1
|
Glinka DM, MacGregor GG. The PAR2 Antagonist Larazotide Can Mitigate Acute Histamine-Stimulated Epithelial Barrier Disruption in Keratinocytes: A Potential Adjunct Treatment for Atopic Dermatitis. JID INNOVATIONS 2025; 5:100369. [PMID: 40330848 PMCID: PMC12051560 DOI: 10.1016/j.xjidi.2025.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition with evidence of defects in the barrier properties of the epidermis. Changes in the permeability properties of the tight junction have been reported in AD, and reversing this leaky tight junction may be a potential treatment for AD. This study aimed to determine the effect of larazotide, an antagonist of the protease-activated receptor 2, on the permeability and barrier properties of the tight junctions in keratinocyte monolayers. Normal human epithelial keratinocytes were grown in culture on permeable supports. The effects of larazotide on transepithelial resistance and permeability properties of keratinocyte monolayers were studied before and after histamine challenge. Larazotide mitigated the disruptive effect of histamine on epithelial permeability by increasing the electrical resistance and decreasing epithelial permeability. Larazotide may be beneficial as a topical therapeutic for AD; however, the permeability properties of the short-peptide larazotide through the uppers layers of the epidermis is currently unknown. In conclusion, the protease-activated receptor 2 antagonist larazotide has a protective effect on keratinocyte monolayers and may be useful as an adjunct therapeutic agent to enhance barrier function and promote epidermal healing in AD.
Collapse
Affiliation(s)
| | - Gordon G. MacGregor
- Alabama College of Osteopathic Medicine, Dothan, Alabama, USA
- Orlando College of Osteopathic Medicine, Winter Garden, Florida, USA
- Yogalytes LLC, Huntsville, Alabama, USA
| |
Collapse
|
2
|
Yang J, Zhu J, Lu S, Qin H, Zhou W. Transdermal psoriasis treatment inspired by tumor microenvironment-mediated immunomodulation and advanced by exosomal engineering. J Control Release 2025; 382:113664. [PMID: 40147535 DOI: 10.1016/j.jconrel.2025.113664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Psoriasis, characterized by aberrant T cell activation and epidermal hyperplasia, lacks safe and effective localized transdermal treatments. Drawing on the divergent pathologies of psoriasis and malignancies, we explored whether immunosuppressive mechanisms from the tumor microenvironment could be repurposed for psoriasis therapy. Utilizing B16-F10 melanoma cells as a model, we found that topical application of inactivated melanoma tissue homogenate alleviated psoriatic lesions in mice, primarily mediated by melanoma-derived exosomes. These exosomes exert therapeutic effects by modulating IL-17 signaling through miRNAs, effectively reducing T cell activation and proliferation. We discovered key miRNAs, mmu-miR-320-3p and mmu-miR-126-5p, that target IL-17a. Additionally, we demonstrated that these exosomes, enriched with RhoA protein, enhance transcytosis across epidermal barriers. Based on these insights, we developed 'ExoLipo,' a biomimetic exosomal formulation incorporating RhoA and loaded with mmu-miR-320-3p, inheriting the native exosomes' transdermal and immunomodulatory capacities. This formulation exhibited significant preventive and therapeutic effects on psoriasis mice models with an excellent safety profile. Our findings highlight the potential of repurposing tumor-derived immunosuppressive strategies for inflammatory diseases and offer a groundbreaking approach for managing psoriasis.
Collapse
Affiliation(s)
- Jieru Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jiaojiao Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Shan Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Hong Qin
- Hunan BeautySci Biotech Co., Ltd., Hunan Province, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha City 410008, Hunan Province, China; Hunan BeautySci Biotech Co., Ltd., Hunan Province, China; Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
3
|
Wu X, Zhang Y, Yi F, Geng Z, Guo M, Ling X, Li J, Li L. Anti-inflammatory and barrier repair mechanisms of active components in Daemonorops draco Bl. for UVB-induced skin damage. Sci Rep 2025; 15:17124. [PMID: 40382359 DOI: 10.1038/s41598-025-01289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 05/05/2025] [Indexed: 05/20/2025] Open
Abstract
Daemonorops draco Bl. extract and its active ingredients can remove blood stasis and promote muscle and wound healing and are widely used in skin health and other fields. Modern pharmacological studies have demonstrated that this extract exerts excellent anti-inflammatory effects beneficial for skin barrier repair. However, the mechanism of action and monomeric components of D. draco remain unclear. Seven active monomers (XJ-1 ~ XJ-7) were extracted and purified from D. draco. The successful construction of the HaCaT inflammation model was achieved through the detection of IL-1β and TNF-α expressions in UVB-irradiated HaCaT cells. Based on this cellular model, (2 S)-5-methoxy-6-methylflavan-7-ol (XJ-2) was determined to be the best-screened monomer. The effects of XJ-2 on the production of reactive oxygen species (ROS) and Ca2+ in HaCaT cells were investigated using fluorescent probes and flow cytometry, respectively. The impact of XJ-2 on the expression of crucial proteins within the NF-κB pathway was examined via immunofluorescence and western blotting. The expression levels of downstream inflammatory factors, namely IL-1β and TNF-α, were detected through PCR. The effects of XJ-2 on the expression of skin barrier-related factors filaggrin (FLG), aquaporin 3 (AQP-3), and claudin1 (CLDN1) were investigated using PCR, immunofluorescence, and western blotting. Based on these findings, we comprehensively examined the mechanisms underlying the anti-inflammatory and barrier repair effects of XJ-2. XJ-2 primarily protected the internal structure and function of the cells by inhibiting the mass production of ROS and Ca2+ inflow. XJ-2 exerts anti-inflammatory effects by regulating the key proteins of the NF-κB/IKKα pathway and reducing the expression of inflammatory factors. XJ-2 repairs skin barrier damage by regulating multiple factors. Compound XJ-2 from D. draco exerts excellent anti-inflammatory and barrier repair effects, possesses great potential for the treatment of skin diseases, and can be used as a dermatological drug to repair skin barrier damage.
Collapse
Affiliation(s)
- Xingyi Wu
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Ying Zhang
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Fan Yi
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zaijun Geng
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Miaomiao Guo
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xiao Ling
- Beijing Lan Divine Technology Co. LTD, Culture Building, No. A59, Zhongguancun Street, Haidian District, Beijing, 100872, China
| | - Jun Li
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North Third Ring East Road, Chaoyang District, Beijing, 100029, China.
| | - Li Li
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
4
|
Lacoste B, Prat A, Freitas-Andrade M, Gu C. The Blood-Brain Barrier: Composition, Properties, and Roles in Brain Health. Cold Spring Harb Perspect Biol 2025; 17:a041422. [PMID: 38951020 PMCID: PMC12047665 DOI: 10.1101/cshperspect.a041422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Blood vessels are critical to deliver oxygen and nutrients to tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier (BBB), which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and protects the neural tissue from toxins and pathogens, and alterations of this barrier are important components of the pathogenesis and progression of various neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the brain endothelial cells (ECs) that form the walls of the blood vessels. These properties are regulated by interactions between different vascular, perivascular, immune, and neural cells. Understanding how these cell populations interact to regulate barrier properties is essential for understanding how the brain functions in both health and disease contexts.
Collapse
Affiliation(s)
- Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Moises Freitas-Andrade
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada
| | - Chenghua Gu
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
5
|
Meena K, Babu R, Pancholi B, Garabadu D. Exploring therapeutic potential of claudin in Flavivirus infection: A review on current advances and future perspectives. Int J Biol Macromol 2025; 309:142936. [PMID: 40203926 DOI: 10.1016/j.ijbiomac.2025.142936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Flavivirus such as Dengue, Zika, West Nile, Japanese encephalitis, and yellow fever virus, composed of single-stranded positive-sense RNA, predominantly contaminated through arthropods. Flavivirus infection characterises from asymptomatic signs to severe hemorrhagic fever and encephalitis. The host's immune system detects these viruses and provides a defence mechanism to sustain their life and growth. However, flaviviruses through different mechanisms compromise the host's immune defence. The current pharmacotherapeutic strategies against Flavivirus infection target different stages of the Flavivirus life cycle and its proteins. On the contrary, the host's immune defence mechanism is equally important to restrict their growth. It has been suggested that flaviviruses compromise claudins to sustain their life and growth inside the mammalian cells. This review primarily focuses on the effect of Flavivirus on claudins (CLDNs), transmembrane proteins that form tight junctions in mammalian cells. CLDNs are crucial in viral entry and pathogenesis by regulating paracellular permeability, particularly in tissues and the blood-brain barrier. Recent studies indicate that the Dengue and Zika viruses can potentially be treated by targeting specific CLDNs-specifically CLDN 1, CLDN 5, and CLDN 7 to inhibit viral entry and fusion. Additionally, it highlights the current challenges and future prospects in developing claudin-based antiviral agents against Flavivirus infections.
Collapse
Affiliation(s)
- Kiran Meena
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| | - Raja Babu
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| | | | - Debapriya Garabadu
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
6
|
Gao D, Zhuang Y, Liu S, Ma B, Xu Y, Zhang H, Nuermaimaiti Y, Chen T, Hou G, Guo W, You J, Huang Z, Xiao J, Wang W, Li M, Li S, Cao Z. Multi-omics profiling of dairy cattle oxidative stress identifies hindgut-derived Phascolarctobacterium succinatutens exhibiting antioxidant activity. NPJ Biofilms Microbiomes 2025; 11:61. [PMID: 40263287 PMCID: PMC12015594 DOI: 10.1038/s41522-025-00698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
An imbalance between oxidative and antioxidant processes in the host can lead to excessive oxidation, a condition known as oxidative stress (OS). Although changes in the hindgut microbiota have been frequently linked to OS, the specific microbial and metabolic underpinnings of this association remain unclear. In this study, we enrolled 81 postpartum Holstein cows and stratified them into high oxidative stress (HOS, n = 9) and low oxidative stress (LOS, n = 9) groups based on the oxidative stress index (OSi). Using a multi-omics approach, we performed 16S rRNA gene sequencing to evaluate microbial diversity, conducted metagenomic analysis to identify functional bacteria, and utilized untargeted metabolomics to profile serum metabolites. Our analyses revealed elevated levels of kynurenine, formyl-5-hydroxykynurenamine, and 5-hydroxyindole-3-acetic acid in LOS dairy cows. Additionally, the LOS cows had a higher abundance of short-chain fatty acids (SCFAs)-producing bacteria, including Bacteroidetes bacterium, Paludibacter propionicigenes, and Phascolarctobacterium succinatutens (P. succinatutens), which were negatively correlated with OSi. To explore the potential role of these bacteria in mitigating OS, we administered P. succinatutens (108 cfu/day for 14 days) to C57BL/6 J mice (n = 10). Oral administration of P. succinatutens significantly increased serum total antioxidant capacity, decreased total oxidants, and reduced OSi in mice. Moreover, this treatment promoted activation of the Nrf2-Keap1 antioxidant pathway, significantly enhancing the enzymatic activities of GSH-Px and SOD, as well as the concentrations of acetate and propionate in the colon. In conclusion, our findings suggest that systemic tryptophan metabolism and disordered SCFAs production are concurrent factors influenced by hindgut microbiota and associated with OS development. Modulating the hindgut microbiota, particularly by introducing specific SCFAs-producing bacteria, could be a promising strategy for combating OS.
Collapse
Affiliation(s)
- Duo Gao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yimin Zhuang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Boyan Ma
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiming Xu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongxing Zhang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiliyaer Nuermaimaiti
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guobin Hou
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenli Guo
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingtao You
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiyu Huang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Boehm E, Droessler L, Vollstaedt ML, Stein L, Amasheh S. Barrier-Strengthening Effects of Cannabidiol on Porcine Peyer's Patches. Int J Mol Sci 2025; 26:3360. [PMID: 40244215 PMCID: PMC11989848 DOI: 10.3390/ijms26073360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Cannabidiol (CBD), a major non-psychoactive cannabinoid of the Cannabis sativa L. plant, has demonstrated anti-inflammatory effects in various studies. However, the therapeutic use of CBD is still limited. Despite its potential, little is known about the molecular mechanisms of CBD on epithelial integrity, particularly concerning effects in native intestinal tissue. To accomplish this, our study aimed to investigate the effects of CBD ex vivo on the follicle-associated epithelium of Peyer's Patches (PP) and villus epithelium (VE) from porcine intestine. To measure the epithelial barrier, the Ussing chamber technique was employed, followed by immunoblotting and confocal laser-scanning immunofluorescence microscopy of tight junction proteins and specific receptors. The results revealed that CBD significantly strengthens the epithelial barrier of PP by upregulation of sealing tight junction proteins, including occludin, claudin-1, -3, and -7. Additionally, the study showed the potential of CBD to decrease the expression of Tumor necrosis factor alpha (TNFɑ) receptor 1 (TNFR-1) in PP that plays a key role in chronic inflammatory diseases. The study highlights the potential of CBD in the prevention of inflammatory conditions and underlines the important role of PP as a target for bioactive compounds.
Collapse
Affiliation(s)
- Elisa Boehm
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (E.B.); (L.D.); (M.-L.V.); (L.S.)
| | - Linda Droessler
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (E.B.); (L.D.); (M.-L.V.); (L.S.)
| | - Marie-Luise Vollstaedt
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (E.B.); (L.D.); (M.-L.V.); (L.S.)
| | - Laura Stein
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (E.B.); (L.D.); (M.-L.V.); (L.S.)
| | - Salah Amasheh
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (E.B.); (L.D.); (M.-L.V.); (L.S.)
- Marine Science Station, The University of Jordan, Aqaba Branch, Aqaba 77110, Jordan
| |
Collapse
|
8
|
Chen Y, Zhou Y, Bai Y, Jia K, Zhang H, Chen Q, Song M, Dai Y, Shi J, Chen Z, Yan X, Shen Y. Macrophage-derived CTSS drives the age-dependent disruption of the blood-CSF barrier. Neuron 2025; 113:1082-1097.e8. [PMID: 40015275 DOI: 10.1016/j.neuron.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/09/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
The choroid plexus (CP) serves as the primary source of cerebrospinal fluid (CSF). The blood-CSF barrier, composed of tight junctions among the epithelial cells in the CP, safeguards CSF from unrestricted exposure to bloodborne factors. This barrier is thus indispensable to brain homeostasis and is associated with age-related neural disorders. Nevertheless, its aging is poorly understood. Here, we report that cathepsin S (CTSS), a protease secreted from the CP macrophages, is upregulated in aged CP due to increased cell senescence. CTSS cleaves the essential tight junction component, claudin 1 (CLDN1), and, in turn, impairs the blood-CSF barrier. Notably, inhibiting CTSS or upregulating CLDN1 in aged CP rejuvenates the blood-CSF barrier and brain functions. Our findings uncover a vital interplay between immune and barrier cells that accelerates CP and brain aging, identify CTSS as a potential target to improve brain homeostasis in aged animals, and underscore the critical role of circulating proteinases in aging.
Collapse
Affiliation(s)
- Yifan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yaqing Bai
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiwen Jia
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingxia Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Mengjiao Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumin Dai
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiantao Shi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiumin Yan
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yidong Shen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Shin J, Song JW, Flavin MT, Cho S, Li S, Tan A, Pyun KR, Huang AG, Wang H, Jeong S, Madsen KE, Trueb J, Kim M, Nguyen K, Yang A, Hsu Y, Sung W, Lee J, Phyo S, Kim JH, Banks A, Chang JK, Paller AS, Huang Y, Ameer GA, Rogers JA. A non-contact wearable device for monitoring epidermal molecular flux. Nature 2025; 640:375-383. [PMID: 40205217 DOI: 10.1038/s41586-025-08825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 02/21/2025] [Indexed: 04/11/2025]
Abstract
Existing wearable technologies rely on physical coupling to the body to establish optical1,2, fluidic3,4, thermal5,6 and/or mechanical7,8 measurement interfaces. Here we present a class of wearable device platforms that instead relies on physical decoupling to define an enclosed chamber immediately adjacent to the skin surface. Streams of vapourized molecular substances that pass out of or into the skin alter the properties of the microclimate defined in this chamber in ways that can be precisely quantified using an integrated collection of wireless sensors. A programmable, bistable valve dynamically controls access to the surrounding environment, thereby creating a transient response that can be quantitatively related to the inward and outward fluxes of the targeted species by analysing the time-dependent readings from the sensors. The systems reported here offer unique capabilities in measuring the flux of water vapour, volatile organic compounds and carbon dioxide from various locations on the body, each with distinct relevance to clinical care and/or exposure to hazardous vapours. Studies of healing processes associated with dermal wounds in models of healthy and diabetic mice and of responses in models using infected wounds reveal characteristic flux variations that provide important insights, particularly in scenarios in which the non-contact operation of the devices avoids potential damage to fragile tissues.
Collapse
Affiliation(s)
- Jaeho Shin
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Advanced Molecular Recognition, Korea Institute of Science and Technology, Seoul, South Korea
| | - Joseph Woojin Song
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
| | - Matthew Thomas Flavin
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Seunghee Cho
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Ansen Tan
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Kyung Rok Pyun
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Aaron G Huang
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Wearifi Inc, Northfield, IL, USA
| | - Huifeng Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Seongmin Jeong
- Center for Advanced Molecular Recognition, Korea Institute of Science and Technology, Seoul, South Korea
| | - Kenneth E Madsen
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jacob Trueb
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Mirae Kim
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Katelynn Nguyen
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Angela Yang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Winnie Sung
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Jiwon Lee
- Center for Climate and Carbon Cycle Research, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Energy and Environment Technology, Korea Institute of Science and Technology, Seoul, South Korea
| | - Sooyeol Phyo
- Center for Climate and Carbon Cycle Research, Korea Institute of Science and Technology, Seoul, South Korea
- Department of Materials Science and Engineering, Korea University, Seoul, South Korea
| | - Ji-Hoon Kim
- Center for Advanced Molecular Recognition, Korea Institute of Science and Technology, Seoul, South Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, South Korea
| | - Anthony Banks
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Wearifi Inc, Northfield, IL, USA
| | - Jan-Kai Chang
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Wearifi Inc, Northfield, IL, USA
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yonggang Huang
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Civil Engineering, Northwestern University, Evanston, IL, USA.
| | - Guillermo A Ameer
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA.
- Department of Surgery, Northwestern University, Chicago, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
| | - John A Rogers
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA.
- Wearifi Inc, Northfield, IL, USA.
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Dermatology, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Chemical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
10
|
Ren H, Zha P, Liu Y, Zhang W, Meng H, Di T. Study on Moisturizing Effect of Dendrobium officinale, Sparassis crispa, and Their Compound Extracts. J Cosmet Dermatol 2025; 24:e70189. [PMID: 40247751 PMCID: PMC12006832 DOI: 10.1111/jocd.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Recently, natural plants have been widely developed and applied in moisturizing cosmetics. Dendrobium officinale Kimura et Migo (D. officinale) is known as one of the "Nine Immortals" of Chinese herbal medicine, whereas Sparassis crispa (Wulf.) Fr. (S. crispa) is known as the "king of mushrooms"; both of which have excellent biological activity. AIMS To explore the effects of D. officinale polysaccharide (DOP) with different molecular weights and S. crispa on the expression of moisturizing-related genes and verify the moisturizing performance of their complex. METHODS PCR was carried out to explore the aquaporin 3 (AQP3), hyaluronic acid synthetase1 (HAS1), HAS2, and HAS3 genes expression. Immunofluorescence (IF) analysis was used to test the protein level expression of hyaluronic acid (HA), AQP3, claudin-1, and filaggrin (FLG) influenced by moisturizing composition in a reconstructed epidermis skin model. The ability of samples to resist cell drying damage was evaluated by a cell drying damage model. Furthermore, this study validated the effect of the compositions during their application in cosmetics through tests of skin moisture content, crow's feet, and skin elasticity. RESULTS The results showed that DOP with molecular weights of 100 k-500 kDa (Dalton) had higher effects on AQP3 gene expression compared to that with molecular weights of 10 k-100 kDa and 1 k-10 kDa. Additionally, the extract of S. crispa significantly promoted the expression of HAS1, HAS2, and HAS3 genes, which are genes encoding hyaluronic acid synthesis. In addition, the mRNA and protein expression levels of HA, AQP3, claudin-1, and FLG were significantly increased as a result of the moisturizing composition consisting of DOP (100 k-500 kDa) and S. crispa. The application of the moisturizing composition markedly increased the skin moisture content, improved eye wrinkles, and enhanced skin elasticity. CONCLUSIONS In summary, our study proved that D. officinale and S. crispa had good moisturizing effects, and as natural plant humectants, they may have broad applications in future moisturizing cosmetics.
Collapse
Affiliation(s)
- Hankun Ren
- Beijing Academy of TCM Beauty Supplements Co. LtdBeijingPeople's Republic of China
| | - Peina Zha
- Beijing Academy of TCM Beauty Supplements Co. LtdBeijingPeople's Republic of China
| | - Yueheng Liu
- Beijing Academy of TCM Beauty Supplements Co. LtdBeijingPeople's Republic of China
| | - Weihong Zhang
- Beijing Academy of TCM Beauty Supplements Co. LtdBeijingPeople's Republic of China
| | - Hong Meng
- Beijing Technology and Business UniversityBeijingPeople's Republic of China
| | - Taiju Di
- Beijing Academy of TCM Beauty Supplements Co. LtdBeijingPeople's Republic of China
| |
Collapse
|
11
|
Fukuda K, Ito Y, Amagai M. Barrier Integrity and Immunity: Exploring the Cutaneous Front Line in Health and Disease. Annu Rev Immunol 2025; 43:219-252. [PMID: 40279307 DOI: 10.1146/annurev-immunol-082323-030832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Immune responses are influenced by not only immune cells but also the tissue microenvironment where these cells reside. Recent advancements in understanding the underlying molecular mechanisms and structures of the epidermal tight junctions (TJs) and stratum corneum (SC) have significantly enhanced our knowledge of skin barrier functions. TJs, located in the granular layer of the epidermis, are crucial boundary elements in the differentiation process, particularly in the transition from living cells to dead cells. The SC forms from dead keratinocytes via corneoptosis and features three distinct pH zones critical for barrier function and homeostasis. Additionally, the SC-skin microbiota interactions are crucial for modulating immune responses and protecting against pathogens. In this review, we explore how these components contribute both to healthy and disease states. By targeting the skin barrier in therapeutic strategies, we can enhance its integrity, modulate immune responses, and ultimately improve outcomes for patients with inflammatory skin conditions.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan;
| | - Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan;
| |
Collapse
|
12
|
Nepali S, Chen M, Karthikeyan B, Sonkawade SD, Mahajan SD, Spernyak J, Sharma UC, Pokharel S. Claudin 1 dysregulation disrupts coronary microvascular integrity and impairs cardiac function. Atherosclerosis 2025; 403:119149. [PMID: 40068507 PMCID: PMC12070307 DOI: 10.1016/j.atherosclerosis.2025.119149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND AND AIMS Claudin 1 (Cldn1) is a tight junction protein primarily known for its role in epithelial and endothelial barrier function. However, the role of Cldn1 in coronary microvascular barrier remain unclear. The aim of this study is to investigate the biological effects of Cldn1 dysregulation on coronary vascular permeability, inflammation, fibrosis, and left ventricular function. METHODS Cldn1 was silenced in human cardiac microvascular endothelial cells (HMVECs) and C57Bl/6 mice using oligonucleotide-based next generation siRNA duplex. Additionally, global transgenic mice with endothelial cell-specific overexpression of Cldn1 were created under the regulation of the CD144 (VE-cadherin) promoter. Permeability was assessed using FITC-dextran assay in vitro and Evans blue dye leakage (Mile's assay) in vivo. Cardiac morphology and function were measured by cardiac MRI, and myocardial pathology was analyzed by immunohistochemistry and Transmission Electron Microscopy (TEM). PCR and Western blotting confirmed Cldn1 expression changes. RESULTS Cldn1 knockdown reduced protein levels by 46% (p = 0.004) and significantly increased endothelial permeability in HMVEC (p = 0.0007). In mice, Cldn1 knockdown significantly increased Evans blue dye leakage (p = 0.025), macrophage infiltration (p = 0.018), and interstitial collagen (p = 0.048). TEM confirmed endothelial damage particularly affecting the basement membrane structure. Cardiac MRI showed reduced stroke volume (p = 0.004) and ejection fraction (p = 0.043). Cldn1 overexpression reduced vascular permeability (p = 0.002) without altering cardiac function under basal condition. CONCLUSION Cldn1 plays an important role in maintaining coronary microvascular barrier integrity. Its loss leads to increased permeability, inflammation, fibrosis, and impaired cardiac function, while overexpression enhances barrier function without affecting cardiac performance under baseline conditions.
Collapse
Affiliation(s)
- Sarmila Nepali
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Min Chen
- Department of Pediatrics Infectious Disease, University of Alabama, AL, USA
| | - Badri Karthikeyan
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Swati D Sonkawade
- Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Supriya D Mahajan
- Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Joseph Spernyak
- Translational Imaging Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Umesh C Sharma
- Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Saraswati Pokharel
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
13
|
Matsuda S, Miwa M, Tanabe M, Kobayashi M, Shu S, Yoshino Y, Tada N, Itoh A, Ikari A. Sirtuin-2 Is Involved in the Regulation of Claudin-4 Expression and Paracellular Barrier Function in Keratinocytes. J Cell Biochem 2025; 126:e70027. [PMID: 40114344 DOI: 10.1002/jcb.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/28/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Claudin-1 (CLDN1) and CLDN4 are highly expressed in keratinocytes and may function as a paracellular barrier to water and small molecules. The physiological function of CLDN4 has not been fully understood, whereas dysfunction of CLDN1 is involved in the pathophysiology of allergy and inflammatory diseases. Here, we found that the protein level of CLDN4 in the skin tissues of 36-week-old mice was lower than that in 6-week-old mice. In contrast, there was not much difference in the mRNA levels of CLDN4. Tenovin-1 (Ten-1), a sirtuin-1/2 inhibitor, decreased the protein level of CLDN4 without affecting that of CLDN1 in human keratinocyte-derived HaCaT cells. The decrease in CLDN4 mRNA by Ten-1 was much less than that in protein. Cycloheximide-chase assay showed that the protein stability of CLDN4 was attenuated by Ten-1. The Ten-1-induced decrease in CLDN4 protein was inhibited by clathrin-dependent endocytosis and proteasome inhibitors. The Ten-1 treatment or SIRT2 silencing induced the elevation of acetylated CLDN4 protein, leading to the reduction of CLDN4 protein. In addition, the paracellular barrier function was reduced by Ten-1 treatment or SIRT2 silencing. These results indicate that Ten-1 may enhance the clathrin-dependent endocytosis and proteasome-dependent degradation of CLDN4 protein, resulting in the dysfunction of paracellular barrier. The Ten-1-induced reduction of CLDN4 protein and paracellular barrier function were inhibited by curcumin, a polyphenol contained in Curcuma longa plant. We suggest that the reduction of CLDN4 protein in keratinocytes may be involved in the age-related dysfunction of the skin barrier, which may be rescued by curcumin.
Collapse
Affiliation(s)
- Shunsuke Matsuda
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Maika Miwa
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Miki Tanabe
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Mao Kobayashi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Shokoku Shu
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Norihiro Tada
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
14
|
Peng G, Zhao W, Abudouwanli A, Sun Q, Yang M, Wang S, Tan Y, Ikeda A, Ikeda S, Ogawa H, Okumura K, Niyonsaba F. Improvement of atopic dermatitis-like symptoms in a murine model via the chromogranin A-derived peptide catestatin. Allergol Int 2025:S1323-8930(25)00006-1. [PMID: 39986986 DOI: 10.1016/j.alit.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/10/2024] [Accepted: 01/08/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Atopic dermatitis (AD), a prevalent chronic inflammatory skin disorder, is characterized by compromised skin barrier and heightened immune responses. The study investigates the therapeutic efficacy of catestatin (CST), a chromogranin A-derived antimicrobial peptide, in mitigating AD-like symptoms. METHODS Utilizing both keratinocyte cultures and a C57BL/6 mouse model, we examined CST's impact on skin barrier proteins, tight junction (TJ) integrity, inflammatory cytokines, and AD-like symptoms. RESULTS CST administration led to a significant upregulation of skin barrier proteins and improved TJ function, counteracting the negative effects of Th2 cytokines on these parameters. In a 2,4-dinitrochlorobenzene-induced AD mouse model, CST treatment markedly reduced AD-like symptoms, including ear thickness, transepidermal water loss, and scratching behavior, and normalized barrier protein expression and TJ barrier function. Furthermore, CST was found to interact with the Notch1 receptor, activating the Notch1/PKC pathway, which may underlie its skin barrier-enhancing properties. CONCLUSIONS Collectively, these findings suggest CST as a promising therapeutic agent for AD, capable of enhancing skin barrier function, modulating immune responses, and targeting the Notch1/PKC pathway, offering a novel approach to AD treatment focusing on barrier restoration and immune modulation.
Collapse
Affiliation(s)
- Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Wanchen Zhao
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Alafate Abudouwanli
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Quan Sun
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mengyao Yang
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shan Wang
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yi Tan
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Arisa Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Nephrology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan.
| |
Collapse
|
15
|
Wang D, Jiang Q, Li P, Yu C, Yuan R, Dong Z, Meng T, Hu F, Wang J, Yuan H. Orally Administrated Precision Nanomedicine for Restoring the Intestinal Barrier and Alleviating Inflammation in Treatment of Inflammatory Bowel Disease. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10986-11001. [PMID: 39931937 DOI: 10.1021/acsami.4c19742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Inflammatory bowel disease (IBD) presents a significant challenge in healthcare, characterized by its chronicity and complex pathogenesis involving genetic, immune, and environmental factors. Current treatment modalities, including anti-inflammatory drugs, immunomodulators, and biologics, often lack sufficient efficacy and are accompanied by adverse effects, necessitating the urgent search for therapeutic approaches targeting mucosal barrier restoration and inflammation modulation. Precision nanomedicine emerges as a promising solution to directly address these challenges. This study introduces the development of a targeted sequential nanomedicine for precise IBD treatment. This innovative formulation combines a prodrug carrier containing quercetin to restore intestinal barrier integrity through the regulation of tight junctions and an anti-inflammatory agent dexamethasone acetate to alleviate inflammation. Surface modification with pectin enables colon-specific drug delivery, facilitated by degradation by colon-specific microbiota. Responsive drug release, controlled by reactive oxygen species-sensitive chemical bonds within the carrier, ensures both spatial and temporal accuracy. In vitro and in vivo investigations confirm the nanomedicine's favorable physicochemical properties, release kinetics, and therapeutic efficacy, elucidating potential underlying mechanisms. Oral administration of the nanomedicine shows promising results in restoring intestinal barrier function, reducing inflammation, and modulating the gut microbiota. Consequently, this study presents a promising nanomedicine candidate for advancing IBD treatment paradigms.
Collapse
Affiliation(s)
- Ding Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qi Jiang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Peirong Li
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Caini Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Renxiang Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhefan Dong
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
- Jinhua Institute of Zhejiang University, Jinhua 321299, P. R. China
| | - Jianwei Wang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
- Jinhua Institute of Zhejiang University, Jinhua 321299, P. R. China
| |
Collapse
|
16
|
Liu M, Charek JG, Vicetti Miguel RD, Cherpes TL. Ephrin-Eph signaling: an important regulator of epithelial integrity and barrier function. Tissue Barriers 2025:2462855. [PMID: 39921660 DOI: 10.1080/21688370.2025.2462855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Eph receptor-interacting proteins (ephrin) ligands and their erythropoietin-producing human hepatocellular (Eph) receptors elicit bidirectional signals that regulate cell migration, angiogenesis, neuronal plasticity, and other developmental processes in the embryo. In adulthood, ephrin-Eph signaling regulates numerous homeostatic events, including epithelial cell proliferation and differentiation. Epithelial surfaces, including those of skin and vagina, are lined by layers of stratified squamous epithelium (SSE) that protect against mechanical stress and microbial pathogen invasion. Ephrin-Eph signaling is known to promote cutaneous epithelial barrier function by regulating the expression of specialized cell-cell adhesion junctions termed desmosomes, but the role of this signaling system in maintaining epithelial integrity and barrier function in the vagina is less explored. This review summarizes current understanding of ephrin-Eph signaling that regulates desmosome expression and barrier function in the skin and considers evidence that suggests ephrin-Eph signaling similarly regulates these processes in vaginal SSE.
Collapse
Affiliation(s)
- Mohan Liu
- Comparative Biomedical Sciences Graduate Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Joseph G Charek
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Rodolfo D Vicetti Miguel
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Thomas L Cherpes
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Pouyiourou I, Fromm A, Piontek J, Rosenthal R, Furuse M, Günzel D. Ion permeability profiles of renal paracellular channel-forming claudins. Acta Physiol (Oxf) 2025; 241:e14264. [PMID: 39821681 PMCID: PMC11740656 DOI: 10.1111/apha.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
AIM Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins. METHODS MDCK II cells, in which the five major claudins had been knocked out (claudin quintupleKO), were stably transfected with individual mouse Cldn2, -4, -8, -10a, -10b, or -15, or with dog Cldn16 or -19, or with a combination of mouse Cldn4 and Cldn8, or dog Cldn16 and Cldn19. Permeation properties were investigated in the Ussing chamber and claudin interactions by FRET assays. RESULTS Claudin-4 and -19 formed barriers against solute permeation. However, at low pH values and in the absence of HCO3 -, claudin-4 conveyed a weak chloride and nitrate permeability. Claudin-8 needed claudin-4 for assembly into TJ strands and abolished this anion preference. Claudin-2, -10a, -10b, -15, -16+19 formed highly permeable channels with distinctive permeation profiles for different monovalent and divalent anions or cations, but barriers against the permeation of ions of opposite charge and of the paracellular tracer fluorescein. CONCLUSION Paracellular ion permeabilities along the nephron are strictly determined by claudin expression patterns. Paracellular channel-forming claudins are specific for certain ions and thus lower transepithelial resistance, yet form barriers against the transport of other solutes.
Collapse
Affiliation(s)
- Ioanna Pouyiourou
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Anja Fromm
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Rita Rosenthal
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Mikio Furuse
- Division of Cell StructureNational Institute for Physiological SciencesOkazakiJapan
- Physiological Sciences ProgramGraduate Institute for Advanced Studies, SOKENDAIOkazakiJapan
- Nagoya University Graduate School of MedicineNagoyaJapan
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
18
|
Antoine T, Béduneau A, Chrétien C, Cornu R, Bonnefoy F, Moulari B, Perruche S, Pellequer Y. Clinically relevant cell culture model of inflammatory bowel diseases for identification of new therapeutic approaches. Int J Pharm 2025; 669:125062. [PMID: 39653295 DOI: 10.1016/j.ijpharm.2024.125062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Inflammatory Bowel Diseases (IDB) are chronic disorders characterized by gut inflammation, mucosal damage, increased epithelial permeability and altered mucus layer. No accurate in vitro model exists to simulate these characteristics. In this context, drug development for IBD or intestinal inflammation requires in vivo evaluations to verify treatments efficacy. A new model with altered mucus layer composition; altered epithelial permeability and pro-inflammatory crosstalk between immune and epithelial cells will be developed to enhance in vitro models for studying IBD treatments. The effects of dextran sulfate sodium and/or lipopolysaccharides on intestinal permeability, cytokines synthesis (IL-6, IL-8, TNF-α and IL-1β), mucins (MUC2, MUC5AC) and tight junction proteins expression (Claudin-1, ZO-1 and Occludin) were investigated in a tri-coculture model combining differentiated Caco-2/HT29-MTX cells and THP-1 cells. Two anti-inflammatory agents were evaluated to assess the model's therapeutic strategy applicability (corticoids and pro-resolving factors). Two in vitro models have been developed. The first model, characterized by increased permeability of the epithelial layer and subsequent secretion of inflammatory cytokines, can reproduce the different phases of inflammation, and enables the evaluation of preventive treatments. The second model simulates the acute phase of inflammation and allows for the assessment of curative treatments. Both models demonstrated reversibility when treated with betamethasone and pro-resolving factors. These in vitro models are valuable for selecting therapeutic agents prior to their application in in vivo models. They enable the assessment of agents' anti-inflammatory effects and their ability to permeate the inflamed epithelial layer and interact with immune cells.
Collapse
Affiliation(s)
- Thomas Antoine
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Arnaud Béduneau
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Claire Chrétien
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Raphaël Cornu
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Francis Bonnefoy
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France; MED'INN'Pharma, F-25000 Besançon, France
| | - Brice Moulari
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Sylvain Perruche
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France; MED'INN'Pharma, F-25000 Besançon, France
| | - Yann Pellequer
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France.
| |
Collapse
|
19
|
Kim DY, Kang YH, Kang MK. Umbelliferone alleviates impaired wound healing and skin barrier dysfunction in high glucose-exposed dermal fibroblasts and diabetic skins. J Mol Med (Berl) 2024; 102:1457-1470. [PMID: 39363131 PMCID: PMC11579180 DOI: 10.1007/s00109-024-02491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Skin wound healing is a complex process involving various cellular and molecular events. However, chronic wounds, particularly in individuals with diabetes, often experience delayed wound healing, potentially leading to diabetic skin complications. In this study, we examined the effects of umbelliferone on skin wound healing using dermal fibroblasts and skin tissues from a type 2 diabetic mouse model. Our results demonstrate that umbelliferone enhances several crucial aspects of wound healing. It increases the synthesis of key extracellular matrix components such as collagen I and fibronectin, as well as proteins involved in cell migration like EVL and Fascin-1. Additionally, umbelliferone boosts the secretion of angiogenesis factors VEGF and HIF-1α, enhances the expression of cell adhesion proteins including E-cadherin, ZO-1, and Occludin, and elevates levels of skin hydration-related proteins like HAS2 and AQP3. Notably, umbelliferone reduces the expression of HYAL, thereby potentially decreasing tissue permeability. As a result, it promotes extracellular matrix deposition, activates cell migration and proliferation, and stimulates pro-angiogenic factors while maintaining skin barrier functions. In summary, these findings underscore the therapeutic potential of umbelliferone in diabetic wound care, suggesting its promise as a treatment for diabetic skin complications. KEY MESSAGES: Umbelliferone suppressed the breakdown of extracellular matrix components in the skin dermis while promoting their synthesis. Umbelliferone augmented the migratory and proliferative capacities of fibroblasts. Umbelliferone activated the release of angiogenic factors in diabetic wounds, leading to accelerated wound healing. Umbelliferone bolstered intercellular adhesion and reinforced the skin barrier by preventing moisture loss and preserving skin hydration.
Collapse
Affiliation(s)
- Dong Yeon Kim
- Department of Food Science and Nutrition, Andong National University, 1375, Gyeongdong-ro, Andong-si, Gyeongsangbuk-do, 36729, Republic of Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition, Andong National University, 1375, Gyeongdong-ro, Andong-si, Gyeongsangbuk-do, 36729, Republic of Korea.
| |
Collapse
|
20
|
Berselli A, Alberini G, Benfenati F, Maragliano L. Ion and water permeation through claudin-10b and claudin-15 paracellular channels. Comput Struct Biotechnol J 2024; 23:4177-4191. [PMID: 39640531 PMCID: PMC11617971 DOI: 10.1016/j.csbj.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
The structural scaffold of epithelial and endothelial tight junctions (TJs) comprises multimeric strands of claudin (Cldn) proteins that anchor adjacent cells and control the paracellular flux of water and solutes. Based on the permeability properties they confer to the TJs, Cldns are classified as channel- or barrier-forming. For instance, Cldn10b, expressed in kidneys, lungs, and other tissues, displays high permeability for cations and low permeability for water. Along with its high sequence similarity to the cation- and water-permeable TJ protein Cldn15, this makes Cldn10b a valuable test case for investigating the molecular determinants of paracellular transport. In lack of high-resolution experimental information on TJ architectures, here we use molecular dynamics simulations to determine whether atomistic models recapitulate the differences in ion and water transport between of Cldn10b and Cldn15. Our data, based on extensive standard simulations and free energy calculations, reveal that Cldn10b models form cation-permeable pores narrower than Cldn15, which, together with the stable coordination of Na+ ions to acidic pore-lining residues (E153, D36, D56), limit the passage of water molecules. By providing a mechanism driving a peculiar case of paracellular transport, these results provide a structural basis for the specific permeability properties of Cldn subtypes that define their physiological role.
Collapse
Affiliation(s)
- Alessandro Berselli
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Giulio Alberini
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
21
|
Webb EL, Petkov S, Yun H, Else L, Lebina L, Serwanga J, Pillay ADAP, Seiphetlo TB, Mugaba S, Namubiru P, Odoch G, Opoka D, Ssemata AS, Kaleebu P, Khoo S, Martinson N, Fox J, Gray CM, Herrera C, Chiodi F. Gene expression of tight junctions in foreskin is not affected by HIV pre-exposure prophylaxis. Front Immunol 2024; 15:1415475. [PMID: 39569196 PMCID: PMC11576434 DOI: 10.3389/fimmu.2024.1415475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Tight junctions (TJs) serve as permeability filters between the internal and external cellular environment. A large number of proteins have been identified to be localized at the TJs. Due to limitations in tissue collection, TJs in the male genital tract have been understudied. Methods We analysed the transcriptomics of 132 TJ genes in foreskin tissue of men requesting voluntary medical male circumcision (VMMC) and enrolled in the Combined HIV Adolescent Prevention Study (CHAPS) trial conducted in South Africa and Uganda (NCT03986970). The trial evaluated the dose requirements for event-driven HIV pre-exposure prophylaxis (PrEP) with emtricitabine-tenofovir (FTC-TDF) or emtricitabine-tenofovir alafenamide (FTC-TAF) during insertive sex. A total of 144 participants were randomized to either control arm or one of 8 PrEP arms (n=16/arm), receiving oral FTC-TDF or FTC-TAF over one or two days. Following in vivo oral PrEP dosing and VMMC, the expression level of three important TJ proteins (CLDN-1, OCN and ZO-1) was measured ex vivo in foreskin tissue by Western blot. The expression of cytokine genes implicated in TJ regulation was determined. Non-parametric Kruskal-Wallis tests were used to compare TJ gene expression and protein levels by type of PrEP received, and Spearman's correlation coefficients were calculated to assess whether TJ gene expression levels were related to cytokine gene levels or to PrEP drug concentrations and their active intracellularly phosphorylated metabolites. Results A high level of expression in foreskin tissue was found for 118 (of 132) TJ genes analysed; this finding contributed to create a map of TJ components within the male genital tract. Importantly, PrEP regimens tested in the CHAPS trial did not affect the expression of TJ genes and the analysed proteins in the foreskin; thus, further supporting the safety of this prevention strategy against HIV-1 transmission during insertive sex. Additionally, we identified the level of several cytokines' genes to be correlated to TJ gene expression: among them, IL-18, IL-33 and VEGF. Discussion TJs can limit viral entry into target cells; to affect this biological function viruses can reduce the expression of TJ proteins. Our study, on the expression and regulation of TJs in the foreskin, contribute important knowledge for PrEP safety and further design of HIV-1 prophylaxis.
Collapse
Affiliation(s)
- Emily L Webb
- Medical Research Council (MRC) International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heejin Yun
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Laura Else
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Jennifer Serwanga
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Azure-Dee A P Pillay
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Thabiso B Seiphetlo
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Mugaba
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Patricia Namubiru
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Geoffrey Odoch
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Daniel Opoka
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Andrew S Ssemata
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Saye Khoo
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Julie Fox
- Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Clive M Gray
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Stellenbosch University, Cape Town, South Africa
| | - Carolina Herrera
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Van Campenhout R, Vinken M. Hepatic cell junctions: Pulling a double-duty. Liver Int 2024; 44:2873-2889. [PMID: 39115254 DOI: 10.1111/liv.16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Cell junctions, including anchoring, occluding and communicating junctions, play an indispensable role in the structural and functional organization of multicellular tissues, including in liver. Specifically, hepatic cell junctions mediate intercellular adhesion and communication between liver cells. The establishment of the hepatic cell junction network is a prerequisite for normal liver functioning. Hepatic cell junctions indeed support liver-specific features and control essential aspects of the hepatic life cycle. This review paper summarizes the role of cell junctions and their components in relation to liver physiology, thereby also discussing their involvement in hepatic dysfunctionality, including liver disease and toxicity.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
23
|
Xu Y, Wang Y, Song T, Li X, Zhou H, Chaibou OZ, Wang B, Li H. Immune-enhancing effect of Weizmannia coagulans BCG44 and its supernatant on cyclophosphamide-induced immunosuppressed mice and RAW264.7 cells via the modulation of the gut microbiota. Food Funct 2024; 15:10679-10697. [PMID: 39373874 DOI: 10.1039/d4fo02452d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
We established a model of cyclophosphamide (CTX)-induced immunosuppressed mice and RAW264.7 cells to assess the effectiveness of W. coagulans BCG44 and its supernatant in enhancing immune function and modulating the gut microbiota. W. coagulans BCG44 and its supernatant restored Th17/Treg balance and alleviated gut inflammation by elevating the expression of interleukin-10 (IL-10) and decreasing IL-6 and toll-like receptor 4 (TLR4). Meanwhile, W. coagulans BCG44 and its supernatant downregulated the levels of lipopolysaccharide and D-lactic acid while increasing the expression of tight junction proteins (ZO-1 and occludin) and goblet cells/crypts to ameliorate mucosal damage. W. coagulans BCG44 and its supernatant may restore the gut microbiota in the immunosuppressed mice by regulating keystone species (Lactobacillus and Lachnospiraceae). PICRUSt2 function prediction and BugBase analysis showed that W. coagulans BCG44 and its supernatant significantly down-regulated American trypanosomiasis and potentially_pathogenic. In addition, under normal versus inflamed culture conditions, stimulation of RAW246.7 cells with W. coagulans BCG44 supernatant activated immune response with increasing proliferation ability and the gene expression of IL-10 while decreasing TLR4. Metabolites in the W. coagulans BCG44 supernatant included arginine, tyrosine, solamargine, tryptophan, D-mannose, phenyllactic acid, and arachidonic acid. Collectively, these findings suggested that W. coagulans BCG44 and its supernatant possess potential immunomodulatory activity and modulate gut microbiota dysbiosis in the CTX-induced immunosuppressed mice.
Collapse
Affiliation(s)
- Yafang Xu
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Yi Wang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tao Song
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaxia Li
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Haolin Zhou
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Oumarou Zafir Chaibou
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Bing Wang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Huajun Li
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
24
|
Banovic F, Blubaugh A. Epicutaneous house dust mite (HDM)-induced skin lesions feature early activation of T helper 2 inflammatory and pruritogenic pathways in HDM-nonsensitised dogs. Vet Dermatol 2024. [PMID: 39440450 DOI: 10.1111/vde.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/20/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Epicutaneously house dust mite-sensitised (HDM-S) healthy dogs are commonly used as canine atopic dermatitis (cAD) models; however, the exact mechanisms of HDM-induced AD immune activation in HDM-S and HDM-nonsensitised (NS) dogs remain unclear. OBJECTIVES To characterise the inflammatory and pruritogenic transcriptome of acute epicutaneous HDM-induced skin lesions at 6 h and 24 h in HDM-NS and HDM-S dogs; untreated skin at 0 h from each dog served as control. ANIMALS Six HDM-S and six HDM-NS laboratory beagles. MATERIALS AND METHODS Processed expression data from GEO deposited by Schamber et al. (G3 (Bethesda), 2014, 4 and 1787) (GSE58442) were downloaded and analysed using R and the Bioconductor package. Significance analysis was performed with the limma package; genes with false discovery rate <0.05 and fold-change ≤/≥1.5 were considered significantly differentially expressed (DEGs). RESULTS A 2D principal component analysis revealed no clear separation between HDM-NS and HDM-S dogs at 6 h and 24 h time points. HDM-induced skin lesions in sensitised and nonsensitised dogs at the 24 h time point showed significant upregulation of T helper cell (Th)2 genes (interleukin [IL]-4R, IL-5, IL-13, CCL13 and CCL17), as well as proinflammatory- (LTB, IL-1A and IL-18), Th1- (CXCL10, OASL and MX-1) and Th17-related markers (IL-17B, IL-17F, CCL19 and CCL20). The key Th22-related maker, IL-22, was upregulated only in the HDM-S group at the 24 h time point. Both groups at 24 h featured significant upregulation of several noncytokine pruritogens, such as trypsin, chymase, cathepsin S, periostin and neuromedin B. CONCLUSIONS AND CLINICAL RELEVANCE Taken together, we establish that epicutaneous HDM patch application induces immune changes in HDM-NS dogs with Th2 dominance and activates several itch-promoting pathways.
Collapse
Affiliation(s)
- Frane Banovic
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Amanda Blubaugh
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
25
|
Cervantes Recalde MF, Schmidt J, Girardi C, Massironi M, Rechl ML, Hans J, Stuhlmann D, Somoza V, Lieder B. Capsaicin attenuates the effect of inflammatory cytokines in a HaCaT cell model for basal keratinocytes. Front Pharmacol 2024; 15:1474898. [PMID: 39469627 PMCID: PMC11513304 DOI: 10.3389/fphar.2024.1474898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction The resolution of the skin's inflammatory response is only possible if its barrier function is restored. TRPV1 channel activation plays an important role during inflammation but the effect of this activation on the skin barrier under inflammatory conditions has not been clarified. We hypothesize that it could potentially aid the keratinocyte barrier by reducing inflammatory cytokine release and promoting tight junction development. Methods To explore the role of TRPV1 activation in inflammation, we designed and optimized an in vitro model of keratinocytes with basal epidermal layer characteristics using HaCaT cells and TNFα to induce inflammation. Results TNFα increased the gene expression of tight junction protein claudin 1 (CLDN1) by at least 2.60 ± 0.16-fold, in a concentration-dependent manner, over a 48 h period. The administration of a capsaicin pre-treatment reduced the CLDN1 expression to 1.51 ± 0.16-fold during the first 6 h after TNFα induction, whereas IL-8 cytokine release was reduced 0.64 ± 0.17-fold. After 48 h, CLDN1 protein levels increased by a factor of 6.57 ± 1.39 compared to cells only treated with TNFα. Discussion These results suggest that activation of TRPV1 by capsaicin can potentiate the increase in CLDN1 expression and CLDN1 protein synthesis induced by TNFα in cultured keratinocytes, while reducing the release of IL-8.
Collapse
Affiliation(s)
- Maria Fernanda Cervantes Recalde
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
| | - Jana Schmidt
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | | | - Markus Leo Rechl
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Taste Research, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | | | - Veronika Somoza
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Leibniz Institute of Food Systems Biology, Technical University of Munich, Freising, Germany
| | - Barbara Lieder
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Taste Research, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Clinical Nutrition, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
26
|
van der Veen RE, Piontek J, Bieck M, Saiti A, Gonschior H, Lehmann M. Claudin-4 polymerizes after a small extracellular claudin-3-like substitution. J Biol Chem 2024; 300:107693. [PMID: 39159821 PMCID: PMC11490706 DOI: 10.1016/j.jbc.2024.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/14/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Tight junctions play a pivotal role in the functional integrity of the human body by forming barriers that compartmentalize tissues and protect the body from external threats. Essential components of tight junctions are the transmembrane claudin proteins, which can polymerize into tight junction strands and meshworks. This study delves into the structural determinants of claudin polymerization, using the close homology yet strong difference in polymerization capacity between claudin-3 and claudin-4. Through a combination of sequence alignment and structural modeling, critical residues in the second extracellular segment are pinpointed. Molecular dynamics simulations provide insights into the interactions of and the conformational changes induced by the identified extracellular segment 2 residues. Live-stimulated emission depletion imaging demonstrates that introduction of these residues from claudin-3 into claudin-4 significantly enhances polymerization in nonepithelial cells. In tight junction-deficient epithelial cells, mutated claudin-4 not only influences tight junction morphology but also partially restores barrier function. Understanding the structural basis of claudin polymerization is crucial, as it offers insights into the dynamic nature of tight junctions. This knowledge could be applied to targeted therapeutic interventions, offer insight to repair or prevent barrier defects associated with pathological conditions, or introduce temporary barrier openings during drug delivery.
Collapse
Affiliation(s)
- Rozemarijn E van der Veen
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marie Bieck
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Arbesa Saiti
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Hannes Gonschior
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Martin Lehmann
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| |
Collapse
|
27
|
Ariturk LA, Cilingir S, Kolgazi M, Elmas M, Arbak S, Yapislar H. Docosahexaenoic acid (DHA) alleviates inflammation and damage induced by experimental colitis. Eur J Nutr 2024; 63:2801-2813. [PMID: 39105785 PMCID: PMC11490523 DOI: 10.1007/s00394-024-03468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic gastrointestinal disorders associated with significant morbidity and complications. This study investigates the therapeutic potential of docosahexaenoic acid (DHA) in a trinitrobenzene sulfonic acid (TNBS) induced colitis model, focusing on inflammation, oxidative stress, and intestinal membrane permeability. METHODS Wistar albino rats were divided into Control, Colitis, and Colitis + DHA groups (n = 8-10/group). The Colitis and Colitis + DHA groups received TNBS intrarectally, while the Control group received saline. DHA (600 mg/kg/day) or saline was administered via gavage for six weeks. Macroscopic and microscopic evaluations of colon tissues were conducted. Parameters including occludin and ZO-1 expressions, myeloperoxidase (MPO) activity, malondialdehyde (MDA), glutathione (GSH), total antioxidant status (TAS), total oxidant status (TOS), Interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) levels were measured in colon tissues. RESULTS Colitis induction led to significantly higher macroscopic and microscopic damage scores, elevated TOS levels, reduced occludin and ZO-1 intensity, decreased mucosal thickness, and TAS levels compared to the Control group (p < 0.001). DHA administration significantly ameliorated these parameters (p < 0.001). MPO, MDA, TNF-α, and IL-6 levels were elevated in the Colitis group but significantly reduced in the DHA-treated group (p < 0.001 for MPO, MDA; p < 0.05 for TNF-α and IL-6). CONCLUSION DHA demonstrated antioxidant and anti-inflammatory effects by reducing reactive oxygen species production, enhancing TAS capacity, preserving GSH content, decreasing proinflammatory cytokine levels, preventing neutrophil infiltration, reducing shedding in colon epithelium, and improving gland structure and mucosal membrane integrity. DHA also upregulated the expressions of occludin and ZO-1, critical for barrier function. Thus, DHA administration may offer a therapeutic strategy or supplement to mitigate colitis-induced adverse effects.
Collapse
Affiliation(s)
- Leman Arslan Ariturk
- Faculty of Medicine, Department of Physiology, Marmara University, Istanbul, Turkey
| | - Sumeyye Cilingir
- Faculty of Medicine, Department of Physiology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey
| | - Meltem Kolgazi
- Faculty of Medicine, Department of Physiology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey
| | - Merve Elmas
- Faculty of Medicine, Department of Histology&Embriology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey
| | - Serap Arbak
- Faculty of Medicine, Department of Histology&Embriology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey
| | - Hande Yapislar
- Faculty of Medicine, Department of Physiology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey.
| |
Collapse
|
28
|
Jing L, Zhang Y, Zhang Q, Zhao H. Polystyrene microplastics disrupted physical barriers, microbiota composition and immune responses in the cecum of developmental Japanese quails. J Environ Sci (China) 2024; 144:225-235. [PMID: 38802233 DOI: 10.1016/j.jes.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 05/29/2024]
Abstract
Microplastics, a new type of emerging pollutant, is ubiquitous in terrestrial and water environments. Microplastics have become a growing concern due to their impacts on the environment, animal, and human health. Birds also suffer from microplastics contamination. In this study, we examined the toxic effects of polystyrene microplastics (PS-MPs) exposure on physical barrier, microbial community, and immune function in the cecum of a model bird species-Japanese quail (Coturnix japonica). The one-week-old birds were fed on environmentally relevant concentrations of 20 µg/kg, 400 µg/kg, and 8 mg/kg PS-MPs in the diet for 5 weeks. The results showed that microplastics could cause microstructural damages characterized by lamina propria damage and epithelial cell vacuolation and ultrastructural injuries including microvilli breakage and disarrangement as well as mitochondrial vacuolation in the cecum of quails. In particular, blurry tight junctions, wider desmosomes spacing, and gene expression alteration indicated cecal tight junction malfunction. Moreover, mucous layer breakdown and mucin decrease indicated that chemical barrier was disturbed by PS-MPs. PS-MPs also changed cecal microbial diversity. In addition, structural deformation of cecal tonsils and increasing proinflammatory cytokines suggested cecal immune disorder and inflammation responses by PS-MPs exposure. Our results suggested that microplastics negatively affected digestive system and might pose great health risks to terrestrial birds.
Collapse
Affiliation(s)
- Lingyang Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yuxin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
29
|
Borowczak J, Łaszczych D, Olejnik K, Michalski J, Gutowska A, Kula M, Bator A, Sekielska-Domanowska M, Makarewicz R, Marszałek A, Szylberg Ł, Bodnar M. Tight Junctions and Cancer: Targeting Claudin-1 and Claudin-4 in Thyroid Pathologies. Pharmaceuticals (Basel) 2024; 17:1304. [PMID: 39458944 PMCID: PMC11509894 DOI: 10.3390/ph17101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Purpose: Claudins are tight junction proteins partaking in epithelial-mesenchymal transition and cancer progression. In this study, we investigated the expression patterns of claudin-1 and claudin-4 in thyroid pathologies, discussed their links with the pathogenesis of thyroid cancers, and reviewed the therapeutic potential of targeting claudins in cancers. Methods: The research group 162 cores of thyroid samples from patients (70 female and 11 male) diagnosed with thyroid adenoma, goiter, papillary, medullary, and anaplastic thyroid cancers. All samples were stained for the expression of claudin-1 and claudin-4, and the analysis of IHC was performed. Results: Goiter samples showed negative claudin-1 and mostly positive expression of claudin-4. Papillary thyroid cancer and thyroid adenoma showed positive expression of claudin-1, while claudin-4 was positive in papillary thyroid cancers, goiters, and adenomas. In The Cancer Genome Atlas cohort, claudin-1 and claudin-4 were overexpressed in papillary thyroid cancer compared to normal thyroid tissues. Patients with high claudin-1 expression had significantly lower 5-year overall survival than patients with low claudin-1 levels (86.75% vs. 98.65, respectively). In multivariate analysis, high claudin-1 expression (HR 7.91, CI 95% 1.79-35, p = 0.006) and advanced clinical stage remained statistically significant prognostic factors of poor prognosis in papillary thyroid cancer. Conclusions: The pattern of claudin-1 staining was pathology-specific and changed between cancers of different histology. This phenomenon may be associated with the different pathogenesis of thyroid cancers and early metastasis. The loss of claudin-1 and claudin-4 characterized more aggressive cancers. Several studies have shown the benefits of targeting claudins in cancers, but their implementation into clinical practice requires further trials.
Collapse
Affiliation(s)
- Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| | - Dariusz Łaszczych
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
| | - Katarzyna Olejnik
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
| | - Jakub Michalski
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
| | - Anna Gutowska
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
| | - Monika Kula
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
| | - Anita Bator
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
| | - Marta Sekielska-Domanowska
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland
| | - Roman Makarewicz
- Department of Oncology and Brachytherapy, Collegium Medicum, Nicolaus Copernicus University, 85-796 Bydgoszcz, Poland
| | - Andrzej Marszałek
- Chair of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences and Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland
| | - Magdalena Bodnar
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland
| |
Collapse
|
30
|
Du F, Xie Y, Wu S, Ji M, Dong B, Zhu C. Expression and Targeted Application of Claudins Family in Hepatobiliary and Pancreatic Diseases. J Hepatocell Carcinoma 2024; 11:1801-1821. [PMID: 39345937 PMCID: PMC11439345 DOI: 10.2147/jhc.s483861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatobiliary and pancreatic diseases are becoming increasingly common worldwide and associated cancers are prone to recurrence and metastasis. For a more accurate treatment, new therapeutic strategies are urgently needed. The claudins (CLDN) family comprises a class of membrane proteins that are the main components of tight junctions, and are essential for forming intercellular barriers and maintaining cellular polarity. In mammals, the claudin family contains at least 27 transmembrane proteins and plays a major role in mediating cell adhesion and paracellular permeability. Multiple claudin proteins are altered in various cancers, including gastric cancer (GC), esophageal cancer (EC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), colorectal cancer (CRC) and breast cancer (BC). An increasing number of studies have shown that claudins are closely associated with the occurrence and development of hepatobiliary and pancreatic diseases. Interestingly, claudin proteins exhibit different effects on cancer progression in different tumor tissues, including tumor suppression and promotion. In addition, various claudin proteins are currently being studied as potential diagnostic and therapeutic targets, including claudin-3, claudin-4, claudin-18.2, etc. In this article, the functional phenotype, molecular mechanism, and targeted application of the claudin family in hepatobiliary and pancreatic diseases are reviewed, with an emphasis on claudin-1, claudin-4, claudin-7 and claudin-18.2, and the current situation and future prospects are proposed.
Collapse
Affiliation(s)
- Fangqian Du
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Shengze Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Mengling Ji
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
31
|
Justin Margret J, Jain SK. The Protective Role of L-Cysteine in the Regulation of Blood-Testis Barrier Functions-A Brief Review. Genes (Basel) 2024; 15:1201. [PMID: 39336792 PMCID: PMC11430845 DOI: 10.3390/genes15091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Blood-testis barrier (BTB) genes are crucial for the cellular mechanisms of spermatogenesis as they protect against detrimental cytotoxic agents, chemicals, and pathogens, thereby maintaining a sterile environment necessary for sperm development. BTB proteins predominantly consist of extensive tight and gap junctions formed between Sertoli cells. These junctions form a crucial immunological barrier restricting the intercellular movement of substances and molecules within the adluminal compartment. Epithelial tight junctions are complex membrane structures composed of various integral membrane proteins, including claudins, zonula occludens-1, and occludin. Inter-testicular cell junction proteins undergo a constant process of degradation and renewal. In addition, the downregulation of genes crucial to the development and preservation of cell junctions could disrupt the functionality of the BTB, potentially leading to male infertility. Oxidative stress and inflammation may contribute to disrupted spermatogenesis, resulting in male infertility. L-cysteine is a precursor to glutathione, a crucial antioxidant that helps mitigate damage and inflammation resulting from oxidative stress. Preclinical research indicates that L-cysteine may offer protective benefits against testicular injury and promote the expression of BTB genes. This review emphasizes various BTB genes essential for preserving its structural integrity and facilitating spermatogenesis and male fertility. Furthermore, it consolidates various research findings suggesting that L-cysteine may promote the expression of BTB-associated genes, thereby aiding in the maintenance of testicular functions.
Collapse
Affiliation(s)
- Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| |
Collapse
|
32
|
Ma J, Zhao Y, Cui Y, Lin H. Hypoxia Postconditioning Attenuates Hypoxia-Induced Inflammation and Endothelial Barrier Dysfunction. J Surg Res 2024; 301:413-422. [PMID: 39042975 DOI: 10.1016/j.jss.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 05/15/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION In recent years, a number of studies have demonstrated that hypoxia reoxygenation (HR) induced by ischemia postconditioning (IPC) reduces endothelial barrier dysfunction and inflammation in various models. When HR occurs, the P38 mitogen-activated protein kinase (P38 MAPK) breaks down the endothelial barrier. But no study has clearly clarified the effect of hypoxia postconditioning (HPC) on P38 MAPK in human dermal microvascular endothelial cells. Therefore, we investigated the function of HPC on P38 MAPK during HR in vitro. METHODS Human dermal microvascular endothelial cells were cultured in a hypoxic incubator for 8 h. Then cells were reperfused for 12 h (reoxygenation) or postconditioned by 5 min of reoxygenation and 5 min of re-hypoxia 3 times followed by 11.5 h reoxygenation. SB203580 was used as an inhibitor of P38 MAPK. Cell counting kit-8 assay kits were employed to detect cell activity. The corresponding levels of IL-6, IL-8 and IL-1β were examined via Enzyme-Linked ImmunoSorbent Assay. The endothelial barrier was evaluated using fluorescein isothiocyanate-dextran leakage assay. Western blot was used to detect claudin-5, phosphorylation of P38 MAPK (P-P38 MAPK) and P38 MAPK expression. Claudin-5 localization was studied by immunofluorescence. RESULTS HR induced endothelial barrier hyperpermeability, elevated inflammation levels, and increased the P-P38 MAPK. But HPC reduced cell injury and maintained the integrity of the endothelial barrier while inhibiting P-P38 MAPK and increasing expression of claudin-5. HPC redistributed claudin-5 in a continuous and linear pattern on the cell membrane. CONCLUSIONS HPC protects against HR induced downregulation and redistribution of claudin-5 by inhibiting P-P38 MAPK.
Collapse
Affiliation(s)
- Jiaxing Ma
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yinhua Zhao
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yue Cui
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huang Lin
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
33
|
Dooling KE, Kim RT, Kim EM, Chen E, Abouelela A, Tajer BJ, Lopez NJ, Paoli JC, Powell CJ, Luong AG, Wu SC, Thornton KN, Singer HD, Savage AM, Bateman J, DiTommaso T, Payzin-Dogru D, Whited JL. Amputation Triggers Long-Range Epidermal Permeability Changes in Evolutionarily Distant Regenerative Organisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610385. [PMID: 39257748 PMCID: PMC11383696 DOI: 10.1101/2024.08.29.610385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Previous studies have reported that amputation invokes body-wide responses in regenerative organisms, but most have not examined the implications of these changes beyond the region of tissue regrowth. Specifically, long-range epidermal responses to amputation are largely uncharacterized, with research on amputation-induced epidermal responses in regenerative organisms traditionally being restricted to the wound site. Here, we investigate the effect of amputation on long-range epidermal permeability in two evolutionarily distant, regenerative organisms: axolotls and planarians. We find that amputation triggers a long-range increase in epidermal permeability in axolotls, accompanied by a long-range epidermal downregulation in MAPK signaling. Additionally, we provide functional evidence that pharmacologically inhibiting MAPK signaling in regenerating planarians increases long-range epidermal permeability. These findings advance our knowledge of body-wide changes due to amputation in regenerative organisms and warrant further study on whether epidermal permeability dysregulation in the context of amputation may lead to pathology in both regenerative and non-regenerative organisms.
Collapse
Affiliation(s)
- Kelly E. Dooling
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Ryan T. Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Elane M. Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Erica Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Adnan Abouelela
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Benjamin J. Tajer
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Noah J. Lopez
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Julia C. Paoli
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Connor J. Powell
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Anna G. Luong
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - S.Y. Celeste Wu
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Kara N. Thornton
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Hani D. Singer
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Aaron M. Savage
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Joel Bateman
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women’s Hospital, Cambridge, MA, USA 02138
| | - Tia DiTommaso
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women’s Hospital, Cambridge, MA, USA 02138
| | - Duygu Payzin-Dogru
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women’s Hospital, Cambridge, MA, USA 02138
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA 02138
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA 02138
| |
Collapse
|
34
|
Marsch P, Rajagopal N, Nangia S. Biophysics of claudin proteins in tight junction architecture: Three decades of progress. Biophys J 2024; 123:2363-2378. [PMID: 38859584 PMCID: PMC11365114 DOI: 10.1016/j.bpj.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.
Collapse
Affiliation(s)
- Patrick Marsch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York.
| |
Collapse
|
35
|
Tu Y, An R, Gu H, Li N, Yan H, Liu HY, He L. The water extracts from the oil cakes of Prinsepia utilis repair the epidermal barrier via up-regulating Corneocyte Envelope-proteins, lipid synthases, and tight junction proteins. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118194. [PMID: 38641077 DOI: 10.1016/j.jep.2024.118194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prinsepia utilis Royle, native to the Himalayan region, has a long history of use in traditional medicine for its heat-clearing, detoxification, anti-inflammatory, and analgesic properties. Oils extracted from P. utilis seeds are also used in cooking and cosmetics. With the increasing market demand, this extraction process generates substantial industrial biowastes. Recent studies have found many health benefits with using aqueous extracts of these biowastes, which are also rich in polysaccharides. However, there is limited research related to the reparative effects of the water extracts of P. utilis oil cakes (WEPUOC) on disruptions of the skin barrier function. AIM OF THE STUDY This study aimed to evaluate the reparative efficacy of WEPUOC in both acute and chronic epidermal permeability barrier disruptions. Furthermore, the study sought to explore the underlying mechanisms involved in repairing the epidermal permeability barrier. MATERIALS AND METHODS Mouse models with induced epidermal disruptions, employing tape-stripping (TS) and acetone wiping (AC) methods, were used. The subsequent application of WEPUOC (100 mg/mL) was evaluated through various assessments, with a focus on the upregulation of mRNA and protein expression of Corneocyte Envelope (CE) related proteins, lipid synthase-associated proteins, and tight junction proteins. RESULTS The polysaccharide was the major phytochemicals of WEPUOC and its content was determined as 32.2% by the anthranone-sulfuric acid colorimetric method. WEPUOC significantly reduced transepidermal water loss (TEWL) and improved the damaged epidermal barrier in the model group. Mechanistically, these effects were associated with heightened expression levels of key proteins such as FLG (filaggrin), INV (involucrin), LOR (loricrin), SPT, FASN, HMGCR, Claudins-1, Claudins-5, and ZO-1. CONCLUSIONS WEPUOC, obtained from the oil cakes of P. utilis, is rich in polysaccharides and exhibits pronounced efficacy in repairing disrupted epidermal barriers through increased expression of critical proteins involved in barrier integrity. Our findings underscore the potential of P. utilis wastes in developing natural cosmetic prototypes for the treatment of diseases characterized by damaged skin barriers, including atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Ran An
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Hua Gu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Na Li
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Huan Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, China
| | - Hai-Yang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, China.
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
36
|
Zeng Y, Lockhart AC, Jin RU. The preclinical discovery and development of zolbetuximab for the treatment of gastric cancer. Expert Opin Drug Discov 2024; 19:873-886. [PMID: 38919123 PMCID: PMC11938084 DOI: 10.1080/17460441.2024.2370332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Gastric cancer remains a formidable challenge in oncology with high mortality rates and few advancements in treatment. Claudin-18.2 (CLDN18.2) is a tight junction protein primarily expressed in the stomach and is frequently overexpressed in certain subsets of gastric cancers. Targeting CLDN18.2 with monoclonal antibodies, such as zolbetuximab (IMAB362), has shown promising efficacy results in combination with chemotherapy. AREAS COVERED The molecular cell biology of CLDN18.2 is discussed along with studies demonstrating the utility of CLDN18.2 expression as a biomarker and therapeutic target. Important clinical studies are reviewed, including Phase III trials, SPOTLIGHT and GLOW, which demonstrate the efficacy of zolbetuximab in combination with chemotherapy in patients with CLDN18.2-positive advanced gastric cancer. EXPERT OPINION CLDN18.2 is involved in gastric differentiation through maintenance of epithelial barrier function and coordination of signaling pathways, and its expression in gastric cancers reflects a 'gastric differentiation' program. Targeting Claudin-18.2 represents the first gastric cancer specific 'targeted' treatment. Further studies are needed to determine its role within current gastric cancer treatment sequencing, including HER2-targeted therapies and immunotherapies. Management strategies will also be needed to better mitigate zolbetuximab-related treatment side effects, including gastrointestinal (GI) toxicities.
Collapse
Affiliation(s)
- Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - A. Craig Lockhart
- Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ramon U. Jin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, USA
| |
Collapse
|
37
|
Zhang Y, Li S, Huang Y, Song C, Chen W, Yang Y. Therapeutic Effect of Liquiritin Carbomer Gel on Topical Glucocorticoid-Induced Skin Inflammation in Mice. Pharmaceutics 2024; 16:1001. [PMID: 39204346 PMCID: PMC11359290 DOI: 10.3390/pharmaceutics16081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Glucocorticoids are often used and highly effective anti-inflammatory medications, but prolonged topical application may alter the epidermis' normal structure and function, potentially resulting in a number of adverse effects. Topical glucocorticoid-induced skin inflammation is a dangerous condition that develops after topical glucocorticoid use. The patients become dependent on the medication and, even after the medication is stopped, the dermatitis symptoms recur, severely impairing their quality of life. Thus, the need to aggressively confront Topical glucocorticoid-induced skin inflammation is critical. Prior research has demonstrated that topical administration of licorice's flavonoid component liquiritin stimulates epidermal proliferation, which in turn enhances the creation of collagen and the healing of wounds. Therefore, the purpose of this work was to determine if topical use of liquiritin carbomer gel can treat glucocorticoid-induced changes in mice skin epidermal function, and the mechanisms involved. The findings demonstrated that, in the mice model of topical glucocorticoid-induced skin inflammation, liquiritin carbomer gel aided in the restoration of skin barrier function. These outcomes may have been caused by enhanced expression of the proteins Aquaporin 3, Keratin 10, and Claudin-1, as well as the restoration of epidermal hyaluronan content. In the meantime, liquiritin carbomer gel dramatically decreased the expression of TNF-α, IL-1β, IL-6, IFN-γ, and IgE in mice, according to ELISA tests. Furthermore, topical treatment of liquiritin carbomer gel boosted the expression of superoxide dismutase, catalase, and decreased malondialdehyde expression, potentially counteracting the detrimental effects of glucocorticoids on the epidermis. In summary, these findings imply that topical liquiritin carbomer gel can treat glucocorticoid-induced skin damage through various mechanisms of action.
Collapse
Affiliation(s)
- Yun Zhang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sijia Li
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanfang Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Congjing Song
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiqiang Chen
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiling Yang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
38
|
Li Q, Wang J. The Effect of Protein Nutritional Support on Inflammatory Bowel Disease and Its Potential Mechanisms. Nutrients 2024; 16:2302. [PMID: 39064745 PMCID: PMC11280054 DOI: 10.3390/nu16142302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), a complex chronic inflammatory bowel disorder that includes Crohn's disease (CD) and Ulcerative Colitis (UC), has become a globally increasing health concern. Nutrition, as an important factor influencing the occurrence and development of IBD, has attracted more and more attention. As the most important nutrient, protein can not only provide energy and nutrition required by patients, but also help repair damaged intestinal tissue, enhance immunity, and thus alleviate inflammation. Numerous studies have shown that protein nutritional support plays a significant role in the treatment and remission of IBD. This article presents a comprehensive review of the pathogenesis of IBD and analyzes and summarizes the potential mechanisms of protein nutritional support in IBD. Additionally, it provides an overview of the clinical effects of protein nutritional support in IBD and its impact on clinical complications. Research findings reveal that protein nutritional support demonstrates significant benefits in improving clinical symptoms, reducing the risk of complications, and improving quality of life in IBD patients. Therefore, protein nutritional support is expected to provide a new approach for the treatment of IBD.
Collapse
Affiliation(s)
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| |
Collapse
|
39
|
Mo S, Shu G, Cao C, Wang M, Yang J, Ye J, Gui Y, Yuan S, Ma Q. Sertoli cells require hnRNPC to support normal spermatogenesis and male fertility in mice†. Biol Reprod 2024; 111:227-241. [PMID: 38590182 DOI: 10.1093/biolre/ioae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/17/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Sertoli cells act as highly polarized testicular cells that nutritionally support multiple stages of germ cell development. However, the gene regulation network in Sertoli cells for modulating germ cell development has yet to be fully understood. In this study, we report that heterogeneous nuclear ribonucleoproteins C in Sertoli cells are essential for germ cell development and male fertility. Conditional knockout of heterogeneous nuclear ribonucleoprotein C in mouse Sertoli cells leads to aberrant Sertoli cells proliferation, disrupted cytoskeleton of Sertoli cells, and compromised blood-testis barrier function, resulting in loss of supportive cell function and, ultimately, defective spermiogenesis in mice. Further ribonucleic acid-sequencing analyses revealed these phenotypes are likely caused by the dysregulated genes in heterogeneous nuclear ribonucleoprotein C-deficient Sertoli cells related to cell adhesion, cell proliferation, and apoptotic process. In conclusion, this study demonstrates that heterogeneous nuclear ribonucleoprotein C plays a critical role in Sertoli cells for maintaining the function of Sertoli cells and sustaining steady-state spermatogenesis in mice.
Collapse
Affiliation(s)
- Shaomei Mo
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Ge Shu
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Congcong Cao
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Mingxia Wang
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Jie Yang
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Jing Ye
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Yaoting Gui
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Ma
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Mehling K, Becker J, Chen J, Scriba S, Kindl G, Jakubietz R, Sommer C, Hartmannsberger B, Rittner HL. Bilateral deficiency of Meissner corpuscles and papillary microvessels in patients with acute complex regional pain syndrome. Pain 2024; 165:1613-1624. [PMID: 38335004 PMCID: PMC11190899 DOI: 10.1097/j.pain.0000000000003168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 02/10/2024]
Abstract
ABSTRACT Complex regional pain syndrome (CRPS) presents postinjury with disproportionate pain and neuropathic, autonomic, motor symptoms, and skin texture affection. However, the origin of these multiplex changes is unclear. Skin biopsies offer a window to analyze the somatosensory and vascular system as well as skin trophicity with their protecting barriers. In previous studies, barrier-protective exosomal microRNAs were altered in CRPS. We here postulated that tissue architecture and barrier proteins are already altered at the beginning of CRPS. We analyzed ipsilateral and contralateral skin biopsies of 20 fully phenotyped early CRPS patients compared with 20 age- and sex-matched healthy controls. We established several automated unbiased methods to comprehensively analyze microvessels and somatosensory receptors as well as barrier proteins, including claudin-1, claudin-5, and claudin-19. Meissner corpuscles in the skin were bilaterally reduced in acute CRPS patients with some of them lacking these completely. The number of Merkel cells and the intraepidermal nerve fiber density were not different between the groups. Dermal papillary microvessels were bilaterally less abundant in CRPS, especially in patients with allodynia. Barrier proteins in keratinocytes, perineurium of dermal nerves, Schwann cells, and papillary microvessels were not affected in early CRPS. Bilateral changes in the tissue architecture in early CRPS might indicate a predisposition for CRPS that manifests after injury. Further studies should evaluate whether these changes might be used to identify risk patients for CRPS after trauma and as biomarkers for outcome.
Collapse
Affiliation(s)
- Katharina Mehling
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Juliane Becker
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Jeremy Chen
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Sabrina Scriba
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Gudrun Kindl
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Rafael Jakubietz
- Department Surgery II, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Beate Hartmannsberger
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Heike L. Rittner
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Lei D, Zhang J, Zhu T, Zhang L, Man MQ. Interplay between diabetes mellitus and atopic dermatitis. Exp Dermatol 2024; 33:e15116. [PMID: 38886904 DOI: 10.1111/exd.15116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Inflammatory dermatoses such as atopic dermatitis (AD) have long been linked to the pathogenesis of diabetes mellitus. Indeed, numerous studies show an increased risk of diabetes mellitus in individuals with AD although lower prevalence of diabetes mellitus is also observed in few studies. Though the underlying mechanisms accounting for the reciprocal influence between these two conditions are still unclear, the complex interplay between diabetes mellitus and AD is attributable, in part, to genetic and environmental factors, cytokines, epidermal dysfunction, as well as drugs used for the treatment of AD. Proper management of one condition can mitigate the other condition. In this review, we summarize the evidence of the interaction between diabetes mellitus and AD, and discuss the possible underlying mechanisms by which these two conditions influence each other.
Collapse
Affiliation(s)
- Dongyun Lei
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Jiechen Zhang
- Department of Dermatology, Tongren Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Litao Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Jing R, Fu M, Huang Y, Zhang K, Ye J, Gong F, Jihea Ali Naji Nasser AB, Xu X, Xiao J, Yu G, Lin S, Zhao W, Xu N, Li X, Li Z, Gao S. Oat β-glucan repairs the epidermal barrier by upregulating the levels of epidermal differentiation, cell-cell junctions and lipids via Dectin-1. Br J Pharmacol 2024; 181:1596-1613. [PMID: 38124222 DOI: 10.1111/bph.16306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Oat β-glucan could ameliorate epidermal hyperplasia and accelerate epidermal barrier repair. Dectin-1 is one of the receptors of β-glucan and many biological functions of β-glucan are mediated by Dectin-1. Dectin-1 promotes wound healing through regulating the proliferation and migration of skin cells. Thus, this study aimed to investigate the role of oat β-glucan and Dectin-1 in epidermal barrier repair. EXPERIMENTAL APPROACH To investigate the role of Dectin-1 in the epidermal barrier, indicators associated with the recovery of a damaged epidermal barrier, including histopathological changes, keratinization, proliferation, apoptosis, differentiation, cell-cell junctions and lipid content were compared between WT and Dectin-1-/- mice. Further, the effect of oat β-glucan on the disruption of the epidermal barrier was also compared between WT and Dectin-1-/- mice. KEY RESULTS Dectin-1 deficiency resulted in delayed recovery and marked keratinization, as well as abnormal levels of keratinocyte differentiation, cell-cell junctions and lipid synthesis during the restoration of the epidermal barrier. Oat β-glucan significantly reduces epidermal hyperplasia, promotes epidermal differentiation, increases cell-cell junction expression, promotes lipid synthesis and ultimately accelerates the recovery of damaged epidermal barriers via Dectin-1. Oat β-glucan could promote CaS receptor expression and activate the PPAR-γ signalling pathway via Dectin-1. CONCLUSION AND IMPLICATIONS Oat β-glucan promote the recovery of damaged epidermal barriers through promoting epidermal differentiation, increasing the expression of cell-cell junctions and lipid synthesis through Dectin-1. Dectin-1 deficiency delay the recovery of epidermal barriers, which indicated that Dectin-1 may be a potential target in epidermal barrier repair.
Collapse
Affiliation(s)
- Rongrong Jing
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Mengli Fu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Yuhan Huang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaini Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jiabin Ye
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Fanghua Gong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Xiashun Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jiali Xiao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Guangdong Yu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Shisheng Lin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Wengang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
43
|
Chenxing W, Jie S, Yajuan T, Ting L, Yuying Z, Suhong C, Guiyuan L. The rhizomes of Atractylodes macrocephala Koidz improve gastrointestinal health and pregnancy outcomes in pregnant mice via modulating intestinal barrier and water-fluid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117971. [PMID: 38403003 DOI: 10.1016/j.jep.2024.117971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baizhu (BZ) is the dried rhizome of Atractylodes macrocephala Koidz (Compositae), which invigorates the spleen, improves vital energy, stabilizes the fetus, and is widely used for treating spleen deficiency syndrome. However, the impact of BZ on gastrointestinal function during pregnancy remains unexplored. AIM OF THE STUDY This study elucidated the ameliorative effects of BZ on gastrointestinal health and pregnancy outcomes in pregnant mice with spleen deficiency diarrhea (SDD). METHODS To simulate an irregular human diet and overconsumption of cold and bitter foods leading to SDD, a model of pregnant mice with SDD was established using an alternate-day fasting and high-fat diet combined with oral administration of Sennae Folium. During the experiment, general indicators and diarrhea-related parameters were measured. Gastric and intestinal motility (small intestinal propulsion and gastric emptying rates) were evaluated. Serum motilin (MTL), ghrelin, growth hormone (GH), gastrin (Gas), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), chorionic gonadotropin β (β-CG), progesterone (P), and estradiol (E2) were quantified using an enzyme-linked immunosorbent assay. Pathological changes were examined by hematoxylin and eosin staining (H&E) and alcian blue periodic acid Schiff staining (AB-PAS). Immunohistochemistry and immunofluorescence were used to measure the expression levels of the intestinal barrier and water metabolism-related proteins in colonic tissues. The pregnancy rate, ovarian organ coefficient, uterus with fetus organ coefficient, small size, average fetal weight, and body length of fetal mice were calculated. RESULTS The results showed that BZ significantly improved general indicators and diarrhea in pregnant mice with SDD, increased gastric emptying rate and small intestinal propulsion rate, elevated the levels of gastrointestinal hormones (AMS, ghrelin, GH, and Gas) in the serum, and reduced lipid levels (TC and LDL-c). It also improved colonic tissue morphology, increased the number of goblet cells, and promoted the mRNA and protein expression of occludin, claudin-1, ZO-1, AQP3, AQP4, and AQP8 in colonic tissues, downregulating the mRNA and protein expression levels of claudin-2, thereby alleviating intestinal barrier damage and regulating the balance of water and fluid metabolism. BZ also held the levels of pregnancy hormones (β-CG, P, and E2) in the serum of pregnant mice with SDD. Moreover, it increased the pregnancy rate, ovarian organ coefficient, uterus with fetus organ coefficient, litter size, average fetal weight, and body length of fetal mice. These findings indicate that BZ can improve spleen deficiency-related symptoms in pregnant mice before and during pregnancy, regulate pregnancy-related hormones, and improve pregnancy outcomes.
Collapse
Affiliation(s)
- Wang Chenxing
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Su Jie
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Tian Yajuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Li Ting
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Zhong Yuying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Chen Suhong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.
| | - Lv Guiyuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China.
| |
Collapse
|
44
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
45
|
Fukuda K, Ito Y, Furuichi Y, Matsui T, Horikawa H, Miyano T, Okada T, van Logtestijn M, Tanaka RJ, Miyawaki A, Amagai M. Three stepwise pH progressions in stratum corneum for homeostatic maintenance of the skin. Nat Commun 2024; 15:4062. [PMID: 38750035 PMCID: PMC11096370 DOI: 10.1038/s41467-024-48226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
The stratum corneum is the outermost skin layer with a vital role in skin barrier function. It is comprised of dead keratinocytes (corneocytes) and is known to maintain its thickness by shedding cells, although, the precise mechanisms that safeguard stratum corneum maturation and homeostasis remain unclear. Previous ex vivo studies have suggested a neutral-to-acidic pH gradient in the stratum corneum. Here, we use intravital pH imaging at single-corneocyte resolution to demonstrate that corneocytes actually undergo differentiation to develop three distinct zones in the stratum corneum, each with a distinct pH value. We identified a moderately acidic lower, an acidic middle, and a pH-neutral upper layer in the stratum corneum, with tight junctions playing a key role in their development. The upper pH neutral zone can adjust its pH according to the external environment and has a neutral pH under steady-state conditions owing to the influence of skin microbiota. The middle acidic pH zone provides a defensive barrier against pathogens. With mathematical modeling, we demonstrate the controlled protease activation of kallikrein-related peptidases on the stratum corneum surface that results in proper corneocyte shedding in desquamation. This work adds crucial information to our understanding of how stratum corneum homeostasis is maintained.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Furuichi
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Matsui
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Evolutionary Cell Biology of the Skin, School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Hiroto Horikawa
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takuya Miyano
- Department of Bioengineering, Imperial College London, London, UK
| | - Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | | | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London, London, UK
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Masayuki Amagai
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
46
|
Yang L, Wu W, Lyu L, Tu Y, Gu H, Chen X, Chai Y, Man M, He L. MiRNA-224-5p regulates the defective permeability barrier in sensitive skin by targeting claudin-5. Skin Res Technol 2024; 30:e13720. [PMID: 38743384 PMCID: PMC11093069 DOI: 10.1111/srt.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Sensitive skin is hypersensitive to various external stimuli and a defective epidermal permeability barrier is an important clinical feature of sensitive skin. Claudin-5 (CLDN5) expression levels decrease in sensitive skin. This study aimed to explore the impact of CLDN5 deficiency on the permeability barrier in sensitive skin and the regulatory role of miRNAs in CLDN5 expression. MATERIALS AND METHODS A total of 26 patients were retrospectively enrolled, and the CLDN5 expression and permeability barrier dysfunction in vitro were assessed. Then miRNA-224-5p expression was also assessed in sensitive skin. RESULTS Immunofluorescence and electron microscopy revealed reduced CLDN5 expression, increased miR-224-5p expression, and disrupted intercellular junctions in sensitive skin. CLDN5 knockdown was associated with lower transepithelial electrical resistance (TEER) and Lucifer yellow penetration in keratinocytes and organotypic skin models. The RNA-seq and qRT-PCR results indicated elevated miR-224-5p expression in sensitive skin; MiR-224-5p directly interacted with the 3`UTR of CLDN5, resulting in CLDN5 deficiency in the luciferase reporter assay. Finally, miR-224-5p reduced TEER in keratinocyte cultures. CONCLUSION These results suggest that the miR-224-5p-induced reduction in CLDN5 expression leads to impaired permeability barrier function, and that miR-224-5p could be a potential therapeutic target for sensitive skin.
Collapse
Affiliation(s)
- Li Yang
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
- Department of DermatologyPeople's Hospital of Henan ProvinceZhengzhouChina
| | - Wen‐Juan Wu
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
| | - Le‐Chun Lyu
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
- Department of PhysiologyKunming Medical UniversityKunmingChina
| | - Ying Tu
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
| | - Hua Gu
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
| | - Xiang‐Feng Chen
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
| | - Yan‐Jie Chai
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
| | - Mao‐Qiang Man
- Dermatology ServiceVeterans Affairs Medical Centerand Department of DermatologyUniversity of CaliforniaSan FranciscoUSA
| | - Li He
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
- Skin Health Research CenterYunnan Characteristic Plant Extraction LaboratoryKunmingChina
| |
Collapse
|
47
|
Arnold KA, Moran MC, Shi H, van Vlijmen-Willems IMJJ, Rodijk-Olthuis D, Smits JPH, Brewer MG. CLDN1 knock out keratinocytes as a model to investigate multiple skin disorders. Exp Dermatol 2024; 33:e15084. [PMID: 38711223 DOI: 10.1111/exd.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 05/08/2024]
Abstract
The transmembrane protein claudin-1 is critical for formation of the epidermal barrier structure called tight junctions (TJ) and has been shown to be important in multiple disease states. These include neonatal ichthyosis and sclerosing cholangitis syndrome, atopic dermatitis and various viral infections. To develop a model to investigate the role of claudin-1 in different disease settings, we used CRISPR/Cas9 to generate human immortalized keratinocyte (KC) lines lacking claudin-1 (CLDN1 KO). We then determined whether loss of claudin-1 expression affects epidermal barrier formation/function and KC differentiation/stratification. The absence of claudin-1 resulted in significantly reduced barrier function in both monolayer and organotypic cultures. CLDN1 KO cells demonstrated decreases in gene transcripts encoding the barrier protein filaggrin and the differentiation marker cytokeratin-10. Marked morphological differences were also observed in CLDN1 KO organotypic cultures including diminished stratification and reduced formation of the stratum granulosum. We also detected increased proliferative KC in the basale layer of CLDN1 KO organotypic cultures. These results further support the role of claudin-1 in epidermal barrier and suggest an additional role of this protein in appropriate stratification of the epidermis.
Collapse
Affiliation(s)
- Kimberly A Arnold
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Mary C Moran
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Huishan Shi
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ivonne M J J van Vlijmen-Willems
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Jos P H Smits
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Matthew G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
48
|
Citi S, Fromm M, Furuse M, González-Mariscal L, Nusrat A, Tsukita S, Turner JR. A short guide to the tight junction. J Cell Sci 2024; 137:jcs261776. [PMID: 38712627 PMCID: PMC11128289 DOI: 10.1242/jcs.261776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Tight junctions (TJs) are specialized regions of contact between cells of epithelial and endothelial tissues that form selective semipermeable paracellular barriers that establish and maintain body compartments with different fluid compositions. As such, the formation of TJs represents a critical step in metazoan evolution, allowing the formation of multicompartmental organisms and true, barrier-forming epithelia and endothelia. In the six decades that have passed since the first observations of TJs by transmission electron microscopy, much progress has been made in understanding the structure, function, molecular composition and regulation of TJs. The goal of this Perspective is to highlight the key concepts that have emerged through this research and the future challenges that lie ahead for the field.
Collapse
Affiliation(s)
- Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, 30 Quai Ernest Ansermet, 1205 Geneva, Switzerland
| | - Michael Fromm
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Charité – Universitätsmedizin Berlin,Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, 5-1 Higashiyama Myodajii, Okazaki 444-8787, Japan
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Av. Instituto Politécnico Nacional 2508, Mexico City 07360, México
| | - Asma Nusrat
- Mucosal Biology and Inflammation Research Group, Department of Pathology, University of Michigan, 109 Zina Pitcher Place, 4057 Biomedical Science Research Building, Ann Arbor, MI 48109-2200, USA
| | - Sachiko Tsukita
- Advanced Comprehensive Research Organization (ACRO),Teikyo University, Kaga 2-21-1, Itabashi-ku, Tokyo 173-0003, Japan
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 01125, USA
| |
Collapse
|
49
|
Luiskari L, Lindén J, Lehto M, Salmenkari H, Korpela R. Ketogenic Diet Protects from Experimental Colitis in a Mouse Model Regardless of Dietary Fat Source. Nutrients 2024; 16:1348. [PMID: 38732595 PMCID: PMC11085069 DOI: 10.3390/nu16091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
While ketogenic diets (KDs) may have potential as adjunct treatments for gastrointestinal diseases, there is little knowledge on how the fat source of these diets impacts intestinal health. The objective of this study was to investigate how the source of dietary fat of KD influences experimental colitis. We fed nine-week-old male C57BL/6J mice (n = 36) with a low-fat control diet or KD high either in saturated fatty acids (SFA-KD) or polyunsaturated linoleic acid (LA-KD) for four weeks and then induced colitis with dextran sodium sulfate (DSS). To compare the diets, we analyzed macroscopic and histological changes in the colon, intestinal permeability to fluorescein isothiocyanate-dextran (FITC-dextran), and the colonic expression of tight junction proteins and inflammatory markers. While the effects were more pronounced with LA-KD, both KDs markedly alleviated DSS-induced histological lesions. LA-KD prevented inflammation-related weight loss and the shortening of the colon, as well as preserved Il1b and Tnf expression at a healthy level. Despite no significant between-group differences in permeability to FITC-dextran, LA-KD mitigated changes in tight junction protein expression. Thus, KDs may have preventive potential against intestinal inflammation, with the level of the effect being dependent on the dietary fat source.
Collapse
Affiliation(s)
- Lotta Luiskari
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Jere Lindén
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Finnish Centre for Laboratory Animal Pathology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland; (M.L.); (H.S.)
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Hanne Salmenkari
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland; (M.L.); (H.S.)
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Riitta Korpela
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
50
|
Montoya CA, Young W, Ryan L, Dunstan K, Peters J, Dewhurst H, Dekker J, Haggarty N, Dilger RN, Roy NC. The probiotic Lacticaseibacillus rhamnosus HN001 influences the architecture and gene expression of small intestine tissue in a piglet model. Br J Nutr 2024; 131:1289-1297. [PMID: 38053344 PMCID: PMC10950449 DOI: 10.1017/s0007114523002830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/25/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
This study investigated the effects of Lacticaseibacillus rhamnosus HN001 supplementation on the architecture and gene expression in small intestinal tissues of piglets used as an animal model for infant humans. Twenty-four 10-d-old entire male piglets (4·3 (sd 0·59) kg body weight) were fed an infant formula (IF) (control) or IF supplemented with 1·3 × 105 (low dose) or 7·9 × 106 (high dose) colony-forming units HN001 per ml of reconstituted formula (n 8 piglets/treatment). After 24 d, piglets were euthanised. Samples were collected to analyse the histology and gene expression (RNAseq and qPCR) in the jejunal and ileal tissues, blood cytokine concentrations, and blood and faecal calprotectin concentrations. HN001 consumption altered (false discovery rate < 0·05) gene expression (RNAseq) in jejunal tissues but not in ileal tissues. The number of ileal goblet cells and crypt surface area increased quadratically (P < 0·05) as dietary HN001 levels increased, but no increase was observed in the jejunal tissues. Similarly, blood plasma concentrations of IL-10 and calprotectin increased linearly (P < 0·05) as dietary HN001 levels increased. In conclusion, supplementation of IF with HN001 affected the architecture and gene expression of small intestine tissue, blood cytokine concentration and frequencies, and blood calprotectin concentrations, indicating that HN001 modulated small intestinal tissue maturation and immunity in the piglet model.
Collapse
Affiliation(s)
- Carlos A. Montoya
- Smart Foods & Bioproducts, AgResearch, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North4474, New Zealand
| | - Wayne Young
- Smart Foods & Bioproducts, AgResearch, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Fonterra Research and Development Centre, Dairy Farm Rd, Palmerston North, New Zealand
| | - Leigh Ryan
- Smart Foods & Bioproducts, AgResearch, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand
| | - Kelly Dunstan
- Smart Foods & Bioproducts, AgResearch, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand
| | - Jason Peters
- Smart Foods & Bioproducts, AgResearch, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand
| | - Hilary Dewhurst
- Smart Foods & Bioproducts, AgResearch, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand
| | - James Dekker
- Fonterra Research and Development Centre, Dairy Farm Rd, Palmerston North, New Zealand
| | - Neill Haggarty
- Fonterra Research and Development Centre, Dairy Farm Rd, Palmerston North, New Zealand
| | - Ryan N. Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Nicole C. Roy
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| |
Collapse
|