1
|
Nunez H, Nieto PA, Mars RA, Ghavami M, Sew Hoy C, Sukhum K. Early life gut microbiome and its impact on childhood health and chronic conditions. Gut Microbes 2025; 17:2463567. [PMID: 39916516 PMCID: PMC11810090 DOI: 10.1080/19490976.2025.2463567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 02/12/2025] Open
Abstract
The development of the gut microbiome is crucial to human health, particularly during the first three years of life. Given its role in immune development, disturbances in the establishment process of the gut microbiome may have long term consequences. This review summarizes evidence for these claims, highlighting compositional changes of the gut microbiome during this critical period of life as well as factors that affect gut microbiome development. Based on human and animal data, we conclude that the early-life microbiome is a determinant of long-term health, impacting physiological, metabolic, and immune processes. The early-life gut microbiome field faces challenges. Some of these challenges are technical, such as lack of standardized stool collection protocols, inconsistent DNA extraction methods, and outdated sequencing technologies. Other challenges are methodological: small sample sizes, lack of longitudinal studies, and poor control of confounding variables. To address these limitations, we advocate for more robust research methodologies to better understand the microbiome's role in health and disease. Improved methods will lead to more reliable microbiome studies and a deeper understanding of its impact on health outcomes.
Collapse
Affiliation(s)
- Harold Nunez
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
| | | | - Ruben A. Mars
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
2
|
Qi C, Li Z, Tu H, Sun F, Guo W, Di C, He R, Ze X, Zhang L, Gao R, Hu P, Yang W, Li K, Liu J, Pan X, Jin Z, Sun J. 2'-FL and cross-feeding bifidobacteria reshaped the gut microbiota of infants with atopic dermatitis ex vivo and prevented dermatitis in mice post-microbiota transplantation through retinol metabolism activation. Gut Microbes 2025; 17:2474148. [PMID: 40025650 PMCID: PMC11881859 DOI: 10.1080/19490976.2025.2474148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
2'-Fucosyllactose (2'-FL), a predominant human milk oligosaccharide, plays a crucial role in the development of the infant gut microbiota and immune system. However, the microbiota of infants with atopic dermatitis (AD) often has difficulty utilizing 2'-FL. Here, we found that strains from human milk, Bifidobacterium bifidum FN120 and Bifidobacterium longum subsp. longum FN103, utilized 2'-FL for growth by cross-feeding. Through an ex vivo continuous fermentation system, we found that 2'-FL and cross-feeding bifidobacteria synergistically enhanced the production of short-chain fatty acids (SCFAs), particularly acetate and propionate, while reshaping the gut microbiota in infants with AD. The reshaped microbiota was then transplanted into oxazolone-induced mice. We observed that AD symptoms in mice were effectively prevented, with significant changes in the ileum microbiota and increased intestinal SCFA levels. RNA sequencing analysis of Peyer's patches in the small intestine revealed activation of the retinol metabolic pathway. Nontargeted metabolomics analysis revealed a significant increase in plasma retinoate levels, which correlated markedly with AD-related markers. Collectively, our study demonstrated that supplementation with cross-feeding bifidobacteria and 2'-FL reshaped the gut microbiota, activated retinol metabolic pathways, promoted immune tolerance, and thereby prevented AD. Our findings provide novel insights into the therapeutic potential of combining prebiotics and probiotics to modulate the gut - skin axis and support immune tolerance in early life, offering a promising strategy for infantile AD management and prevention.
Collapse
Affiliation(s)
- Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Huayu Tu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Fang Sun
- Pediatrics, Jiaozhou Maternal and Child Health and Family Planning Service Center, Qingdao, China
| | - Wenbo Guo
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Can Di
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Xiaolei Ze
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Lintao Zhang
- Pediatrics, Jiaozhou Maternal and Child Health and Family Planning Service Center, Qingdao, China
| | - Ruijuan Gao
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Pengyue Hu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Wenjing Yang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Kexin Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Jiayi Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Xiaonan Pan
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Zilu Jin
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Tüsüz Önata E, Özdemir Ö. Fecal microbiota transplantation in allergic diseases. World J Methodol 2025; 15:101430. [DOI: 10.5662/wjm.v15.i2.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024] Open
Abstract
Microorganisms such as bacteria, fungi, viruses, parasites living in the human intestine constitute the human intestinal microbiota. Dysbiosis refers to compositional and quantitative changes that negatively affect healthy gut microbiota. In recent years, with the demonstration that many diseases are associated with dysbiosis, treatment strategies targeting the correction of dysbiosis in the treatment of these diseases have begun to be investigated. Faecal microbiota transplantation (FMT) is the process of transferring faeces from a healthy donor to another recipient in order to restore the gut microbiota and provide a therapeutic benefit. FMT studies have gained popularity after probiotic, prebiotic, symbiotic studies in the treatment of dysbiosis and related diseases. FMT has emerged as a potential new therapy in the treatment of allergic diseases as it is associated with the maintenance of intestinal microbiota and immunological balance (T helper 1/T helper 2 cells) and thus suppression of allergic responses. In this article, the definition, application, safety and use of FMT in allergic diseases will be discussed with current data.
Collapse
Affiliation(s)
- Ece Tüsüz Önata
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| | - Öner Özdemir
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| |
Collapse
|
4
|
Wang L, Lai C, Yu J, Xu X, Jia M, Wang Z, Chen Y, Lou Q, Tao Q, Hu H, Fu Z, Jia X, Zhang W. Early-life antibiotic dysbiosis impairs microbial tryptophan- nicotinic acid metabolism exacerbating food allergy in adulthood. Int Immunopharmacol 2025; 159:114888. [PMID: 40403504 DOI: 10.1016/j.intimp.2025.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025]
Abstract
Food allergy (FA) pathogenesis links to intestinal dysbiosis, with antibiotic exposure a suspected risk factor, yet mechanisms are unclear. Our study shows early life (EL) antibiotic exposure in mice heightens susceptibility to OVA - induced allergic intestinal inflammation. EL - antibiotics cause intestinal dysbiosis, like Clostridia and Muribaculaceae depletion and Sutterellaceae enrichment, disrupting tryptophan metabolism and reducing nicotinic acid (NA). NA deficiency impairs gut barrier and Th2/Treg balance. However, NA supplementation restores these via GPR109A. In human pediatric cohorts, food - allergic children with EL - antibiotic exposure have lower gut NA levels. We integrated mouse and human data with multi - omics, revealing EL - Abx regulates FA through the "microbiota - metabolism - immunity" axis, and suggest targeting NA pathway to counter antibiotic - related FA risk.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City 325000, China
| | - Chuqiao Lai
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City 325000, China
| | - Jiahui Yu
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City 325000, China
| | - Xinyi Xu
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City 325000, China
| | - Minghui Jia
- Zhejiang Chinese Medical University, Hangzhou City 310053, China
| | - Zheng Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City 325000, China
| | - Yeqing Chen
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City 325000, China
| | - Qianjin Lou
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City 325000, China
| | - Qihong Tao
- Wenzhou Medical University, Wenzhou City 325000, China
| | - Hao Hu
- Wenzhou Medical University, Wenzhou City 325000, China
| | - Zhanqing Fu
- Wenzhou Medical University, Wenzhou City 325000, China
| | - Xiaoxiao Jia
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City 325000, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City 325000, China.
| |
Collapse
|
5
|
Shi X, Liu H, Zhang J, Yu Y, Xiao J, Matsui K, Li X, Jin Y. Gut Microbiota as Targets for Preventing Ovalbumin-Induced Food Allergy. Nutrients 2025; 17:1611. [PMID: 40431350 PMCID: PMC12114084 DOI: 10.3390/nu17101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Ovalbumin (OVA) is a major allergen in egg whites. INTRODUCTION Given the crucial role of gut microbiota in OVA-induced allergy, it remains unclear whether gut microbiota could serve as a therapeutic target for OVA allergy prevention. METHOD To investigate the relationship between gut microbiota and food allergy, a two-sample bidirectional Mendelian randomization approach was combined combined with gut microbiota diversity analysis in vivo. Statistical analysis was performed, with p < 0.05 considered statistically significant and p < 0.01 highly significant. RESULTS AND DISCUSSION Notably, Lachnospiraceae represents a potential therapeutic target for food allergy intervention, but the discrepancy between the MR and experimental findings highlights the limitations of the current research. When targeting the genus Lachnospiraceae, we observed that narirutin administration increased the abundance of the family Lachnospiraceae and the genus Lachnospiraceae_NK4A136_group. CONCLUSIONS Narirutin may exert protective effects by increasing Lachnospiraceae abundance, but its precise mechanism-particularly whether it depends on SCFAs-requires further investigation.
Collapse
Affiliation(s)
- Xiaolei Shi
- College of Food Science and Engineering, Jilin University, Changchun 130062, China; (X.S.); (H.L.); (Y.Y.); (J.X.)
| | - Huimin Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China; (X.S.); (H.L.); (Y.Y.); (J.X.)
| | - Jiayin Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China;
| | - Yawen Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China; (X.S.); (H.L.); (Y.Y.); (J.X.)
| | - Jing Xiao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China; (X.S.); (H.L.); (Y.Y.); (J.X.)
| | - Katsuhiko Matsui
- Department of Clinical Immunology, Meiji Pharmaceutical University, Tokyo 204-8588, Japan;
| | - Xuwen Li
- College of Chemistry, Jilin University, Changchun 130061, China;
| | - Yongri Jin
- College of Chemistry, Jilin University, Changchun 130061, China;
| |
Collapse
|
6
|
Nocerino R, Bedogni G, Carucci L, Aquilone G, Oglio F, Coppola S, Masino A, Berni Canani R. Long term impact of formula choice in children with cow milk protein allergy: 6-year follow-up of the Atopic March Cohort Study. Clin Nutr 2025; 48:134-143. [PMID: 40209535 DOI: 10.1016/j.clnu.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/12/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND AND AIMS Cow's milk protein allergy (CMPA) is a significant health issue in the pediatric age, carrying lifelong health implications. To compare the impact of different formulas on the occurrence of other atopic manifestations (AMs), autoimmune disorders (ADs) and the time of immune tolerance acquisition in a population of children with immunoglobulin E (IgE)-mediated cow CMPA. METHODS In a 72-month prospective cohort study the occurrence of other AMs (i.e., eczema, urticaria, asthma, and rhinoconjunctivitis), ADs (i.e., celiac disease, thyroiditis, type 1 diabetes, inflammatory bowel diseases, idiopathic juvenile arthritis) and the time of immune tolerance acquisition were comparatively evaluated in IgE-mediated CMPA children treated with different formulas: extensively hydrolyzed casein formula containing the probiotic L. rhamnosus G (EHCF + LGG), rice hydrolyzed formula (RHF), soy formula (SF), extensively hydrolyzed whey formula (EHWF), or amino-acid based formula (AAF). RESULTS 313 subjects were evaluated: EHCF + LGG (n = 64), RHF(n = 62), SF(n = 63), EHWF(n = 60) and AAF (n = 64). The incidence of AMs was: 0.30(Bonferroni-corrected 95%CI 0.15 to 0.44) for EHCF + LGG cohort, 0.68 (0.52-0.83) for RHF cohort, 0.73 (0.59-0.87) for SF cohort, 0.70 (0.55-0.85) for EHWF cohort and 0.83 (0.71-0.95) for AAF cohort. The corresponding risk ratios are 2.28 (1.51-3.45) for RHF vs. EHCF + LGG (p < 0.001), 2.46 (1.64-3.69) for SF vs. EHCF + LGG (p < 0.001), 2.36 (1.56-3.56) for EHWF vs. EHCF + LGG (p < 0.001), and 2.79 (1.88-4.13) for AAF vs. EHCF + LGG (p < 0.001). The 72-month immune tolerance acquisition rate was higher in the EHCF + LGG cohort. The incidence of celiac disease was 2/313 (0.006, binomial exact 95%CI 0.0007 to 0.023). No cases of other ADs were reported. CONCLUSION The dietary treatment with EHCF + LGG is associated with lower incidence of AMs and higher rate of immune tolerance acquisition in children with CMPA.
Collapse
Affiliation(s)
- Rita Nocerino
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy; Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.
| | - Giorgio Bedogni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy; Department of Primary Health Care, Internal Medicine Unit addressed to Frailty and Aging, "S. Maria delle Croci" Hospital, AUSL Romagna, Ravenna, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Greta Aquilone
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy; European Laboratory for the Investigation of Food-Induced Diseases, University of Naples "Federico II", Naples, Italy; Task Force for Microbiome Studies, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
7
|
Yokota H, Tanaka Y, Ohno H. Coculture of Bifidobacterium bifidum G9-1 With Butyrate-Producing Bacteria Promotes Butyrate Production. Microbiol Immunol 2025. [PMID: 40269463 DOI: 10.1111/1348-0421.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Supplementation with Bifidobacterium bifidum G9-1 (BBG9-1) has been established to enhance the production of butyrate, a short-chain fatty acid (SCFA) known for its beneficial effects in alleviating constipation. We hypothesized that BBG9-1 alters gut microbiota such that bacteria that produce butyric acid from lactate and acetate become more abundant. In this study, we sought to determine whether BBG9-1 promotes the growth of butyrate-producing bacteria and thereby enhances butyrate production. BBG9-1 was cocultured with different butyrate-producing bacteria to compare differences in the SCFA production of cocultures and monocultures. We indeed detected significant increases in the production of SCFAs in cocultures compared to monocultures. Moreover, lactate and butyrate production increased in a time-dependent manner in the BBG9-1 and Faecalibacterium prausnitzii ID 6052 coculture. In addition, acetate production in cocultures initially increased until 16 h, followed by a decline between 20 and 24 h, and a subsequent significant increase at 48 h. Comparatively, lactate and acetate production in the BBG9-1 and Anaerostipes caccae JCM 13470T coculture peaked at 16 h and declined thereafter, and butyrate production increased in a time-dependent manner. In contrast, lactate, acetate, and butyrate production in the BBG9-1 and Roseburia hominis JCM 17582T coculture increased in a time-dependent manner. These findings indicate that butyrate-producing bacteria increase butyrate production by utilizing BBG9-1-produced lactate and acetate. Thus, the butyrate-mediated physiological activity of BBG9-1 could be attributed to an indirect enhancement of butyrate production.
Collapse
|
8
|
Turjeman S, Rozera T, Elinav E, Ianiro G, Koren O. From big data and experimental models to clinical trials: Iterative strategies in microbiome research. Cell 2025; 188:1178-1197. [PMID: 40054445 DOI: 10.1016/j.cell.2025.01.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 01/27/2025] [Indexed: 05/13/2025]
Abstract
Microbiome research has expanded significantly in the last two decades, yet translating findings into clinical applications remains challenging. This perspective discusses the persistent issue of correlational studies in microbiome research and proposes an iterative method leveraging in silico, in vitro, ex vivo, and in vivo studies toward successful preclinical and clinical trials. The evolution of research methodologies, including the shift from small cohort studies to large-scale, multi-cohort, and even "meta-cohort" analyses, has been facilitated by advancements in sequencing technologies, providing researchers with tools to examine multiple health phenotypes within a single study. The integration of multi-omics approaches-such as metagenomics, metatranscriptomics, metaproteomics, and metabolomics-provides a comprehensive understanding of host-microbe interactions and serves as a robust hypothesis generator for downstream in vitro and in vivo research. These hypotheses must then be rigorously tested, first with proof-of-concept experiments to clarify the causative effects of the microbiota, and then with the goal of deep mechanistic understanding. Only following these two phases can preclinical studies be conducted with the goal of translation into the clinic. We highlight the importance of combining traditional microbiological techniques with big-data approaches, underscoring the necessity of iterative experiments in diverse model systems to enhance the translational potential of microbiome research.
Collapse
Affiliation(s)
- Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | - Tommaso Rozera
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Microbiome & Cancer Division, DKFZ, Heidelberg, Germany
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Xian M, Maskey AR, Kopulos D, Li XM. The roles of bitter and sweet taste receptors in food allergy: Where are we now? Allergol Int 2025:S1323-8930(25)00010-3. [PMID: 40037957 DOI: 10.1016/j.alit.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025] Open
Abstract
Food allergy (FA) is a growing global concern, which contributes significantly to anaphylaxis and severe allergic reactions. Despite advancements in treatments like allergen immunotherapy and biologics, current approaches have notable limitations and there is a pressing need for new therapeutic strategies. Recent research into taste receptors has unveiled their potential role in FA, offering fresh perspectives for understanding and managing this condition. Taste receptors, particularly type 1 taste receptors (TAS1Rs/T1Rs, sweet taste receptors) and type 2 taste receptors (TAS2Rs/T2Rs, bitter taste receptors), are distributed not only in the oral cavity but also in various extra-oral tissues, and their interactions with immune responses are increasingly recognized. This review highlights the connections between taste receptors and FA, exploring how taste receptor mechanisms might contribute to FA pathogenesis and treatment. Taste receptors, especially TAS2Rs, which include multiple subtypes with varying ligand specificities, have been implicated in modulating allergic responses and could serve as targets for novel FA therapies. Additionally, compounds such as bitter agents and sweeteners that interact with taste receptors show promise in influencing FA outcomes. This review emphasizes the need for further research into the mechanisms of taste receptor involvement in FA and suggests that targeting these receptors could provide new avenues for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Mo Xian
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Anish R Maskey
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Daniel Kopulos
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; Department of Otolaryngology, New York Medical College, Valhalla, NY, USA; Department of Dermatology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
10
|
Ali AY, Zahran SA, Eissa M, Kashef MT, Ali AE. Gut microbiota dysbiosis and associated immune response in systemic lupus erythematosus: impact of disease and treatment. Gut Pathog 2025; 17:10. [PMID: 39966979 PMCID: PMC11834511 DOI: 10.1186/s13099-025-00683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Gut microbial dysbiosis and leaky gut play a role in systemic lupus erythematosus (SLE). Geographical location and dietary habits affect the microbiome composition in diverse populations. This study explored the gut microbiome dysbiosis, leaky gut, and systemic immune response to gut bacterial consortium in patients with SLE exhibiting mild/moderate and severe disease activity. METHODS Fecal and blood samples were collected from patients with SLE and healthy volunteers. Genomic DNA was extracted from the stool samples and subjected to 16S rRNA amplicon sequencing and microbiome profiling. Additionally, enzyme-linked immunosorbent assays were employed to determine the serum lipopolysaccharide level, as an assessment of gut permeability, and the systemic immune response against gut bacteria. RESULTS Patients with SLE showed significantly lower gut bacterial richness and diversity, indicated by observed OTUs (56.6 vs. 74.44; p = 0.0289), Shannon (3.05 vs. 3.45; p = 0.017) and Simpson indices (0.91 vs. 0.94; p = 0.033). A lower Firmicutes-to-Bacteroidetes ratio (1.07 vs. 1.69; p = 0.01) was observed, with reduced genera such as Ruminococcus 2 (0.003 vs. 0.026; p = 0.0009) and Agathobacter (0.003 vs. 0.012; p < 0.0001) and elevated Escherichia-Shigella (0.04 vs. 0.006; p < 0.0001) and Bacteroides (0.206 vs. 0.094; p = 0.033). Disease severity was associated with a higher relative abundance of Prevotella (0.001 vs. 0.0001; p = 0.04). Medication effects included lower Romboutsia (0.0009 vs. 0.011; p = 0.005) with azathioprine and higher Prevotella (0.003 vs. 0.0002; p = 0.038) with cyclophosphamide. Furthermore, categorization by prednisolone dosage revealed significantly higher relative abundances of Slackia (0.0007 vs. 0.00002; p = 0.0088), Romboutsia (0.009 vs. 0.002; p = 0.0366), and Comamonas (0.002 vs. 0.00007; p = 0.0249) in patients receiving high-dose prednisolone (> 10 mg/day). No differences in serum lipopolysaccharide levels were found, but SLE patients exhibited elevated serum gut bacterial antibody levels, suggesting a systemic immune response. CONCLUSION This study confirms the gut microbiome dysbiosis in patients with SLE, influenced by disease severity and specific medication usage.
Collapse
Affiliation(s)
- Aya Y Ali
- Microbiology & Immunology Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 12311, Egypt
| | - Sara A Zahran
- Microbiology & Immunology Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 12311, Egypt.
| | - Mervat Eissa
- Rheumatology & Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amal Emad Ali
- Microbiology & Immunology Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 12311, Egypt
| |
Collapse
|
11
|
Wu S, Chen H, Yu R, Li H, Zhao J, Stanton C, Paul Ross R, Chen W, Yang B. Human milk oligosaccharides 2'-fucosyllactose and 3-fucosyllactose attenuate ovalbumin-induced food allergy through immunoregulation and gut microbiota modulation. Food Funct 2025; 16:1267-1283. [PMID: 39918321 DOI: 10.1039/d4fo04638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The prebiotic properties of human milk oligosaccharides (HMOs) and emerging evidence of immunomodulatory effects suggest their potential therapeutic value in allergy management. 2'-Fucosyllactose (2'-FL) has been reported to alleviate food allergies, while the effect of other fucosylated HMOs on food allergy remains unclear. In this study, we assess the effect of two HMOs, 2'-FL and 3-fucosyllactose (3-FL), on symptomatology and immunological responses in an ovalbumin (OVA)-sensitized mouse model of food allergy as well as their influence on gut microbiota. The assessment of allergic symptoms, specific immunoglobulin E (IgE), and related gene expression levels in sensitized mice indicated that 3-FL was as effective as 2'-FL in alleviating food allergy. 2'-FL and 3-FL significantly decreased serum levels of OVA-specific IgE, mouse mast cell protease (mMCP-1) and IL-4 while increasing the levels of IFN-γ. Additionally, 2'-FL and 3-FL down-regulated gene expression of allergy-related cytokines in the small intestine and improved intestinal barrier damage. Furthermore, both 2'-FL and 3-FL treatment positively influenced the gut microbial profiles, in particular by enhancing the proportion of beneficial bacteria such as Lactobacillus and Bifidobacterium and decreasing the percentage of Turicibacter and Lachnospiraceae NK4A136 group, thereby modulating the immune system. Therefore, this study can provide insights into 2'-FL and 3-FL to alleviate OVA-induced allergy.
Collapse
Affiliation(s)
- Siya Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, China.
| | - Huizhen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| | - Catherine Stanton
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Carnazza M, Werner R, Tiwari RK, Geliebter J, Li XM, Yang N. The Etiology of IgE-Mediated Food Allergy: Potential Therapeutics and Challenges. Int J Mol Sci 2025; 26:1563. [PMID: 40004029 PMCID: PMC11855496 DOI: 10.3390/ijms26041563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Immunoglobulin E (IgE)-mediated food allergy has been dramatically increasing in incidence over the last few decades. The combinations of both genetic and environmental factors that affect the microbiome and immune system have demonstrated significant roles in its pathogenesis. The morbidity, and at times mortality, that occurs as the result of this specific, reproducible, but impaired immune response is due to the nature of the shift from a regulatory T (Treg) cellular response to a T helper 2 (Th2) cellular response. This imbalance caused by food allergens results in an interleukin (IL)-4 and IL-13 dominant environment that drives B cell activation and differentiation into IgE-producing plasma cells. The resulting symptoms can range from mild to more severe anaphylaxis, and even death. Current therapeutic strategies involve avoidance and broad symptom management upon accidental exposure; however, no definitive cure exists. This narrative review highlights how the elucidation of the pathogenesis of IgE-mediated food allergy resulted in the development of therapeutics that are more specific to these individual receptors and molecules which have been relatively successful in mitigating this potentially life-threatening allergic response. However, potential adverse effects and re-sensitization following the conclusion of treatment has urged the need for improved therapeutic methods. Therefore, given the understanding of their mechanism of action and the overlap with the mechanism of IgE-mediated food allergies, probiotics and small molecule natural compounds may provide novel therapeutic and preventative strategies. This is compelling, as they have demonstrated success in clinical trials and may provide hope to improve quality of life in allergy patients.
Collapse
Affiliation(s)
- Michelle Carnazza
- General Nutraceutical Technology, LLC, Elmsford, NY 10523, USA (N.Y.)
| | - Robert Werner
- General Nutraceutical Technology, LLC, Elmsford, NY 10523, USA (N.Y.)
| | - Raj K. Tiwari
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA
| | - Nan Yang
- General Nutraceutical Technology, LLC, Elmsford, NY 10523, USA (N.Y.)
| |
Collapse
|
13
|
Jiang L, Zhang L, Xia J, Cheng L, Chen G, Wang J, Raghavan V. Probiotics supplementation during pregnancy or infancy on multiple food allergies and gut microbiota: a systematic review and meta-analysis. Nutr Rev 2025; 83:e25-e41. [PMID: 38502006 PMCID: PMC11723154 DOI: 10.1093/nutrit/nuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
CONTEXT Probiotics show promise in preventing and managing food allergies, but the impact of supplementation during pregnancy or infancy on children's allergies and gut microbiota remains unclear. OBJECTIVE This study aimed to assess the effects of maternal or infant probiotic supplementation on food allergy risk and explore the role of gut microbiota. DATA SOURCES A systematic search of databases (PubMed, Cochrane Library, Embase, and Medline) identified 37 relevant studies until May 20, 2023. DATA EXTRACTION Two independent reviewers extracted data, including probiotics intervention details, gut microbiota analysis, and food allergy information. DATA ANALYSIS Probiotics supplementation during pregnancy and infancy reduced the risk of total food allergy (relative risk [RR], 0.79; 95% CI, 0.63-0.99), cow-milk allergy (RR, 0.51; 95% CI, 0.29-0.88), and egg allergy (RR, 0.57; 95% CI, 0.39-0.84). Infancy-only supplementation lowered cow-milk allergy risk (RR, 0.69; 95% CI, 0.49-0.96), while pregnancy-only had no discernible effect. Benefits were observed with over 2 probiotic species, and a daily increase of 1.8 × 109 colony-forming units during pregnancy and infancy correlated with a 4% reduction in food allergy risk. Children with food allergies had distinct gut microbiota profiles, evolving with age. CONCLUSIONS Probiotics supplementation during pregnancy and infancy reduces food allergy risk and correlates with age-related changes in gut microbial composition in children. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023425988.
Collapse
Affiliation(s)
- Lan Jiang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Lili Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
14
|
Hornikova T, Jelinkova A, Jiraskova Zakostelska Z, Thon T, Coufal S, Polouckova A, Kopelentova E, Kverka M, Makovicky P, Tlaskalova-Hogenova H, Sediva A, Schwarzer M, Srutkova D. Genetic background and microbiome drive susceptibility to epicutaneous sensitization and food allergy in adjuvant-free mouse model. Front Immunol 2025; 15:1509691. [PMID: 39944558 PMCID: PMC11814220 DOI: 10.3389/fimmu.2024.1509691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/31/2024] [Indexed: 05/09/2025] Open
Abstract
Background The dual allergen exposure hypothesis states that sensitization to food antigens occurs through a damaged skin barrier in individuals with no previous oral tolerance to certain foods. However, the resulting allergic reaction could depend on factors such as the host's genetic predisposition as well as the skin and gut microbiota. Methods Specific-pathogen-free BALB/c and C57BL/6 and germ-free (GF) BALB/c mice were epicutaneously sensitized with ovalbumin (OVA) via dorsal tape-stripped skin and challenged with OVA by intragastric gavage. The development of food allergy (FA) symptoms, the Th2 and mast cell immune response and differences in the skin and gut microbiota were investigated. Results BALB/c mice, but not C57BL/6 mice, showed severe clinical signs of FA (hypothermia, diarrhea) as well as a stronger serum antibody response and Th2 cytokine secretion in the spleen and jejunum after OVA-treatment. The increased mast cell count correlated with higher MCPT-1 production and histidine decarboxylase mRNA expression in the jejunum of these mice. The 16S rRNA sequencing analysis revealed lower abundance of short-chain fatty acids producing bacteria in the gut microbiome of OVA-treated BALB/c mice. Changes in the β-diversity of the gut microbiome reflect both the genetic background as well as the OVA treatment of experimental mice. Compared to SPF mice, GF mice developed more severe anaphylactic hypothermia but no diarrhea, although they had a higher mast cell count, increased MCPT-1 production in the jejunum and serum, and increased arachidonate 5-lipoxygenase mRNA expression. Conclusions We show that the BALB/c mice are a mouse strain of choice for model of adjuvant-free epicutaneous sensitization through the disrupted skin barrier and following food allergy development. Our results highlight the significant influence of genetic background and microbiota on food allergy susceptibility, emphasizing the complex interplay between these factors in the allergic response.
Collapse
Affiliation(s)
- Tereza Hornikova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Anna Jelinkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Zuzana Jiraskova Zakostelska
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Thon
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Stepan Coufal
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Andrea Polouckova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Eliska Kopelentova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Makovicky
- Department of Histology and Embryology, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
15
|
Lin X, Chen Y, Lin W. Bibliometric Analysis of Global Pediatric Research on Cow's Milk Protein Allergy. J Asthma Allergy 2025; 18:85-100. [PMID: 39872156 PMCID: PMC11771186 DOI: 10.2147/jaa.s487698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Background Cow's milk protein allergy (CMPA) is a prevalent food allergy in early childhood, significantly impacting the quality of life for affected children. Current palliative measures, such as specialized formula milk, offer temporary relief but are costly and fail to address the underlying issue. Thus, there is a critical need to better understand CMPA and explore new treatment options. Methods This study employed bibliometric methods to analyze global pediatric CMPA research and identify future directions for the first time. Visual analyses were conducted using VOS Viewer and CiteSpace software. Results A total of 2040 articles published between 2000 and 2023 showed increasing annual publications. In this field of research, the Icahn School of Medicine at Mount Sinai has made significant contributions, with the most influential articles published in the Journal of Allergy and Clinical Immunology. Current research emphasizes personalized therapy, probiotics, and gut microbiota in CMPA. Conclusion Future research will focus on microbiota-related personalized treatments, promising effective clinical interventions.
Collapse
Affiliation(s)
- Xiaolan Lin
- Department of Pediatric Gastroenterology, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Yifan Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Weidong Lin
- Department of Pediatric Gastroenterology, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
16
|
Valitutti F, Mennini M, Monacelli G, Fagiolari G, Piccirillo M, Di Nardo G, Di Cara G. Intestinal permeability, food antigens and the microbiome: a multifaceted perspective. FRONTIERS IN ALLERGY 2025; 5:1505834. [PMID: 39850945 PMCID: PMC11754301 DOI: 10.3389/falgy.2024.1505834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
The gut barrier encompasses several interactive, physical, and functional components, such as the gut microbiota, the mucus layer, the epithelial layer and the gut mucosal immunity. All these contribute to homeostasis in a well-regulated manner. Nevertheless, this frail balance might be disrupted for instance by westernized dietary habits, infections, pollution or exposure to antibiotics, thus diminishing protective immunity and leading to the onset of chronic diseases. Several gaps of knowledge still exist as regards this multi-level interaction. In this review we aim to summarize current evidence linking food antigens, microbiota and gut permeability interference in diverse disease conditions such as celiac disease (CeD), non-celiac wheat sensitivity (NCWS), food allergies (FA), eosinophilic gastrointestinal disorder (EOGID) and irritable bowel syndrome (IBS). Specific food elimination diets are recommended for CeD, NCWS, FA and in some cases for EOGID. Undoubtfully, each of these conditions is very different and quite unique, albeit food antigens/compounds, intestinal permeability and specific microbiota signatures orchestrate immune response and decide clinical outcomes for all of them.
Collapse
Affiliation(s)
- Francesco Valitutti
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Maurizio Mennini
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Gianluca Monacelli
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| | - Giulia Fagiolari
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| | - Marisa Piccirillo
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Giovanni Di Nardo
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Giuseppe Di Cara
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Fliegerová KO, Mahayri TM, Sechovcová H, Mekadim C, Mrázek J, Jarošíková R, Dubský M, Fejfarová V. Diabetes and gut microbiome. Front Microbiol 2025; 15:1451054. [PMID: 39839113 PMCID: PMC11747157 DOI: 10.3389/fmicb.2024.1451054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Diabetes mellitus represents a significant global health problem. The number of people suffering from this metabolic disease is constantly rising and although the incidence is heterogeneous depending on region, country, economic situation, lifestyle, diet and level of medical care, it is increasing worldwide, especially among youths and children, mainly due to lifestyle and environmental changes. The pathogenesis of the two most common subtypes of diabetes mellitus, type 1 (T1DM) and type 2 (T2DM), is substantially different, so each form is characterized by a different causation, etiology, pathophysiology, presentation, and treatment. Research in recent decades increasingly indicates the potential role of the gut microbiome in the initiation, development, and progression of this disease. Intestinal microbes and their fermentation products have an important impact on host metabolism, immune system, nutrient digestion and absorption, gut barrier integrity and protection against pathogens. This review summarizes the current evidence on the changes in gut microbial populations in both types of diabetes mellitus. Attention is focused on changes in the abundance of specific bacterial groups at different taxonomic levels in humans, and microbiome shift is also assessed in relation to geographic location, age, diet and antidiabetic drug. The causal relationship between gut bacteria and diabetes is still unclear, and future studies applying new methodological approaches to a broader range of microorganisms inhabiting the digestive tract are urgently needed. This would not only provide a better understanding of the role of the gut microbiome in this metabolic disease, but also the use of beneficial bacterial species in the form of probiotics for the treatment of diabetes.
Collapse
Affiliation(s)
- Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Radka Jarošíková
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Dubský
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
| | - Vladimíra Fejfarová
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
18
|
Wang Z, Gong M, Fang Y, Yuan H, Zhang C. Reconstruction characteristics of gut microbiota from patients with type 1 diabetes affect the phenotypic reproducibility of glucose metabolism in mice. SCIENCE CHINA. LIFE SCIENCES 2025; 68:176-188. [PMID: 39285046 DOI: 10.1007/s11427-024-2658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/18/2024] [Indexed: 01/03/2025]
Abstract
The human microbiota-associated (HMA) mice model, especially the germ-free (GF)-humanized mice, has been widely used to probe the causal relationships between gut microbiota and human diseases such as type 1 diabetes (T1D). However, most studies have not clarified the extent to which the reconstruction of the human donor microbiota in recipient mice correlates with corresponding phenotypic reproducibility. In this study, we transplanted fecal microbiota from five patients with T1D and four healthy people into GF mice, and microbiota from each donor were transplanted into 10 mice. Mice with similar microbiota structure to the donor exhibited better phenotypic reproducibility. The characteristics of the microbial community assembly of donors also influenced the phenotypic reproducibility in mice, and individuals with a higher proportion of stochastic processes showed more severe disorders. Microbes enriched in patients with T1D had a stronger colonization potential in mice with impaired glucose metabolism, and microbiota functional features related to T1D were better reproduced in these mice. This indicates that assembly traits and colonization efficacy of microbiota influence phenotypic reproducibility in GF-humanized mice. Our findings provide important insights for using HMA mice models to explore links between gut microbiota and human diseases.
Collapse
Affiliation(s)
- Zhiyi Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengxue Gong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Fang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
19
|
Xu J, Sheikh TMM, Shafiq M, Khan MN, Wang M, Guo X, Yao F, Xie Q, Yang Z, Khalid A, Jiao X. Exploring the gut microbiota landscape in cow milk protein allergy: Clinical insights and diagnostic implications in pediatric patients. J Dairy Sci 2025; 108:73-89. [PMID: 39369895 DOI: 10.3168/jds.2024-25455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024]
Abstract
Cow milk protein allergy (CMPA) is a significant health concern characterized by adverse immune reactions to cow milk proteins. Biomarkers for the accurate diagnosis and prognosis of CMPA are lacking. This study analyzed the clinical features of CMPA, and 16S RNA sequencing was used to investigate potential biomarkers through fecal microbiota profiling. Children with CMPA exhibit a range of clinical symptoms, including gastrointestinal (83% of patients), skin (53% of patients), and respiratory manifestations (26% of patients), highlighting the complexity of this condition. Laboratory analysis revealed significant differences in red cell distribution width and inflammatory markers between the CMPA and control groups, suggesting immune activation and inflammatory responses in CMPA. Microbial diversity analysis revealed higher specific diversity indices in the CMPA group compared with those in control group, with significant differences at the genus and species levels. Bacteroides were more abundant in the CMPA group, whereas Bifidobacterium, Ruminococcus, Faecalibacterium, and Parabacteroides were less abundant. The control group exhibited a balanced microbial profile, with a predominant presence of Bifidobacterium bifidum and Akkermansia muciniphila. The significant abundance of Bifidobacterium in the control group (23.19% vs. 9.89% in CMPA) was associated with improved growth metrics such as height and weight, suggesting its potential as a probiotic to prevent CMPA and enhance gut health. Correlation analysis linked specific microbial taxa such as Coprococcus and Bifidobacterium to clinical parameters such as family allergy history, weight, and height, providing insights into CMPA pathogenesis. Significant differences in bacterial abundance suggested diagnostic potential, with a panel of 6 bacteria achieving high predictive accuracy (area under curve = 0.8708). This study emphasizes the complex relationship between the gut microbiota and CMPA, offering valuable insights into disease mechanisms and diagnostic strategies.
Collapse
Affiliation(s)
- Jiaxin Xu
- Precision Medical Lab Center, Chaozhou Central Hospital, Chaozhou 521000, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | | | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Meimei Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Fen Yao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Zhe Yang
- Department of Pediatrics, Chaozhou Central Hospital, Chaozhou 521000, China
| | - Areeba Khalid
- Department of Pediatrics, Federal Medical College, Islamabad 44080, Pakistan
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
20
|
Lopez Espinoza A, Christopher T, Tait Wojno ED. Epithelial-immune interactions govern type 2 immunity at barrier surfaces. Curr Opin Immunol 2024; 91:102501. [PMID: 39522453 PMCID: PMC11734749 DOI: 10.1016/j.coi.2024.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Allergic diseases are acute and chronic inflammatory conditions resulting from disproportionate responses to environmental stimuli. Affecting approximately 40% of the global population, these diseases significantly contribute to morbidity and increasing health care costs. Allergic reactions are triggered by pollen, house dust mites, animal dander, mold, food antigens, venoms, toxins, and drugs. This review explores the pivotal role of the epithelium in the skin, lungs, and gastrointestinal tract in regulating the allergic response and delves into the mechanisms of tissue-specific epithelial-immune interactions in this context, with recent advances highlighting their roles in the initiation, elicitation, and resolution phases of allergy. Understanding these intricate interactions at epithelial barriers is essential for developing targeted therapies to manage and treat allergic diseases.
Collapse
Affiliation(s)
| | - Tighe Christopher
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Elia D Tait Wojno
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
21
|
Lamminpää I, Niccolai E, Amedei A. Probiotics as adjuvants to mitigate adverse reactions and enhance effectiveness in Food Allergy Immunotherapy. Scand J Immunol 2024; 100:e13405. [PMID: 39407442 DOI: 10.1111/sji.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/04/2024] [Accepted: 08/18/2024] [Indexed: 11/21/2024]
Abstract
In the past decades, food allergies became increasingly dominant since early childhood, leading to a lower quality of life and to increasing costs addressed by the health care system. Beside standard avoidance of specific allergens and drug treatments following allergen exposure, a great deal of research has lately focused on Food Allergy Allergen Immunotherapy (FA-AIT). SCIT and EPIT (Subcutaneous and Epicutaneous Immunotherapy), OIT (Oral Immunotherapy), and SLIT (Sublingual Immunotherapy) consist in gradual exposure to allergens to desensitize and achieve tolerance once therapy has ended. Although promising, FA-AIT may bring acute local and systemic adverse reactions. To enhance efficacy, safety and convenience of AIT, the quest of potential adjuvants to mitigate the adverse reactions becomes crucial. Immunomodulatory activities, such as that of increasing the regulatory T cells and decreasing the IgE, have been observed in specific probiotics' strains and multiple studies elucidated the role of gut microbiota as a major interplayer among the host and its immune system. In this review, the microbiome modulation is shown as potential AIT adjuvant, nevertheless the need of more clinical studies in the near future is pivotal to assess the efficacy of targeted bacterial therapies and faecal microbiota transplantation.
Collapse
Affiliation(s)
- Ingrid Lamminpää
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Florence, Italy
| |
Collapse
|
22
|
Ionescu E, Nagler CR. The role of intestinal bacteria in promoting tolerance to food. Curr Opin Immunol 2024; 91:102492. [PMID: 39326201 DOI: 10.1016/j.coi.2024.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
The global prevalence of atopic diseases, including food allergy, is increasing and correlates with shifts in the commensal microbiota triggered by modern lifestyle factors. Current research focuses on the immunological mechanisms and microbial cues that regulate mucosal immunity and prevent allergic responses to food. We review the identification and characterization of novel antigen-presenting cell subsets that may be critical for the establishment and maintenance of tolerance to both food and intestinal bacteria. Microbially derived products, particularly from the Lachnospiraceae family of Clostridia, regulate intestinal homeostasis through a variety of mechanisms. Here, we highlight recent work on Clostridial metabolites and products that mediate protection against allergic responses to food.
Collapse
Affiliation(s)
- Edward Ionescu
- Pritzker School of Molecular Engineering, University of Chicago, USA.
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, University of Chicago, USA; Biological Sciences Division, University of Chicago, 924 E 57th Street, R402, Chicago, IL, 60637, USA
| |
Collapse
|
23
|
Donald K, Finlay BB. Experimental models of antibiotic exposure and atopic disease. FRONTIERS IN ALLERGY 2024; 5:1455438. [PMID: 39525399 PMCID: PMC11543581 DOI: 10.3389/falgy.2024.1455438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
In addition to numerous clinical studies, research using experimental models have contributed extensive evidence to the link between antibiotic exposure and atopic disease. A number of mouse models of allergy have been developed and used to uncover the specific effects of various microbiota members and perturbations on allergy development. Studies in mice that lack microbes entirely have also demonstrated the various components of the immune system that require microbial exposure. The importance of the early-life period and the mechanisms by which atopy "protective" species identified in human cohorts promote immune development have been elucidated in mice. Finally, non-animal models involving human-derived cells shed light on specific effects of bacteria on human epithelial and immune responses. When considered alongside clinical cohort studies, experimental model systems have provided crucial evidence for the link between the neonatal gut microbiota and allergic disease, immensely supporting the stewardship of antibiotic administration in infants. The following review aims to describe the range of experimental models used for studying factors that affect the relationship between the gut microbiota and allergic disease and summarize key findings that have come from research in animal and in vitro models.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Lyu Z, Yuan G, Zhang Y, Zhang F, Liu Y, Li Y, Li G, Wang Y, Zhang M, Hu Y, Guo Y, Liu D. Anaerostipes caccae CML199 enhances bone development and counteracts aging-induced bone loss through the butyrate-driven gut-bone axis: the chicken model. MICROBIOME 2024; 12:215. [PMID: 39438898 PMCID: PMC11495078 DOI: 10.1186/s40168-024-01920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The gut microbiota is a key regulator of bone metabolism. Investigating the relationship between the gut microbiota and bone remodeling has revealed new avenues for the treatment of bone-related disorders. Despite significant progress in understanding gut microbiota-bone interactions in mammals, research on avian species remains limited. Birds have unique bone anatomy and physiology to support egg-laying. However, whether and how the gut microbiota affects bone physiology in birds is still unknown. In this study, we utilized laying hens as a research model to analyze bone development patterns, elucidate the relationships between bone and the gut microbiota, and mine probiotics with osteomodulatory effects. RESULTS Aging led to a continuous increase in bone mineral density in the femur of laying hens. The continuous deposition of medullary bone in the bone marrow cavity of aged laying hens led to significant trabecular bone loss and weakened bone metabolism. The cecal microbial composition significantly shifted before and after sexual maturity, with some genera within the class Clostridia potentially linked to postnatal bone development in laying hens. Four bacterial strains associated with bone development, namely Blautia coccoides CML164, Fournierella sp002159185 CML151, Anaerostipes caccae CML199 (ANA), and Romboutsia lituseburensis CML137, were identified and assessed in chicks with low bacterial loads and chicken primary osteoblasts. Among these, ANA demonstrated the most significant promotion of bone formation both in vivo and in vitro, primarily attributed to butyrate in its fermentation products. A long-term feeding experiment of up to 72 weeks confirmed that ANA enhanced bone development during sexual maturity by improving the immune microenvironment of the bone marrow in laying hens. Dietary supplementation of ANA for 50 weeks prevented excessive medullary bone deposition and mitigated aging-induced trabecular bone loss. CONCLUSIONS These findings highlight the beneficial effects of ANA on bone physiology, offering new perspectives for microbial-based interventions for bone-related disorders in both poultry and possibly extending to human health. Video Abstract.
Collapse
Affiliation(s)
- Zhengtian Lyu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Gaoxiang Yuan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuying Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fengwenhui Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yifan Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guang Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Sichuan Tieqilishi Industrial Co., Ltd, Mianyang, 621010, China
| | - Ming Zhang
- Sichuan Tieqilishi Industrial Co., Ltd, Mianyang, 621010, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
25
|
Złotkowska D, Markiewicz LH, Ogrodowczyk AM, Wróblewska B, Wasilewska E. Enhanced Effect of β-Lactoglobulin Immunization in Mice with Mild Intestinal Deterioration Caused by Low-Dose Dextran Sulphate Sodium: A New Experimental Approach to Allergy Studies. Nutrients 2024; 16:3430. [PMID: 39458426 PMCID: PMC11510979 DOI: 10.3390/nu16203430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cow's milk allergy is one of the most common food allergies in children, and its pathomechanism is still under investigation. Recently, an increasing number of studies have linked food allergy to intestinal barrier dysfunction. The present study aimed to investigate changes in the intestinal microenvironment during the development of β-lactoglobulin (β-lg) allergy under conditions of early intestinal dysfunction. METHODS BALB/c mice received intraperitoneal β-lg with Freund's adjuvant, followed by oral β-lg while receiving dextran sulphate sodium salt (DSS) in their drinking water (0.2% w/v). The immunized group without DSS and the groups receiving saline, oral β-lg, or DSS served as controls. RESULTS The study showed that the immunization effect was greater in mice with mild intestinal barrier dysfunction. Although DSS did not affect the mice's humoral response to β-lg, in combination with β-lg, it significantly altered their cellular response, affecting the induction and distribution of T cells in the inductive and peripheral tissues and the activation of immune mediators. Administration of β-lg to sensitized mice receiving DSS increased disease activity index (DAI) scores and pro-inflammatory cytokine activity, altered the distribution of claudins and zonulin 1 (ZO-1) in the colonic tissue, and negatively affected the balance and activity of the gut microbiota. CONCLUSIONS The research model used appears attractive for studying food allergen sensitization, particularly in relation to the initial events leading to mucosal inflammation and the development of food hypersensitivity.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Wasilewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
| |
Collapse
|
26
|
Ilangovan J, Neves JF, Santos AF. Innate lymphoid cells in immunoglobulin E-mediated food allergy. Curr Opin Allergy Clin Immunol 2024; 24:419-425. [PMID: 39132724 PMCID: PMC11356679 DOI: 10.1097/aci.0000000000001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
PURPOSE OF REVIEW Recognition of the importance of innate lymphoid cells (ILCs) in the immune mechanisms of food allergy has grown in recent years. This review summarizes recent findings of ILCs in immunoglobulin E (IgE)-mediated food allergy. New research on ILCs in the context of the microbiome and other atopic diseases are also considered with respect to how they can inform understanding of the role of ILCs in food allergy. RECENT FINDINGS ILCs can mediate allergic and tolerogenic responses through multiple pathways. A novel subset of interleukin (IL)-10 producing ILC2s are associated with tolerance following immunotherapy to grass pollen, house dust mite allergy and lipid transfer protein allergy. ILC2s can drive food allergen-specific T cell responses in an antigen-specific manner. A memory subset of ILC2s has been identified through studies of other atopic diseases and is associated with effectiveness of response to therapy. SUMMARY The role of ILCs in food allergy and oral tolerance is relatively understudied compared to other diseases. ILCs can modulate immune responses through several mechanisms, and it is likely that these are of importance in the context of food allergy. Better understanding of theses pathways may help to answer fundamental questions regarding the development of food allergy and lead to novel therapeutic targets and treatment.
Collapse
Affiliation(s)
- Janarthanan Ilangovan
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine
- Centre for Host Microbiome Interactions
| | | | - Alexandra F. Santos
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London
- Children's Allergy Service, Guy's and St Thomas’ Hospital, London, UK
| |
Collapse
|
27
|
Han K, Xie F, Animasahun O, Nenwani M, Kitamoto S, Kim Y, Phoo MT, Xu J, Wuchu F, Omoloja K, Achreja A, Choppara S, Li Z, Gong W, Cho YS, Dobson H, Ahn J, Zhou X, Huang X, An X, Kim A, Xu Y, Wu Q, Lee SH, O'Konek JJ, Xie Y, Lei YL, Kamada N, Nagrath D, Moon JJ. Inulin-gel-based oral immunotherapy remodels the small intestinal microbiome and suppresses food allergy. NATURE MATERIALS 2024; 23:1444-1455. [PMID: 38977883 PMCID: PMC11442122 DOI: 10.1038/s41563-024-01909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/30/2024] [Indexed: 07/10/2024]
Abstract
Despite the potential of oral immunotherapy against food allergy, adverse reactions and loss of desensitization hinder its clinical uptake. Dysbiosis of the gut microbiota is implicated in the increasing prevalence of food allergy, which will need to be regulated to enable for an effective oral immunotherapy against food allergy. Here we report an inulin gel formulated with an allergen that normalizes the dysregulated ileal microbiota and metabolites in allergic mice, establishes allergen-specific oral tolerance and achieves robust oral immunotherapy efficacy with sustained unresponsiveness in food allergy models. These positive outcomes are associated with enhanced allergen uptake by antigen-sampling dendritic cells in the small intestine, suppressed pathogenic type 2 immune responses, increased interferon-γ+ and interleukin-10+ regulatory T cell populations, and restored ileal abundances of Eggerthellaceae and Enterorhabdus in allergic mice. Overall, our findings underscore the therapeutic potential of the engineered allergen gel as a suitable microbiome-modulating platform for food allergy and other allergic diseases.
Collapse
Affiliation(s)
- Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Olamide Animasahun
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Minal Nenwani
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sho Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yeji Kim
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - May Thazin Phoo
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fulei Wuchu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kehinde Omoloja
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Abhinav Achreja
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Srinadh Choppara
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhaoheng Li
- Graduate Program in Biostatistics, University of Washington, Seattle, WA, USA
| | - Wang Gong
- Departments of Head and Neck Surgery and of Cancer Biology, the University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hannah Dobson
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jinsung Ahn
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xuehui Huang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xinran An
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Qi Wu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Statistics and Probability, Michigan State University, East Lansang, MI, USA
| | - Yu Leo Lei
- Departments of Head and Neck Surgery and of Cancer Biology, the University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Deepak Nagrath
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Chen Y, Wen Y, Zhao R, Zhu Y, Chen Z, Zhao C, Mu W. Human milk oligosaccharides in preventing food allergy: A review through gut microbiota and immune regulation. Int J Biol Macromol 2024; 278:134868. [PMID: 39163965 DOI: 10.1016/j.ijbiomac.2024.134868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Food allergy (FA) has increasingly attracted global attention in past decades. However, the mechanism and effect of FA are complex and varied, rendering it hard to prevention and management. Most of the allergens identified so far are macromolecular proteins in food and may have potential cross-reactions. Human milk oligosaccharides (HMOs) have been regarded as an ideal nutrient component for infants, as they can enhance the immunomodulatory capacity to inhibit the progress of FA. HMOs may intervene in the development of allergies by modifying gut microbiota and increasing specific short-chain fatty acids levels. Additionally, HMOs could improve the intestinal permeability and directly or indirectly regulate the balance of T helper cells and regulatory T cells by enhancing the inflammatory signaling pathways to combat FA. This review will discuss the influence factors of FA, key species of gut microbiota involved in FA, types of FA, and profiles of HMOs and provide evidence for future research trends to advance HMOs as potential therapeutic aids in preventing the progress of FA.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Runfan Zhao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhengxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
29
|
Farnetano M, Carucci L, Coppola S, Oglio F, Masino A, Cozzolino M, Nocerino R, Berni Canani R. Gut microbiome features in pediatric food allergy: a scoping review. FRONTIERS IN ALLERGY 2024; 5:1438252. [PMID: 39386092 PMCID: PMC11461474 DOI: 10.3389/falgy.2024.1438252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024] Open
Abstract
Increasing evidence suggests that alterations in the gut microbiome (GM) play a pivotal role in the pathogenesis of pediatric food allergy (FA). This scoping review analyzes the current evidence on GM features associated with pediatric FAs and highlights the importance of the GM as a potential target of intervention for preventing and treating this common condition in the pediatric age. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, we searched PubMed and Embase using the keywords (gut microbiome OR dysbiosis OR gut microbiota OR microbiome signatures) AND (food allergy OR IgE-mediated food allergy OR food protein-induced allergic proctocolitis OR food protein-induced enterocolitis OR non-IgE food allergy OR cow milk allergy OR hen egg allergy OR peanut allergy OR fish allergy OR shellfish allergy OR tree nut allergy OR soy allergy OR wheat allergy OR rice allergy OR food sensitization). We included 34 studies reporting alterations in the GM in children affected by FA compared with healthy controls. The GM in pediatric FAs is characterized by a higher abundance of harmful microorganisms (e.g., Enterobacteriaceae, Clostridium sensu stricto, Ruminococcus gnavus, and Blautia spp.) and lower abundance of beneficial bacteria (e.g., Bifidobacteriaceae, Lactobacillaceae, some Bacteroides species). Moreover, we provide an overview of the mechanisms of action elicited by these bacterial species in regulating immune tolerance and of the main environmental factors that can modulate the composition and function of the GM in early life. Altogether, these data improve our knowledge of the pathogenesis of FA and can open the way to innovative diagnostic, preventive, and therapeutic strategies for managing these conditions.
Collapse
Affiliation(s)
- Margherita Farnetano
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Marica Cozzolino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
| |
Collapse
|
30
|
Bai T, Shao H, Yang F, Zhang X, Tong P, Meng X, Wu Y, Chen H, Li X. Maternal High-Fat Diet Exacerbates Epicutaneous Sensitization and Oral Challenge-Induced Food Allergy to Ovalbumin in Offspring Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21240-21253. [PMID: 39261017 DOI: 10.1021/acs.jafc.4c05373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Dietary factors have been associated with an increased prevalence of food allergy (FA). However, little is known about how an unhealthy diet in early life affects FA reactions in offspring. The objective of this study is to provide a scientific foundation for developing and promoting healthy dietary patterns in early life. In this study, we found that maternal high-fat diet (HFD) during pregnancy and lactation exacerbates FA (HFD-FA) in offspring mice, leading to increased serum levels of mast cell protease 1. First, we studied the systemic immunity of the HFD-FA mice and observed elevated levels of proinflammatory cytokines (IL-4, IL-6, and IL-1β) and a reduced frequency of Treg cells in splenocytes. Additionally, the HFD-FA mice showed increased gut permeability, accumulation of intestinal mast cells, and a decrease in the Treg cell frequency in the mesenteric lymph nodes. Furthermore, our findings also indicated a reduction in gut microbial diversity and abundance in HFD-FA mice. Importantly, lipid metabolism profiling revealed unique lipid profiles in the HFD-FA mice, with significant upregulation of triglycerides and downregulation of sphingolipids. Taken together, our results suggest that maternal HFD alters intestinal homeostasis and increases FA susceptibility in offspring mice.
Collapse
Affiliation(s)
- Tianliang Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Huming Shao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Fan Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330000, Jiangxi, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330000, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330000, Jiangxi, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
31
|
Nocerino R, Carucci L, Coppola S, Oglio F, Masino A, Agizza A, Paparo L, Berni Canani R. The journey toward disease modification in cow milk protein allergy. Immunol Rev 2024; 326:191-202. [PMID: 39046826 DOI: 10.1111/imr.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Cow milk protein allergy (CMPA) is one of the most common food allergies in the pediatric age worldwide. Prevalence, persistence, and severity of this condition are on the rise, with a negative impact on the health-related quality of life of the patients and families and on the costs related to its management. Another relevant issue is that CMPA in early life may be the first stage of the "allergic march," leading to the occurrence of other atopic manifestations later in life, especially asthma, atopic eczema, urticaria, and rhinoconjunctivitis. Thus, "disease modification" options that are able to modulate the disease course of pediatric patients affected by CMPA would be very welcomed by affected families and healthcare systems. In this review, we report the most relevant progress on this topic.
Collapse
Affiliation(s)
- Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Alessandra Agizza
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Laboratory Medicine, ASL Benevento, Benevento, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
- Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
32
|
Liu EG, Yin X, Siniscalco ER, Eisenbarth SC. Dendritic cells in food allergy, treatment, and tolerance. J Allergy Clin Immunol 2024; 154:511-522. [PMID: 38971539 PMCID: PMC11414995 DOI: 10.1016/j.jaci.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Food allergy is a growing problem with limited treatment options. It is important to understand the mechanisms of food tolerance and allergy to promote the development of directed therapies. Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that prime adaptive immune responses, such as those involved in the development of oral tolerance and food allergies. The DC subsets in the gut and skin are defined by their surface markers and function. The default response to an ingested innocuous antigen is oral tolerance, which requires either gut DCs or a subset of newly identified RORγt+ APCs to induce the development of gut peripheral regulatory T cells. However, DCs in the skin, gut, and lung can also promote allergic sensitization when they are activated under certain inflammatory conditions, such as with alarmin release or gut dysbiosis. DCs also play a role in the responses to the various modalities of food immunotherapy. Langerhans cells in the skin appear to be necessary for the response to epicutaneous immunotherapy. It will be important to determine which real-world stimuli activate the DCs that prime allergic sensitization and discover methods to selectively initiate a tolerogenic program in APCs.
Collapse
Affiliation(s)
- Elise G Liu
- Section of Rheumatology, Allergy and Immunology, Department of Medicine, Yale University School of Medicine, New Haven, Conn
| | - Xiangyun Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Emily R Siniscalco
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
33
|
Light SH, Nagler CR. Regulation of immune responses to food by commensal microbes. Immunol Rev 2024; 326:203-218. [PMID: 39285525 PMCID: PMC11472335 DOI: 10.1111/imr.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The increasing prevalence of immune-mediated non-communicable chronic diseases, such as food allergies, has prompted a deeper investigation into the role of the gut microbiome in modulating immune responses. Here, we explore the complex interactions between commensal microbes and the host immune system, highlighting the critical role of gut bacteria in maintaining immune homeostasis. We examine how modern lifestyle practices and environmental factors have disrupted co-evolved host-microbe interactions and discuss how changes in microbiome composition impact epithelial barrier function, responses to food allergens, and susceptibility to allergic diseases. Finally, we examine the potential of bioengineered microbiome-based therapies, and live biotherapeutic products, for reestablishing immune homeostasis to prevent or treat food allergies.
Collapse
Affiliation(s)
- Samuel H. Light
- Department of Microbiology, University of Chicago, Chicago IL, 60637
| | - Cathryn R. Nagler
- Department of Pathology, University of Chicago, Chicago IL, 60637
- Department of Biological Sciences Division, Pritzker School of Molecular Engineering, University of Chicago, Chicago IL, 60637
| |
Collapse
|
34
|
Miranda-Waldetario MC, Curotto de Lafaille MA. Oral tolerance to dietary antigens and Foxp3 + regulatory T cells. Immunol Rev 2024; 326:8-16. [PMID: 39054615 PMCID: PMC11436310 DOI: 10.1111/imr.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Immune tolerance to foods develops in the intestine upon food ingestion and is essential to prevent IgE-mediated food allergy and gut inflammation. In homeostasis, the intestine is a tolerogenic environment that favors the formation of food-specific Foxp3+ regulatory T cells. A tolerogenic intestinal environment depends on colonization by diverse microbiota and exposure to solid foods at a critical period in early life. These early immune responses lead to the induction of antigen-specific Foxp3+ regulatory T cells in draining mesenteric lymph nodes. These peripherally induced regulatory cells circulate and seed the lamina propria of the gut, exerting suppressive function systemically and locally in the intestine. Successful establishment of a tolerogenic intestinal environment in early life sets the stage for oral tolerance to new antigens in adult life.
Collapse
Affiliation(s)
- Mariana C.G. Miranda-Waldetario
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria A. Curotto de Lafaille
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
Martinez-Blanco M, Mukhatayev Z, Chatila TA. Pathogenic mechanisms in the evolution of food allergy. Immunol Rev 2024; 326:219-226. [PMID: 39285835 PMCID: PMC11488529 DOI: 10.1111/imr.13398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The early development of the neonatal immune system is profoundly influenced by exposure to dietary and microbial antigens, which shapes mucosal tolerance. Successful oral tolerance induction is crucially dependent on microbially imprinted immune cells, most notably the RORγt+ regulatory T (Treg) and antigen presenting cells and is essential for preventing food allergy (FA). The development of FA can be envisioned to result from disruptions at key checkpoints (CKPTs) that govern oral tolerance induction. These include gut epithelial sensory and effector circuits that when dysregulated promote pro-allergic gut dysbiosis. They also include microbially imprinted immune regulatory circuits that are disrupted by dysbiosis and pro-allergic immune responses unleashed by the dysregulation of the aforementioned cascades. Understanding these checkpoints is essential for developing therapeutic strategies to restore immune homeostasis in FA.
Collapse
Affiliation(s)
- Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhussipbek Mukhatayev
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Herrera-Quintana L, Vázquez-Lorente H, Hinojosa-Nogueira D, Plaza-Diaz J. Relationship between Infant Feeding and the Microbiome: Implications for Allergies and Food Intolerances. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1030. [PMID: 39201963 PMCID: PMC11353207 DOI: 10.3390/children11081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024]
Abstract
Childhood is a critical period for immune system development, which is greatly influenced by the gut microbiome. Likewise, a number of factors affect the gut microbiome composition and diversity, including breastfeeding, formula feeding, and solid foods introduction. In this regard, several studies have previously demonstrated that breastfeeding promotes a favorable microbiome. In contrast, formula feeding and the early incorporation of certain solid foods may adversely affect microbiome development. Additionally, there is increasing evidence that disruptions in the early microbiome can lead to allergic conditions and food intolerances. Thus, developing strategies to promote optimal infant nutrition requires an understanding of the relationship between infant nutrition and long-term health. The present review aims to examine the relationship between infant feeding practices and the microbiome, as well as its implications on allergies and food intolerances in infants. Moreover, this study synthesizes existing evidence on how different eating habits influence the microbiome. It highlights their implications for the prevention of allergies and food intolerances. In conclusion, introducing allergenic solid foods before six months, alongside breastfeeding, may significantly reduce allergies and food intolerances risks, being also associated with variations in gut microbiome and related complications.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Daniel Hinojosa-Nogueira
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Laboratorio del Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga (Virgen de la Victoria), 29590 Málaga, Spain;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
37
|
Brickman CE, Agnello M, Imam N, Camejo P, Pino R, Carroll LN, Chein A, Palefsky JM. Distinct anal microbiome is correlated with anal cancer precursors in MSM with HIV. AIDS 2024; 38:1476-1484. [PMID: 38691018 PMCID: PMC11239087 DOI: 10.1097/qad.0000000000003920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVES Anal cancer risk is elevated in MSM with HIV (MSMWH). Anal high-risk human papillomavirus (hr-HPV) infection is necessary but insufficient to develop high-grade squamous intraepithelial lesion (HSIL), the anal cancer precursor, suggesting additional factors. We sought to determine whether the microbiome of the anal canal is distinct by comparing it with the microbiome of stool. We also sought to determine whether changes in the anal microbiome are associated with HSIL among MSMWH. DESIGN Cross-sectional comparison of the microbiome of the anal canal with the microbiome of stool in MSMWH and cross-sectional comparison of the anal microbiome of MSMWH with anal HSIL with the anal microbiome of MSMWH without anal HSIL. METHODS Sterile swabs were used to sample the anus of MSMWH for microbiome and HPV testing, followed by high-resolution anoscopy. Stool samples were mailed from home. 16S sequencing was used for bacterial identification. Measures of alpha diversity, beta diversity, and differential abundance analysis were used to compare samples. RESULTS One hundred sixty-six anal samples and 103 matching stool samples were sequenced. Beta diversity showed clustering of stool and anal samples. Of hr-HPV-positive MSMWH, 31 had HSIL and 13 had no SIL. Comparison of the microbiome between these revealed 28 different species. The highest-fold enrichment among MSMWH/hr-HPV/HSIL included pro-inflammatory and carcinogenic Prevotella, Parasuterella, Hungatella, Sneathia, and Fusobacterium species. The anti-inflammatory Anaerostipes caccae showed the greatest reduction among MSMWH/hr-HPV/HSIL. CONCLUSION The anal microbiome is distinct from stool. A pro-inflammatory and carcinogenic environment may be associated with anal HSIL.
Collapse
Affiliation(s)
| | - Melissa Agnello
- uBiome, Medical Affairs, San Francisco, California, USA
- Komodo Health, Inc., San Francisco, California
| | - Nabeel Imam
- uBiome, Medical Affairs, Santiago, Chile
- Psomagen, Inc., Rockville, Maryland, USA
| | | | - Rodolfo Pino
- uBiome, Medical Affairs, Santiago, Chile
- Sociedad Química y Minera de Chile, Santiago, Chile
| | - Lauren N. Carroll
- uBiome, Medical Affairs, San Francisco, California, USA
- ApotheCom, San Francisco, California, USA
| | | | | |
Collapse
|
38
|
Ponda P, Cerise JE, Navetta-Modrov B, Kiehm J, Covelli GM, Weiss J, Lee AT. The age-specific microbiome of children with milk, egg, and peanut allergy. Ann Allergy Asthma Immunol 2024; 133:203-210.e6. [PMID: 38697287 DOI: 10.1016/j.anai.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Immune regulation by gut microbiota is affected by dysbiosis and may precede food allergy onset. Prior studies lacked comparisons stratified by age and clinical phenotype. OBJECTIVE To assess the microbiome of children with food allergy (<3 years, 3-18 years) compared with similar aged children without food allergy. METHODS A real-world prospective cross-sectional study performed from 2014 to 2019 recruited children highly likely to have milk, egg, or peanut allergy defined by history and serum IgE or confirmed by food challenge. 16S ribosomal RNA sequencing identified stool microbial DNA. Alpha and beta diversity was compared between groups with food allergy and healthy controls stratified by age. Differential abundance for non a priori taxa was accepted at absolute fold-change greater than 2 and q value less than 0.05. RESULTS A total of 70 patients were included (56 with food allergy and 14 healthy controls). Groups were not significantly different in age, gender at birth, race, mode of delivery, breastfeeding duration, or antibiotic exposure. Younger children with food allergy had similar alpha diversity compared with controls. Beta diversity was significantly different by age (P = .001). There was differential abundance of several a priori (P < .05) taxa (including Clostridia) only in younger children. Both a priori (including Coprococcus and Clostridia) and non a priori (q < 0.05) Acidobacteria_Gp15, Aestuariispira, Tindallia, and Desulfitispora were significant in older children with food allergy, especially with peanut allergy. CONCLUSION Dysbiosis associates with food allergy, most prominent in older children with peanut allergy. Younger children with and without food allergy have fewer differences in gut microbiota. This correlates with clinical observations of persistence of peanut allergy and improved efficacy and safety of oral immunotherapy in younger children. Age younger than 3 years should be considered when initiating therapeutic interventions.
Collapse
Affiliation(s)
- Punita Ponda
- Northwell, New Hyde Park, New York; Division of Allergy and Immunology, Cohen Children's Medical Center, New Hyde Park, New York.
| | - Jane E Cerise
- Biostatistics Unit, Office of Academic Affairs, Northwell Health, New Hyde Park, New York
| | - Brianne Navetta-Modrov
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York
| | - Jamie Kiehm
- Los Angeles County Department of Health Services, Los Angeles, California
| | - Grace M Covelli
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Jared Weiss
- Department of Psychiatry, New York University School of Medicine, New York, New York
| | - Annette T Lee
- Northwell, New Hyde Park, New York; Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
| |
Collapse
|
39
|
Abstract
'Westernization', which incorporates industrial, cultural and dietary trends, has paralleled the rise of noncommunicable diseases across the globe. Today, the Western-style diet emerges as a key stimulus for gut microbial vulnerability, chronic inflammation and chronic diseases, affecting mainly the cardiovascular system, systemic metabolism and the gut. Here we review the diet of modern times and evaluate the threat it poses for human health by summarizing recent epidemiological, translational and clinical studies. We discuss the links between diet and disease in the context of obesity and type 2 diabetes, cardiovascular diseases, gut and liver diseases and solid malignancies. We collectively interpret the evidence and its limitations and discuss future challenges and strategies to overcome these. We argue that healthcare professionals and societies must react today to the detrimental effects of the Western diet to bring about sustainable change and improved outcomes in the future.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
40
|
Risemberg EL, Smeekens JM, Cruz Cisneros MC, Hampton BK, Hock P, Linnertz CL, Miller DR, Orgel K, Shaw GD, de Villena FPM, Burks AW, Valdar W, Kulis MD, Ferris MT. A mutation in Themis contributes to anaphylaxis severity following oral peanut challenge in CC027 mice. J Allergy Clin Immunol 2024; 154:387-397. [PMID: 38670234 PMCID: PMC11323216 DOI: 10.1016/j.jaci.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized Collaborative Cross strain CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, in contrast to C3H/HeJ (C3H) mice. OBJECTIVE This study aimed to determine the genetic basis of orally induced anaphylaxis to peanut in CC027 mice. METHODS A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 mice and 5 additional Collaborative Cross strains. RESULTS Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis and 4% having severe anaphylaxis. There were 8 genetic loci associated with variation in response to peanut challenge-6 associated with anaphylaxis (temperature decrease) and 2 associated with peanut-specific IgE levels. There were 2 major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis gene. Consistent with described functions of Themis, we found that CC027 mice have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. CONCLUSIONS Our results demonstrate a key role for Themis in the orally reactive CC027 mouse model of peanut allergy.
Collapse
Affiliation(s)
- Ellen L Risemberg
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Johanna M Smeekens
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Marta C Cruz Cisneros
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brea K Hampton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Darla R Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelly Orgel
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - A Wesley Burks
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Michael D Kulis
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
41
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Hesser LA, Puente AA, Arnold J, Ionescu E, Mirmira A, Talasani N, Lopez J, Maccio-Maretto L, Mimee M, Nagler CR. A synbiotic of Anaerostipes caccae and lactulose prevents and treats food allergy in mice. Cell Host Microbe 2024; 32:1163-1176.e6. [PMID: 38906158 PMCID: PMC11239278 DOI: 10.1016/j.chom.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
Depletion of beneficial microbes by modern lifestyle factors correlates with the rising prevalence of food allergies. Re-introduction of allergy-protective bacteria may be an effective treatment strategy. We characterized the fecal microbiota of healthy and food-allergic infants and found that the anaerobe Anaerostipes caccae (A. caccae) was representative of the protective capacity of the healthy microbiota. We isolated a strain of A. caccae from the feces of a healthy infant and identified lactulose as a prebiotic to optimize butyrate production by A. caccae in vitro. Administration of a synbiotic composed of our isolated A. caccae strain and lactulose increased luminal butyrate in gnotobiotic mice colonized with feces from an allergic infant and in antibiotic-treated specific pathogen-free (SPF) mice, and prevented or treated an anaphylactic response to allergen challenge. The synbiotic's efficacy in two models and microbial contexts suggests that it may be a promising approach for the treatment of food allergy.
Collapse
Affiliation(s)
- Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Armando A Puente
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jack Arnold
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Anjali Mirmira
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Nidhi Talasani
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Jacqueline Lopez
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | - Mark Mimee
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA; Committee on Microbiology, The University of Chicago, Chicago, IL, USA
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA; Department of Pathology, The University of Chicago, Chicago, IL, USA; Committee on Immunology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
43
|
Wang D, Wang X, Han J, You C, Liu Z, Wu Z. Effect of Lacticaseibacillus casei LC2W Supplementation on Glucose Metabolism and Gut Microbiota in Subjects at High Risk of Metabolic Syndrome: A Randomized, Double-blinded, Placebo-controlled Clinical Trial. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10312-5. [PMID: 38954305 DOI: 10.1007/s12602-024-10312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
Metabolic syndrome (MetS) is a global epidemic complex and will cause serious metabolic comorbidities without treatment. A prevention strategy for MetS development has been proposed to modulate gut microbiota by probiotic administration to improve intestinal dysbiosis and benefit the host. Lacticaseibacillus casei LC2W has exhibited positive effects in preventing colitis and anti-hypertension in vivo. However, the effect of L. casei LC2W on subjects at high risk of MetS is unknown. Here, a randomized, double-blinded, placebo-controlled study was conducted on 60 subjects with high risk of MetS, and the hypoglycemic and hypolipidemic activity and possible pathways of L. casei LC2W were inferred from the correlation analysis with gut microbiome composition, function, and clinical phenotypic indicators. The results showed that oral administration of L. casei LC2W could exert significant benefits on weight control, glucose and lipid metabolism, inflammatory and oxidative stress parameters, and SCFA production, as well as modulate the composition of gut microbiota. The relative abundance of Lacticaseibacillus, Bifidobacterium, Dorea, and Blautia was enriched, and their interaction with other gut microbes was strengthened by oral administration of L. casei LC2W, which was beneficial in ameliorating gut inflammation, promoting glucose and lipids degradation pathways, thus alleviated MetS. The present study confirmed the prevention effects of L. casei LC2W towards MetS from aspects of clinical outcomes and microflora modulation, providing an alternative strategy for people at high risk of MetS.Trial registration: The study was proactively registered in ClinicalTrial.gov with the registration number of ChiCTR2000031833 on April 09, 2020.
Collapse
Affiliation(s)
- Danqi Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Xiaohua Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China.
| |
Collapse
|
44
|
Hegde M, Navai S, DeRenzo C, Joseph SK, Sanber K, Wu M, Gad AZ, Janeway KA, Campbell M, Mullikin D, Nawas Z, Robertson C, Mathew PR, Zhang H, Mehta B, Bhat RR, Major A, Shree A, Gerken C, Kalra M, Chakraborty R, Thakkar SG, Dakhova O, Salsman VS, Grilley B, Lapteva N, Gee A, Dotti G, Bao R, Salem AH, Wang T, Brenner MK, Heslop HE, Wels WS, Hicks MJ, Gottschalk S, Ahmed N. Autologous HER2-specific CAR T cells after lymphodepletion for advanced sarcoma: a phase 1 trial. NATURE CANCER 2024; 5:880-894. [PMID: 38658775 PMCID: PMC11588040 DOI: 10.1038/s43018-024-00749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/23/2024] [Indexed: 04/26/2024]
Abstract
In this prospective, interventional phase 1 study for individuals with advanced sarcoma, we infused autologous HER2-specific chimeric antigen receptor T cells (HER2 CAR T cells) after lymphodepletion with fludarabine (Flu) ± cyclophosphamide (Cy): 1 × 108 T cells per m2 after Flu (cohort A) or Flu/Cy (cohort B) and 1 × 108 CAR+ T cells per m2 after Flu/Cy (cohort C). The primary outcome was assessment of safety of one dose of HER2 CAR T cells after lymphodepletion. Determination of antitumor responses was the secondary outcome. Thirteen individuals were treated in 14 enrollments, and seven received multiple infusions. HER2 CAR T cells expanded after 19 of 21 infusions. Nine of 12 individuals in cohorts A and B developed grade 1-2 cytokine release syndrome. Two individuals in cohort C experienced dose-limiting toxicity with grade 3-4 cytokine release syndrome. Antitumor activity was observed with clinical benefit in 50% of individuals treated. The tumor samples analyzed showed spatial heterogeneity of immune cells and clustering by sarcoma type and by treatment response. Our results affirm HER2 as a CAR T cell target and demonstrate the safety of this therapeutic approach in sarcoma. ClinicalTrials.gov registration: NCT00902044 .
Collapse
Affiliation(s)
- Meenakshi Hegde
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Shoba Navai
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Christopher DeRenzo
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sujith K Joseph
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Khaled Sanber
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mengfen Wu
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Z Gad
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Katherine A Janeway
- Department of Pediatrics, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew Campbell
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Dolores Mullikin
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zeid Nawas
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Catherine Robertson
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Pretty R Mathew
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Huimin Zhang
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Birju Mehta
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Raksha R Bhat
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Angela Major
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Ankita Shree
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia Gerken
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mamta Kalra
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Rikhia Chakraborty
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sachin G Thakkar
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Olga Dakhova
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Vita S Salsman
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bambi Grilley
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Natalia Lapteva
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Adrian Gee
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Riyue Bao
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Tao Wang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Helen E Heslop
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - M John Hicks
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Stephen Gottschalk
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nabil Ahmed
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
45
|
Zhang S, Li B, Zeng L, Yang K, Jiang J, Lu F, Li L, Li W. Exploring the immune-inflammatory mechanism of Maxing Shigan Decoction in treating influenza virus A-induced pneumonia based on an integrated strategy of single-cell transcriptomics and systems biology. Eur J Med Res 2024; 29:234. [PMID: 38622728 PMCID: PMC11017673 DOI: 10.1186/s40001-024-01777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Influenza is an acute respiratory infection caused by influenza virus. Maxing Shigan Decoction (MXSGD) is a commonly used traditional Chinese medicine prescription for the prevention and treatment of influenza. However, its mechanism remains unclear. METHOD The mice model of influenza A virus pneumonia was established by nasal inoculation. After 3 days of intervention, the lung index was calculated, and the pathological changes of lung tissue were detected by HE staining. Firstly, transcriptomics technology was used to analyze the differential genes and important pathways in mouse lung tissue regulated by MXSGD. Then, real-time fluorescent quantitative PCR (RT-PCR) was used to verify the changes in mRNA expression in lung tissues. Finally, intestinal microbiome and intestinal metabolomics were performed to explore the effect of MXSGD on gut microbiota. RESULTS The lung inflammatory cell infiltration in the MXSGD group was significantly reduced (p < 0.05). The results of bioinformatics analysis for transcriptomics results show that these genes are mainly involved in inflammatory factors and inflammation-related signal pathways mediated inflammation biological modules, etc. Intestinal microbiome showed that the intestinal flora Actinobacteriota level and Desulfobacterota level increased in MXSGD group, while Planctomycetota in MXSGD group decreased. Metabolites were mainly involved in primary bile acid biosynthesis, thiamine metabolism, etc. This suggests that MXSGD has a microbial-gut-lung axis regulation effect on mice with influenza A virus pneumonia. CONCLUSION MXSGD may play an anti-inflammatory and immunoregulatory role by regulating intestinal microbiome and intestinal metabolic small molecules, and ultimately play a role in the treatment of influenza A virus pneumonia.
Collapse
Affiliation(s)
- Shiying Zhang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Bei Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Shenzhen Luohu People's Hospital, Shenzhen, China
- The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junyao Jiang
- School of Life Science, Westlake University, Hangzhou, China
| | - Fangguo Lu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ling Li
- Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Weiqing Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China.
- Shenzhen Luohu People's Hospital, Shenzhen, China.
- The Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
46
|
Manti S, Galletta F, Bencivenga CL, Bettini I, Klain A, D’Addio E, Mori F, Licari A, Miraglia del Giudice M, Indolfi C. Food Allergy Risk: A Comprehensive Review of Maternal Interventions for Food Allergy Prevention. Nutrients 2024; 16:1087. [PMID: 38613120 PMCID: PMC11013058 DOI: 10.3390/nu16071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024] Open
Abstract
Food allergy represents a global health problem impacting patients' and caregivers' quality of life and contributing to increased healthcare costs. Efforts to identify preventive measures starting from pregnancy have recently intensified. This review aims to provide an overview of the role of maternal factors in food allergy prevention. Several studies indicate that avoiding food allergens during pregnancy does not reduce the risk of developing food allergies. International guidelines unanimously discourage avoidance diets due to potential adverse effects on essential nutrient intake and overall health for both women and children. Research on probiotics and prebiotics during pregnancy as preventive measures is promising, though evidence remains limited. Consequently, guidelines lack specific recommendations for their use in preventing food allergies. Similarly, given the absence of conclusive evidence, it is not possible to formulate definitive conclusions on the supplementation of vitamins, omega-3 fatty acids (n-3 PUFAs), and other antioxidant substances. A combination of maternal interventions, breastfeeding, and early introduction of foods to infants can reduce the risk of food allergies in the child. Further studies are needed to clarify the interaction between genetics, immunological pathways, and environmental factors.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (S.M.); (F.G.)
| | - Francesca Galletta
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (S.M.); (F.G.)
| | - Chiara Lucia Bencivenga
- Department of Woman, Child and of General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy; (C.L.B.); (E.D.); (M.M.d.G.); (C.I.)
| | - Irene Bettini
- Pediatric Unit, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Angela Klain
- Department of Woman, Child and of General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy; (C.L.B.); (E.D.); (M.M.d.G.); (C.I.)
| | - Elisabetta D’Addio
- Department of Woman, Child and of General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy; (C.L.B.); (E.D.); (M.M.d.G.); (C.I.)
| | - Francesca Mori
- Allergy Unit, Meyer Children’s Hospital, IRCCS, 50139 Florence, Italy;
| | - Amelia Licari
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Michele Miraglia del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy; (C.L.B.); (E.D.); (M.M.d.G.); (C.I.)
| | - Cristiana Indolfi
- Department of Woman, Child and of General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy; (C.L.B.); (E.D.); (M.M.d.G.); (C.I.)
| |
Collapse
|
47
|
Castro AM, Gutiérrez-Díaz I, Saiz ML, Navarro S, Suárez M, Carbajal I, García Á, Sariego L, Toyos P, Rodríguez S, Jiménez S, González D, Molinos C, Pérez D, Fernández P, Suárez-Alvarez B, Margolles A, Díaz JJ, Delgado S. Gut microbiota and inflammatory mediators differentiate IgE mediated and non-IgE mediated cases of cow's milk protein at diagnosis. J Pediatr Gastroenterol Nutr 2024; 78:836-845. [PMID: 38344848 DOI: 10.1002/jpn3.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Analyze fecal and blood samples at point of diagnosis in IgE mediated cow's milk protein allergy (CMPA) and non-IgE mediated (NIM)-CMPA patients to look for potential new biomarkers. PATIENTS AND METHODS Fourteen patients with IgE mediated CMPA and 13 with NIM-CMPA were recruited in three hospitals in the north of Spain, and were compared with 25 infants from a control group of the same age range. To characterize intestinal microbiota, 16S rDNA gene and internal transcribed spacer amplicons of bifidobacteria were sequenced with Illumina technology. Fatty acids were analyzed by gas chromatography, meanwhile intestinal inflammation markers were quantified by enzyme-linked immunosorbent assay and a multiplex system. Immunological analysis of blood was performed by flow cytometry. RESULTS The fecal results obtained in the NIM-CMPA group stand out. Among them, a significant reduction in the abundance of Bifidobacteriaceae and Bifidobacterium sequences with respect to controls was observed. Bifidobacterial species were also different, highlighting the lower abundance of Bifidobacterium breve sequences. Fecal calprotectin levels were found to be significantly elevated in relation to IgE mediated patients. Also, a higher excretion of IL-10 and a lower excretion of IL-1ra and platelet derived growth factor-BB was found in NIM-CMPA patients. CONCLUSIONS The differential fecal parameters found in NIM-CMPA patients could be useful in the diagnosis of NIM food allergy to CM proteins.
Collapse
Affiliation(s)
- Ana M Castro
- MicroHealth Group, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC)/Instituto Biosanitario del Principado de Asturias (ISPA), Villaviciosa, Asturias, Spain
| | - Isabel Gutiérrez-Díaz
- MicroHealth Group, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC)/Instituto Biosanitario del Principado de Asturias (ISPA), Villaviciosa, Asturias, Spain
| | - María L Saiz
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Sandra Navarro
- Primary Care Center Teatinos-Corredoria, Oviedo, Asturias, Spain
| | | | | | - Águeda García
- Primary Care Center Vallobin-La Florida, Oviedo, Asturias, Spain
| | - Lydia Sariego
- MicroHealth Group, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC)/Instituto Biosanitario del Principado de Asturias (ISPA), Villaviciosa, Asturias, Spain
| | - Paula Toyos
- Pediatric Group, ISPA, Oviedo, Asturias, Spain
| | - Silvia Rodríguez
- Pediatrics Service, Hospital Universitario de San Agustín, Avilés, Asturias, Spain
| | | | | | - Cristina Molinos
- Pediatrics Department, Hospital Universitario de Cabueñes, Gijón, Asturias, Spain
| | - David Pérez
- Pediatrics Service, Hospital Universitario de San Agustín, Avilés, Asturias, Spain
| | | | - Beatriz Suárez-Alvarez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Abelardo Margolles
- MicroHealth Group, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC)/Instituto Biosanitario del Principado de Asturias (ISPA), Villaviciosa, Asturias, Spain
| | - Juan J Díaz
- Pediatric Group, ISPA, Oviedo, Asturias, Spain
| | - Susana Delgado
- MicroHealth Group, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC)/Instituto Biosanitario del Principado de Asturias (ISPA), Villaviciosa, Asturias, Spain
| |
Collapse
|
48
|
Bunyavanich S, Becker PM, Altman MC, Lasky-Su J, Ober C, Zengler K, Berdyshev E, Bonneau R, Chatila T, Chatterjee N, Chung KF, Cutcliffe C, Davidson W, Dong G, Fang G, Fulkerson P, Himes BE, Liang L, Mathias RA, Ogino S, Petrosino J, Price ND, Schadt E, Schofield J, Seibold MA, Steen H, Wheatley L, Zhang H, Togias A, Hasegawa K. Analytical challenges in omics research on asthma and allergy: A National Institute of Allergy and Infectious Diseases workshop. J Allergy Clin Immunol 2024; 153:954-968. [PMID: 38295882 PMCID: PMC10999353 DOI: 10.1016/j.jaci.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.
Collapse
Affiliation(s)
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Jessica Lasky-Su
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | | | - Talal Chatila
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | - Wendy Davidson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Dong
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Fang
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Patricia Fulkerson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Liming Liang
- Harvard T. H. Chan School of Public Health, Boston, Mass
| | | | - Shuji Ogino
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass; Harvard T. H. Chan School of Public Health, Boston, Mass; Broad Institute of MIT and Harvard, Boston, Mass
| | | | | | - Eric Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Max A Seibold
- National Jewish Health, Denver, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Hanno Steen
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Lisa Wheatley
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Hongmei Zhang
- School of Public Health, University of Memphis, Memphis, Tenn
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Kohei Hasegawa
- Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| |
Collapse
|
49
|
De Paepe E, Plekhova V, Vangeenderhuysen P, Baeck N, Bullens D, Claeys T, De Graeve M, Kamoen K, Notebaert A, Van de Wiele T, Van Den Broeck W, Vanlede K, Van Winckel M, Vereecke L, Elliott C, Cox E, Vanhaecke L. Integrated gut metabolome and microbiome fingerprinting reveals that dysbiosis precedes allergic inflammation in IgE-mediated pediatric cow's milk allergy. Allergy 2024; 79:949-963. [PMID: 38193259 DOI: 10.1111/all.16005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND IgE-mediated cow's milk allergy (IgE-CMA) is one of the first allergies to arise in early childhood and may result from exposure to various milk allergens, of which β-lactoglobulin (BLG) and casein are the most important. Understanding the underlying mechanisms behind IgE-CMA is imperative for the discovery of novel biomarkers and the design of innovative treatment and prevention strategies. METHODS We report a longitudinal in vivo murine model, in which two mice strains (BALB/c and C57Bl/6) were sensitized to BLG using either cholera toxin or an oil emulsion (n = 6 per group). After sensitization, mice were challenged orally, their clinical signs monitored, antibody (IgE and IgG1) and cytokine levels (IL-4 and IFN-γ) measured, and fecal samples subjected to metabolomics. The results of the murine models were further extrapolated to fecal microbiome-metabolome data from our population of IgE-CMA (n = 22) and healthy (n = 23) children (Trial: NCT04249973), on which polar metabolomics, lipidomics and 16S rRNA metasequencing were performed. In vitro gastrointestinal digestions and multi-omics corroborated the microbial origin of proposed metabolic changes. RESULTS During mice sensitization, we observed multiple microbially derived metabolic alterations, most importantly bile acid, energy and tryptophan metabolites, that preceded allergic inflammation. We confirmed microbial dysbiosis, and its associated effect on metabolic alterations in our patient cohort, through in vitro digestions and multi-omics, which was accompanied by metabolic signatures of low-grade inflammation. CONCLUSION Our results indicate that gut dysbiosis precedes allergic inflammation and nurtures a chronic low-grade inflammation in children on elimination diets, opening important new opportunities for future prevention and treatment strategies.
Collapse
Affiliation(s)
- Ellen De Paepe
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Laboratory of Integrative Metabolomics (LIMET), Ghent University, Merelbeke, Belgium
| | - Vera Plekhova
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Laboratory of Integrative Metabolomics (LIMET), Ghent University, Merelbeke, Belgium
| | - Pablo Vangeenderhuysen
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Laboratory of Integrative Metabolomics (LIMET), Ghent University, Merelbeke, Belgium
| | - Nele Baeck
- Department of Pediatrics, Pediatric Gastroenterology, AZ Jan Palfijn Ghent, Ghent, Belgium
| | - Dominique Bullens
- Department of Microbiology, Immunology and Transplantation, Allergy and Immunology Research Group, KU Leuven, Leuven, Belgium
- Clinical Division of Pediatrics, UZ Leuven, Leuven, Belgium
| | - Tania Claeys
- Department of Pediatrics, Pediatric Gastroenterology and Nutrition & General Pediatric Medicine, AZ Sint-Jan Bruges, Bruges, Belgium
| | - Marilyn De Graeve
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Laboratory of Integrative Metabolomics (LIMET), Ghent University, Merelbeke, Belgium
| | - Kristien Kamoen
- Department of Pediatrics, Maria Middelares Ghent, Ghent, Belgium
| | - Anneleen Notebaert
- Department of Pediatrics, Sint-Vincentius Hospital Deinze, Deinze, Belgium
| | - Tom Van de Wiele
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, 9000, Belgium
| | - Wim Van Den Broeck
- Faculty of Veterinary Medicine, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Ghent University, Merelbeke, Belgium
| | - Koen Vanlede
- Department of General Pediatrics, VITAZ, Sint-Niklaas, Belgium
| | - Myriam Van Winckel
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Lars Vereecke
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Ghent Gut Inflammation Group (GGIG), Ghent, Belgium
| | - Chris Elliott
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Eric Cox
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Laboratory of Immunology, Ghent University, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Laboratory of Integrative Metabolomics (LIMET), Ghent University, Merelbeke, Belgium
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
50
|
Williams LM, Cao S. Harnessing and delivering microbial metabolites as therapeutics via advanced pharmaceutical approaches. Pharmacol Ther 2024; 256:108605. [PMID: 38367866 PMCID: PMC10985132 DOI: 10.1016/j.pharmthera.2024.108605] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.
Collapse
Affiliation(s)
- Lindsey M Williams
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Shijie Cao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|