMCID: PMC11034722 DOI: 10.1016/j.jid.2024.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/07/2024] [Indexed: 03/28/2024]
Abstract
Atopic dermatitis (AD) is a multifactorial, heterogeneous disease characterized by epidermal barrier dysfunction, immune system dysregulation, and skin microbiome alterations. Skin microbiome studies in AD have demonstrated that disease flares are associated with microbial shifts, particularly Staphylococcus aureus predominance. AD-associated S. aureus strains differ from those in healthy individuals across various genomic loci, including virulence factors, adhesion proteins, and proinflammatory molecules-which may contribute to complex microbiome barrier-immune system interactions in AD. Different microbially based treatments for AD have been explored, and their future therapeutic successes will depend on a deeper understanding of the potential microbial contributions to the disease.
Collapse
Affiliation(s)
- Sara Saheb Kashaf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA; Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Heidi H Kong
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
18
|
Lapp T, Mann C, Jakob T, Reinhard T, Maier PC. Atopic Keratoconjunctivitis: Pathophysiology, Clinic, and Potential New Therapeutic Concepts. Klin Monbl Augenheilkd 2024; 241:607-618. [PMID: 38604222 DOI: 10.1055/a-2244-2885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Atopic dermatitis (AD) is a chronic recurrent inflammatory skin disease with a bipolar age distribution in childhood, adolescence and middle adulthood. Up to 50% of AD patients show ocular involvement, which can be potentially sight threatening. Clinically, the majority of cases present with atopic blepharo(kerato)conjunctivitis or atopic keratoconjunctivitis (AKC); other clinical variants from this group of inflammatory ocular surface diseases are keratoconjunctivitis vernalis in childhood and adolescence and allergic conjunctivitis. In addition to the aforementioned blepharitis, keratitis and conjunctivitis, AD is also associated with eyelid involvement with subsequent eyelid malposition, limbal insufficiency with the development of pseudopterygia, (chronic) cicatrizing conjunctivitis with symblephara formation and fornix shortening, as well as ocular surface malignancies such as conjunctival intraepithelial neoplasia (CIN) and squamous cell carcinoma. In addition, an association with AD or AKC has been described for keratoconus. Whereas the therapy of AD in dermatology has made revolutionary advances in recent years through the use of biologicals, the primary use of these biologicals in ophthalmological complications is still very hesitant. Treatment here is often provided using topical steroids and calcineurin inhibitors. The following article summarises recent developments in basic and clinical dermatological research and discusses them in the context of current concepts for ophthalmological therapy.
Collapse
Affiliation(s)
- Thabo Lapp
- Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Deutschland
- Augenzentrum am St. Franziskus Hospital, Münster, Deutschland
| | - Caroline Mann
- Haut- und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Deutschland
| | - Thilo Jakob
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Gießen und Marburg, Gießen, Deutschland
| | - Thomas Reinhard
- Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Deutschland
| | | |
Collapse
|
19
|
Zhang M, Liu T, Yang J. Skin neuropathy and immunomodulation in diseases. FUNDAMENTAL RESEARCH 2024; 4:218-225. [PMID: 38933512 PMCID: PMC11197692 DOI: 10.1016/j.fmre.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022] Open
Abstract
Skin is a vital barrier tissue of the body. Immune responses in the skin must be precisely controlled, which would otherwise cause severe disease conditions such as psoriasis, atopic dermatitis, or pathogenic infection. Research evidence has increasingly demonstrated the essential roles of neural innervations, i.e., sensory and sympathetic signals, in modulating skin immunity. Notably, neuropathic changes of such neural structures have been observed in skin disease conditions, implicating their direct involvement in various pathological processes. An in-depth understanding of the mechanism underlying skin neuropathy and its immunomodulatory effects could help reveal novel entry points for therapeutic interventions. Here, we summarize the neuroimmune interactions between neuropathic events and skin immunity, highlighting the current knowledge and future perspectives of this emerging research frontier.
Collapse
Affiliation(s)
- Manze Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tingting Liu
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jing Yang
- IDG/McGovern Institute for Brain Research, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
20
|
To TT, Oparaugo NC, Kheshvadjian AR, Nelson AM, Agak GW. Understanding Type 3 Innate Lymphoid Cells and Crosstalk with the Microbiota: A Skin Connection. Int J Mol Sci 2024; 25:2021. [PMID: 38396697 PMCID: PMC10888374 DOI: 10.3390/ijms25042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Innate lymphoid cells (ILCs) are a diverse population of lymphocytes classified into natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and ILCregs, broadly following the cytokine secretion and transcription factor profiles of classical T cell subsets. Nonetheless, the ILC lineage does not have rearranged antigen-specific receptors and possesses distinct characteristics. ILCs are found in barrier tissues such as the skin, lungs, and intestines, where they play a role between acquired immune cells and myeloid cells. Within the skin, ILCs are activated by the microbiota and, in turn, may influence the microbiome composition and modulate immune function through cytokine secretion or direct cellular interactions. In particular, ILC3s provide epithelial protection against extracellular bacteria. However, the mechanism by which these cells modulate skin health and homeostasis in response to microbiome changes is unclear. To better understand how ILC3s function against microbiota perturbations in the skin, we propose a role for these cells in response to Cutibacterium acnes, a predominant commensal bacterium linked to the inflammatory skin condition, acne vulgaris. In this article, we review current evidence describing the role of ILC3s in the skin and suggest functional roles by drawing parallels with ILC3s from other organs. We emphasize the limited understanding and knowledge gaps of ILC3s in the skin and discuss the potential impact of ILC3-microbiota crosstalk in select skin diseases. Exploring the dialogue between the microbiota and ILC3s may lead to novel strategies to ameliorate skin immunity.
Collapse
Affiliation(s)
- Thao Tam To
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Nicole Chizara Oparaugo
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Alexander R. Kheshvadjian
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - George W. Agak
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Shortt G, Shortt N, Bird G, Kerse K, Lieffering N, Martin A, Eathorne A, Black B, Kim B, Rademaker M, Reiche L, Paa ST, Harding S, Armour M, Semprini A. Mānuka oil based ECMT-154 versus vehicle control for the topical treatment of eczema: study protocol for a randomised controlled trial in community pharmacies in Aotearoa New Zealand. BMC Complement Med Ther 2024; 24:61. [PMID: 38287323 PMCID: PMC10823637 DOI: 10.1186/s12906-024-04358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Eczema is a chronic, relapsing skin condition commonly managed by emollients and topical corticosteroids. Prevalence of use and demand for effective botanical therapies for eczema is high worldwide, however, clinical evidence of benefit is limited for many currently available botanical treatment options. Robustly-designed and adequately powered randomised controlled trials (RCTs) are essential to determine evidence of clinical benefit. This protocol describes an RCT that aims to investigate whether a mānuka oil based emollient cream, containing 2% ECMT-154, is a safe and effective topical treatment for moderate to severe eczema. METHODS This multicentre, single-blind, parallel-group, randomised controlled trial aims to recruit 118 participants from community pharmacies in Aotearoa New Zealand. Participants will be randomised 1:1 to receive topical cream with 2% ECMT-154 or vehicle control, and will apply assigned treatment twice daily to affected areas for six weeks. The primary outcome is improvement in subjective symptoms, assessed by change in POEM score. Secondary outcomes include change in objective symptoms assessed by SCORAD (part B), PO-SCORAD, DLQI, and treatment acceptability assessed by TSQM II and NRS. DISCUSSION Recruitment through community pharmacies commenced in January 2022 and follow up will be completed by mid-2023. This study aims to collect acceptability and efficacy data of mānuka oil based ECMT-154 for the treatment of eczema. If efficacy is demonstrated, this topical may provide an option for a novel emollient treatment. The community-based design of the trial is anticipated to provide a generalisable result. ETHICS AND DISSEMINATION Ethics approval was obtained from Central Health and Disability Ethics Committee (reference: 2021 EXP 11490). Findings of the study will be disseminated to study participants, published in peer-reviewed journal and presented at scientific conferences. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12621001096842. Registered on August 18, 2021 ( https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=382412&isReview=true ). PROTOCOL VERSION 2.1 (Dated 18/05/2022).
Collapse
Affiliation(s)
- Gabrielle Shortt
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand.
- Victoria University of Wellington, Wellington, Aotearoa, New Zealand.
| | - Nicholas Shortt
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
- Victoria University of Wellington, Wellington, Aotearoa, New Zealand
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Georgina Bird
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
| | - Kyley Kerse
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
| | - Nico Lieffering
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
| | - Alexander Martin
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
- Victoria University of Wellington, Wellington, Aotearoa, New Zealand
| | - Allie Eathorne
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Bianca Black
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
| | - Bob Kim
- Anderson's Exchange Pharmacy, Dunedin, Aotearoa, New Zealand
| | - Marius Rademaker
- Waikato Clinical Campus, University of Auckland, Hamilton, Aotearoa, New Zealand
- New Zealand Dermatology Research Trust, Palmerston North, Aotearoa, New Zealand
| | - Louise Reiche
- New Zealand Dermatological Society Inc, Palmerston North, Aotearoa, New Zealand
- New Zealand Dermatology Research Trust, Palmerston North, Aotearoa, New Zealand
| | - Selwyn Te Paa
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
- University of Otago, Wellington, Aotearoa, New Zealand
| | - Suki Harding
- Manuka Bioscience Ltd, Auckland, Aotearoa, New Zealand
| | - Mike Armour
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Alex Semprini
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
- Victoria University of Wellington, Wellington, Aotearoa, New Zealand
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| |
Collapse
|
22
|
Ilaria P, Nevena S, Ersilia T, Nicoletta B, Federica T, Di Fraia M, Agniezska D, Concetta P. Potential Indications of Dupilumab in Th-2 Inflammatory Disease. Rev Recent Clin Trials 2024; 19:53-61. [PMID: 38141197 DOI: 10.2174/0115748871263396231121060901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 12/25/2023]
Abstract
Dupilumab is a fully humanized IgG4 monoclonal antibody, inhibiting IL-4 and IL-13 signaling, which are the main cytokines involved in type 2 inflammatory diseases. Its introduction was a breakthrough in the treatment of moderate-to-severe atopic dermatitis, but it is also used in other inflammatory diseases, including asthma, eosinophilic esophagitis and chronic rhinosinusitis with nasal polyposis. Recent advances in the understanding of inflammatory pathways have revealed that Th2-type inflammation is involved in a wider range of diseases than previously thought. The aim of our review is to examine off-label therapeutic indications of dupilumab, including bullous dermatoses (pemphigus, bullous pemphigoid) and alopecia areata, and to investigate its potential applications in cancer patients on anti-PD1 therapy.
Collapse
Affiliation(s)
- Proietti Ilaria
- Unit of Dermatology, Department of Medical-Surgical Science and Biotechnologies, Sapienza University of Rome, A. Fiorini Hospital, Terracina, Latina, Italy
| | - Skroza Nevena
- Unit of Dermatology, Department of Medical-Surgical Science and Biotechnologies, Sapienza University of Rome, A. Fiorini Hospital, Terracina, Latina, Italy
| | - Tolino Ersilia
- Unit of Dermatology, Department of Medical-Surgical Science and Biotechnologies, Sapienza University of Rome, A. Fiorini Hospital, Terracina, Latina, Italy
| | - Bernardini Nicoletta
- Unit of Dermatology, Department of Medical-Surgical Science and Biotechnologies, Sapienza University of Rome, A. Fiorini Hospital, Terracina, Latina, Italy
| | - Trovato Federica
- Unit of Dermatology, Department of Medical-Surgical Science and Biotechnologies, Sapienza University of Rome, A. Fiorini Hospital, Terracina, Latina, Italy
| | - Marco Di Fraia
- Unit of Dermatology, Department of Medical-Surgical Science and Biotechnologies, Sapienza University of Rome, A. Fiorini Hospital, Terracina, Latina, Italy
| | - Dybala Agniezska
- Unit of Dermatology, Department of Medical-Surgical Science and Biotechnologies, Sapienza University of Rome, A. Fiorini Hospital, Terracina, Latina, Italy
| | - Potenza Concetta
- Unit of Dermatology, Department of Medical-Surgical Science and Biotechnologies, Sapienza University of Rome, A. Fiorini Hospital, Terracina, Latina, Italy
| |
Collapse
|
23
|
Liu K, Katayama T, Sato H, Hamaoka-Tamura Y, Saito M, Furuta K, Tanaka S. Staphylococcus aureus δ-Toxin Induces Ca 2+ Influx-Independent Degranulation of Murine Cultured Mast Cells. Biol Pharm Bull 2024; 47:2058-2064. [PMID: 39675960 DOI: 10.1248/bpb.b24-00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cutaneous colonization with Staphylococcus aureus (SA) is frequently observed in patients with atopic dermatitis. SA produces a wide variety of bacterial toxins, among which δ-toxin was found to induce degranulation of mast cells. Degranulation of mast cells could enhance bacterial clearance and protection from future SA infection but lead to exacerbation of atopic dermatitis. Because it remains to be determined how δ-toxin triggers degranulation, we investigated δ-toxin-induced changes in murine bone marrow-derived cultured mast cells in this study. We found that δ-toxin-induced degranulation could be classified into two phases, an early Ca2+-independent and a late Ca2+-dependent phase. Recent studies suggest that NOD-like receptor family, pyrin domain containing 3 is involved in the degranulation of mast cells, raising a possibility that leakage of K+ induced by δ-toxin is involved in the Ca2+-independent phase. However, Ca2+-independent degranulation remains unchanged although Ca2+-influx and degranulation induced by δ-toxin were significantly suppressed in the presence of high concentrations of K+. Because actin depolymerization was reported to induce degranulation in the absence of Ca2+ in the permeabilized rat peritoneal mast cells, a slow but steady decrease in the amount of filamentous actin observed here may be involved in Ca2+-independent degranulation induced by δ-toxin. Although Mas-related G protein-coupled receptor (MRGPR) X2 in humans and Mrgprb2 in mice are regarded as the receptors responsible for immunoglobulin E-independent degranulation, δ-toxin-induced degranulation remained unchanged in Mrgprb2-/- mast cells. Our findings pave the way for identification of the target receptors of δ-toxin.
Collapse
Affiliation(s)
- Kang Liu
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
| | - Tomoaki Katayama
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Hitomi Sato
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Yuho Hamaoka-Tamura
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
| | - Michiko Saito
- Bioscience Research Center, Kyoto Pharmaceutical University
| | - Kazuyuki Furuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Satoshi Tanaka
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
| |
Collapse
|
24
|
Li B, Fuxench ZC. Atopic Dermatitis: Disease Background and Risk Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1447:11-19. [PMID: 38724780 DOI: 10.1007/978-3-031-54513-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Multiple risk factors have been associated with the development of atopic dermatitis (AD). Recent advances in understanding the role of genetics in this disease have been made, with discovery of the filaggrin (FLG) gene as the most notable so far. In addition to FLG gene mutations as a risk factor for AD, a positive family history of atopic or allergic disease in either parent has been shown to confer a greater risk of developing AD. Atopic dermatitis usually presents early in life and is thought to represent the initial step in the "atopic march," which is characterized by the development of other atopic diseases later in life such as asthma, allergic rhinitis, and/or rhinoconjunctivitis, food allergies, and hay fever. Other comorbid diseases that have been associated with AD include increase risk of viral and bacterial skin infections, neuropsychiatric diseases such as attention-deficit hyperactivity disorders (ADHD), and autistic spectrum disorder (ASD). Patients with AD have also been found to have worse sleep quality overall compared to patients without AD. In this chapter, we will discuss the risk factors associated with development of atopic dermatitis as well as the most commonly reported comorbidities in patients with this disease.
Collapse
Affiliation(s)
- Becky Li
- Department of Dermatology, Howard University School of Medicine, Washington, DC, USA
| | - Zelma Chiesa Fuxench
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Ashbaugh AG, Kwatra SG. Atopic Dermatitis Disease Complications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1447:59-67. [PMID: 38724784 DOI: 10.1007/978-3-031-54513-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
This chapter will describe infectious complications of atopic dermatitis, including bacterial, viral, and fungal infections and the evolving understanding of the relationship between atopic dermatitis and infectious disease. The underlying immunological dysregulation and poor skin barrier function associated with atopic dermatitis not only increase the likelihood of infectious complications but also lend atopic dermatitis skin vulnerable to flares induced by environmental triggers. Thus, this chapter will also highlight the impact of common external environmental agents on precipitating flares of disease. Lastly, this chapter will discuss complications that can arise from treatments and the association of atopic dermatitis with more serious conditions such as lymphoma.
Collapse
Affiliation(s)
- Alyssa G Ashbaugh
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Kim K, Jang H, Kim E, Kim H, Sung GY. Recent advances in understanding the role of the skin microbiome in the treatment of atopic dermatitis. Exp Dermatol 2023; 32:2048-2061. [PMID: 37767872 DOI: 10.1111/exd.14940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
The skin is the largest organ in the human body, and histologically consists of the epidermis, dermis and subcutaneous tissue. Humans maintain a cooperative symbiotic relationship with their skin microbiota, a complex community of bacteria, fungi and viruses that live on the surface of the skin, and which act as a barrier to protect the body from the inside and outside. The skin is a 'habitat' and vast 'ecosystem' inhabited by countless microbes; as such, relationships have been forged through millions of years of coevolution. It is not surprising then that microbes are key participants in shaping and maintaining essential physiological processes. In addition to maintaining barrier function, the unique symbiotic microbiota that colonizes the skin increases the immune response and provides protection against pathogenic microbes. This review examines our current understanding of skin microbes in shaping and enhancing the skin barrier, as well as skin microbiome-host interactions and their roles in skin diseases, such as atopic dermatitis (AD). We also report on the current status of AD therapeutic drugs that target the skin microbiome, related research on current therapeutic strategies, and the limitations and future considerations of skin microbiome research. In particular, as a future strategy, we discuss the need for a skin-on-a-chip-based microphysiological system research model amenable to biomimetic in vitro studies and human skin equivalent models, including skin appendages.
Collapse
Affiliation(s)
- Kyunghee Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Hyeji Jang
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Eunyul Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Hyeju Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
- Major in Materials Science and Engineering, Hallym University, Chuncheon, Korea
| |
Collapse
|
27
|
Stolarczyk A, Perez-Nazario N, Knowlden SA, Chinchilli E, Grier A, Paller A, Gill SR, De Benedetto A, Yoshida T, Beck LA. Bleach baths enhance skin barrier, reduce itch but do not normalize skin dysbiosis in atopic dermatitis. Arch Dermatol Res 2023; 315:2883-2892. [PMID: 37755506 PMCID: PMC10615920 DOI: 10.1007/s00403-023-02723-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Studies have demonstrated that bleach baths improve atopic dermatitis (AD) severity; however, the effects on itch, skin barrier, and cutaneous microbial composition are less clear. We examined whether bleach baths reduce itch, normalize skin barrier function, reduce S. aureus absolute abundance, and increase microbial diversity in adults with AD who were colonized with S. aureus on their non-lesional skin. This was an open label, non-randomized, controlled trial performed at a single academic center. Fifteen AD and five non-atopic healthy controls (NA) were instructed to take two bleach baths (0.005% NaClO; 5-10 min duration) per week for a total of 12 weeks as add-on therapy. Adults 18 to 65 years (inclusive) with mild to severe AD were recruited with EASI score > 6.0, S. aureus culture positivity, access to a bathtub, and ability and willingness to maintain current topical or systemic treatments. They were evaluated at baseline (before bleach baths), 6 weeks, and 12 weeks after the intervention of twice-weekly bleach baths. Efficacy measurements included EASI as well as 5-D Pruritus and ItchyQoL™. Transepidermal water loss (TEWL) and stratum corneum (SC) integrity assay were performed to assess the skin barrier. Skin dysbiosis was measured by S. aureus cultivation, S. aureus abundance (qPCR of thermonuclease gene), and V1-V3 16S rRNA gene sequencing on non-lesional and lesional AD skin. After 12 weeks of bleach baths, 8/15 (53.3%) AD subjects achieved an EASI50 and a significant reduction in itch as measured by 5-D pruritus and Itchy QoL. Eighty-seven percent reported improvements in sleep quality. At study entry, AD subjects had higher non-lesional TEWL values than NA subjects, and only AD subjects experienced a reduction with bleach baths (p = 0.006). Similarly, SC integrity improved as early as 6 weeks after bleach baths in AD subjects. Notably, bleach baths had no significant effect on S. aureus culture-positivity, qPCR absolute abundance, or microbial diversity. The addition of twice-weekly bleach baths improves investigator-assessed AD severity, patient-reported pruritus and sleep as well as physiological measures of skin barrier function in adult AD subjects while having no effect on qualitative and quantitative measures of cutaneous S. aureus. Trial Registration: ClinicalTrials.gov Identifier: NCT01996150, Date of registration: November 27th, 2013.
Collapse
Affiliation(s)
- Ania Stolarczyk
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, NY, 14642, USA
| | - Nelissa Perez-Nazario
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, NY, 14642, USA
| | - Sara A Knowlden
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, NY, 14642, USA
| | - Ellen Chinchilli
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, NY, 14642, USA
| | - Alex Grier
- University of Rochester Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Amy Paller
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Steven R Gill
- University of Rochester Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Anna De Benedetto
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, NY, 14642, USA
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, NY, 14642, USA
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, NY, 14642, USA.
| |
Collapse
|
28
|
Szabó K, Bolla BS, Erdei L, Balogh F, Kemény L. Are the Cutaneous Microbiota a Guardian of the Skin's Physical Barrier? The Intricate Relationship between Skin Microbes and Barrier Integrity. Int J Mol Sci 2023; 24:15962. [PMID: 37958945 PMCID: PMC10647730 DOI: 10.3390/ijms242115962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The skin is a tightly regulated, balanced interface that maintains our integrity through a complex barrier comprising physical or mechanical, chemical, microbiological, and immunological components. The skin's microbiota affect various properties, one of which is the establishment and maintenance of the physical barrier. This is achieved by influencing multiple processes, including keratinocyte differentiation, stratum corneum formation, and regulation of intercellular contacts. In this review, we summarize the potential contribution of Cutibacterium acnes to these events and outline the contribution of bacterially induced barrier defects to the pathogenesis of acne vulgaris. With the combined effects of a Westernized lifestyle, microbial dysbiosis, epithelial barrier defects, and inflammation, the development of acne is very similar to that of several other multifactorial diseases of barrier organs (e.g., inflammatory bowel disease, celiac disease, asthma, atopic dermatitis, and chronic rhinosinusitis). Therefore, the management of acne requires a complex approach, which should be taken into account when designing novel treatments that address not only the inflammatory and microbial components but also the maintenance and strengthening of the cutaneous physical barrier.
Collapse
Affiliation(s)
- Kornélia Szabó
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Beáta Szilvia Bolla
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Lilla Erdei
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Fanni Balogh
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
| | - Lajos Kemény
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| |
Collapse
|
29
|
Rikken G, Meesters LD, Jansen PAM, Rodijk-Olthuis D, van Vlijmen-Willems IMJJ, Niehues H, Smits JPH, Oláh P, Homey B, Schalkwijk J, Zeeuwen PLJM, van den Bogaard EH. Novel methodologies for host-microbe interactions and microbiome-targeted therapeutics in 3D organotypic skin models. MICROBIOME 2023; 11:227. [PMID: 37849006 PMCID: PMC10580606 DOI: 10.1186/s40168-023-01668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Following descriptive studies on skin microbiota in health and disease, mechanistic studies on the interplay between skin and microbes are on the rise, for which experimental models are in great demand. Here, we present a novel methodology for microbial colonization of organotypic skin and analysis thereof. RESULTS An inoculation device ensured a standardized application area on the stratum corneum and a homogenous distribution of bacteria, while preventing infection of the basolateral culture medium even during prolonged culture periods for up to 2 weeks at a specific culture temperature and humidity. Hereby, host-microbe interactions and antibiotic interventions could be studied, revealing diverse host responses to various skin-related bacteria and pathogens. CONCLUSIONS Our methodology is easily transferable to a wide variety of organotypic skin or mucosal models and different microbes at every cell culture facility at low costs. We envision that this study will kick-start skin microbiome studies using human organotypic skin cultures, providing a powerful alternative to experimental animal models in pre-clinical research. Video Abstract.
Collapse
Affiliation(s)
- Gijs Rikken
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Luca D Meesters
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Patrick A M Jansen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | | | - Hanna Niehues
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Jos P H Smits
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Oláh
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Cheung GYC, Otto M. Virulence Mechanisms of Staphylococcal Animal Pathogens. Int J Mol Sci 2023; 24:14587. [PMID: 37834035 PMCID: PMC10572719 DOI: 10.3390/ijms241914587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Staphylococci are major causes of infections in mammals. Mammals are colonized by diverse staphylococcal species, often with moderate to strong host specificity, and colonization is a common source of infection. Staphylococcal infections of animals not only are of major importance for animal well-being but have considerable economic consequences, such as in the case of staphylococcal mastitis, which costs billions of dollars annually. Furthermore, pet animals can be temporary carriers of strains infectious to humans. Moreover, antimicrobial resistance is a great concern in livestock infections, as there is considerable antibiotic overuse, and resistant strains can be transferred to humans. With the number of working antibiotics continuously becoming smaller due to the concomitant spread of resistant strains, alternative approaches, such as anti-virulence, are increasingly being investigated to treat staphylococcal infections. For this, understanding the virulence mechanisms of animal staphylococcal pathogens is crucial. While many virulence factors have similar functions in humans as animals, there are increasingly frequent reports of host-specific virulence factors and mechanisms. Furthermore, we are only beginning to understand virulence mechanisms in animal-specific staphylococcal pathogens. This review gives an overview of animal infections caused by staphylococci and our knowledge about the virulence mechanisms involved.
Collapse
Affiliation(s)
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA;
| |
Collapse
|
31
|
Heinzinger LR, Pugh AR, Wagner JA, Otto M. Evaluating the Translational Potential of Bacteriocins as an Alternative Treatment for Staphylococcus aureus Infections in Animals and Humans. Antibiotics (Basel) 2023; 12:1256. [PMID: 37627676 PMCID: PMC10451987 DOI: 10.3390/antibiotics12081256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance remains a global threat to human and animal health. Staphylococcus aureus is an opportunistic pathogen that causes minor to life-threatening infections. The widespread use of antibiotics in the clinical, veterinary, and agricultural setting combined with the increasing prevalence of antibiotic-resistant S. aureus strains makes it abundantly clear that alternatives to antibiotics are urgently needed. Bacteriocins represent one potential alternative therapeutic. They are antimicrobial peptides that are produced by bacteria that are generally nontoxic and have a relatively narrow target spectrum, and they leave many commensals and most mammalian cells unperturbed. Multiple studies involving bacteriocins (e.g., nisin, epidermicin, mersacidin, and lysostaphin) have demonstrated their efficacy at eliminating or treating a wide variety of S. aureus infections in animal models. This review provides a comprehensive and updated evaluation of animal studies involving bacteriocins and highlights their translational potential. The strengths and limitations associated with bacteriocin treatments compared with traditional antibiotic therapies are evaluated, and the challenges that are involved with implementing novel therapeutics are discussed.
Collapse
Affiliation(s)
| | | | | | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA; (L.R.H.); (A.R.P.); (J.A.W.)
| |
Collapse
|
32
|
Bonzano L, Borgia F, Casella R, Miniello A, Nettis E, Gangemi S. Microbiota and IL-33/31 Axis Linkage: Implications and Therapeutic Perspectives in Atopic Dermatitis and Psoriasis. Biomolecules 2023; 13:1100. [PMID: 37509136 PMCID: PMC10377073 DOI: 10.3390/biom13071100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Microbiome dysbiosis and cytokine alternations are key features of atopic dermatitis (AD) and psoriasis (PsO), two of the most prevalent and burdensome pruritic skin conditions worldwide. Interleukin (IL)-33 and IL-31 have been recognized to be major players who act synergistically in the pathogenesis and maintenance of different chronic inflammatory conditions and pruritic skin disorders, including AD and PsO, and their potential role as therapeutic targets is being thoroughly investigated. The bidirectional interplay between dysbiosis and immunological changes has been extensively studied, but there is still debate regarding which of these two factors is the actual causative culprit behind the aetiopathological process that ultimately leads to AD and PsO. We conducted a literature review on the Pubmed database assessing articles of immunology, dermatology, microbiology and allergology with the aim to strengthen the hypothesis that dysbiosis is at the origin of the IL-33/IL-31 dysregulation that contributes to the pathogenesis of AD and PsO. Finally, we discussed the therapeutic options currently in development for the treatment of these skin conditions targeting IL-31, IL-33 and/or the microbiome.
Collapse
Affiliation(s)
- Laura Bonzano
- Dermatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98122 Messina, Italy
| | - Rossella Casella
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Andrea Miniello
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Eustachio Nettis
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| |
Collapse
|
33
|
Ogonowska P, Szymczak K, Empel J, Urbaś M, Woźniak-Pawlikowska A, Barańska-Rybak W, Świetlik D, Nakonieczna J. Staphylococcus aureus from Atopic Dermatitis Patients: Its Genetic Structure and Susceptibility to Phototreatment. Microbiol Spectr 2023; 11:e0459822. [PMID: 37140374 PMCID: PMC10269521 DOI: 10.1128/spectrum.04598-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/08/2023] [Indexed: 05/05/2023] Open
Abstract
We characterized the population of Staphylococcus aureus from patients with atopic dermatitis (AD) in terms of (i) genetic diversity, (ii) presence and functionality of genes encoding important virulence factors: staphylococcal enterotoxins (sea, seb, sec, sed), toxic shock syndrome 1 toxin (tsst-1), and Panton-Valentine leukocidin (lukS/lukF-PV) by spa typing, PCR, drug resistance profile determination, and Western blot. We then subjected the studied population of S. aureus to photoinactivation based on a light-activated compound called rose bengal (RB) to verify photoinactivation as an approach to effectively kill toxin-producing S. aureus. We have obtained 43 different spa types that can be grouped into 12 clusters, indicating for the first-time clonal complex (CC) 7 as the most widespread. A total of 65% of the tested isolates had at least one gene encoding the tested virulence factor, but their distribution differed between the group of children and adults, and between patients with AD and the control group without atopy. We detected a 3.5% frequency of methicillin-resistant strains (MRSA) and no other multidrug resistance. Despite genetic diversity and production of various toxins, all isolates tested were effectively photoinactivated (bacterial cell viability reduction ≥ 3 log10 units) under safe conditions for the human keratinocyte cell line, which indicates that photoinactivation can be a good option in skin decolonization. IMPORTANCE Staphylococcus aureus massively colonizes the skin of patients with atopic dermatitis (AD). It is worth noting that the frequency of detection of multidrug-resistant S. aureus (MRSA) in AD patients is higher than the healthy population, which makes treatment much more difficult. Information about the specific genetic background of S. aureus accompanying and/or causing exacerbations of AD is of great importance from the point of view of epidemiological investigations and the development of possible treatment options.
Collapse
Affiliation(s)
- Patrycja Ogonowska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdańsk, Poland
| | - Klaudia Szymczak
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdańsk, Poland
| | - Joanna Empel
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Małgorzata Urbaś
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Agata Woźniak-Pawlikowska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdańsk, Poland
| | - Wioletta Barańska-Rybak
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Dariusz Świetlik
- Division of Biostatistics and Neural Networks, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Nakonieczna
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
34
|
Key FM, Khadka VD, Romo-González C, Blake KJ, Deng L, Lynn TC, Lee JC, Chiu IM, García-Romero MT, Lieberman TD. On-person adaptive evolution of Staphylococcus aureus during treatment for atopic dermatitis. Cell Host Microbe 2023; 31:593-603.e7. [PMID: 37054679 PMCID: PMC10263175 DOI: 10.1016/j.chom.2023.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/14/2023] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The opportunistic pathogen Staphylococcus aureus frequently colonizes the inflamed skin of people with atopic dermatitis (AD) and worsens disease severity by promoting skin damage. Here, we show, by longitudinally tracking 23 children treated for AD, that S. aureus adapts via de novo mutations during colonization. Each patient's S. aureus population is dominated by a single lineage, with infrequent invasion by distant lineages. Mutations emerge within each lineage at rates similar to those of S. aureus in other contexts. Some variants spread across the body within months, with signatures of adaptive evolution. Most strikingly, mutations in capsule synthesis gene capD underwent parallel evolution in one patient and across-body sweeps in two patients. We confirm that capD negativity is more common in AD than in other contexts, via reanalysis of S. aureus genomes from 276 people. Together, these findings highlight the importance of the mutation level when dissecting the role of microbes in complex disease.
Collapse
Affiliation(s)
- Felix M Key
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Veda D Khadka
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carolina Romo-González
- Experimental Bacteriology Laboratory, National Institute for Pediatrics, Mexico City, Mexico
| | - Kimbria J Blake
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tucker C Lynn
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jean C Lee
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Tami D Lieberman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
35
|
Saheb Kashaf S, Harkins CP, Deming C, Joglekar P, Conlan S, Holmes CJ, Almeida A, Finn RD, Segre JA, Kong HH. Staphylococcal diversity in atopic dermatitis from an individual to a global scale. Cell Host Microbe 2023; 31:578-592.e6. [PMID: 37054678 PMCID: PMC10151067 DOI: 10.1016/j.chom.2023.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/08/2022] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
Atopic dermatitis (AD) is a multifactorial, chronic relapsing disease associated with genetic and environmental factors. Among skin microbes, Staphylococcus aureus and Staphylococcus epidermidis are associated with AD, but how genetic variability and staphylococcal strains shape the disease remains unclear. We investigated the skin microbiome of an AD cohort (n = 54) as part of a prospective natural history study using shotgun metagenomic and whole genome sequencing, which we analyzed alongside publicly available data (n = 473). AD status and global geographical regions exhibited associations with strains and genomic loci of S. aureus and S. epidermidis. In addition, antibiotic prescribing patterns and within-household transmission between siblings shaped colonizing strains. Comparative genomics determined that S. aureus AD strains were enriched in virulence factors, whereas S. epidermidis AD strains varied in genes involved in interspecies interactions and metabolism. In both species, staphylococcal interspecies genetic transfer shaped gene content. These findings reflect the staphylococcal genomic diversity and dynamics associated with AD.
Collapse
Affiliation(s)
- Sara Saheb Kashaf
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Catriona P Harkins
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clay Deming
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Payal Joglekar
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cassandra J Holmes
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandre Almeida
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Chiricozzi A, Maurelli M, Calabrese L, Peris K, Girolomoni G. Overview of Atopic Dermatitis in Different Ethnic Groups. J Clin Med 2023; 12:2701. [PMID: 37048783 PMCID: PMC10095524 DOI: 10.3390/jcm12072701] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a high prevalence worldwide, including countries from Asia, Africa, and Latin America, and in different ethnic groups. In recent years, more attention has been placed on the heterogeneity of AD associated with multiple factors, including a patient's ethnic background, resulting in an increasing body of clinical, genetic, epidemiologic, and immune-phenotypic evidence that delineates differences in AD among racial groups. Filaggrin (FLG) mutations, the strongest genetic risk factor for the development of AD, are detected in up to 50% of European and 27% of Asian AD patients, but very rarely in Africans. Th2 hyperactivation is a common attribute of all ethnic groups, though the Asian endotype of AD is also characterized by an increased Th17-mediated signal, whereas African Americans show a strong Th2/Th22 signature and an absence of Th1/Th17 skewing. In addition, the ethnic heterogeneity of AD may hold important therapeutic implications as a patient's genetic predisposition may affect treatment response and, thereby, a tailored strategy that better targets the dominant immunologic pathways in each ethnic subgroup may be envisaged. Nevertheless, white patients with AD represent the largest ethnicity enrolled and tested in clinical trials and the most treated in a real-world setting, limiting investigations about safety and efficacy across different ethnicities. The purpose of this review is to describe the heterogeneity in the pathophysiology of AD across ethnicities and its potential therapeutic implications.
Collapse
Affiliation(s)
- Andrea Chiricozzi
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Martina Maurelli
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Laura Calabrese
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ketty Peris
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giampiero Girolomoni
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 37126 Verona, Italy
| |
Collapse
|
37
|
Chen Y, Knight R, Gallo RL. Evolving approaches to profiling the microbiome in skin disease. Front Immunol 2023; 14:1151527. [PMID: 37081873 PMCID: PMC10110978 DOI: 10.3389/fimmu.2023.1151527] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023] Open
Abstract
Despite its harsh and dry environment, human skin is home to diverse microbes, including bacteria, fungi, viruses, and microscopic mites. These microbes form communities that may exist at the skin surface, deeper skin layers, and within microhabitats such as the hair follicle and sweat glands, allowing complex interactions with the host immune system. Imbalances in the skin microbiome, known as dysbiosis, have been linked to various inflammatory skin disorders, including atopic dermatitis, acne, and psoriasis. The roles of abundant commensal bacteria belonging to Staphylococcus and Cutibacterium taxa and the fungi Malassezia, where particular species or strains can benefit the host or cause disease, are increasingly appreciated in skin disorders. Furthermore, recent research suggests that the interactions between microorganisms and the host's immune system on the skin can have distant and systemic effects on the body, such as on the gut and brain, known as the "skin-gut" or "skin-brain" axes. Studies on the microbiome in skin disease have typically relied on 16S rRNA gene sequencing methods, which cannot provide accurate information about species or strains of microorganisms on the skin. However, advancing technologies, including metagenomics and other functional 'omic' approaches, have great potential to provide more comprehensive and detailed information about the skin microbiome in health and disease. Additionally, inter-species and multi-kingdom interactions can cause cascading shifts towards dysbiosis and are crucial but yet-to-be-explored aspects of many skin disorders. Better understanding these complex dynamics will require meta-omic studies complemented with experiments and clinical trials to confirm function. Evolving how we profile the skin microbiome alongside technological advances is essential to exploring such relationships. This review presents the current and emerging methods and their findings for profiling skin microbes to advance our understanding of the microbiome in skin disease.
Collapse
Affiliation(s)
- Yang Chen
- Department of Dermatology, University of California San Diego, La Jolla, CA, United States
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, United States
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, United States
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
38
|
Rauer L, Reiger M, Bhattacharyya M, Brunner PM, Krueger JG, Guttman-Yassky E, Traidl-Hoffmann C, Neumann AU. Skin microbiome and its association with host cofactors in determining atopic dermatitis severity. J Eur Acad Dermatol Venereol 2023; 37:772-782. [PMID: 36433676 DOI: 10.1111/jdv.18776] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a heterogeneous, chronic inflammatory skin disease linked to skin microbiome dysbiosis with reduced bacterial diversity and elevated relative abundance of Staphylococcus aureus (S. aureus). OBJECTIVES We aimed to characterize the yet incompletely understood association between the skin microbiome and patients' demographic and clinical cofactors in relation to AD severity. METHODS The skin microbiome in 48 adult moderate-to-severe AD patients was investigated using next-generation deep sequencing (16S rRNA gene, V1-V3 region) followed by denoising (DADA2) to obtain amplicon sequence variant (ASV) composition. RESULTS In lesional skin, AD severity was associated with S. aureus relative abundance (rS = 0.53, p < 0.001) and slightly better with the microbiome diversity measure Evenness (rS = -0.58, p < 0.001), but not with Richness. Multiple regression confirmed the association of AD severity with microbiome diversity, including Shannon (in lesional skin, p < 0.001), Evenness (in non-lesional skin, p = 0.015) or S. aureus relative abundance (p < 0.012), and with patient's IgE levels (p < 0.001), race (p < 0.032), age (p < 0.034) and sex (p = 0.012). The lesional model explained 62% of the variation in AD severity, and the non-lesional model 50% of the variation. CONCLUSIONS Our results specify the frequently reported "reduced diversity" of the AD-related skin microbiome to reduced Evenness, which was in turn mainly driven by S. aureus relative abundance, rather than to a reduced microbiome Richness. Finding associations between AD severity, the skin microbiome and patient's cofactors is a key aspect in developing new personalized AD treatments, particularly those targeting the AD microbiome.
Collapse
Affiliation(s)
- Luise Rauer
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Chair of Environmental Medicine, Technical University Munich, Munich, Germany.,Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany.,Institute for Medical Information Processing, Biometry and Epidemiology (IBE), LMU, Munich, Germany
| | - Matthias Reiger
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Chair of Environmental Medicine, Technical University Munich, Munich, Germany.,Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany
| | - Madhumita Bhattacharyya
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Chair of Environmental Medicine, Technical University Munich, Munich, Germany
| | - Patrick M Brunner
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Emma Guttman-Yassky
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Chair of Environmental Medicine, Technical University Munich, Munich, Germany.,Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany.,CK-CARE Center for Allergy Research and Education, Davos, Switzerland.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Avidan U Neumann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany.,CK-CARE Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
39
|
McAleer JP. Obesity and the microbiome in atopic dermatitis: Therapeutic implications for PPAR-γ agonists. FRONTIERS IN ALLERGY 2023; 4:1167800. [PMID: 37051264 PMCID: PMC10083318 DOI: 10.3389/falgy.2023.1167800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease characterized by epidermal barrier disruption, Th2 immune responses to skin allergens and microbial dysbiosis within affected lesions. Studies within the past decade have revealed genetic and environmental factors contributing to AD in children. Obesity is a metabolic disorder that often manifests early in life and is associated with reduced bacterial diversity, leading to skin colonization with lipophilic bacteria and intestinal colonization with pro-inflammatory species. These changes impair epithelial barriers and promote Th17 responses, which may worsen the severity of AD symptoms. While few studies have examined the contribution of microbiota in obesity-induced allergies, there is emerging evidence that PPAR-γ may be an effective therapeutic target. This review discusses the microbiome in pediatric AD, treatment with probiotics, how disease is altered by obesity and potential therapeutic effects of PPAR-γ agonists. While healthy skin contains diverse species adapted for specific niches, lesional skin is highly colonized with Staphylococcus aureus which perpetuates the inflammatory reaction. Treatments for AD should help to restore microbial diversity in the skin and intestine, as well as epithelial barrier function. Pre-clinical models have shown that PPAR-γ agonists can suppress Th17 responses, IgE production and mast cell function, while improving the epidermal barrier and microbial homeostasis. Overall, PPAR-γ agonists may be effective in a subset of patients with AD, and future studies should distinguish their metabolic and anti-inflammatory effects in order to inform the best therapies.
Collapse
|
40
|
Abstract
INTRODUCTION The relationship between atopic dermatitis and atopic diseases such as food allergies, asthma, and allergic rhinitis in terms of co-occurrence, underlying mechanisms, and therapy is well documented. There is increasing evidence that atopic dermatitis is associated with non-atopic comorbidities such as cardiac, autoimmune, and neuropsychological comorbidities, as well as cutaneous and extracutaneous infections, establishing atopic dermatitis as a systemic disease. AREAS COVERED The authors reviewed evidence on atopic and non-atopic comorbidities of atopic dermatitis. A literature search was conducted in PubMed for peer-reviewed articles published until October 2022. EXPERT OPINION Atopic and non-atopic diseases coexist with atopic dermatitis more often than would be expected by chance. The effect of biologics and small molecules on atopic and non-atopic comorbidities may contribute to a better understanding of the relationship between atopic dermatitis and its comorbidities. Their relationship needs to be explored further to dismantle the underlying mechanism and move toward an atopic dermatitis endotype-based therapeutic approach.
Collapse
Affiliation(s)
- Caroline Gewiss
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Augustin
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
41
|
The proteome of hand eczema assessed by tape stripping. J Invest Dermatol 2023:S0022-202X(23)00071-4. [PMID: 36773646 DOI: 10.1016/j.jid.2022.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 02/11/2023]
Abstract
Hand eczema (HE) is a prevalent skin disease. However, classification of HE into different subtypes remains challenging. Limited number of prior studies have employed invasive biopsy-based strategies; yet, studies of the HE proteome using non-invasive tape stripping methodology have not been reported. In this study, we wanted to assess whether global proteomic analysis of skin tape strip samples can be used for sub-classification of HE patients. Tape strips were collected from patients with HE and healthy skin. Liquid chromatography-mass spectrometry (LC/MS) proteomics was performed, and the global protein expression was analyzed. We identified 2,919 proteins in stratum corneum-derived skin cells from tape strip samples. Compared to healthy skin, the lesional samples from HE patients exhibited increased expression of immune-related markers and a decreased expression of structural barrier proteins. The difference between HE subtypes was restricted to the lesional skin areas, and included an increased expression of skin barrier-related proteins independently of the concurrent AD. In conclusion we found, that the non-invasive tape strip method used in combination with LC/MS proteomics can be used for analysis of skin protein expression in HE patients. Thus, the method shows potential for assessing the proteomic differences between subtypes of HE, and biomarker discovery.
Collapse
|
42
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 2023; 123:31-72. [PMID: 36317983 PMCID: PMC9837825 DOI: 10.1021/acs.chemrev.2c00431] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/12/2023]
Abstract
The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Shohei Kitano
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ginette Ru Ying Puah
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - Sandra Kittelmann
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore
Institute of Technology, Singapore 138683, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
43
|
Monnot GC, Wegrecki M, Cheng TY, Chen YL, Sallee BN, Chakravarthy R, Karantza IM, Tin SY, Khaleel AE, Monga I, Uwakwe LN, Tillman A, Cheng B, Youssef S, Ng SW, Shahine A, Garcia-Vilas JA, Uhlemann AC, Bordone LA, Han A, Rohde CH, Ogg G, Moody DB, Rossjohn J, de Jong A. Staphylococcal phosphatidylglycerol antigens activate human T cells via CD1a. Nat Immunol 2023; 24:110-122. [PMID: 36550321 PMCID: PMC10389259 DOI: 10.1038/s41590-022-01375-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
Expressed on epidermal Langerhans cells, CD1a presents a range of self-lipid antigens found within the skin; however, the extent to which CD1a presents microbial ligands from bacteria colonizing the skin is unclear. Here we identified CD1a-dependent T cell responses to phosphatidylglycerol (PG), a ubiquitous bacterial membrane phospholipid, as well as to lysylPG, a modified PG, present in several Gram-positive bacteria and highly abundant in Staphylococcus aureus. The crystal structure of the CD1a-PG complex showed that the acyl chains were buried within the A'- and F'-pockets of CD1a, while the phosphoglycerol headgroup remained solvent exposed in the F'-portal and was available for T cell receptor contact. Using lysylPG and PG-loaded CD1a tetramers, we identified T cells in peripheral blood and in skin that respond to these lipids in a dose-dependent manner. Tetramer+CD4+ T cell lines secreted type 2 helper T cell cytokines in response to phosphatidylglycerols as well as to co-cultures of CD1a+ dendritic cells and Staphylococcus bacteria. The expansion in patients with atopic dermatitis of CD4+ CD1a-(lysyl)PG tetramer+ T cells suggests a response to lipids made by bacteria associated with atopic dermatitis and provides a link supporting involvement of PG-based lipid-activated T cells in atopic dermatitis pathogenesis.
Collapse
Affiliation(s)
- Gwennaëlle C Monnot
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Marcin Wegrecki
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Tan-Yun Cheng
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi-Ling Chen
- Medical Research Council Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Brigitte N Sallee
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Reka Chakravarthy
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ioanna Maria Karantza
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shin Yi Tin
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Alexandra E Khaleel
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Isha Monga
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Laura N Uwakwe
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alice Tillman
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Microbiome and Pathogen Genomics Core, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Bin Cheng
- Department of Biostatistics, Columbia University Irving Medical Center, New York, NY, USA
| | - Soundos Youssef
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Soo Weei Ng
- Medical Research Council Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Javier A Garcia-Vilas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Microbiome and Pathogen Genomics Core, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Lindsey A Bordone
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Arnold Han
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Christine H Rohde
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Graham Ogg
- Medical Research Council Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Annemieke de Jong
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
44
|
Tamai M, Yamazaki Y, Ito T, Nakagawa S, Nakamura Y. Pathogenic role of the staphylococcal accessory gene regulator quorum sensing system in atopic dermatitis. Front Cell Infect Microbiol 2023; 13:1178650. [PMID: 37124047 PMCID: PMC10140505 DOI: 10.3389/fcimb.2023.1178650] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
The skin is home to various bacteria, archaea, fungi, and viruses, collectively referred to as the skin microbiota. Patients with certain skin diseases reportedly have unique skin "dysbiosis," a condition involving imbalanced microbiota, suggesting that dysbiosis in the skin may be either causal or a consequence of specific skin diseases. Atopic dermatitis (AD) is the most common allergic skin disease that affects 15-20% of children and 2-10% of adults worldwide. Both intrinsic genetic factors, such as susceptibility to type 2 inflammation or skin barrier dysfunction, and extrinsic environmental factors, such as air pollen and skin microbiota, contribute to AD. Staphylococcus aureus, which does not often colonize the skin of healthy individuals, is commonly identified in the lesional skin of patients with AD and is correlated with the disease flare. However, the role of S. aureus in the pathogenesis of AD has not been elucidated. Here, we discuss the pathological behavior of S. aureus, focusing on accessory gene regulator (Agr) quorum sensing, which is a fundamental bacterial cell-to-cell interaction mechanism that affects the behavior of S. aureus and other members of the microbial community. Importantly, beyond bacteria-bacteria interactions, the Agr quorum sensing system also regulates various virulence factors, which induce type 2 and IL-17-dependent skin inflammation in the host. Furthermore, the colonization of Agr-positive S. aureus in early life accelerates the development of pediatric AD. Finally, we aim to highlight the current efforts to establish novel therapeutic methods to ameliorate or prevent AD through Agr-targeted intervention.
Collapse
Affiliation(s)
- Masakazu Tamai
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuriko Yamazaki
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- *Correspondence: Yuumi Nakamura, ; Yuriko Yamazaki,
| | - Tomoka Ito
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seitaro Nakagawa
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yuumi Nakamura
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- *Correspondence: Yuumi Nakamura, ; Yuriko Yamazaki,
| |
Collapse
|
45
|
Noli Truant S, Redolfi DM, Sarratea MB, Malchiodi EL, Fernández MM. Superantigens, a Paradox of the Immune Response. Toxins (Basel) 2022; 14:toxins14110800. [PMID: 36422975 PMCID: PMC9692936 DOI: 10.3390/toxins14110800] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcal enterotoxins are a wide family of bacterial exotoxins with the capacity to activate as much as 20% of the host T cells, which is why they were called superantigens. Superantigens (SAgs) can cause multiple diseases in humans and cattle, ranging from mild to life-threatening infections. Almost all S. aureus isolates encode at least one of these toxins, though there is no complete knowledge about how their production is triggered. One of the main problems with the available evidence for these toxins is that most studies have been conducted with a few superantigens; however, the resulting characteristics are attributed to the whole group. Although these toxins share homology and a two-domain structure organization, the similarity ratio varies from 20 to 89% among different SAgs, implying wide heterogeneity. Furthermore, every attempt to structurally classify these proteins has failed to answer differential biological functionalities. Taking these concerns into account, it might not be appropriate to extrapolate all the information that is currently available to every staphylococcal SAg. Here, we aimed to gather the available information about all staphylococcal SAgs, considering their functions and pathogenicity, their ability to interact with the immune system as well as their capacity to be used as immunotherapeutic agents, resembling the two faces of Dr. Jekyll and Mr. Hyde.
Collapse
|
46
|
Hammond M, Gamal A, Mukherjee PK, Damiani G, McCormick TS, Ghannoum MA, Nedorost S. Cutaneous dysbiosis may amplify barrier dysfunction in patients with atopic dermatitis. Front Microbiol 2022; 13:944365. [PMID: 36452925 PMCID: PMC9701744 DOI: 10.3389/fmicb.2022.944365] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/13/2022] [Indexed: 09/12/2023] Open
Abstract
Atopic dermatitis (AD) is associated with cutaneous dysbiosis, barrier defects, and immune dysregulation, but the interplay between these factors needs further study. Early-onset barrier dysfunction may facilitate an innate immune response to commensal organisms and, consequently, the development of allergic sensitization. We aimed to compare the cutaneous microbiome in patients with active dermatitis with and without a history of childhood flexural dermatitis (atopic dermatitis). Next-gen Ion-Torrent deep-sequencing identified AD-associated changes in the skin bacterial microbiome ("bacteriome") and fungal microbiome ("mycobiome") of affected skin in swabs from areas of skin affected by dermatitis. Data were analyzed for diversity, abundance, and inter-kingdom correlations. Microbial interactions were assessed in biofilms using metabolic activity (XTT) assay and scanning electron microscopy (SEM), while host-pathogen interactions were determined in cultured primary keratinocytes exposed to biofilms. Increased richness and abundance of Staphylococcus, Lactococcus, and Alternaria were found in atopics. Staphylococcus and Alternaria formed robust mixed-species biofilms (based on XTT and SEM) that were resistant to antifungals/antimicrobials. Furthermore, their biofilm supernatant was capable of influencing keratinocytes biology (pro-inflammatory cytokines and structural proteins), suggesting an additive effect on AD-associated host response. In conclusion, microbial inter-kingdom and host-microbiome interactions may play a critical role in the modulation of atopic dermatitis to a greater extent than in non-atopic adults with allergic contact dermatitis.
Collapse
Affiliation(s)
- Margaret Hammond
- Department of Dermatology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ahmed Gamal
- Department of Dermatology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Pranab K. Mukherjee
- Department of Dermatology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Giovanni Damiani
- Department of Dermatology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Biomedical, Surgical and Dental Sciences University of Milan, Milan, Italy
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Pharmaceutical and Pharmacological Sciences, PhD Degree Program in Pharmacological Sciences, University of Padua, Padua, Italy
| | - Thomas S. McCormick
- Department of Dermatology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Mahmoud A. Ghannoum
- Department of Dermatology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Susan Nedorost
- Department of Dermatology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
47
|
Szczepańska M, Blicharz L, Nowaczyk J, Makowska K, Goldust M, Waśkiel-Burnat A, Czuwara J, Samochocki Z, Rudnicka L. The Role of the Cutaneous Mycobiome in Atopic Dermatitis. J Fungi (Basel) 2022; 8:1153. [PMID: 36354920 PMCID: PMC9695942 DOI: 10.3390/jof8111153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/28/2024] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disorder characterized by eczematous lesions, itch, and a significant deterioration in the quality of life. Recently, microbiome dysbiosis has been implicated in the pathogenesis of atopic dermatitis. Changes in the fungal microbiome (also termed mycobiome) appear to be an important factor influencing the clinical picture of this entity. This review summarizes the available insights into the role of the cutaneous mycobiome in atopic dermatitis and the new research possibilities in this field. The prevalence and characteristics of key fungal species, the most important pathogenesis pathways, as well as classic and emerging therapies of fungal dysbiosis and infections complicating atopic dermatitis, are presented.
Collapse
Affiliation(s)
- Milena Szczepańska
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Leszek Blicharz
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Joanna Nowaczyk
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Karolina Makowska
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany
| | - Anna Waśkiel-Burnat
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Zbigniew Samochocki
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| |
Collapse
|
48
|
Reshamwala K, Cheung GYC, Hsieh RC, Liu R, Joo HS, Zheng Y, Bae JS, Nguyen TH, Villaruz AE, Gozalo AS, Elkins WR, Otto M. Identification and characterization of the pathogenic potential of phenol-soluble modulin toxins in the mouse commensal Staphylococcus xylosus. Front Immunol 2022; 13:999201. [PMID: 36189200 PMCID: PMC9520458 DOI: 10.3389/fimmu.2022.999201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
In contrast to the virulent human skin commensal Staphylococcus aureus, which secretes a plethora of toxins, other staphylococci have much reduced virulence. In these species, commonly the only toxins are those of the phenol-soluble modulin (PSM) family. PSMs are species-specific and have only been characterized in a limited number of species. S. xylosus is a usually innocuous commensal on the skin of mice and other mammals. Prompted by reports on the involvement of PSMs in atopic dermatitis (AD) and the isolation of S. xylosus from mice with AD-like symptoms, we here identified and characterized PSMs of S. xylosus with a focus on a potential involvement in AD phenotypes. We found that most clinical S. xylosus strains produce two PSMs, one of the shorter α- and one of the longer β-type, which were responsible for almost the entire lytic and pro-inflammatory capacities of S. xylosus. Importantly, PSMα of S. xylosus caused lysis and degranulation of mast cells at degrees higher than that of S. aureus δ-toxin, the main PSM previously associated with AD. However, S. xylosus did not produce significant AD symptoms in wild-type mice as opposed to S. aureus, indicating that promotion of AD by S. xylosus likely requires a predisposed host. Our study indicates that non-specific cytolytic potency rather than specific interaction underlies PSM-mediated mast cell degranulation and suggest that the previously reported exceptional potency of δ-toxin of S. aureus is due to its high-level production. Furthermore, they suggest that species that produce cytolytic PSMs, such as S. xylosus, all have the capacity to promote AD, but a high combined level of PSM cytolytic potency is required to cause AD in a non-predisposed host.
Collapse
Affiliation(s)
- Kunal Reshamwala
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Gordon Y. C. Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Michael Otto, ; Gordon Y. C. Cheung,
| | - Roger C. Hsieh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yue Zheng
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Justin S. Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Thuan H. Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Amer E. Villaruz
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Alfonso S. Gozalo
- Comparative Medicine Branch (CMB), NIAID, NIH, Bethesda, MD, United States
| | - William R. Elkins
- Comparative Medicine Branch (CMB), NIAID, NIH, Bethesda, MD, United States
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Michael Otto, ; Gordon Y. C. Cheung,
| |
Collapse
|
49
|
Ahle CM, Stødkilde K, Poehlein A, Bömeke M, Streit WR, Wenck H, Reuter JH, Hüpeden J, Brüggemann H. Interference and co-existence of staphylococci and Cutibacterium acnes within the healthy human skin microbiome. Commun Biol 2022; 5:923. [PMID: 36071129 PMCID: PMC9452508 DOI: 10.1038/s42003-022-03897-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022] Open
Abstract
Human skin is populated by trillions of microbes collectively called the skin microbiome. Staphylococcus epidermidis and Cutibacterium acnes are among the most abundant members of this ecosystem, with described roles in skin health and disease. However, knowledge regarding the health beneficial effects of these ubiquitous skin residents is still limited. Here, we profiled the staphylococcal and C. acnes landscape across four different skin sites of 30 individuals (120 skin samples) using amplicon-based next-generation sequencing. Relative abundance profiles obtained indicated the existence of phylotype-specific co-existence and exclusion scenarios. Co-culture experiments with 557 staphylococcal strains identified 30 strains exhibiting anti-C. acnes activities. Notably, staphylococcal strains were found to selectively exclude acne-associated C. acnes and co-exist with healthy skin-associated phylotypes, through regulation of the antimicrobial activity. Overall, these findings highlight the importance of skin-resident staphylococci and suggest that selective microbial interference is a contributor to healthy skin homeostasis. The dynamic interaction between the common resident skin microbes Staphylococcus epidermidis and Cutibacterium acnes is uncovered, showing that S. epidermidis can selectively exclude acne-associated C. acnes strains from the human skin.
Collapse
Affiliation(s)
- Charlotte Marie Ahle
- Beiersdorf AG, Research & Development, Front End Innovation, 20245, Hamburg, Germany. .,Department of Microbiology and Biotechnology, University of Hamburg, 22609, Hamburg, Germany.
| | | | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, 37073, Göttingen, Germany
| | - Mechthild Bömeke
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, 37073, Göttingen, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, 22609, Hamburg, Germany
| | - Horst Wenck
- Beiersdorf AG, Research & Development, Front End Innovation, 20245, Hamburg, Germany
| | - Jörn Hendrik Reuter
- Beiersdorf AG, Research & Development, Front End Innovation, 20245, Hamburg, Germany
| | - Jennifer Hüpeden
- Beiersdorf AG, Research & Development, Front End Innovation, 20245, Hamburg, Germany
| | - Holger Brüggemann
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
50
|
Kreft L, Schepers A, Hils M, Swiontek K, Flatley A, Janowski R, Mirzaei MK, Dittmar M, Chakrapani N, Desai MS, Eyerich S, Deng L, Niessing D, Fischer K, Feederle R, Blank S, Schmidt-Weber CB, Hilger C, Biedermann T, Ohnmacht C. A novel monoclonal IgG1 antibody specific for Galactose-alpha-1,3-galactose questions alpha-Gal epitope expression by bacteria. Front Immunol 2022; 13:958952. [PMID: 35990627 PMCID: PMC9391071 DOI: 10.3389/fimmu.2022.958952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
The alpha-Gal epitope (α-Gal) with the determining element galactose-α1,3-galactose can lead to clinically relevant allergic reactions and rejections in xenotransplantation. These immune reactions can develop because humans are devoid of this carbohydrate due to evolutionary loss of the enzyme α1,3-galactosyltransferase (GGTA1). In addition, up to 1% of human IgG antibodies are directed against α-Gal, but the stimulus for the induction of anti-α-Gal antibodies is still unclear. Commensal bacteria have been suggested as a causal factor for this induction as α-Gal binding tools such as lectins were found to stain cultivated bacteria isolated from the intestinal tract. Currently available tools for the detection of the definite α-Gal epitope, however, are cross-reactive, or have limited affinity and, hence, offer restricted possibilities for application. In this study, we describe a novel monoclonal IgG1 antibody (27H8) specific for the α-Gal epitope. The 27H8 antibody was generated by immunization of Ggta1 knockout mice and displays a high affinity towards synthetic and naturally occurring α-Gal in various applications. Using this novel tool, we found that intestinal bacteria reported to be α-Gal positive cannot be stained with 27H8 questioning whether commensal bacteria express the native α-Gal epitope at all.
Collapse
Affiliation(s)
- Luisa Kreft
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kyra Swiontek
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Michael Dittmar
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Neera Chakrapani
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Mahesh S. Desai
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Stefanie Eyerich
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Li Deng
- Institute of Virology, Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Konrad Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Simon Blank
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- German Center of Lung Research (DZL), Munich, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- *Correspondence: Caspar Ohnmacht,
| |
Collapse
|