1
|
You H, Liang Y. Atopic Dermatitis: The Relationship Between Immune Mediators and Skin Lipid Barrier. Clin Rev Allergy Immunol 2025; 68:49. [PMID: 40366491 DOI: 10.1007/s12016-025-09057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that is prevalent worldwide with complex etiology. Skin barrier defects and abnormal immune activation are crucial in the occurrence and development of AD. In the classic model of the skin barrier, lipids are essential for the formation and maintenance of this barrier as a "mortar" component. However, abnormally activated immune responses promote the lipid barrier deficiency through the secretion of various types of immune mediators directly or indirectly. In this review, we first introduce the skin lipid barrier (SLB) under both normal and abnormal conditions, highlighting the contributions of lipids derived from keratinocytes and sebaceous glands (SGs). Subsequently, the relationships between the immune mediators of Th1, Th2, Th17, Th22, and other types (adipokines, prostaglandins, leukotrienes) and SLB are elaborated in turn. Finally, the therapies for restoring SLB to treat AD are summarized, with a focus on the restoration effect of dupilumab on SLB. We hope that this review will offer a comprehensive perspective for understanding the pathogenesis of lipid metabolism disorders and SLB deficiency caused by immune mediators in AD. It also aims to provide guidance for further research on targeting inflammatory mediators to restore SLB.
Collapse
Affiliation(s)
- Huayan You
- Hunan Key Laboratory of Medical Epigenomics & Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yunsheng Liang
- Hunan Key Laboratory of Medical Epigenomics & Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Blunder S, Hermann-Kleiter N, Mahmuti R, Hermann M, Ortner D, Reider D, Moosbrugger-Martinz V, Del Frari B, Stoitzner P, Dubrac S, Schmuth M, Gruber R. Blocking of IL-4/IL-13 Signalling With Dupilumab Results in Restoration of Serum and Cutaneous Abnormalities in Netherton Syndrome. Exp Dermatol 2025; 34:e70113. [PMID: 40344324 DOI: 10.1111/exd.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/02/2025] [Accepted: 04/13/2025] [Indexed: 05/11/2025]
Abstract
Netherton syndrome (NS) is a rare ichthyosis caused by SPINK5-null mutations, resulting in erythroderma, ichthyosis linearis circumflexa, and atopic diathesis. Elevated serum IgE levels and activation of the KLK5-PAR2-TSLP axis suggest involvement of Th2-skewed immunity in NS. In this pilot study, we investigated the effects of IL-4/IL-13 blocking with dupilumab on NS features. At baseline, Th2-chemokines CCL11, CCL17, CCL18, CCL26, and serum IgE were more elevated in atopic dermatitis (AD) than in NS vs. controls (ctrls). AD exhibited elevated serum levels of CCL27, LDH, and eosinophils, while NS showed higher levels of IL-9 and IL-18. Epidermal aberrations, including acanthosis and SC-detachment, were present in NS versus ctrls. The number of CD3+ T cells increased, while CD1a + Langerhans cell numbers decreased in NS skin. Amounts of KLK5 were reduced, and the distribution of KLK7 was abnormal in NS epidermis as compared to ctrls. Reduced amounts of FLG, CDSN, and DSG1 highlight impaired keratinocyte late differentiation in NS. Amounts of epidermal TSLP were diminished. Upon dupilumab treatment, clinical improvement in NS began as early as week 8 and continued up to 30 months, with no serious side effects reported. Serum levels of IgE, CCL17, CCL26, IFN-γ and IL-18 decreased upon IL-4/IL-13 blockade, and alterations of cutaneous immune cells improved in NS. Furthermore, the epidermal protease inhibitor WFDC12 expression increased after dupilumab treatment, concurring with improved and partially normalised epidermal structure, including increased FLG, CDSN, and DSG1. These data highlight Th2-skewed immunity in NS and emphasise the amelioration of NS features through dupilumab treatment.
Collapse
Affiliation(s)
- Stefan Blunder
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rita Mahmuti
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Ortner
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Reider
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Barbara Del Frari
- Departmtent of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Tordjman L, Mashoudy KD, Czarnowicki T. Converging paths toward unified therapeutic approaches in atopic dermatitis, vitiligo, and alopecia areata. J Allergy Clin Immunol 2025:S0091-6749(25)00456-7. [PMID: 40274075 DOI: 10.1016/j.jaci.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/01/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
Emerging evidence reveals significant epidemiologic, genetic, and immunologic connections between atopic dermatitis, vitiligo, and alopecia areata, challenging previously established notions of their distinct pathogenic and molecular signatures. Exploring these commonalities not only enhances our understanding of each disease's pathogenesis, but also supports the development of unified treatment strategies for these frequently co-occurring disorders. This review examines key immune players shared across the 3 conditions, including cytokines, immune cells, and signaling pathways. Building on these insights, we also evaluate a range of therapeutic options-ranging from treatments approved by the Food and Drug Administration to those currently in clinical trials-alongside proposed future therapeutic targets. This comprehensive approach aims to advance our management of these interconnected autoimmune and inflammatory disorders with greater precision.
Collapse
Affiliation(s)
- Lea Tordjman
- University of Miami Miller School of Medicine, Miami, Fla
| | | | - Tali Czarnowicki
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fla.
| |
Collapse
|
4
|
Hsu YW, Su H, Wu DC, Lee CW, Hung SJ, Shiea J. Investigation of potential biomarkers for psoriasis in skin with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and ambient ionization mass spectrometry. J Mass Spectrom Adv Clin Lab 2025; 36:52-62. [PMID: 40331168 PMCID: PMC12051561 DOI: 10.1016/j.jmsacl.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Background Psoriasis is a chronic inflammatory disease with an unclear etiology that affects skin, nails, and joints and often accompanies comorbidities. Recent studies indicate that alterations in metabolites within psoriatic lesions might be linked to inflammation. Studying bioactive lipid mediators or metabolites in skin inflammation and immunity might provide new potential biomarkers and therapeutic prediction factors. Methods Lipids and peptides in the scale extracts from psoriasis patients and healthy controls were characterized by thermal desorption-electrospray ionizationmass spectrometry and matrix-assisted laser desorption/ionization time-of-flightmass spectrometry, respectively. Principal component analysis (PCA) was then applied to these data to identify potential differences between psoriasis patients and healthy controls. Results Psoriatic plaques show reduced wax esters and triglycerides and a predominant increase in human neutrophil defensins (HNPs), compared to non-lesional sites of psoriatic patients and healthy control. Additionally, when medical treatments were administered to psoriasis patients, levels of HNPs were significantly reduced, suggesting that they may serve as potential biomarkers to evaluate therapeutic efficacy for psoriasis. Conclusion Two mass spectrometric techniques were used to rapidly and non-invasively identify and monitor potential biomarkers between psoriasis patients and healthy controls. However, PCA results only showed slight differences, and we intend to broaden the sample base in the future to increase the statistical power of the investigation.
Collapse
Affiliation(s)
- Yi-Wen Hsu
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Hung Su
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 824004, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Chi-Wei Lee
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Sung-Jen Hung
- Department of Dermatology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- Department of Dermatology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
5
|
Fukuda K, Ito Y, Amagai M. Barrier Integrity and Immunity: Exploring the Cutaneous Front Line in Health and Disease. Annu Rev Immunol 2025; 43:219-252. [PMID: 40279307 DOI: 10.1146/annurev-immunol-082323-030832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Immune responses are influenced by not only immune cells but also the tissue microenvironment where these cells reside. Recent advancements in understanding the underlying molecular mechanisms and structures of the epidermal tight junctions (TJs) and stratum corneum (SC) have significantly enhanced our knowledge of skin barrier functions. TJs, located in the granular layer of the epidermis, are crucial boundary elements in the differentiation process, particularly in the transition from living cells to dead cells. The SC forms from dead keratinocytes via corneoptosis and features three distinct pH zones critical for barrier function and homeostasis. Additionally, the SC-skin microbiota interactions are crucial for modulating immune responses and protecting against pathogens. In this review, we explore how these components contribute both to healthy and disease states. By targeting the skin barrier in therapeutic strategies, we can enhance its integrity, modulate immune responses, and ultimately improve outcomes for patients with inflammatory skin conditions.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan;
| | - Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan;
| |
Collapse
|
6
|
Lawson LP, Parameswaran S, Panganiban RA, Constantine GM, Weirauch MT, Kottyan LC. Update on the genetics of allergic diseases. J Allergy Clin Immunol 2025:S0091-6749(25)00327-6. [PMID: 40139464 DOI: 10.1016/j.jaci.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/24/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
The field of genetic etiology of allergic diseases has advanced significantly in recent years. Shared risk loci reflect the contribution of genetic factors to the sequential development of allergic conditions across the atopic march, while unique risk loci provide opportunities to understand tissue specific manifestations of allergic disease. Most identified risk variants are noncoding, indicating that they likely influence gene expression through gene regulatory mechanisms. Despite recent advances, challenges persist, particularly regarding the need for increased ancestral diversity in research populations. Further, while polygenic risk scores show promise for identifying individuals at higher genetic risk for allergic diseases, their predictive accuracy varies across different ancestries and can be difficult to translate to an individual's absolute risk of developing a disease. Methodologies, including "nearest gene," 3D chromatin interaction analysis, expression quantitative trait locus analysis, experimental screens, and integrative bioinformatic models, have established connections between genetic variants and their regulatory targets, enhancing our understanding of disease risk and phenotypic variability. In this review, we focus on the state of knowledge of allergic sensitization and 5 allergic diseases: asthma, atopic dermatitis, allergic rhinitis, food allergy, and eosinophilic esophagitis. We summarize recent progress and highlight opportunities for advancing our understanding of their genetic etiology.
Collapse
Affiliation(s)
- Lucinda P Lawson
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ronald A Panganiban
- Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Gregory M Constantine
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Md
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
7
|
Kuniyoshi Y, Tsujimoto Y, Banno M, Taito S, Ariie T, Kimoto T. Association of obesity or metabolic syndrome with various allergic diseases: An overview of reviews. Obes Rev 2025; 26:e13862. [PMID: 39663640 DOI: 10.1111/obr.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/17/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024]
Abstract
The relationship between obesity, metabolic syndrome, related disorders, and various allergic diseases remains unclear. An overview of reviews investigating potential associations between obesity or metabolic syndrome and various allergic diseases was conducted. MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials were searched. Systematic reviews and meta-analyses with summary effect size and corresponding 95% confidence intervals for at least one outcome (asthma, atopic dermatitis, and various allergic diseases) were included. This study encompassed 17 systematic review articles and 29 eligible meta-analyses. All included meta-analyses indicated a positive association between obesity/overweight and asthma. Three meta-analyses from one review demonstrated a positive association between obesity/overweight and the risk of atopic dermatitis. However, no meta-analyses focused on the associations between obesity/overweight or metabolic syndrome and allergic rhinitis, allergic conjunctivitis, or other allergic conditions. All included reviews employed poor methodology according to the AMSTAR-2 assessment tools. Our findings suggest that obesity likely increases the risk of asthma. However, evidence for associations with other allergic diseases is limited. Furthermore, no meta-analyses were conducted to assess the relationship between metabolic syndrome and allergic diseases. Further studies are necessary to elucidate the associations between obesity and the full spectrum of allergic diseases.
Collapse
Affiliation(s)
- Yasutaka Kuniyoshi
- Department of Social Services and Healthcare Management, International University of Health and Welfare, Otawara, Tochigi, Japan
- Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan
| | - Yasushi Tsujimoto
- Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan
- Oku Medical Clinic, Osaka, Japan
| | - Masahiro Banno
- Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan
- Department of Psychiatry, Seichiryo Hospital, Nagoya, Japan
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunsuke Taito
- Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Takashi Ariie
- Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan
- Department of Physical Therapy, School of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| | - Takeru Kimoto
- Department of Pediatrics, Tsugaruhoken Medical COOP Kensei Hospital, Hirosaki, Japan
| |
Collapse
|
8
|
Ribeiro A, Pereira-Leite C, Rosado C, Aruci E, Colley HE, Kortekaas Krohn I, Baldea I, Pantelić I, Fluhr JW, Simões SI, Savić S, Costa Lima SA. Enhancing Transcutaneous Drug Delivery: Advanced Perspectives on Skin Models. JID INNOVATIONS 2025; 5:100340. [PMID: 39925780 PMCID: PMC11803873 DOI: 10.1016/j.xjidi.2024.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 02/11/2025] Open
Abstract
Skin acts as a dynamic interface with the environment. Pathological alterations in the skin barrier are associated with skin diseases. These conditions are characterized by specific impairments in epidermal barrier functions. Despite its protective nature, the skin can be a relevant route of drug administration, both for topical and transdermal therapy, allowing for improved drug delivery and reducing the incidence of adverse reactions. This manuscript reviews transcutaneous drug delivery as a strategy for treating localized and systemic conditions, highlighting the importance of skin models in the evaluation of drug efficacy and barrier function. It explores advances in in vitro, ex vivo, in vivo, and in silico models for studying cellular uptake, wound healing, oxidative stress, anti-inflammatory, and immune modulation activities. Disease-specific skin models are also discussed.
Collapse
Affiliation(s)
- Ana Ribeiro
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Catarina Pereira-Leite
- CBIOS - Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Lisboa, Portugal
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Catarina Rosado
- CBIOS - Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Edlira Aruci
- Research Center for the Study of Rare Diseases, Western Balkans University, Tirana, Albania
| | - Helen E. Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Inge Kortekaas Krohn
- Skin Immunology & Immune Tolerance (SKIN) Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ioana Baldea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Joachim W. Fluhr
- Institute of Allergology IFA and Fraunhofer ITMP Immunology and Allergology IA, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra I. Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Combarros D, Brahmi R, Musaefendic E, Heit A, Kondratjeva J, Moog F, Pressanti C, Lecru LA, Arbouille S, Laffort C, Goudounèche D, Brun J, Simon M, Cadiergues MC. Reconstructed Epidermis Produced with Atopic Dog Keratinocytes Only Exhibit Skin Barrier Defects after the Addition of Proinflammatory and Allergic Cytokines. JID INNOVATIONS 2025; 5:100330. [PMID: 39811760 PMCID: PMC11730559 DOI: 10.1016/j.xjidi.2024.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
Our objectives were to explore epidermal barrier defects in dogs with atopic dermatitis and to determine whether the defects are genetically determined or secondary to skin inflammation. First, the expression of filaggrin, corneodesmosin, and claudin1, analyzed using indirect immunofluorescence in skin biopsies collected from 32 healthy and 32 dogs with atopic dermatitis, was weaker in the atopic skin (P = .003). Second, primary keratinocytes of atopic dogs and healthy dogs were used to produce 3-dimensional reconstructed canine epidermis. The expression of the same proteins was analyzed using indirect immunofluorescence, immunoblotting, and RT-qPCR, whereas reconstructed canine epidermis morphology was investigated by transmission electron microscopy, and the barrier was investigated by functional assays. Next, inflammatory cytokines (IL-4, IL-13, IL-31, and TNFα) were added to the culture medium. The morphology, protein expression, and barrier function of the reconstructed canine epidermis were similar whether produced with keratinocytes from healthy dogs or dogs with atopy. Addition of inflammatory cytokines impaired the protein expression and epidermal barrier of the 2 types of reconstructed canine epidermis equally. To conclude, the reduced expression of epidermal barrier proteins observed in vivo was not reproduced in vitro unless cytokines were used, suggesting that it is induced by the inflammatory milieu.
Collapse
Affiliation(s)
- Daniel Combarros
- Small Animal Clinic, École Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, INSERM, CNRS, Paul Sabatier Toulouse III University, Toulouse, France
| | - Rahma Brahmi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, INSERM, CNRS, Paul Sabatier Toulouse III University, Toulouse, France
| | - Emma Musaefendic
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, INSERM, CNRS, Paul Sabatier Toulouse III University, Toulouse, France
| | - Alizée Heit
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, INSERM, CNRS, Paul Sabatier Toulouse III University, Toulouse, France
| | - Jevgenija Kondratjeva
- Small Animal Clinic, École Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Fabien Moog
- Small Animal Clinic, École Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Charline Pressanti
- Small Animal Clinic, École Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Line A. Lecru
- Clinique vétérinaire Hermes-Plage, Marseille, France
| | | | | | - Dominique Goudounèche
- Centre de Microscopie Electronique Appliquée à la Biologie, University of Toulouse, Toulouse, France
| | - Jessie Brun
- Small Animal Clinic, École Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, INSERM, CNRS, Paul Sabatier Toulouse III University, Toulouse, France
| | - Marie-Christine Cadiergues
- Small Animal Clinic, École Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, INSERM, CNRS, Paul Sabatier Toulouse III University, Toulouse, France
| |
Collapse
|
10
|
Buttar PA, Mazhar MU, Khan JZ, Jamil M, Abid M, Tipu MK. Saccharomyces boulardii (CNCM I-745) ameliorates Ovalbumin-induced atopic dermatitis by modulating the NF-κB signaling in skin and colon. Arch Dermatol Res 2025; 317:500. [PMID: 40009233 DOI: 10.1007/s00403-025-04057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Atopic dermatitis (AD) is a long-lasting allergic disorder characterized by itching, redness, swelling, dry skin, scaling, inflammation, and tissue damage. The exact cause of AD is still unknown. Steroid medications are frequently utilized in treating AD, but their prolonged use can result in complications. Multiple studies suggest probiotics may regulate the immune system, boost immune functionality, or reduce overactive immune responses. The current study investigated the anti-inflammatory, antioxidant, and immunomodulatory role of Saccharomyces boulardii in Ovalbumin (OVA)-induced AD in a murine model. Balb/c mice were sensitized and challenged with OVA to induce AD-like lesions. S. boulardii 1 × 109 CFU/ml/day/mice was orally administrated either as a pretreatment (administered 7 days before OVA induction and continued till day 28) or concurrent treatment (administered from day 1 and continued till day 28). Dexamethasone (5 mg/kg/day) was used as a standard treatment. S. boulardii alleviated the macroscopic and behavioral changes. Blood inflammatory cells were significantly reduced. Serum IgE levels were decreased. Oxidative stress and histopathological changes (epidermal/dermal thickness, inflammatory cells, collagen deposition) in skin tissue were improved. Similarly, the colon's antioxidant capacity and histological architecture were also maintained. Expression of proinflammatory cytokines like TNF-⍺ and IL-1β were significantly reduced in skin and colon tissue. The probiotic S. boulardii under study reduced inflammation by downregulating NF-κB signaling in both skin and colon tissue. This study provides a basis for a possible gut-skin axis, which can be targeted to relieve AD symptoms.
Collapse
Affiliation(s)
- Parveen Akhtar Buttar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Maryam Jamil
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Abid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
11
|
Barbosa AI, Yousef I, Costa Lima SA, Reis S. Design and characterization of κ-Carrageenan:PVA hydrogels to repurpose the topical delivery of betamethasone. Int J Pharm 2025; 671:125305. [PMID: 39894090 DOI: 10.1016/j.ijpharm.2025.125305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/13/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Atopic dermatitis (AD) is a severe inflammatory skin disorder, affecting children and adults worldwide, and despite the several existing treatments, it is necessary to find new alternative topical therapies. Hydrogels may represent a good tool to treat AD due to their high water content, making them excellent candidates for drug delivery vehicles in skin research. This work aimed to develop and characterize hybrid hydrogels composed of gel-forming polymers (k-carrageenan and polyvinyl alcohol) for cutaneous delivery of betamethasone (up to 0.2 mg mL-1) widely used to manage AD, with high skin retention. Bergamot oil and menthol essential oils were also incorporated into the hydrogels to study their effects on penetration and retention of the corticosteroid. Rheological properties revealed the pseudoplastic behavior of the hydrogels, a favorable characteristic for skin application. Cytocompatibility towards fibroblasts and keratinocytes was determined, revealing safe usage of the hydrogel blends up to 100 mg mL-1, corresponding to 20 µg mL-1 in betamethasone, but was compromised by the presence of the essential oils in the higher hydrogel tested concentrations (50 and 100 mg mL-1). The ex vivo pig ear skin permeation assay showed that hydrogels promote betamethasone retention up to 20 % of the added dose (c.a. 10 µg) even after 24 h of permeation, independently of the use of essential oils' use in the composition, showing that they might be a good strategy to treat AD skin.
Collapse
Affiliation(s)
- Ana Isabel Barbosa
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto, Portugal
| | - Ibraheem Yousef
- ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Vallès 08290 Barcelona, Spain
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto, Portugal
| |
Collapse
|
12
|
Vafaeian A, Rajabi F, Rezaei N. Toll-like receptors in atopic dermatitis: pathogenesis and therapeutic implications. Heliyon 2025; 11:e42226. [PMID: 40007792 PMCID: PMC11850170 DOI: 10.1016/j.heliyon.2025.e42226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Toll-like receptors (TLR), the key players of the innate immune system, contribute to the pathogenesis of atopic dermatitis (AD) through multiple pathways. TLRs play a crucial role in delaying barrier repair, promoting Th2-mediated dermatitis, shifting the response toward Th1 in the chronic phase, and contributing to the establishment of the itch-scratch cycle, as well as mediating the effects of UV radiation. The dysregulation of proinflammatory and immunomodulatory effects of TLRs can be attributed to their ligand structures, receptor heterodimerization, the relative frequency of each TLR, interactions with other receptors/signalling pathways, cytokine milieu, and genetic polymorphisms. Current AD treatments like vitamin-D analogs, tacrolimus, and cyclosporine partially work through TLR modulation. Direct TLR stimulation using different compounds has shown therapeutic benefits in preclinical studies. However, significant challenges exist, including off-target effects due to ubiquitous TLR expression and complex roles in immune responses. Future directions include CRISPR-based gene editing to understand TLR functions, development of specific TLR modulators for targeted therapy, and machine learning applications to predict drug responses and identify novel ligands. Patient heterogeneity, including the presence or absence of polymorphisms, variations in TLR expression levels, and differences in immune responses, underscores the need for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Ahmad Vafaeian
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Rajabi
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Center for Research & Training in Skin Diseases & Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Sheffield, UK
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Wu J, Li L, Zhang T, Lu J, Tai Z, Zhu Q, Chen Z. The epidermal lipid-microbiome loop and immunity: Important players in atopic dermatitis. J Adv Res 2025; 68:359-374. [PMID: 38460775 PMCID: PMC11785582 DOI: 10.1016/j.jare.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/10/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND The promotion of epidermal barrier dysfunction is attributed to abnormalities in the lipid-microbiome positive feedback loop which significantly influences the imbalance of the epithelial immune microenvironment (EIME) in atopic dermatitis (AD). This imbalance encompasses impaired lamellar membrane integrity, heightened exposure to epidermal pathogens, and the regulation of innate and adaptive immunity. The lipid-microbiome loop is substantially influenced by intense adaptive immunity which is triggered by abnormal loop activity and affects the loop's integrity through the induction of atypical lipid composition and responses to dysregulated epidermal microbes. Immune responses participate in lipid abnormalities within the EIME by downregulating barrier gene expression and are further cascade-amplified by microbial dysregulation which is instigated by barrier impairment. AIM OF REVIEW This review examines the relationship between abnormal lipid composition, microbiome disturbances, and immune responses in AD while progressively substantiating the crosstalk mechanism among these factors. Based on this analysis, the "lipid-microbiome" positive feedback loop, regulated by immune responses, is proposed. KEY SCIENTIFIC CONCEPTS OF REVIEW The review delves into the impact of adaptive immune responses that regulate the EIME, driving AD, and investigates potential mechanisms by which lipid supplementation and probiotics may alleviate AD through the up-regulation of the epidermal barrier and modulation of immune signaling. This exploration offers support for targeting the EIME to attenuate AD.
Collapse
Affiliation(s)
- Junchao Wu
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Tingrui Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| |
Collapse
|
14
|
Nene S, Devabattula G, Vambhurkar G, Tryphena KP, Singh PK, Khatri DK, Godugu C, Srivastava S. High mobility group box 1 cytokine targeted topical delivery of resveratrol embedded nanoemulgel for the management of atopic dermatitis. Drug Deliv Transl Res 2025; 15:134-157. [PMID: 38509343 DOI: 10.1007/s13346-024-01565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Resveratrol is a polyphenolic compound showing anti-inflammatory activity by inhibition of high mobility group box 1 cytokine responsible for the activation of nuclear factor-κB pathway in atopic dermatitis. To evaluate the efficacy of resveratrol through topical route we have developed resveratrol-loaded nanoemulgel for the effective management of atopic dermatitis in mice model. The resveratrol-loaded nanoemulsion (0.5%, 0.75% and 1% w/w) was optimized by spontaneous nano-emulsification. The optimized resveratrol-loaded nanoemulsions showed average globule size in the 180-230 nm range and found to be monodispersed. The resveratrol nanoemulgel was prepared with a SEPINEO™ P 600 gel base and propylene glycol. Ex vivo permeation and retention study resulted in significantly higher skin retention of resveratrol from resveratrol-loaded nanoemulgel than free resveratrol-loaded gel. Preclinical efficacy of resveratrol nanoemulgel displayed promising therapeutic outcomes where, western blotting of skin tissues disclosed a significant reduction in the relative expression of high mobility group box 1, the receptor for advanced glycation end products, toll-like receptor-4 and phosphorylated nuclear factor-κB. Further, real-time polymerase chain reaction also disclosed a significant reduction in pro-inflammatory cytokines such as thymic stromal lymphopoietin, interleukin-4, interleukin-13, interleukin-31, tumor necrosis factor-α and interleukin-6. The histopathological examination of skin sections showed improvement in the skin condition. Collectively, the findings from our study showcased the significant improvement in the atopic dermatitis skin condition in mice model after topical application of resveratrol loaded nanoemulgel.
Collapse
Affiliation(s)
- Shweta Nene
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Geetanjali Devabattula
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kamatham Pushpa Tryphena
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
15
|
Cho Y, Han EJ, Heo E, Jayasinghe AMK, Won J, Lee S, Kim T, Kim S, Lim S, Woo SO, Han G, Kang W, Ahn G, Byun S. Propolis suppresses atopic dermatitis through targeting the MKK4 pathway. Biofactors 2025; 51:e2119. [PMID: 39163569 PMCID: PMC11681297 DOI: 10.1002/biof.2119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Propolis is a natural resinous substance made by bees through mixing various plant sources. Propolis has been widely recognized as a functional food due to its diverse range of beneficial bioactivities. However, the therapeutic effects of consuming propolis against atopic dermatitis (AD) remain largely unknown. The current study aimed to investigate the potential efficacy of propolis against AD and explore the active compound as well as the direct molecular target. In HaCaT keratinocytes, propolis inhibited TNF-α-induced interleukin (IL)-6 and IL-8 secretion. It also led to a reduction in chemokines such as monocyte chemoattractant protein-1 (MCP-1) and macrophage-derived chemokine (MDC), while restoring the levels of barrier proteins, filaggrin and involucrin. Propolis exhibited similar effects in AD-like human skin, leading to the suppression of AD markers and the restoration of barrier proteins. In DNCB-induced mice, oral administration of propolis attenuated AD symptoms, improved barrier function, and reduced scratching frequency and transepidermal water loss (TEWL). In addition, propolis reversed the mRNA levels of AD-related markers in mouse dorsal skin. These effects were attributed to caffeic acid phenethyl ester (CAPE), the active compound identified by comparing major components of propolis. Mechanistic studies revealed that CAPE as well as propolis could directly and selectively target MKK4. Collectively, these findings demonstrate that propolis may be used as a functional food agent for the treatment of AD.
Collapse
Affiliation(s)
- Ye‐Ryeong Cho
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Eui Jeong Han
- Department of Food Technology and NutritionChonnam National UniversityYeosuRepublic of Korea
| | - Eun Heo
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | | | - Jihyun Won
- College of PharmacyChung‐Ang UniversitySeoulRepublic of Korea
| | - Soohwan Lee
- Department of Food Science and BiotechnologyGachon UniversitySeongnamRepublic of Korea
| | - Taegun Kim
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Sung‐Kuk Kim
- Department of Agrobiology, Division of ApicultureNational Institute of Agricultural SciencesWanjuRepublic of Korea
| | - Seokwon Lim
- Department of Food Science and BiotechnologyGachon UniversitySeongnamRepublic of Korea
| | - Soon Ok Woo
- Department of Agrobiology, Division of ApicultureNational Institute of Agricultural SciencesWanjuRepublic of Korea
| | - Gyoonhee Han
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Wonku Kang
- College of PharmacyChung‐Ang UniversitySeoulRepublic of Korea
| | - Ginnae Ahn
- Department of Food Technology and NutritionChonnam National UniversityYeosuRepublic of Korea
| | - Sanguine Byun
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
- POSTECH Biotech CenterPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| |
Collapse
|
16
|
Quílez C, Bebiano LB, Jones E, Maver U, Meesters L, Parzymies P, Petiot E, Rikken G, Risueño I, Zaidi H, Zidarič T, Bekeschus S, H van den Bogaard E, Caley M, Colley H, López NG, Letsiou S, Marquette C, Maver T, Pereira RF, Tobin DJ, Velasco D. Targeting the Complexity of In Vitro Skin Models: A Review of Cutting-Edge Developments. J Invest Dermatol 2024; 144:2650-2670. [PMID: 39127929 DOI: 10.1016/j.jid.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 08/12/2024]
Abstract
Skin in vitro models offer much promise for research, testing drugs, cosmetics, and medical devices, reducing animal testing and extensive clinical trials. There are several in vitro approaches to mimicking human skin behavior, ranging from simple cell monolayer to complex organotypic and bioengineered 3-dimensional models. Some have been approved for preclinical studies in cosmetics, pharmaceuticals, and chemicals. However, development of physiologically reliable in vitro human skin models remains in its infancy. This review reports on advances in in vitro complex skin models to study skin homeostasis, aging, and skin disease.
Collapse
Affiliation(s)
- Cristina Quílez
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Luís B Bebiano
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Eleri Jones
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Luca Meesters
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Piotr Parzymies
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emma Petiot
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Gijs Rikken
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ignacio Risueño
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Hamza Zaidi
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Sander Bekeschus
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | | | - Matthew Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Helen Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Nuria Gago López
- Melanoma group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sophia Letsiou
- Department of Biomedical Sciences, University of West Attica, Athens, Greece; Department of Food Science and Technology, University of West Attica, Athens, Greece
| | - Christophe Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rúben F Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Diego Velasco
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
17
|
Shim KS, Kim HJ, Ji KY, Jung DH, Park SH, Song HK, Kim T, Kim KM. Rosmarinic Acid Ameliorates Dermatophagoides farinae Extract-Induced Atopic Dermatitis-like Skin Inflammation by Activating the Nrf2/HO-1 Signaling Pathway. Int J Mol Sci 2024; 25:12737. [PMID: 39684446 DOI: 10.3390/ijms252312737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases. AD pathogenesis is associated with increased oxidative stress, impairment of the skin barrier, and activation of the immune response. Rosmarinic acid (RA), a caffeic acid ester, is known for its anti-inflammatory and antioxidant properties. However, the effects of RA on Dermatophagoides farinae extract (DfE)-induced AD-like skin inflammation, as well as its ability to regulate oxidative stress through the Nrf2/HO-1 pathway in TNF-α/IFN-γ-treated keratinocytes, remain unclear. We investigated RA activity in a DfE-induced AD-like skin inflammation mouse model and IFN-γ/TNF-α-stimulated keratinocytes. We found that RA attenuates DfE-induced inflammation by decreasing dermatitis scores and serum inflammatory marker levels and mast cell infiltration. Additionally, RA significantly suppressed IFN-γ/TNF-α-induced chemokine production in keratinocytes and reduced Th cytokine levels in concanavalin A-stimulated splenocytes. Importantly, RA also increased Nrf2/HO-1 expression in TNF-α/IFN-γ-treated keratinocytes. In conclusion, this study demonstrated that RA effectively alleviates DfE-induced AD-like skin lesions by reducing the levels of inflammatory cytokines and chemokines. Furthermore, RA promotes Nrf2/HO-1 signaling in keratinocytes, which may help mitigate DfE-induced oxidative stress, thereby alleviating AD-like skin inflammation. These findings highlight the potential of RA as a therapeutic agent for treating AD and other skin inflammation.
Collapse
Affiliation(s)
- Ki-Shuk Shim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hye Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Kon-Young Ji
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Dong Ho Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Sun Haeng Park
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hyun-Kyung Song
- Practical Research Division, Honam National Institute of Biological Resources, Gohadoan-gil 99, Mokpo 58762, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Ki Mo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| |
Collapse
|
18
|
Yoo SA, Kim KC, Lee JH. Efficacy and Potential Mechanisms of Naringin in Atopic Dermatitis. Int J Mol Sci 2024; 25:11064. [PMID: 39456844 PMCID: PMC11507659 DOI: 10.3390/ijms252011064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent chronic inflammatory skin diseases. Topical treatments are recommended for all patients regardless of severity, making it essential to develop an effective topical AD treatment with minimal side effects; We investigated the efficacy of topical application of naringin in AD and explored the possible mechanisms using an AD mouse model induced by 1-chloro-2,4-dinitrobenzene (DNCB). Clinical, histological, and immunological changes related to AD and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling proteins in the skin tissues were measured as outcomes; Naringin treatment resulted in a significant improvement in dermatitis severity score and reduced epidermal thickness and mast cell count in the skin (p < 0.05). Naringin also demonstrated the ability to inhibit DNCB-induced changes in interleukin (IL) 4, chemokine (C-C motif) ligand (CCL) 17, CCL22, IL1β, interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) levels by quantitative real-time polymerase chain reaction (qRT-PCR) and IL13 by enzyme-linked immunosorbent assay (ELISA) (p < 0.05). Western blot results exhibited the decreased JAK1, JAK2, STAT1, STAT3, phospho-STAT3, and STAT6 expression in the naringin-treated groups (p < 0.05); The findings of this study suggest that topical naringin may effectively improve the symptoms of AD and could be used as a therapeutic agent for AD.
Collapse
Affiliation(s)
- Seung-Ah Yoo
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Ki-Chan Kim
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Ji-Hyun Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
19
|
El-Howati A, Edmans JG, Santocildes-Romero ME, Madsen LS, Murdoch C, Colley HE. A Tissue-Engineered Model of T-Cell-Mediated Oral Mucosal Inflammatory Disease. J Invest Dermatol 2024:S0022-202X(24)02163-8. [PMID: 39366520 DOI: 10.1016/j.jid.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 10/06/2024]
Abstract
T-cell-mediated oral mucocutaneous inflammatory conditions, including oral lichen planus, are common, but development of new treatments aimed at relieving symptoms and controlling oral lichen planus progression is hampered by the lack of experimental models. In this study, we developed a tissue-engineered oral mucosal equivalent containing polarized T-cells to replicate oral lichen planus pathogenesis. Peripheral blood CD4+ and CD8+ T-cells were isolated, activated, and polarized into T helper 1 and cytotoxic T cells. Oral mucosal equivalents were constructed by culturing oral keratinocytes on an oral fibroblast-populated hydrogel to produce a stratified squamous epithelium. Oral mucosal equivalent stimulated with IFN-γ and TNF-α or medium from T helper 1 cells caused increased secretion of inflammatory cytokines and chemokines. A model of T-cell-mediated inflammatory disease was developed by combining oral mucosal equivalent on top of a T helper 1 and cytotoxic T-cell-containing hydrogel, followed by epithelial stimulation with IFN-γ and TNF-α. T-cell recruitment toward the epithelium was associated with increased secretion of T-cell chemoattractants CCL5, CXCL9, and CXCL10. Histological assessment showed tissue damage associated with cleaved caspase-3 and altered laminin-5 expression. Treatment with inhibitors directed against Jak, KCa3.1 channels, or clobetasol in solution and through a mucoadhesive patch prevented cytokine and chemokine release and tissue damage. This disease model has potential to probe for mechanisms of pathogenesis or as a test platform for novel therapeutics or treatment modalities.
Collapse
Affiliation(s)
- Asma El-Howati
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom; Department of Oral Medicine, Faculty of Dentistry, University of Benghazi, Benghazi, Libya
| | - Jake G Edmans
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom; Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | | | | | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute, University of Sheffield, Sheffield, United Kingdom.
| | - Helen E Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
20
|
Maskey AR, Mo X, Li XM. Preclinical Models of Atopic Dermatitis Suitable for Mechanistic and Therapeutic Investigations. J Inflamm Res 2024; 17:6955-6970. [PMID: 39372589 PMCID: PMC11456296 DOI: 10.2147/jir.s467327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/07/2024] [Indexed: 10/08/2024] Open
Abstract
Atopic dermatitis (AD) is a complex immune-mediated abnormality of the skin characterized by impaired barrier function, eczematous dermatitis, chronic pruritus and itch. The immunological response in AD is mediated by a Th2-dominated immune response in the early acute phase followed by a Th1/ Th2 mixed immune response in the chronic phase. AD is the first step of the "atopic march" that progresses into food allergy, allergic rhinitis, and asthma. Different models are indispensable for studying AD pathogenesis and for designing pre-clinical studies for therapeutic discovery. They reflect the characteristic morphological features of typical human AD with regard to epidermal thickening, hyperkeratosis, acanthosis, and spongiosis and help understand the immunopathogenesis of the disease with respect to IgE levels and cellular infiltration of eosinophils, mast cells, and lymphocytes. Although it is difficult to replicate all human AD clinical features in a model, several AD in vivo models comprising spontaneous, induced, transgenic, and humanized and in vitro models, including 2D, co-culture, and 3D, have been described previously. However, several questions remain regarding whether these models satisfactorily reflect the complexity of human AD. Therefore, this review comprehensively highlights the diversity of currently available models and provides insights into the selection of suitable models based on research questions. It also summarizes the diverse mechanisms associated with each model, which may be valuable for better study design to test new therapeutic options.
Collapse
Affiliation(s)
- Anish R Maskey
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, 10595, USA
| | - Xian Mo
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, 10595, USA
- The Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, Guangzhou, People’s Republic of China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY, 10595, USA
- Department of Dermatology, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
21
|
Rousel J, Mergen C, Bergmans ME, Klarenbeek NB, der Kolk TNV, van Doorn MBA, Bouwstra JA, Rissmann R. Lesional Psoriasis is Associated With Alterations in the Stratum Corneum Ceramide Profile and Concomitant Decreases in Barrier Function. Exp Dermatol 2024; 33:e15185. [PMID: 39382258 DOI: 10.1111/exd.15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Psoriasis is an inflammatory skin disease associated with an impaired skin barrier. The skin barrier function is dependent on the extracellular lipid matrix which surrounds the corneocytes in the stratum corneum. Ceramides comprise essential components of this matrix. Alterations in the stratum corneum ceramide profile have been directly linked to barrier dysfunction and might be an underlying factor of the barrier impairment in psoriasis. In this study, we investigated the ceramide profile and barrier function in psoriasis. Lesional and non-lesional skin of 26 patients and 10 healthy controls were analysed using in-depth ceramide lipidomics by liquid chromatography-mass spectrometry. Barrier function was assessed by measuring transepidermal water loss. Lesional skin showed a significant decrease in the abundance of total ceramides with significant alterations in the ceramide subclass composition compared to control and non-lesional skin. Additionally, the percentage of monounsaturated ceramides was significantly increased, and the average ceramide chain length significantly decreased in lesional skin. Altogether, this resulted in a markedly different profile compared to controls for lesional skin, but not for non-lesional skin. Importantly, the reduced barrier function in lesional psoriasis correlated to alterations in the ceramide profile, highlighting their interdependence. By assessing the parameters 2 weeks apart, we are able to highlight the reproducibility of these findings, which further affirms this connection. To conclude, we show that changes in the ceramide profile and barrier impairment are observed in, and limited to, lesional psoriatic skin. Their direct correlation provides a further mechanistic basis for the concomitantly observed impairment of barrier dysfunction.
Collapse
Affiliation(s)
- Jannik Rousel
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Catherine Mergen
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Menthe E Bergmans
- Centre for Human Drug Research, Leiden, The Netherlands
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Martijn B A van Doorn
- Centre for Human Drug Research, Leiden, The Netherlands
- Department of Dermatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Schneider E, Amar Y, Butter K, Steiger K, Musiol S, Garcia-Käufer M, Hölge IM, Schnautz B, Gschwendtner S, Ghirardo A, Gminski R, Eberlein B, Esser von Bieren J, Biedermann T, Haak S, Ohlmeyer M, Schmidt-Weber CB, Eyerich S, Alessandrini F. Pinewood VOC emissions protect from oxazolone-induced inflammation and dysbiosis in a mouse model of atopic dermatitis. ENVIRONMENT INTERNATIONAL 2024; 192:109035. [PMID: 39342822 DOI: 10.1016/j.envint.2024.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Pinewood, increasingly used in construction and interior fittings, emits high amounts of volatile organic compounds (VOCs), which tend to accumulate in indoor air. Whether indoor VOCs affect the development of atopic dermatitis (AD) is a matter of debate. We aimed to evaluate the effects of pinewood VOCs on the development of AD-like inflammatory phenotype and linked microbiome alterations, both hallmarks of AD. An oxazolone-induced mouse model of AD was exposed to three different VOC concentrations emitted by pinewood plates throughout the experiment. The disease course and associated immunological and microbiological changes were evaluated. To validate and translate our results to humans, human keratinocytes were exposed to a synthetic pinewood VOCs mixture in an AD environment. Pinewood emitted mainly terpenes, which at a total concentration of 5 mg/m3 significantly improved oxazolone-induced key AD parameters, such as serum total IgE, transepidermal water loss, barrier gene alteration, inflammation, and dysbiosis. Notably, exposure to pinewood VOCs restored the loss of microbial richness and inhibit Staphylococci expansion characteristic of the oxazolone-induced mouse AD model. Most beneficial effects of pinewood VOCs were dose-dependent. In fact, lower (<3 mg/m3) or higher (>10 mg/m3) pinewood VOC levels maintained only limited beneficial effects, such as preserving the microbiome richness or impeding Staphylococci expansion, respectively. In the human in-vitro model, exposure of keratinocytes grown in an AD environment to a pinewood VOCs mixture reduced the release of inflammatory markers. In conclusion, our results indicate that airborne phytochemicals emitted from pinewood have beneficial effects on an AD-like phenotype and associated dysbiosis. These investigations highlight the effects of terpenes as environmental compounds in the prevention and/or control of atopic skin disease.
Collapse
Affiliation(s)
- Evelyn Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Yacine Amar
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Katja Butter
- Thünen Institute of Wood Research, Hamburg, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Stephanie Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuel Garcia-Käufer
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Inga Marie Hölge
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Benjamin Schnautz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Silvia Gschwendtner
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Richard Gminski
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernadette Eberlein
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Julia Esser von Bieren
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Stefan Haak
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefanie Eyerich
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Francesca Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
23
|
Ochayon DE, DeVore SB, Chang WC, Krishnamurthy D, Seelamneni H, Grashel B, Spagna D, Andorf S, Martin LJ, Biagini JM, Waggoner SN, Khurana Hershey GK. Progressive accumulation of hyperinflammatory NKG2D low NK cells in early childhood severe atopic dermatitis. Sci Immunol 2024; 9:eadd3085. [PMID: 38335270 PMCID: PMC11107477 DOI: 10.1126/sciimmunol.add3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/21/2023] [Indexed: 02/12/2024]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that often precedes the development of food allergy, asthma, and allergic rhinitis. The prevailing paradigm holds that a reduced frequency and function of natural killer (NK) cell contributes to AD pathogenesis, yet the underlying mechanisms and contributions of NK cells to allergic comorbidities remain ill-defined. Here, analysis of circulating NK cells in a longitudinal early life cohort of children with AD revealed a progressive accumulation of NK cells with low expression of the activating receptor NKG2D, which was linked to more severe AD and sensitivity to allergens. This was most notable in children co-sensitized to food and aeroallergens, a risk factor for development of asthma. Individual-level longitudinal analysis in a subset of children revealed coincident reduction of NKG2D on NK cells with acquired or persistent sensitization, and this was associated with impaired skin barrier function assessed by transepidermal water loss. Low expression of NKG2D on NK cells was paradoxically associated with depressed cytolytic function but exaggerated release of the proinflammatory cytokine tumor necrosis factor-α. These observations provide important insights into a potential mechanism underlying the development of allergic comorbidity in early life in children with AD, which involves altered NK cell functional responses, and define an endotype of severe AD.
Collapse
Affiliation(s)
- David E. Ochayon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Stanley B. DeVore
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Cancer and Cell Biology Program, University of Cincinnati College of Medicine
| | - Wan-Chi Chang
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Durga Krishnamurthy
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
| | - Harsha Seelamneni
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
| | - Brittany Grashel
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Daniel Spagna
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Sandra Andorf
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Lisa J. Martin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Jocelyn M. Biagini
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Stephen N. Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Gurjit K. Khurana Hershey
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Cancer and Cell Biology Program, University of Cincinnati College of Medicine
- Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
24
|
Berdyshev E. Skin Lipid Barrier: Structure, Function and Metabolism. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:445-461. [PMID: 39363765 PMCID: PMC11450438 DOI: 10.4168/aair.2024.16.5.445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Lipids are important skin components that provide, together with proteins, barrier function of the skin. Keratinocyte terminal differentiation launches unique metabolic changes to lipid metabolism that result in the predominance of ceramides within lipids of the stratum corneum (SC)-the very top portion of the skin. Differentiating keratinocytes form unique ceramides that can be found only in the skin, and generate specialized extracellular structures known as lamellae. Lamellae establish tight hydrophobic layers between dying keratinocytes to protect the body from water loss and also from penetration of allergens and bacteria. Genetic and immunological factors may lead to the failure of keratinocyte terminal differentiation and significantly alter the proportion between SC components. The consequence of such changes is loss or deterioration of skin barrier function that can lead to pathological changes in the skin. This review summarizes our current understanding of the role of lipids in skin barrier function. It also draws attention to the utility of testing SC for lipid and protein biomarkers to predict future onset of allergic skin diseases.
Collapse
Affiliation(s)
- Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
25
|
Ahn SS, Yeo H, Jung E, Kim TY, Han J, Lee YH, Shin SY. Saikosaponin A Recovers Impaired Filaggrin Levels in Inflamed Skin by Downregulating the Expression of FRA1 and c-Jun. Molecules 2024; 29:4064. [PMID: 39274912 PMCID: PMC11396542 DOI: 10.3390/molecules29174064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Filaggrin (FLG) is an essential structural protein expressed in differentiated keratinocytes. Insufficient FLG expression contributes to the pathogenesis of chronic inflammatory skin diseases. Saikosaponin A (SSA), a bioactive oleanane-type triterpenoid, exerts anti-inflammatory activity. However, the effects of topically applied SSA on FLG expression in inflamed skin remain unclear. This study aimed to evaluate the biological activity of SSA in restoring reduced FLG expression. The effect of SSA on FLG expression in HaCaT cells was assessed through various biological methods, including reverse transcription PCR, quantitative real-time PCR, immunoblotting, and immunofluorescence staining. TNFα and IFNγ decreased FLG mRNA, cytoplasmic FLG protein levels, and FLG gene promoter-reporter activity compared to the control groups. However, the presence of SSA restored these effects. A series of FLG promoter-reporter constructs were generated to investigate the underlying mechanism of the effect of SSA on FLG expression. Mutation of the AP1-binding site (mtAP1) in the -343/+25 FLG promoter-reporter abrogated the decrease in reporter activities caused by TNFα + IFNγ, suggesting the importance of the AP1-binding site in reducing FLG expression. The SSA treatment restored FLG expression by inhibiting the expression and nuclear localization of FRA1 and c-Jun, components of AP1, triggered by TNFα + IFNγ stimulation. The ERK1/2 mitogen-activated protein kinase signaling pathway upregulates FRA1 and c-Jun expression, thereby reducing FLG levels. The SSA treatment inhibited ERK1/2 activation caused by TNFα + IFNγ stimulation and reduced the levels of FRA1 and c-Jun proteins in the nucleus, leading to a decrease in the binding of FRA1, c-Jun, p-STAT1, and HDAC1 to the AP1-binding site in the FLG promoter. The effect of SSA was evaluated in an animal study using a BALB/c mouse model, which induces human atopic-dermatitis-like skin lesions via the topical application of dinitrochlorobenzene. Topically applied SSA significantly reduced skin thickening, immune cell infiltration, and the expression of FRA1, c-Jun, and p-ERK1/2 compared to the vehicle-treated group. These results suggest that SSA can effectively recover impaired FLG levels in inflamed skin by preventing the formation of the repressor complex consisting of FRA1, c-Jun, HDAC1, and STAT1.
Collapse
Affiliation(s)
- Sung Shin Ahn
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Hyunjin Yeo
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Euitaek Jung
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Tae Yoon Kim
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Junekyu Han
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Young Han Lee
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
- Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
26
|
Casella R, Miniello A, Buta F, Yacoub MR, Nettis E, Pioggia G, Gangemi S. Atopic Dermatitis and Autism Spectrum Disorders: Common Role of Environmental and Clinical Co-Factors in the Onset and Severity of Their Clinical Course. Int J Mol Sci 2024; 25:8936. [PMID: 39201625 PMCID: PMC11354676 DOI: 10.3390/ijms25168936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Increasing evidence suggests an association between atopic dermatitis, the most chronic inflammatory disease of the skin, and autism spectrum disorders, which are a group of neurodevelopmental diseases. Inflammation and immune dysregulation associated with genetic and environmental factors seem to characterize the pathophysiological mechanisms of both conditions. We conducted a literature review of the PubMed database aimed at identifying the clinical features and alleged risk factors that could be used in clinical practice to predict the onset of ASD and/or AD or worsen their prognosis in the context of comorbidities.
Collapse
Affiliation(s)
- Rossella Casella
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Andrea Miniello
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Federica Buta
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (F.B.)
| | - Mona-Rita Yacoub
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Hospital San Raffaele, 20132 Milan, Italy
| | - Eustachio Nettis
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (F.B.)
| |
Collapse
|
27
|
Niu Q, Zhang T, Mao R, Zhao N, Deng S. Genetic association of lipid and lipid-lowering drug target genes with atopic dermatitis: a drug target Mendelian randomization study. Sci Rep 2024; 14:18097. [PMID: 39103489 PMCID: PMC11300444 DOI: 10.1038/s41598-024-69180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Observational studies suggest dyslipidemia as an atopic dermatitis (AD) risk factor and posit that lipid-lowering drugs may influence AD risk, but the causal link remains elusive. Mendelian randomization was applied to elucidate the causal role of serum lipids in AD and assess the therapeutic potential of lipid-lowering drug targets. Genetic variants related to serum lipid traits and lipid-lowering drug targets were sourced from the Global Lipid Genetics Consortium GWAS data. Comprehensive AD data were collated from the UK Biobank, FinnGen, and Biobank Japan. Colocalization, Summary-data-based Mendelian Randomization (SMR), and mediation analyses were utilized to validate the results and pinpoint potential mediators. Among assessed targets, only Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) was significantly linked to a reduced AD risk, corroborated across three separate AD cohorts. No association between serum lipid concentrations or other lipid-lowering drug targets and diminished AD risk was observed. Mediation analysis revealed that beta nerve growth factor (b-NGF) might mediate approximately 12.8% of PCSK9's influence on AD susceptibility. Our findings refute dyslipidemia's role in AD pathogenesis. Among explored lipid-lowering drug targets, PCSK9 stands out as a promising therapeutic agent for AD.
Collapse
Affiliation(s)
- Qinwang Niu
- Sichuan Polytechnic University, Deyang, 618000, Sichuan, China
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610031, Sichuan, China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Nana Zhao
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610031, Sichuan, China
| | - Sui Deng
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, China.
| |
Collapse
|
28
|
Zhang X, Shen Z, Zhu W, Lin L, Fan Y, Cheng X, Yu M, Yu S, Zhao B. PL-Relief TMplus Alleviates Atopic Dermatitis and Regulates Inflammatory Responses via Inhibiting NF-κB Signaling Pathway. Chem Biodivers 2024; 21:e202400349. [PMID: 38818651 DOI: 10.1002/cbdv.202400349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Atopic dermatitis (AD) has various detrimental effects on individuals with limited drug cure rates which necessitate the development of new treatment methods. PL-ReliefTMplus (PLR) is composed of SupraOlive, Crocus Sativus extracts and Citrus reticulata extracts. The effect of PLR on AD remains to be explored. METHODS 2,4-dinitrofluorobenzene-induced AD model mice were involved and the histopathology of the skin lesions was observed along with the levels of inflammatory chemokines levels were measured. To further validate the molecular mechanism of PLR, RNA-seq was performed in HaCaT cells. Western blotting and immunofluorescence were performed to investigate NF-κB signaling pathways response in AD. RESULTS Due to PLR treatment, the thickening of the epidermis and dermis was inhibited and the number of eosinophils, mast cells, and CD4+ T cells in the skin lesion was decreased. In addition, the levels of inflammatory cytokines were decreased in dorsal skin tissues and LPS-stimulated HaCat cells. Furthermore, KEGG pathway analysis suggested that most identified downstream biological functions were associated with inflammatory response. PLR inhibited NF-κB signaling in AD mice and HaCaT cells. CONCLUSIONS These results indicate that PLR is a potent therapeutic agent for attenuating symptoms of AD.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Zhiyuan Shen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Wei Zhu
- Shanghai CORDAY Biotechnology Co., LTD, 201403, Shanghai, China
| | - Lin Lin
- Shanghai CORDAY Biotechnology Co., LTD, 201403, Shanghai, China
| | - Yangyi Fan
- Shanghai CORDAY Biotechnology Co., LTD, 201403, Shanghai, China
| | - Xiaoyu Cheng
- Shanghai CORDAY Biotechnology Co., LTD, 201403, Shanghai, China
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Sanjian Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Bing Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| |
Collapse
|
29
|
Rousel J, Mergen C, Bergmans ME, Bruijnincx LJ, de Kam ML, Klarenbeek NB, Niemeyer-van der Kolk T, van Doorn MBA, Bouwstra JA, Rissmann R. Guselkumab treatment normalizes the stratum corneum ceramide profile and alleviates barrier dysfunction in psoriasis: results of a randomized controlled trial. J Lipid Res 2024; 65:100591. [PMID: 38992724 PMCID: PMC11342092 DOI: 10.1016/j.jlr.2024.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
The epidermal inflammation associated with psoriasis drives skin barrier perturbations. The skin barrier is primarily located in stratum corneum (SC). Its function depends on the SC lipid matrix of which ceramides constitute important components. Changes in the ceramide profile directly correlate to barrier function. In this study, we characterized the dynamics of the barrier function and ceramide profile of psoriatic skin during anti-Interleukin-23 therapy with guselkumab. We conducted a double-blind, randomized controlled trial in which 26 mild-to-severe plaque psoriasis patients were randomization 3:1-100 mg guselkumab or placebo for 16 weeks and barrier dynamics monitored throughout. Barrier function was measured by trans-epidermal water loss measurements. Untargeted ceramide profiling was performed using liquid chromatography-mass spectrometry after SC was harvested using tape-stripping. The barrier function and ceramide profile of lesional skin normalized to that of controls during treatment with guselkumab, but not placebo. This resulted in significant differences compared to placebo at the end of the treatment. Changes in the lesional ceramide profile during treatment correlated with barrier function and target lesion severity. Nonlesional skin remained similar throughout treatment. Guselkumab therapy restored the skin barrier in psoriasis. Concomitant correlations between skin barrier function, the ceramide profile, and disease severity demonstrate their interdependency.
Collapse
Affiliation(s)
- Jannik Rousel
- Centre for Human Drug Research, Leiden, The Netherlands; Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Catherine Mergen
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Menthe E Bergmans
- Centre for Human Drug Research, Leiden, The Netherlands; Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | - Martijn B A van Doorn
- Centre for Human Drug Research, Leiden, The Netherlands; Department of Dermatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, The Netherlands; Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
30
|
Calabrese L, D’Onghia M, Lazzeri L, Rubegni G, Cinotti E. Blocking the IL-4/IL-13 Axis versus the JAK/STAT Pathway in Atopic Dermatitis: How Can We Choose? J Pers Med 2024; 14:775. [PMID: 39064029 PMCID: PMC11278138 DOI: 10.3390/jpm14070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Atopic dermatitis (AD) is an immune-mediated skin disorder with a chronic-relapsing course and a multifactorial pathogenesis. In contrast to the traditional concept of AD as solely a type 2 immune-activated disease, new findings highlight the disease as highly heterogeneous, as it can be classified into variable phenotypes based on clinical/epidemiological or molecular parameters. For many years, the only therapeutic option for moderate-severe AD was traditional immunosuppressive drugs. Recently, the area of systemic therapy of AD has significantly flourished, and many new substances are now marketed, licensed, or in the last step of clinical development. Biological agents and small molecules have enriched the therapeutic armamentarium of moderate-to-severe AD, such as dupilumab, tralokinumab, lebrikizumab (monoclonal antibodies targeting the IL-4/13 pathway), abrocitinib, upadacitinib, and baricitinib (JAK inhibitors). Indeed, the AD treatment paradigm is now split into two main approaches: targeting the IL-4/13 axis or the JAK/STAT pathway. Both approaches are valid and have strong evidence of preclinical and clinical efficacy. Therefore, the choice between the two can often be difficult and represents a major challenge for dermatologists. Indeed, several important factors must be taken into account, such as the heterogeneity of AD and its classification in phenotypes, patients' comorbidities, age, and personal preferences. The aim of our review is to provide an overview of the clinical and molecular heterogeneities of AD and to explore the factors and parameters that, in clinical practice, may help inform clinical decision-making.
Collapse
Affiliation(s)
- Laura Calabrese
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
- Institute of Dermatology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Martina D’Onghia
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - Laura Lazzeri
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - Giovanni Rubegni
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - Elisa Cinotti
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
31
|
Tsuji G, Yumine A, Kawamura K, Takemura M, Kido-Nakahara M, Yamamura K, Nakahara T. Difamilast, a Topical Phosphodiesterase 4 Inhibitor, Produces Soluble ST2 via the AHR-NRF2 Axis in Human Keratinocytes. Int J Mol Sci 2024; 25:7910. [PMID: 39063153 PMCID: PMC11277015 DOI: 10.3390/ijms25147910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Difamilast, a phosphodiesterase 4 (PDE4) inhibitor, has been shown to be effective in the treatment of atopic dermatitis (AD), although the mechanism involved remains unclear. Since IL-33 plays an important role in the pathogenesis of AD, we investigated the effect of difamilast on IL-33 activity. Since an in vitro model of cultured normal human epidermal keratinocytes (NHEKs) has been utilized to evaluate the pharmacological potential of adjunctive treatment of AD, we treated NHEKs with difamilast and analyzed the expression of the suppression of tumorigenicity 2 protein (ST2), an IL-33 receptor with transmembrane (ST2L) and soluble (sST2) isoforms. Difamilast treatment increased mRNA and protein levels of sST2, a decoy receptor suppressing IL-33 signal transduction, without affecting ST2L expression. Furthermore, supernatants from difamilast-treated NHEKs inhibited IL-33-induced upregulation of TNF-α, IL-5, and IL-13 in KU812 cells, a basophil cell line sensitive to IL-33. We also found that difamilast activated the aryl hydrocarbon receptor (AHR)-nuclear factor erythroid 2-related factor 2 (NRF2) axis. Additionally, the knockdown of AHR or NRF2 abolished the difamilast-induced sST2 production. These results indicate that difamilast treatment produces sST2 via the AHR-NRF2 axis, contributing to improving AD symptoms by inhibiting IL-33 activity.
Collapse
Affiliation(s)
- Gaku Tsuji
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Ayako Yumine
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
| | - Koji Kawamura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Masaki Takemura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Kazuhiko Yamamura
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Takeshi Nakahara
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| |
Collapse
|
32
|
Nie J, Jiang X, Wang G, Xu Y, Pan R, Yu W, Li Y, Wang J. Yu-Ping-Feng-San alleviates inflammation in atopic dermatitis mice by TLR4/MyD88/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118092. [PMID: 38604509 DOI: 10.1016/j.jep.2024.118092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yu-Ping-Feng-San (YPF) is a traditional Chinese medicine formula that has therapeutic effects on allergic diseases such as allergic rhinitis and asthma. However, its potential efficacy and mechanism in the treatment of atopic dermatitis (AD) has not been extensively illustrated. AIM OF THE STUDY The purpose of this study was to investigate the efficacy and possible mechanisms of YPF in AD pathogenesis. METHODS Network pharmacology and GEO data mining were adopted to firstly identify the potential mechanisms of YPF on AD. Then DNCB induced-AD murine model was established to test the efficacy of YPF and verify its effects on inflammatory cytokines and NF-κB pathway. In addition, molecular docking was performed to detect the binding affinity of YPF's active components with NF-κB pathway related molecules. RESULTS Network pharmacology and human data mining suggested that YPF may act on the NF-κB pathway in AD pathogenesis. With DNCB mice model, we found that YPF significantly improved AD symptoms, reduced SCORAD scores, and alleviated skin tissue inflammation in mice. At the same time, the expression of inflammatory cytokines, TNF-α, sPLA2-IIA and IL-6, was down-regulated. Moreover, YPF suppressed TLR4/MyD88/NF-κB pathway in situ in a dose-dependent manner. Molecular docking further confirmed that seven compounds in YPF had exceptional binding properties with TNF-α, IL-6 and TLR4. CONCLUSION YPF may help the recovery of AD by inhibiting the TLR4/MyD88/NF-κB pathway, which provides novel insights for the treatment of AD by YPF.
Collapse
Affiliation(s)
- Jing Nie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China; Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaoyuan Jiang
- FangShan Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Guomi Wang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China.
| | - Yanan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Rui Pan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Wantao Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Yuanwen Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Jingxiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
33
|
Al B, Traidl S, Holzscheck N, Freimooser S, Mießner H, Reuter H, Dittrich-Breiholz O, Werfel T, Seidel JA. Single-cell RNA sequencing reveals 2D cytokine assay can model atopic dermatitis more accurately than immune-competent 3D setup. Exp Dermatol 2024; 33:e15077. [PMID: 38711200 DOI: 10.1111/exd.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 05/08/2024]
Abstract
Modelling atopic dermatitis (AD) in vitro is paramount to understand the disease pathophysiology and identify novel treatments. Previous studies have shown that the Th2 cytokines IL-4 and IL-13 induce AD-like features in keratinocytes in vitro. However, it has not been systematically researched whether the addition of Th2 cells, their supernatants or a 3D structure is superior to model AD compared to simple 2D cell culture with cytokines. For the first time, we investigated what in vitro option most closely resembles the disease in vivo based on single-cell RNA sequencing data (scRNA-seq) obtained from skin biopsies in a clinical study and published datasets of healthy and AD donors. In vitro models were generated with primary fibroblasts and keratinocytes, subjected to cytokine treatment or Th2 cell cocultures in 2D/3D. Gene expression changes were assessed using qPCR and Multiplex Immunoassays. Of all cytokines tested, incubation of keratinocytes and fibroblasts with IL-4 and IL-13 induced the closest in vivo-like AD phenotype which was observed in the scRNA-seq data. Addition of Th2 cells to fibroblasts failed to model AD due to the downregulation of ECM-associated genes such as POSTN. While keratinocytes cultured in 3D showed better stratification than in 2D, changes induced with AD triggers did not better resemble AD keratinocyte subtypes observed in vivo. Taken together, our comprehensive study shows that the simple model using IL-4 or IL-13 in 2D most accurately models AD in fibroblasts and keratinocytes in vitro, which may aid the discovery of novel treatment options.
Collapse
Affiliation(s)
- Benjamin Al
- Discovery, Beiersdorf AG, Hamburg, Germany
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | | | - Sina Freimooser
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | | | | | | | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
34
|
Schmuth M, Eckmann S, Moosbrugger-Martinz V, Ortner-Tobider D, Blunder S, Trafoier T, Gruber R, Elias PM. Skin Barrier in Atopic Dermatitis. J Invest Dermatol 2024; 144:989-1000.e1. [PMID: 38643989 DOI: 10.1016/j.jid.2024.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024]
Abstract
A compromised permeability barrier is a hallmark of atopic dermatitis (AD). Localized to the outermost skin layer, the stratum corneum (SC) is critically dependent on terminal differentiation of epidermal keratinocytes, which transform into protein-rich corneocytes surrounded by extracellular lamellae of unique epidermal lipids, conferring permeability barrier function. These structures are disrupted in AD. A leaky barrier is prone to environmental insult, which in AD elicits type 2-dominant inflammation, in turn resulting in a vicious cycle further impairing the SC structure. Therapies directed at enforcing SC structure and anti-inflammatory strategies administered by topical and systemic route as well as UV therapy have differential effects on the permeability barrier. The expanding armamentarium of therapeutic modalities for AD treatment warrants optimization of their effects on permeability barrier function.
Collapse
Affiliation(s)
- Matthias Schmuth
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria.
| | - Sonja Eckmann
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Stefan Blunder
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Trafoier
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria
| | - Peter M Elias
- Dermatology, Veteran Affairs Health Care System, San Francisco, California, USA; University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
35
|
Berdyshev E, Kim J, Kim BE, Goleva E, Lyubchenko T, Bronova I, Bronoff AS, Xiao O, Jang S, Shin S, Song J, Kim J, Kim S, Park B, Kim K, Choi SJ, Oh SY, Ahn K, Leung DYM. Skin biomarkers predict the development of food allergy in early life. J Allergy Clin Immunol 2024; 153:1456-1463.e4. [PMID: 38442771 PMCID: PMC11070305 DOI: 10.1016/j.jaci.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Food allergy (FA) often occurs in early childhood with and without atopic dermatitis (AD). FA can be severe and even fatal. For primary prevention, it is important to find early biomarkers to predict the future onset of FA before any clinical manifestations. OBJECTIVE Our aim was to find early predictors of future onset of FA in the stratum corneum (SC). METHODS Skin tape strips were collected from the forearm of newborns (n = 129) at age 2 months, before any signs of clinical FA or AD. Children were clinically monitored until they reached age 2 years to confirm the presence or absence of FA and AD. Skin tape strips were subjected to lipidomic analyses by liquid chromatography-tandem mass spectrometry and cytokine determination by Meso Scale Discovery U-Plex assay. RESULTS Overall, 9 of 129 infants (7.0%) developed FA alone and 9 of 129 infants (7.0%) developed FA concomitantly with AD. In the stratum corneum of children with future FA and concomitant AD and FA, absolute amounts of unsaturated (N24:1)(C18-sphingosine)ceramide and (N26:1)(C18-sphingosine)ceramide and their relative percentages within the molecular group were increased compared with the amounts and percentages in healthy children, with P values ranging from less than .01 to less than .05 according to ANOVA. The children with future AD had normal levels of these molecules. IL-33 level was upregulated in those infants with future FA but not in those with future AD, whereas thymic stromal lymphopoietin was upregulated in those with future AD but not in those with future FA. Logistic regression analysis revealed strong FA predicting power for the combination of dysregulated lipids and cytokines, with an odds ratio reaching 101.4 (95% CI = 5.4-1910.6). CONCLUSION Noninvasive skin tape strip analysis at age 2 months can identify infants at risk of FA in the future.
Collapse
Affiliation(s)
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea
| | - Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Irina Bronova
- Department of Medicine, National Jewish Health, Denver, Colo
| | | | - Olivia Xiao
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Sehun Jang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sanghee Shin
- Department of Pediatrics, Chung-Ang University Hospital, Chung-Ang University School of Medicine, Seoul, Korea
| | - Jeongmin Song
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiwon Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Sukyung Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Boram Park
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Kyunga Kim
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea; Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea; Department of Data Convergence & Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea.
| | | |
Collapse
|
36
|
Arnold KA, Moran MC, Shi H, van Vlijmen-Willems IMJJ, Rodijk-Olthuis D, Smits JPH, Brewer MG. CLDN1 knock out keratinocytes as a model to investigate multiple skin disorders. Exp Dermatol 2024; 33:e15084. [PMID: 38711223 DOI: 10.1111/exd.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 05/08/2024]
Abstract
The transmembrane protein claudin-1 is critical for formation of the epidermal barrier structure called tight junctions (TJ) and has been shown to be important in multiple disease states. These include neonatal ichthyosis and sclerosing cholangitis syndrome, atopic dermatitis and various viral infections. To develop a model to investigate the role of claudin-1 in different disease settings, we used CRISPR/Cas9 to generate human immortalized keratinocyte (KC) lines lacking claudin-1 (CLDN1 KO). We then determined whether loss of claudin-1 expression affects epidermal barrier formation/function and KC differentiation/stratification. The absence of claudin-1 resulted in significantly reduced barrier function in both monolayer and organotypic cultures. CLDN1 KO cells demonstrated decreases in gene transcripts encoding the barrier protein filaggrin and the differentiation marker cytokeratin-10. Marked morphological differences were also observed in CLDN1 KO organotypic cultures including diminished stratification and reduced formation of the stratum granulosum. We also detected increased proliferative KC in the basale layer of CLDN1 KO organotypic cultures. These results further support the role of claudin-1 in epidermal barrier and suggest an additional role of this protein in appropriate stratification of the epidermis.
Collapse
Affiliation(s)
- Kimberly A Arnold
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Mary C Moran
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Huishan Shi
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ivonne M J J van Vlijmen-Willems
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Jos P H Smits
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Matthew G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
37
|
Kim SR, Koh SJ, Park H. Childhood Obesity, Weight Change, and Pediatric Immune-Mediated Skin Diseases. J Invest Dermatol 2024; 144:S0022-202X(24)00257-4. [PMID: 39177545 DOI: 10.1016/j.jid.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 08/24/2024]
Abstract
Whether childhood obesity or weight gain leads to the development of pediatric immune-mediated skin diseases remains unclear. We aimed to determine the associations between body mass index or body mass index changes and the development of 3 main immune-mediated skin diseases-alopecia areata, atopic dermatitis (AD), and psoriasis-by analyzing a longitudinal cohort of 2,161,900 Korean children from 2009 to 2020. The findings indicated that children who were obese had a higher risk of pediatric immune-mediated skin diseases than those with normal weight (P for trend < .01). An increase in body mass index was associated with a higher risk of AD, whereas a decrease in body mass index was correlated with a reduced risk of AD. Children who gained weight, transitioning from normal to overweight, exhibited a higher AD risk than those who maintained a normal weight (adjusted hazard ratio = 1.15, 95% confidence interval = 1.11-1.20). However, those who shifted from being overweight to achieving a normal weight (adjusted hazard ratio = 0.87, 95% confidence interval = 0.81-0.94) had a lower AD risk than children who were overweight who maintained their weight. In summary, early childhood obesity may increase the risk of pediatric immune-mediated skin diseases. Weight gain may increase AD risk, whereas weight loss may lower the risk.
Collapse
Affiliation(s)
- Seong Rae Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Intestinal Mucosa and Skin Immunology, Seoul, Republic of Korea.
| | - Hyunsun Park
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Intestinal Mucosa and Skin Immunology, Seoul, Republic of Korea; Department of Dermatology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Bangert C, Alkon N, Chennareddy S, Arnoldner T, Levine JP, Pilz M, Medjimorec MA, Ruggiero J, Cohenour ER, Jonak C, Damsky W, Griss J, Brunner PM. Dupilumab-associated head and neck dermatitis shows a pronounced type 22 immune signature mediated by oligoclonally expanded T cells. Nat Commun 2024; 15:2839. [PMID: 38565563 PMCID: PMC10987549 DOI: 10.1038/s41467-024-46540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Dupilumab, an IL4R-blocking antibody, has shown clinical efficacy for atopic dermatitis (AD) treatment. In addition to conjunctivitis/blepharitis, the de novo appearance of head/neck dermatitis is now recognized as a distinct side effect, occurring in up to 10% of patients. Histopathological features distinct from AD suggest a drug effect, but exact underlying mechanisms remain unknown. We profiled punch biopsies from dupilumab-associated head and neck dermatitis (DAHND) by using single-cell RNA sequencing and compared data with untreated AD and healthy control skin. We show that dupilumab treatment was accompanied by normalization of IL-4/IL-13 downstream activity markers such as CCL13, CCL17, CCL18 and CCL26. By contrast, we found strong increases in type 22-associated markers (IL22, AHR) especially in oligoclonally expanded T cells, accompanied by enhanced keratinocyte activation and IL-22 receptor upregulation. Taken together, we demonstrate that dupilumab effectively dampens conventional type 2 inflammation in DAHND lesions, with concomitant hyperactivation of IL22-associated responses.
Collapse
Affiliation(s)
- Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Tamara Arnoldner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Jasmine P Levine
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- New York Medical College, Valhalla, NY, USA
| | - Magdalena Pilz
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marco A Medjimorec
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - John Ruggiero
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Emry R Cohenour
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
39
|
Kim HE, Lee JY, Yoo DH, Park HH, Choi EJ, Nam KH, Park J, Choi JK. Imidazole propionate ameliorates atopic dermatitis-like skin lesions by inhibiting mitochondrial ROS and mTORC2. Front Immunol 2024; 15:1324026. [PMID: 38533495 PMCID: PMC10964488 DOI: 10.3389/fimmu.2024.1324026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Background Imidazole propionate (IMP) is a histidine metabolite produced by some gut microorganisms in the human colon. Increased levels of IMP are associated with intestinal inflammation and the development and progression of cardiovascular disease and diabetes. However, the anti-inflammatory activity of IMP has not been investigated. This study aimed to elucidate the role of IMP in treating atopic dermatitis (AD). Methods To understand how IMP mediates immunosuppression in AD, IMP was intraperitoneally injected into a Dermatophagoides farinae extract (DFE)/1-chloro-2,4 dinitrochlorobenzene (DNCB)-induced AD-like skin lesions mouse model. We also characterized the anti-inflammatory mechanism of IMP by inducing an AD response in keratinocytes through TNF-α/IFN-γ or IL-4 stimulation. Results Contrary to the prevailing view that IMP is an unhealthy microbial metabolite, we found that IMP-treated AD-like skin lesions mice showed significant improvement in their clinical symptoms, including ear thickness, epidermal and dermal thickness, and IgE levels. Furthermore, IMP antagonized the expansion of myeloid (neutrophils, macrophages, eosinophils, and mast cells) and Th cells (Th1, Th2, and Th17) in mouse skin and prevented mitochondrial reactive oxygen species production by inhibiting mitochondrial energy production. Interestingly, we found that IMP inhibited AD by reducing glucose uptake in cells to suppress proinflammatory cytokines and chemokines in an AD-like in vitro model, sequentially downregulating the PI3K and mTORC2 signaling pathways centered on Akt, and upregulating DDIT4 and AMPK. Discussion Our results suggest that IMP exerts anti-inflammatory effects through the metabolic reprogramming of skin inflammation, making it a promising therapeutic candidate for AD and related skin diseases.
Collapse
Affiliation(s)
- Ha Eun Kim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jong Yeong Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Dong-Hoon Yoo
- Department of Sports Rehabilitation and Exercise Management, University of Gyeongnam Geochang, Geochang-gun, Republic of Korea
| | - Hyo-Hyun Park
- Department of Clinical Pathology, Daegu Health College, Daegu, Republic of Korea
| | - Eun-Ju Choi
- Department of Physical Education, College of Education, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Kyung-Hwa Nam
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jin Park
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jin Kyeong Choi
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
40
|
Afshari M, Kolackova M, Rosecka M, Čelakovská J, Krejsek J. Unraveling the skin; a comprehensive review of atopic dermatitis, current understanding, and approaches. Front Immunol 2024; 15:1361005. [PMID: 38500882 PMCID: PMC10944924 DOI: 10.3389/fimmu.2024.1361005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
Atopic dermatitis, also known as atopic eczema, is a chronic inflammatory skin disease characterized by red pruritic skin lesions, xerosis, ichthyosis, and skin pain. Among the social impacts of atopic dermatitis are difficulties and detachment in relationships and social stigmatization. Additionally, atopic dermatitis is known to cause sleep disturbance, anxiety, hyperactivity, and depression. Although the pathological process behind atopic dermatitis is not fully known, it appears to be a combination of epidermal barrier dysfunction and immune dysregulation. Skin is the largest organ of the human body which acts as a mechanical barrier to toxins and UV light and a natural barrier against water loss. Both functions face significant challenges due to atopic dermatitis. The list of factors that can potentially trigger or contribute to atopic dermatitis is extensive, ranging from genetic factors, family history, dietary choices, immune triggers, and environmental factors. Consequently, prevention, early clinical diagnosis, and effective treatment may be the only resolutions to combat this burdensome disease. Ensuring safe and targeted drug delivery to the skin layers, without reaching the systemic circulation is a promising option raised by nano-delivery systems in dermatology. In this review, we explored the current understanding and approaches of atopic dermatitis and outlined a range of the most recent therapeutics and dosage forms brought by nanotechnology. This review was conducted using PubMed, Google Scholar, and ScienceDirect databases.
Collapse
Affiliation(s)
- Moeina Afshari
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| | - Martina Kolackova
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| | - Michaela Rosecka
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| | - Jarmila Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| | - Jan Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| |
Collapse
|
41
|
Haferland I, Pinter A, Rossmanith T, Diehl S, Buerger C, Ickelsheimer T, Kaufmann R, Koenig A. A Novel Epidermis Model Using Primary Hidradenitis Suppurativa Keratinocytes. J Tissue Eng Regen Med 2024; 2024:4363876. [PMID: 40225748 PMCID: PMC11918907 DOI: 10.1155/2024/4363876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/02/2024] [Accepted: 02/12/2024] [Indexed: 04/15/2025]
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease. Patients can present with inflammatory nodules, abscesses up to fistulas, or sinus tracts in intertriginous body parts. Occlusion of the sebaceous gland unit leads to its rupture, with a subsequent exuberant immune response. Given there is still no causative therapy, to better understand HS and develop novel therapeutic concepts, research activities in the HS field are constantly growing. Primary skin cells, blood cells, and ex vivo explant cultures from HS patients have been previously used as HS cell culture models. In vitro reconstituted epidermal models are established to study inflammatory dermatoses, such as psoriasis or atopic dermatitis. For HS, the exploration of epidermis models would be an excellent addition, e.g., biomarkers or barrier function in testing new topic treatment options. We therefore established a stratified in vitro HS epidermis model based on primary cells from HS lesions. After isolating keratinocytes from lesional skin, we cultured them submerged in a transwell system. To induce differentiation, we then lifted them to the air-liquid interface. Immunohistochemical staining demonstrated that our HS-epidermis model meets the expected differentiation pattern. In addition, we detected the secretion of the inflammatory cytokines interleukin-1β and TNF-α.
Collapse
Affiliation(s)
- Isabel Haferland
- Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology and Allergology, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Andreas Pinter
- Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology and Allergology, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Tanja Rossmanith
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Sandra Diehl
- Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology and Allergology, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Claudia Buerger
- Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology and Allergology, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Tanja Ickelsheimer
- Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology and Allergology, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Roland Kaufmann
- Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology and Allergology, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Anke Koenig
- Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology and Allergology, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| |
Collapse
|
42
|
Lu HF, Zhou YC, Yang LT, Zhou Q, Wang XJ, Qiu SQ, Cheng BH, Zeng XH. Involvement and repair of epithelial barrier dysfunction in allergic diseases. Front Immunol 2024; 15:1348272. [PMID: 38361946 PMCID: PMC10867171 DOI: 10.3389/fimmu.2024.1348272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
The epithelial barrier serves as a critical defense mechanism separating the human body from the external environment, fulfilling both physical and immune functions. This barrier plays a pivotal role in shielding the body from environmental risk factors such as allergens, pathogens, and pollutants. However, since the 19th century, the escalating threats posed by environmental pollution, global warming, heightened usage of industrial chemical products, and alterations in biodiversity have contributed to a noteworthy surge in allergic disease incidences. Notably, allergic diseases frequently exhibit dysfunction in the epithelial barrier. The proposed epithelial barrier hypothesis introduces a novel avenue for the prevention and treatment of allergic diseases. Despite increased attention to the role of barrier dysfunction in allergic disease development, numerous questions persist regarding the mechanisms underlying the disruption of normal barrier function. Consequently, this review aims to provide a comprehensive overview of the epithelial barrier's role in allergic diseases, encompassing influencing factors, assessment techniques, and repair methodologies. By doing so, it seeks to present innovative strategies for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| | - Yi-Chi Zhou
- Department of Gastroenterology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Li-Tao Yang
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| | - Qian Zhou
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xi-Jia Wang
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| | - Shu-Qi Qiu
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| | - Bao-Hui Cheng
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| | - Xian-Hai Zeng
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| |
Collapse
|
43
|
Marsella R, Ahrens K, Wilkes R. Studies Using Antibodies against Filaggrin and Filaggrin 2 in Canine Normal and Atopic Skin Biopsies. Animals (Basel) 2024; 14:478. [PMID: 38338121 PMCID: PMC10854974 DOI: 10.3390/ani14030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Filaggrin is important for the skin barrier and atopic dermatitis. Another filaggrin-like protein, filaggrin 2, has been described. We evaluated antibodies against both filaggrins in normal and atopic skin biopsies from dogs before and after allergen challenges (D0, D1, D3 and D10). Filaggrins expression was evaluated by immunohistochemistry and Western blot. We used PCR to investigate changes in filaggrin gene expression. Effects of group (p = 0.0134) and time (p = 0.0422) were shown for the intensity of filaggrin staining. Only an effect of group was found for filaggrin 2 (p = 0.0129). Atopic samples had higher intensity of staining than normal dogs [filaggrin on D3 (p = 0.0155) and filaggrin 2 on D3 (p = 0.0038) and D10 (p < 0.0001)]. Atopic samples showed increased epidermal thickness after allergen exposure (D3 vs. D0, p = 0.005), while normal dogs did not. In atopic samples, significant increased gene expression was found for filaggrin overtime but not for filaggrin 2. Western blot showed an increase in filaggrin 2 on D3. A small size band (15 kD) containing a filaggrin sequence was found in Western blots of atopic samples only. We conclude that atopic skin reacts to allergen exposure by proliferating and increasing filaggrin production but that it also has more extensive filaggrin degradation compared to normal skin.
Collapse
Affiliation(s)
- Rosanna Marsella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (K.A.); (R.W.)
| | | | | |
Collapse
|
44
|
Pandaleke TA, Handono K, Widasmara D, Susianti H. The immunomodulatory activity of Orthosiphon aristatus against atopic dermatitis: Evidence-based on network pharmacology and molecular simulations. J Taibah Univ Med Sci 2024; 19:164-174. [PMID: 38047238 PMCID: PMC10692725 DOI: 10.1016/j.jtumed.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Objectives To explore the potential activity of Orthosiphon aristatus (OA) against atopic dermatitis (AD). Methods Phytocompounds from OA were identified through chromatography analysis, then continued to target identification and functional annotation to explore the potential target of OA. Then, network pharmacology from annotated proteins determined protein targets for OA phytocompounds. Protein with highest rank according to the betweenness and closeness algorithm then continued to molecular docking and validated through molecular dynamics analysis. Results Chromatography data analysis revealed thirty-six compounds, predominantly classified as carboxylic acid, fatty acyls, and polyphenols. Upon identifying these compounds, network biology-based target identification revealed their potential bioactivity in modulating inflammation in AD. Tumour Necrosis Factor-alpha (TNF-α) and Prostaglandin G/H synthase 2 (PTGS2) emerged as the most probable targets based on hub centrality in the protein-protein interaction network. Later, molecular docking analyses highlighted sixteen compounds with good inhibitory activity against these two proteins. Notably, molecular dynamics simulation revealed that three compounds out of the previous sixteen potential compounds were more likely to act as the TNF-α and PTGS2 inhibitor as well as their native inhibitor. Those compounds are (1R,9R)-5-Cyclohexyl-11- (propylsulfonyl)-7,11- diazatricyclo[7.3.1.02,7]trideca- 2,4-dien-6-one, also known as ZINC8297940, as the best TNF-α inhibitor along with dl-Leucineamide and Benazol P as the potential inhibitor of PTGS2. Conclusions These findings suggest that OA may exert therapeutic effects against AD by controlling inflammation through TNF-α and PTGS2 signalling pathways.
Collapse
Affiliation(s)
- Thigita A. Pandaleke
- Doctoral Program of Medical Science, Universitas Brawijaya, Malang, East Java, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Sam Ratulangi University, RD Kandou Hospital, Jl. Raya Tanawangko No.56, Manado 95163, North Sulawesi, Indonesia
| | - Kusworini Handono
- Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya – Saiful Anwar Hospital, Malang, East Java, Indonesia
| | - Dhelya Widasmara
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Brawijaya – Saiful Anwar Hospital, Malang, East Java, Indonesia
| | - Hani Susianti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya – Saiful Anwar Hospital, Malang, East Java, Indonesia
| |
Collapse
|
45
|
Rousel J, Nădăban A, Saghari M, Pagan L, Zhuparris A, Theelen B, Gambrah T, van der Wall HEC, Vreeken RJ, Feiss GL, Niemeyer-van der Kolk T, Burggraaf J, van Doorn MBA, Bouwstra JA, Rissmann R. Lesional skin of seborrheic dermatitis patients is characterized by skin barrier dysfunction and correlating alterations in the stratum corneum ceramide composition. Exp Dermatol 2024; 33:e14952. [PMID: 37974545 DOI: 10.1111/exd.14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 11/19/2023]
Abstract
Seborrheic dermatitis (SD) is a chronic inflammatory skin disease characterized by erythematous papulosquamous lesions in sebum rich areas such as the face and scalp. Its pathogenesis appears multifactorial with a disbalanced immune system, Malassezia driven microbial involvement and skin barrier perturbations. Microbial involvement has been well described in SD, but skin barrier involvement remains to be properly elucidated. To determine whether barrier impairment is a critical factor of inflammation in SD alongside microbial dysbiosis, a cross-sectional study was performed in 37 patients with mild-to-moderate facial SD. Their lesional and non-lesional skin was comprehensively and non-invasively assessed with standardized 2D-photography, optical coherence tomography (OCT), microbial profiling including Malassezia species identification, functional skin barrier assessments and ceramide profiling. The presence of inflammation was established through significant increases in erythema, epidermal thickness, vascularization and superficial roughness in lesional skin compared to non-lesional skin. Lesional skin showed a perturbed skin barrier with an underlying skewed ceramide subclass composition, impaired chain elongation and increased chain unsaturation. Changes in ceramide composition correlated with barrier impairment indicating interdependency of the functional barrier and ceramide composition. Lesional skin showed significantly increased Staphylococcus and decreased Cutibacterium abundances but similar Malassezia abundances and mycobial composition compared to non-lesional skin. Principal component analysis highlighted barrier properties as main discriminating features. To conclude, SD is associated with skin barrier dysfunction and changes in the ceramide composition. No significant differences in the abundance of Malassezia were observed. Restoring the cutaneous barrier might be a valid therapeutic approach in the treatment of facial SD.
Collapse
Affiliation(s)
- Jannik Rousel
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Andreea Nădăban
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mahdi Saghari
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa Pagan
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Ahnjili Zhuparris
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Tom Gambrah
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Rob J Vreeken
- Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | | | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn B A van Doorn
- Centre for Human Drug Research, Leiden, The Netherlands
- Department of Dermatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
46
|
Liu C, Liu Y, Liu Y, Guan J, Gao Y, Ou L, Qi Y, Lv X, Zhang J. Network Pharmacology, Molecular Docking and Experimental Verification Revealing the Mechanism of Fule Cream against Childhood Atopic Dermatitis. Curr Comput Aided Drug Des 2024; 20:860-875. [PMID: 37807411 DOI: 10.2174/0115734099257922230925074407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/28/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND The Fule Cream (FLC) is an herbal formula widely used for the treatment of pediatric atopic dermatitis (AD), however, the main active components and functional mechanisms of FLC remain unclear. This study performed an initial exploration of the potential acting mechanisms of FLC in childhood AD treatment through analyses of an AD mouse model using network pharmacology, molecular docking technology, and RNA-seq analysis. MATERIALS AND METHODS The main bioactive ingredients and potential targets of FLC were collected from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and SwissTargetPrediction databases. An herb-compound-target network was built using Cytoscape 3.7.2. The disease targets of pediatric AD were searched in the DisGeNET, Therapeutic Target Database (TTD), OMIM, DrugBank and GeneCards databases. The overlapping targets between the active compounds and the disease were imported into the STRING database for the construction of the protein-protein interaction (PPI) network. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the intersection targets were performed, and molecular docking verification of the core compounds and targets was then performed using AutoDock Vina 1.1.2. The AD mouse model for experimental verification was induced by MC903. RESULTS The herb-compound-target network included 415 nodes and 1990 edges. Quercetin, luteolin, beta-sitosterol, wogonin, ursolic acid, apigenin, stigmasterol, kaempferol, sitogluside and myricetin were key nodes. The targets with higher degree values were IL-4, IL-10, IL-1α, IL-1β, TNFα, CXCL8, CCL2, CXCL10, CSF2, and IL-6. GO enrichment and KEGG analyses illustrated that important biological functions involved response to extracellular stimulus, regulation of cell adhesion and migration, inflammatory response, cellular response to cytokine stimulus, and cytokine receptor binding. The signaling pathways in the FLC treatment of pediatric AD mainly involve the PI3K-Akt signaling pathway, cytokine‒cytokine receptor interaction, chemokine signaling pathway, TNF signaling pathway, and NF-κB signaling pathway. The binding energy scores of the compounds and targets indicate a good binding activity. Luteolin, quercetin, and kaempferol showed a strong binding activity with TNFα and IL-4. CONCLUSION This study illustrates the main bioactive components and potential mechanisms of FLC in the treatment of childhood AD, and provides a basis and reference for subsequent exploration.
Collapse
Affiliation(s)
- Chang Liu
- Drug Clinical Trial Institution, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yuxin Liu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yi Liu
- Drug Clinical Trial Institution, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jing Guan
- Preparation Research Laboratory, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ying Gao
- Department of Dermatology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ling Ou
- Drug Clinical Trial Institution, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yuenan Qi
- Drug Clinical Trial Institution, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiaoxi Lv
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jianmin Zhang
- Drug Clinical Trial Institution, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| |
Collapse
|
47
|
Scheurer J, Sauer B, Focken J, Giampetraglia M, Jäger A, Schürch CM, Weigelin B, Schittek B. Histological and functional characterization of 3D human skin models mimicking the inflammatory skin diseases psoriasis and atopic dermatitis. Dis Model Mech 2024; 17:dmm050541. [PMID: 38251799 PMCID: PMC10846593 DOI: 10.1242/dmm.050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Three-dimensional (3D) human skin equivalents have emerged as valuable tools in skin research, replacing animal experimentation and precluding the need for patient biopsies. In this study, we advanced 3D skin equivalents to model the inflammatory skin diseases atopic dermatitis and psoriasis by cytokine stimulation, and were successful in integrating TH1 T cells into skin models to develop an immunocompetent 3D psoriasis model. We performed in-depth histological and functional characterization of 3D skin equivalents and validated them in terms of tissue architecture, pathological changes, expression of antimicrobial peptides and Staphylococcus aureus colonization using 3D reconstruction by multiphoton microscopy and phenotyping by highly multiplexed 'co-detection by indexing' (CODEX) microscopy. We show that our skin equivalents have a structural architecture with a well-developed dermis and epidermis, thus resembling human skin. In addition, the skin models of atopic dermatitis and psoriasis show several phenotypic features of inflammatory skin disease, including disturbed epidermal differentiation and alterations in the expression of epidermal barrier genes and antimicrobial peptides, and can be reliably used to test novel treatment strategies. Therefore, these 3D equivalents will be a valuable tool in experimental dermatological research.
Collapse
Affiliation(s)
- Jasmin Scheurer
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Birgit Sauer
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Jule Focken
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martina Giampetraglia
- Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Annika Jäger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | - Christian M. Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Birgit Schittek
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
48
|
Upadhyay PR, Seminario-Vidal L, Abe B, Ghobadi C, Sims JT. Cytokines and Epidermal Lipid Abnormalities in Atopic Dermatitis: A Systematic Review. Cells 2023; 12:2793. [PMID: 38132113 PMCID: PMC10741881 DOI: 10.3390/cells12242793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease and presents a major public health problem worldwide. It is characterized by a recurrent and/or chronic course of inflammatory skin lesions with intense pruritus. Its pathophysiologic features include barrier dysfunction, aberrant immune cell infiltration, and alterations in the microbiome that are associated with genetic and environmental factors. There is a complex crosstalk between these components, which is primarily mediated by cytokines. Epidermal barrier dysfunction is the hallmark of AD and is caused by the disruption of proteins and lipids responsible for establishing the skin barrier. To better define the role of cytokines in stratum corneum lipid abnormalities related to AD, we conducted a systematic review of biomedical literature in PubMed from its inception to 5 September 2023. Consistent with the dominant TH2 skewness seen in AD, type 2 cytokines were featured prominently as possessing a central role in epidermal lipid alterations in AD skin. The cytokines associated with TH1 and TH17 were also identified to affect barrier lipids. Considering the broad cytokine dysregulation observed in AD pathophysiology, understanding the role of each of these in lipid abnormalities and barrier dysfunction will help in developing therapeutics to best achieve barrier homeostasis in AD patients.
Collapse
Affiliation(s)
- Parth R. Upadhyay
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA (C.G.); (J.T.S.)
| | - Lucia Seminario-Vidal
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA (C.G.); (J.T.S.)
| | | | | | | |
Collapse
|
49
|
Kim MS, Kong D, Han M, Roh K, Koo H, Lee S, Kang KS. Canine amniotic membrane-derived mesenchymal stem cells ameliorate atopic dermatitis through regeneration and immunomodulation. Vet Res Commun 2023; 47:2055-2070. [PMID: 37421548 DOI: 10.1007/s11259-023-10155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Mesenchymal stem cells (MSCs) are a promising tool for treating immune disorders. However, the immunomodulatory effects of canine MSCs compared with other commercialized biologics for treating immune disorders have not been well studied. In this study we investigated the characteristics and immunomodulatory effects of canine amnion membrane (cAM)-MSCs. We examined gene expression of immune modulation and T lymphocytes from activated canine peripheral blood mononuclear cell (PBMC) proliferation. As a result, we confirmed that cAM-MSCs upregulated immune modulation genes (TGF-β1, IDO1 and PTGES2) and suppressed the proliferation capacity of T cells. Moreover, we confirmed the therapeutic effect of cAM-MSCs compared with oclacitinib (OCL), the most commonly used Janus kinase (JAK) inhibitor, as a treatment for canine atopic dermatitis (AD) using a mouse AD model. As a result, we confirmed that cAM-MSCs with PBS treatment groups (passage 4, 6 and 8) compared with PBS only (PBS) though scores of dermatologic signs, tissue pathologic changes and inflammatory cytokines were significantly reduced. In particular, cAM-MSCs were more effective than OCL in the recovery of wound dysfunction, regulation of mast cell activity and expression level of immune modulation protein. Interestingly, subcutaneous injection of cAM-MSCs induced weight recovery, but oral administration of oclacitinib induced weight loss as a side effect. In conclusion, this study suggests that cAM-MSCs can be developed as a safe canine treatment for atopic dermatitis without side effects through effective regeneration and immunomodulation.
Collapse
Affiliation(s)
- Min Soo Kim
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dasom Kong
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myounghee Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyounghwan Roh
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd, Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Hojun Koo
- Smile Veterinary Clinic, Jungbu-daero, Cheoin-gu, yongin-si, Gyeonggi-do, 1510, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd, Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
50
|
Zhao H, Chen Z, Kang X, Yang B, Luo P, Li H, He Q. The frontline of alternatives to animal testing: novel in vitro skin model application in drug development and evaluation. Toxicol Sci 2023; 196:152-169. [PMID: 37702017 DOI: 10.1093/toxsci/kfad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The FDA Modernization Act 2.0 has brought nonclinical drug evaluation into a new era. In vitro models are widely used and play an important role in modern drug development and evaluation, including early candidate drug screening and preclinical drug efficacy and toxicity assessment. Driven by regulatory steering and facilitated by well-defined physiology, novel in vitro skin models are emerging rapidly, becoming the most advanced area in alternative testing research. The revolutionary technologies bring us many in vitro skin models, either laboratory-developed or commercially available, which were all built to emulate the structure of the natural skin to recapitulate the skin's physiological function and particular skin pathology. During the model development, how to achieve balance among complexity, accessibility, capability, and cost-effectiveness remains the core challenge for researchers. This review attempts to introduce the existing in vitro skin models, align them on different dimensions, such as structural complexity, functional maturity, and screening throughput, and provide an update on their current application in various scenarios within the scope of chemical testing and drug development, including testing in genotoxicity, phototoxicity, skin sensitization, corrosion/irritation. Overall, the review will summarize a general strategy for in vitro skin model to enhance future model invention, application, and translation in drug development and evaluation.
Collapse
Affiliation(s)
- He Zhao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaozeng Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Xingchen Kang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|