1
|
Gründer S, Vanek J, Pissas KP. Acid-sensing ion channels and downstream signalling in cancer cells: is there a mechanistic link? Pflugers Arch 2024; 476:659-672. [PMID: 38175291 PMCID: PMC11006730 DOI: 10.1007/s00424-023-02902-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
It is increasingly appreciated that the acidic microenvironment of a tumour contributes to its evolution and clinical outcomes. However, our understanding of the mechanisms by which tumour cells detect acidosis and the signalling cascades that it induces is still limited. Acid-sensing ion channels (ASICs) are sensitive receptors for protons; therefore, they are also candidates for proton sensors in tumour cells. Although in non-transformed tissue, their expression is mainly restricted to neurons, an increasing number of studies have reported ectopic expression of ASICs not only in brain cancer but also in different carcinomas, such as breast and pancreatic cancer. However, because ASICs are best known as desensitizing ionotropic receptors that mediate rapid but transient signalling, how they trigger intracellular signalling cascades is not well understood. In this review, we introduce the acidic microenvironment of tumours and the functional properties of ASICs, point out some conceptual problems, summarize reported roles of ASICs in different cancers, and highlight open questions on the mechanisms of their action in cancer cells. Finally, we propose guidelines to keep ASIC research in cancer on solid ground.
Collapse
Affiliation(s)
- Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Jakob Vanek
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | | |
Collapse
|
2
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Ishimwe JA, Dola T, Ertuglu LA, Kirabo A. Bile acids and salt-sensitive hypertension: a role of the gut-liver axis. Am J Physiol Heart Circ Physiol 2022; 322:H636-H646. [PMID: 35245132 PMCID: PMC8957326 DOI: 10.1152/ajpheart.00027.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/22/2022]
Abstract
Salt-sensitivity of blood pressure (SSBP) affects 50% of the hypertensive and 25% of the normotensive populations. Importantly, SSBP is associated with increased risk for mortality in both populations independent of blood pressure. Despite its deleterious effects, the pathogenesis of SSBP is not fully understood. Emerging evidence suggests a novel role of bile acids in salt-sensitive hypertension and that they may play a crucial role in regulating inflammation and fluid volume homeostasis. Mechanistic evidence implicates alterations in the gut microbiome, the epithelial sodium channel (ENaC), the farnesoid X receptor, and the G protein-coupled bile acid receptor TGR5 in bile acid-mediated effects on cardiovascular function. The mechanistic interplay between excess dietary sodium-induced alterations in the gut microbiome and immune cell activation, bile acid signaling, and whether such interplay may contribute to the etiology of SSBP is still yet to be defined. The main goal of this review is to discuss the potential role of bile acids in the pathogenesis of cardiovascular disease with a focus on salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thanvi Dola
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Lale A Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
4
|
Keely SJ, Urso A, Ilyaskin AV, Korbmacher C, Bunnett NW, Poole DP, Carbone SE. Contributions of bile acids to gastrointestinal physiology as receptor agonists and modifiers of ion channels. Am J Physiol Gastrointest Liver Physiol 2022; 322:G201-G222. [PMID: 34755536 PMCID: PMC8782647 DOI: 10.1152/ajpgi.00125.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Bile acids (BAs) are known to be important regulators of intestinal motility and epithelial fluid and electrolyte transport. Over the past two decades, significant advances in identifying and characterizing the receptors, transporters, and ion channels targeted by BAs have led to exciting new insights into the molecular mechanisms involved in these processes. Our appreciation of BAs, their receptors, and BA-modulated ion channels as potential targets for the development of new approaches to treat intestinal motility and transport disorders is increasing. In the current review, we aim to summarize recent advances in our knowledge of the different BA receptors and BA-modulated ion channels present in the gastrointestinal system. We discuss how they regulate motility and epithelial transport, their roles in pathogenesis, and their therapeutic potential in a range of gastrointestinal diseases.
Collapse
Affiliation(s)
- Stephen J Keely
- Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Andreacarola Urso
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Pharmacology, Columbia University, New York, New York
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Bavaria, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Bavaria, Germany
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, New York
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, New York
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council, Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council, Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
5
|
The bile acid-sensitive ion channel (BASIC) mediates bile acid-dependent currents in bile duct epithelial cells. Pflugers Arch 2021; 473:1841-1850. [PMID: 34549327 PMCID: PMC8599227 DOI: 10.1007/s00424-021-02622-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
The bile acid-sensitive ion channel (BASIC) is a member of the Deg/ENaC family of ion channels that is activated by bile acids. Despite the identification of cholangiocytes in the liver and unipolar brush cells in the cerebellum as sites of expression, the physiological function of BASIC in these cell types is not yet understood. Here we used a cholangiocyte cell line, normal rat cholangiocytes (NRCs), which expresses BASIC to study the role of the channel in epithelial transport using Ussing chamber experiments. Apical application of bile acids induced robust and transient increases in transepithelial currents that were carried by Na+ and partly blocked by the BASIC inhibitor diminazene. Genetic ablation of the BASIC gene in NRC using a CRISPR-cas9 approach resulted in a decrease of the bile acid-mediated response that matched the diminazene-sensitive current in NRC WT cells, suggesting that cholangiocytes respond to bile acids with a BASIC-mediated Na+ influx. Taken together, we have identified BASIC as a component of the cholangiocyte transport machinery, which might mediate a bile acid-dependent modification of the bile and thus control bile flux and composition.
Collapse
|
6
|
Trampert DC, van de Graaf SFJ, Jongejan A, Oude Elferink RPJ, Beuers U. Hepatobiliary acid-base homeostasis: Insights from analogous secretory epithelia. J Hepatol 2021; 74:428-441. [PMID: 33342564 DOI: 10.1016/j.jhep.2020.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/03/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Many epithelia secrete bicarbonate-rich fluid to generate flow, alter viscosity, control pH and potentially protect luminal and intracellular structures from chemical stress. Bicarbonate is a key component of human bile and impaired biliary bicarbonate secretion is associated with liver damage. Major efforts have been undertaken to gain insight into acid-base homeostasis in cholangiocytes and more can be learned from analogous secretory epithelia. Extrahepatic examples include salivary and pancreatic duct cells, duodenocytes, airway and renal epithelial cells. The cellular machinery involved in acid-base homeostasis includes carbonic anhydrase enzymes, transporters of the solute carrier family, and intra- and extracellular pH sensors. This pH-regulatory system is orchestrated by protein-protein interactions, the establishment of an electrochemical gradient across the plasma membrane and bicarbonate sensing of the intra- and extracellular compartment. In this review, we discuss conserved principles identified in analogous secretory epithelia in the light of current knowledge on cholangiocyte physiology. We present a framework for cholangiocellular acid-base homeostasis supported by expression analysis of publicly available single-cell RNA sequencing datasets from human cholangiocytes, which provide insights into the molecular basis of pH homeostasis and dysregulation in the biliary system.
Collapse
Affiliation(s)
- David C Trampert
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ronald P J Oude Elferink
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Ulrich Beuers
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Shi S, Montalbetti N, Wang X, Rush BM, Marciszyn AL, Baty CJ, Tan RJ, Carattino MD, Kleyman TR. Paraoxonase 3 functions as a chaperone to decrease functional expression of the epithelial sodium channel. J Biol Chem 2020; 295:4950-4962. [PMID: 32079677 DOI: 10.1074/jbc.ra119.011789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/17/2020] [Indexed: 01/11/2023] Open
Abstract
The paraoxonase (PON) family comprises three highly conserved members: PON1, PON2, and PON3. They are orthologs of Caenorhabditis elegans MEC-6, an endoplasmic reticulum-resident chaperone that has a critical role in proper assembly and surface expression of the touch-sensing degenerin channel in nematodes. We have shown recently that MEC-6 and PON2 negatively regulate functional expression of the epithelial Na+ channel (ENaC), suggesting that the chaperone function is conserved within this family. We hypothesized that other PON family members also modulate ion channel expression. Pon3 is specifically expressed in the aldosterone-sensitive distal tubules in the mouse kidney. We found here that knocking down endogenous Pon3 in mouse cortical collecting duct cells enhanced Na+ transport, which was associated with increased γENaC abundance. We further examined Pon3 regulation of ENaC in two heterologous expression systems, Fisher rat thyroid cells and Xenopus oocytes. Pon3 coimmunoprecipitated with each of the three ENaC subunits in Fisher rat thyroid cells. As a result of this interaction, the whole-cell and surface abundance of ENaC α and γ subunits was reduced by Pon3. When expressed in oocytes, Pon3 inhibited ENaC-mediated amiloride-sensitive Na+ currents, in part by reducing the surface expression of ENaC. In contrast, Pon3 did not alter the response of ENaC to chymotrypsin-mediated proteolytic activation or [2-(trimethylammonium)ethyl]methanethiosulfonate-induced activation of αβS518Cγ, suggesting that Pon3 does not affect channel open probability. Together, our results suggest that PON3 regulates ENaC expression by inhibiting its biogenesis and/or trafficking.
Collapse
Affiliation(s)
- Shujie Shi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Xueqi Wang
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Brittney M Rush
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Allison L Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Catherine J Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
8
|
Kreko-Pierce T, Boiko N, Harbidge DG, Marcus DC, Stockand JD, Pugh JR. Cerebellar Ataxia Caused by Type II Unipolar Brush Cell Dysfunction in the Asic5 Knockout Mouse. Sci Rep 2020; 10:2168. [PMID: 32034189 PMCID: PMC7005805 DOI: 10.1038/s41598-020-58901-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/22/2020] [Indexed: 01/02/2023] Open
Abstract
Unipolar brush cells (UBCs) are excitatory granular layer interneurons in the vestibulocerebellum. Here we assessed motor coordination and balance to investigate if deletion of acid-sensing ion channel 5 (Asic5), which is richly expressed in type II UBCs, is sufficient to cause ataxia. The possible cellular mechanism underpinning ataxia in this global Asic5 knockout model was elaborated using brain slice electrophysiology. Asic5 deletion impaired motor performance and decreased intrinsic UBC excitability, reducing spontaneous action potential firing by slowing maximum depolarization rate. Reduced intrinsic excitability in UBCs was partially compensated by suppression of the magnitude and duration of delayed hyperpolarizing K+ currents triggered by glutamate. Glutamate typically stimulates burst firing subsequent to this hyperpolarization in normal type II UBCs. Burst firing frequency was elevated in knockout type II UBCs because it was initiated from a more depolarized potential compared to normal cells. Findings indicate that Asic5 is important for type II UBC activity and that loss of Asic5 contributes to impaired movement, likely, at least in part, due to altered temporal processing of vestibular input.
Collapse
Affiliation(s)
- Tabita Kreko-Pierce
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Nina Boiko
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Donald G Harbidge
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Daniel C Marcus
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA.
| | - Jason R Pugh
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| |
Collapse
|
9
|
Wang XP, Im SJ, Balchak DM, Montalbetti N, Carattino MD, Ray EC, Kashlan OB. Murine epithelial sodium (Na +) channel regulation by biliary factors. J Biol Chem 2019; 294:10182-10193. [PMID: 31092599 PMCID: PMC6664190 DOI: 10.1074/jbc.ra119.007394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/15/2019] [Indexed: 01/01/2023] Open
Abstract
The epithelial sodium channel (ENaC) mediates Na+ transport in several epithelia, including the aldosterone-sensitive distal nephron, distal colon, and biliary epithelium. Numerous factors regulate ENaC activity, including extracellular ligands, post-translational modifications, and membrane-resident lipids. However, ENaC regulation by bile acids and conjugated bilirubin, metabolites that are abundant in the biliary tree and intestinal tract and are sometimes elevated in the urine of individuals with advanced liver disease, remains poorly understood. Here, using a Xenopus oocyte-based system to express and functionally study ENaC, we found that, depending on the bile acid used, bile acids both activate and inhibit mouse ENaC. Whether bile acids were activating or inhibiting was contingent on the position and orientation of specific bile acid moieties. For example, a hydroxyl group at the 12-position and facing the hydrophilic side (12α-OH) was activating. Taurine-conjugated bile acids, which have reduced membrane permeability, affected ENaC activity more strongly than did their more membrane-permeant unconjugated counterparts, suggesting that bile acids regulate ENaC extracellularly. Bile acid-dependent activation was enhanced by amino acid substitutions in ENaC that depress open probability and was precluded by proteolytic cleavage that increases open probability, consistent with an effect of bile acids on ENaC open probability. Bile acids also regulated ENaC in a cortical collecting duct cell line, mirroring the results in Xenopus oocytes. We also show that bilirubin conjugates activate ENaC. These results indicate that ENaC responds to compounds abundant in bile and that their ability to regulate this channel depends on the presence of specific functional groups.
Collapse
Affiliation(s)
- Xue-Ping Wang
- From the Renal-Electrolyte Division, Department of Medicine
| | | | | | | | - Marcelo D Carattino
- From the Renal-Electrolyte Division, Department of Medicine
- the Department of Cell Biology and Molecular Physiology, and
| | - Evan C Ray
- From the Renal-Electrolyte Division, Department of Medicine
| | - Ossama B Kashlan
- From the Renal-Electrolyte Division, Department of Medicine,
- the Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
10
|
Schmidt A, Joussen S, Hausmann R, Gründer S, Wiemuth D. Bile acids are potent inhibitors of rat P2X2 receptors. Purinergic Signal 2019; 15:213-221. [PMID: 31098843 DOI: 10.1007/s11302-019-09657-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/17/2019] [Indexed: 01/06/2023] Open
Abstract
Extracellular adenosine triphosphate (ATP) regulates a broad variety of physiological functions in a number of tissues partly via ionotropic P2X receptors. Therefore, P2X receptors are promising targets for the development of therapeutically active molecules. Bile acids are cholesterol-derived amphiphilic molecules; their primary function is the facilitation of efficient nutrient fat digestion. However, bile acids have also been shown to serve as signaling molecules and as modulators of different membrane proteins and receptors including ion channels. In addition, some P2X receptors are sensitive to structurally related steroid hormones. In this study, we systematically analyzed whether rat P2X receptors are affected by micromolar concentrations of different bile acids. The taurine-conjugated bile acids TLCA, THDCA, and TCDCA potently inhibited P2X2, whereas other P2X receptors were only mildly affected. Furthermore, stoichiometry and species origin of the P2X receptors affected the modulation by bile acids: in comparison to rat P2X2, the heteromeric P2X2/3 receptor was less potently modulated and the human P2X2 receptor was potentiated by TLCA. In summary, bile acids are a new class of P2X receptor modulators, which might be of physiological relevance.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Sylvia Joussen
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Dominik Wiemuth
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
11
|
Vyvers A, Schmidt A, Wiemuth D, Gründer S. Screening of 109 neuropeptides on ASICs reveals no direct agonists and dynorphin A, YFMRFamide and endomorphin-1 as modulators. Sci Rep 2018; 8:18000. [PMID: 30573735 PMCID: PMC6301962 DOI: 10.1038/s41598-018-36125-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/14/2018] [Indexed: 01/01/2023] Open
Abstract
Acid-sensing ion channels (ASICs) belong to the DEG/ENaC gene family. While ASIC1a, ASIC1b and ASIC3 are activated by extracellular protons, ASIC4 and the closely related bile acid-sensitive ion channel (BASIC or ASIC5) are orphan receptors. Neuropeptides are important modulators of ASICs. Moreover, related DEG/ENaCs are directly activated by neuropeptides, rendering neuropeptides interesting ligands of ASICs. Here, we performed an unbiased screen of 109 short neuropeptides (<20 amino acids) on five homomeric ASICs: ASIC1a, ASIC1b, ASIC3, ASIC4 and BASIC. This screen revealed no direct agonist of any ASIC but three modulators. First, dynorphin A as a modulator of ASIC1a, which increased currents of partially desensitized channels; second, YFMRFamide as a modulator of ASIC1b and ASIC3, which decreased currents of ASIC1b and slowed desensitization of ASIC1b and ASIC3; and, third, endomorphin-1 as a modulator of ASIC3, which also slowed desensitization. With the exception of YFMRFamide, which, however, is not a mammalian neuropeptide, we identified no new modulator of ASICs. In summary, our screen confirmed some known peptide modulators of ASICs but identified no new peptide ligands of ASICs, suggesting that most short peptides acting as ligands of ASICs are already known.
Collapse
Affiliation(s)
- Anna Vyvers
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
| | - Axel Schmidt
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany.
| | - Dominik Wiemuth
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany.
| |
Collapse
|
12
|
Lenzig P, Wirtz M, Wiemuth D. Comparative electrophysiological analysis of the bile acid-sensitive ion channel (BASIC) from different species suggests similar physiological functions. Pflugers Arch 2018; 471:329-336. [PMID: 30353368 DOI: 10.1007/s00424-018-2223-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022]
Abstract
Despite the identification of cholangiocytes in the liver and unipolar brush cells in the cerebellum as sites of expression, the physiological function of the bile acid-sensitive ion channel (BASIC) remains unknown. Rat BASIC (rBASIC) and mouse BASIC (mBASIC) share 97% of their amino acid sequence but show strikingly different biophysical properties. rBASIC is inactive at rest while mBASIC is constitutively active, when expressed in Xenopus oocytes. This conundrum rendered the identification of the physiological function even more difficult. In this study, we investigated the electrophysiological and pharmacological properties of BASIC from rat, mouse, and human in Hek293 cells using the patch clamp technique. Surprisingly, in Hek293 cells, rBASIC and mBASIC showed almost completely identical properties. Both are blocked by extracellular Ca2+ and thus are inactive at rest; both are selective for Na+, show similar affinities for extracellular Ca2+, were inhibited by diminazene, and activated by various bile acids. This is in contrast to previous results derived from Xenopus oocytes as expression system and suggests that the cell type is important for shaping the biophysical properties of BASIC. Furthermore, we compared hBASIC with rBASIC and mBASIC and observed similar properties between these channels with one exception: the bile acid sensitivity profile of hBASIC is different from rBASIC and mBASIC; hBASIC is more sensitive to bile acids which are abundant in human bile but not in rodent bile. Taken together, these results suggest similar physiological roles for BASIC in different species.
Collapse
Affiliation(s)
- Pia Lenzig
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Monika Wirtz
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Dominik Wiemuth
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
13
|
Ilyaskin AV, Diakov A, Korbmacher C, Haerteis S. Bile acids potentiate proton-activated currents in Xenopus laevis oocytes expressing human acid-sensing ion channel (ASIC1a). Physiol Rep 2018; 5:5/3/e13132. [PMID: 28193786 PMCID: PMC5309578 DOI: 10.14814/phy2.13132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/31/2023] Open
Abstract
Acid‐sensing ion channels (ASICs) are nonvoltage‐gated sodium channels transiently activated by extracellular protons and belong to the epithelial sodium channel (ENaC)/Degenerin (DEG) family of ion channels. Bile acids have been shown to activate two members of this family, the bile acid‐sensitive ion channel (BASIC) and ENaC. To investigate whether bile acids also modulate ASIC function, human ASIC1a was heterologously expressed in Xenopus laevis oocytes. Exposing oocytes to tauro‐conjugated cholic (t‐CA), deoxycholic (t‐DCA), and chenodeoxycholic (t‐CDCA) acid at pH 7.4 did not activate ASIC1a‐mediated whole‐cell currents. However, in ASIC1a expressing oocytes the whole‐cell currents elicited by pH 5.5 were significantly increased in the presence of these bile acids. Single‐channel recordings in outside‐out patches confirmed that t‐DCA enhanced the stimulatory effect of pH 5.5 on ASIC1a channel activity. Interestingly, t‐DCA reduced single‐channel current amplitude by ~15% which suggests an interaction of t‐DCA with a region close to the channel pore. Molecular docking predicted binding of bile acids to the pore region near the degenerin site (G433) in the open conformation of the channel. Site‐directed mutagenesis demonstrated that the amino acid residue G433 is critically involved in the potentiating effect of bile acids on ASIC1a activation by protons.
Collapse
Affiliation(s)
- Alexandr V Ilyaskin
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alexei Diakov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Silke Haerteis
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
14
|
The degenerin region of the human bile acid-sensitive ion channel (BASIC) is involved in channel inhibition by calcium and activation by bile acids. Pflugers Arch 2018; 470:1087-1102. [PMID: 29589117 DOI: 10.1007/s00424-018-2142-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/12/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
Abstract
The bile acid-sensitive ion channel (BASIC) is a member of the ENaC/degenerin family of ion channels. It is activated by bile acids and inhibited by extracellular Ca2+. The aim of this study was to explore the molecular mechanisms mediating these effects. The modulation of BASIC function by extracellular Ca2+ and tauro-deoxycholic acid (t-DCA) was studied in Xenopus laevis oocytes heterologously expressing human BASIC using the two-electrode voltage-clamp and outside-out patch-clamp techniques. Substitution of aspartate D444 to alanine or cysteine in the degenerin region of BASIC, a region known to be critically involved in channel gating, resulted in a substantial reduction of BASIC Ca2+ sensitivity. Moreover, mutating D444 or the neighboring alanine (A443) to cysteine significantly reduced the t-DCA-mediated BASIC stimulation. A combined molecular docking/simulation approach demonstrated that t-DCA may temporarily form hydrogen bonds with several amino acid residues including D444 in the outer vestibule of the BASIC pore or in the inter-subunit space. By these interactions, t-DCA may stabilize the open state of the channel. Indeed, single-channel recordings provided evidence that t-DCA activates BASIC by stabilizing the open state of the channel, whereas extracellular Ca2+ inhibits BASIC by stabilizing its closed state. In conclusion, our results highlight the potential role of the degenerin region as a critical regulatory site involved in the functional interaction of Ca2+ and t-DCA with BASIC.
Collapse
|
15
|
Gonzales EB, Sumien N. Acidity and Acid-Sensing Ion Channels in the Normal and Alzheimer's Disease Brain. J Alzheimers Dis 2018; 57:1137-1144. [PMID: 28211811 DOI: 10.3233/jad-161131] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease prevalence has reached epidemic proportion with very few treatment options, which are associated with a multitude of side effects. A potential avenue of research for new therapies are protons, and their associated receptor: acid-sensing ion channels (ASIC). Protons are often overlooked neurotransmitters, and proton-gated currents have been identified in the brain. Furthermore, ASICs have been determined to be crucial for proper brain function. While there is more work to be done, this review is intended to highlight protons as neurotransmitters and their role along with the role of ASICs within physiological functioning of the brain. We will also cover the pathophysiological associations between ASICs and modulators of ASICs. Finally, this review will sum up how the studies of protons, ASICs and their modulators may generate new therapeutic molecules for Alzheimer's disease and other neurodegenerative diseases.
Collapse
|
16
|
Schmidt A, Löhrer D, Alsop RJ, Lenzig P, Oslender-Bujotzek A, Wirtz M, Rheinstädter MC, Gründer S, Wiemuth D. A Cytosolic Amphiphilic α-Helix Controls the Activity of the Bile Acid-sensitive Ion Channel (BASIC). J Biol Chem 2016; 291:24551-24565. [PMID: 27679529 DOI: 10.1074/jbc.m116.756437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/19/2016] [Indexed: 12/22/2022] Open
Abstract
The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na+ channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction.
Collapse
Affiliation(s)
- Axel Schmidt
- From the Institute of Physiology, RWTH Aachen University, D-52074 Aachen, Germany and
| | - Daniel Löhrer
- From the Institute of Physiology, RWTH Aachen University, D-52074 Aachen, Germany and
| | - Richard J Alsop
- the Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Pia Lenzig
- From the Institute of Physiology, RWTH Aachen University, D-52074 Aachen, Germany and
| | | | - Monika Wirtz
- From the Institute of Physiology, RWTH Aachen University, D-52074 Aachen, Germany and
| | - Maikel C Rheinstädter
- the Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Stefan Gründer
- From the Institute of Physiology, RWTH Aachen University, D-52074 Aachen, Germany and
| | - Dominik Wiemuth
- From the Institute of Physiology, RWTH Aachen University, D-52074 Aachen, Germany and.
| |
Collapse
|
17
|
Ilyaskin AV, Diakov A, Korbmacher C, Haerteis S. Activation of the Human Epithelial Sodium Channel (ENaC) by Bile Acids Involves the Degenerin Site. J Biol Chem 2016; 291:19835-47. [PMID: 27489102 DOI: 10.1074/jbc.m116.726471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 12/22/2022] Open
Abstract
The epithelial sodium channel (ENaC) is a member of the ENaC/degenerin ion channel family, which also includes the bile acid-sensitive ion channel (BASIC). So far little is known about the effects of bile acids on ENaC function. ENaC is probably a heterotrimer consisting of three well characterized subunits (αβγ). In humans, but not in mice and rats, an additional δ-subunit exists. The aim of this study was to investigate the effects of chenodeoxycholic, cholic, and deoxycholic acid in unconjugated (CDCA, CA, and DCA) and tauro-conjugated (t-CDCA, t-CA, t-DCA) form on human ENaC in its αβγ- and δβγ-configuration. We demonstrated that tauro-conjugated bile acids significantly stimulate ENaC in the αβγ- and in the δβγ-configuration. In contrast, non-conjugated bile acids have a robust stimulatory effect only on δβγENaC. Bile acids stimulate ENaC-mediated currents by increasing the open probability of active channels without recruiting additional near-silent channels known to be activated by proteases. Stimulation of ENaC activity by bile acids is accompanied by a significant reduction of the single-channel current amplitude, indicating an interaction of bile acids with a region close to the channel pore. Analysis of the known ASIC1 (acid-sensing ion channel) crystal structure suggested that bile acids may bind to the pore region at the degenerin site of ENaC. Substitution of a single amino acid residue within the degenerin region of βENaC (N521C or N521A) significantly reduced the stimulatory effect of bile acids on ENaC, suggesting that this site is critical for the functional interaction of bile acids with the channel.
Collapse
Affiliation(s)
- Alexandr V Ilyaskin
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Alexei Diakov
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christoph Korbmacher
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Silke Haerteis
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
18
|
Gründer S, Assmann M. Peptide-gated ion channels and the simple nervous system of Hydra. ACTA ACUST UNITED AC 2015; 218:551-61. [PMID: 25696818 DOI: 10.1242/jeb.111666] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurons either use electrical or chemical synapses to communicate with each other. Transmitters at chemical synapses are either small molecules or neuropeptides. After binding to their receptors, transmitters elicit postsynaptic potentials, which can either be fast and transient or slow and longer lasting, depending on the type of receptor. Fast transient potentials are mediated by ionotropic receptors and slow long-lasting potentials by metabotropic receptors. Transmitters and receptors are well studied for animals with a complex nervous system such as vertebrates and insects, but much less is known for animals with a simple nervous system like Cnidaria. As cnidarians arose early in animal evolution, nervous systems might have first evolved within this group and the study of neurotransmission in cnidarians might reveal an ancient mechanism of neuronal communication. The simple nervous system of the cnidarian Hydra extensively uses neuropeptides and, recently, we cloned and functionally characterized an ion channel that is directly activated by neuropeptides of the Hydra nervous system. These results demonstrate the existence of peptide-gated ion channels in Hydra, suggesting they mediate fast transmission in its nervous system. As related channels are also present in the genomes of the cnidarian Nematostella, of placozoans and of ctenophores, it should be considered that the early nervous systems of cnidarians and ctenophores have co-opted neuropeptides for fast transmission at chemical synapses.
Collapse
Affiliation(s)
- Stefan Gründer
- Institute of Physiology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Marc Assmann
- Institute of Physiology, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
19
|
Hendriks CMM, Penning TM, Zang T, Wiemuth D, Gründer S, Sanhueza IA, Schoenebeck F, Bolm C. Pentafluorosulfanyl-containing flufenamic acid analogs: Syntheses, properties and biological activities. Bioorg Med Chem Lett 2015; 25:4437-40. [PMID: 26372652 PMCID: PMC4599580 DOI: 10.1016/j.bmcl.2015.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 01/15/2023]
Abstract
Pentafluorosulfanyl-containing analogs of flufenamic acid have been synthesized in high yields. Computationally, pKa, LogP and LogD values have been determined. Initial bioactivity studies reveal effects as ion channel modulators and inhibitory activities on aldo-keto reductase 1C3 (AKR1C3) as well as COX-1 and COX-2.
Collapse
Affiliation(s)
- Christine M M Hendriks
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III, 421 Curie Blvd, Philadelphia, PA 19104-6160, United States
| | - Tianzhu Zang
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III, 421 Curie Blvd, Philadelphia, PA 19104-6160, United States
| | - Dominik Wiemuth
- Institute of Physiology, Universitätsklinikum Aachen, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, Universitätsklinikum Aachen, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Italo A Sanhueza
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| |
Collapse
|
20
|
Dussor G. ASICs as therapeutic targets for migraine. Neuropharmacology 2015; 94:64-71. [PMID: 25582295 PMCID: PMC4458434 DOI: 10.1016/j.neuropharm.2014.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 01/05/2023]
Abstract
Migraine is the most common neurological disorder and one of the most common chronic pain conditions. Despite its prevalence, the pathophysiology leading to migraine is poorly understood and the identification of new therapeutic targets has been slow. Several processes are currently thought to contribute to migraine including altered activity in the hypothalamus, cortical-spreading depression (CSD), and afferent sensory input from the cranial meninges. Decreased extracellular pH and subsequent activation of acid-sensing ion channels (ASICs) may contribute to each of these processes and may thus play a role in migraine pathophysiology. Although few studies have directly examined a role of ASICs in migraine, studies directly examining a connection have generated promising results including efficacy of ASIC blockers in both preclinical migraine models and in human migraine patients. The purpose of this review is to discuss the pathophysiology thought to contribute to migraine and findings that implicate decreased pH and/or ASICs in these events, as well as propose issues to be resolved in future studies of ASICs and migraine. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Greg Dussor
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, GR-41, 800 West Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
21
|
Kowal JM, Haanes KA, Christensen NM, Novak I. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells. Cell Commun Signal 2015; 13:28. [PMID: 26050734 PMCID: PMC4459444 DOI: 10.1186/s12964-015-0107-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023] Open
Abstract
Background In many cells, bile acids (BAs) have a multitude of effects, some of which may be mediated by specific receptors such the TGR5 or FXR receptors. In pancreas systemic BAs, as well as intra-ductal BAs from bile reflux, can affect pancreatic secretion. Extracellular ATP and purinergic signalling are other important regulators of similar secretory mechanisms in pancreas. The aim of our study was to elucidate whether there is interplay between ATP and BA signalling. Results Here we show that CDCA (chenodeoxycholic acid) caused fast and concentration-dependent ATP release from acini (AR42J) and duct cells (Capan-1). Taurine and glycine conjugated forms of CDCA had smaller effects on ATP release in Capan-1 cells. In duct monolayers, CDCA stimulated ATP release mainly from the luminal membrane; the releasing mechanisms involved both vesicular and non-vesicular secretion pathways. Duct cells were not depleted of intracellular ATP with CDCA, but acinar cells lost some ATP, as detected by several methods including ATP sensor AT1.03YEMK. In duct cells, CDCA caused reversible increase in the intracellular Ca2+ concentration [Ca2 +]i, which could be significantly inhibited by antagonists of purinergic receptors. The TGR5 receptor, expressed on the luminal side of pancreatic ducts, was not involved in ATP release and Ca2+ signals, but could stimulate Na+/Ca2+ exchange in some conditions. Conclusions CDCA evokes significant ATP release that can stimulate purinergic receptors, which in turn increase [Ca2+]i. The TGR5 receptor is not involved in these processes but can play a protective role at high intracellular Ca2+ conditions. We propose that purinergic signalling could be taken into consideration in other cells/organs, and thereby potentially explain some of the multifaceted effects of BAs. Electronic supplementary material The online version of this article (doi:10.1186/s12964-015-0107-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyna M Kowal
- Department of Biology, Section for Cell Biology and Physiology, August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | - Kristian A Haanes
- Department of Biology, Section for Cell Biology and Physiology, August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark. .,Present address: Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Glostrup, Denmark.
| | - Nynne M Christensen
- Department of Biology, Section for Cell Biology and Physiology, August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | - Ivana Novak
- Department of Biology, Section for Cell Biology and Physiology, August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
22
|
Holzer P. Acid-sensing ion channels in gastrointestinal function. Neuropharmacology 2015; 94:72-9. [PMID: 25582294 DOI: 10.1016/j.neuropharm.2014.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022]
Abstract
Gastric acid is of paramount importance for digestion and protection from pathogens but, at the same time, is a threat to the integrity of the mucosa in the upper gastrointestinal tract and may give rise to pain if inflammation or ulceration ensues. Luminal acidity in the colon is determined by lactate production and microbial transformation of carbohydrates to short chain fatty acids as well as formation of ammonia. The pH in the oesophagus, stomach and intestine is surveyed by a network of acid sensors among which acid-sensing ion channels (ASICs) and acid-sensitive members of transient receptor potential ion channels take a special place. In the gut, ASICs (ASIC1, ASIC2, ASIC3) are primarily expressed by the peripheral axons of vagal and spinal afferent neurons and are responsible for distinct proton-gated currents in these neurons. ASICs survey moderate decreases in extracellular pH and through these properties contribute to a protective blood flow increase in the face of mucosal acid challenge. Importantly, experimental studies provide increasing evidence that ASICs contribute to gastric acid hypersensitivity and pain under conditions of gastritis and peptic ulceration but also participate in colonic hypersensitivity to mechanical stimuli (distension) under conditions of irritation that are not necessarily associated with overt inflammation. These functional implications and their upregulation by inflammatory and non-inflammatory pathologies make ASICs potential targets to manage visceral hypersensitivity and pain associated with functional gastrointestinal disorders. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
23
|
Kellenberger S, Schild L. International Union of Basic and Clinical Pharmacology. XCI. structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. Pharmacol Rev 2015; 67:1-35. [PMID: 25287517 DOI: 10.1124/pr.114.009225] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The epithelial Na(+) channel (ENaC) and the acid-sensing ion channels (ASICs) form subfamilies within the ENaC/degenerin family of Na(+) channels. ENaC mediates transepithelial Na(+) transport, thereby contributing to Na(+) homeostasis and the maintenance of blood pressure and the airway surface liquid level. ASICs are H(+)-activated channels found in central and peripheral neurons, where their activation induces neuronal depolarization. ASICs are involved in pain sensation, the expression of fear, and neurodegeneration after ischemia, making them potentially interesting drug targets. This review summarizes the biophysical properties, cellular functions, and physiologic and pathologic roles of the ASIC and ENaC subfamilies. The analysis of the homologies between ENaC and ASICs and the relation between functional and structural information shows many parallels between these channels, suggesting that some mechanisms that control channel activity are shared between ASICs and ENaC. The available crystal structures and the discovery of animal toxins acting on ASICs provide a unique opportunity to address the molecular mechanisms of ENaC and ASIC function to identify novel strategies for the modulation of these channels by pharmacologic ligands.
Collapse
Affiliation(s)
- Stephan Kellenberger
- Département de Pharmacologie et de Toxicologie, Université de Lausanne, Lausanne, Switzerland
| | - Laurent Schild
- Département de Pharmacologie et de Toxicologie, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Schmidt A, Lenzig P, Oslender-Bujotzek A, Kusch J, Dias Lucas S, Gründer S, Wiemuth D. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment. PLoS One 2014; 9:e111549. [PMID: 25360526 PMCID: PMC4216111 DOI: 10.1371/journal.pone.0111549] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/06/2014] [Indexed: 01/26/2023] Open
Abstract
The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Pia Lenzig
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | | | - Jana Kusch
- Institute of Physiology II, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Susana Dias Lucas
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Dominik Wiemuth
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
25
|
Assmann M, Kuhn A, Dürrnagel S, Holstein TW, Gründer S. The comprehensive analysis of DEG/ENaC subunits in Hydra reveals a large variety of peptide-gated channels, potentially involved in neuromuscular transmission. BMC Biol 2014; 12:84. [PMID: 25312679 PMCID: PMC4212090 DOI: 10.1186/s12915-014-0084-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/03/2014] [Indexed: 11/17/2022] Open
Abstract
Background It is generally the case that fast transmission at neural synapses is mediated by small molecule neurotransmitters. The simple nervous system of the cnidarian Hydra, however, contains a large repertoire of neuropeptides and it has been suggested that neuropeptides are the principal transmitters of Hydra. An ion channel directly gated by Hydra-RFamide neuropeptides has indeed been identified in Hydra – the Hydra Na+ channel (HyNaC) 2/3/5, which is expressed at the oral side of the tentacle base. Hydra-RFamides are more widely expressed, however, being found in neurons of the head and peduncle region. Here, we explore whether further peptide-gated HyNaCs exist, where in the animal they are expressed, and whether they are all gated by Hydra-RFamides. Results We report molecular cloning of seven new HyNaC subunits – HyNaC6 to HyNaC12, all of which are members of the DEG/ENaC gene family. In Xenopus oocytes, these subunits assemble together with the four already known subunits into thirteen different ion channels that are directly gated by Hydra-RFamide neuropeptides with high affinity (up to 40 nM). In situ hybridization suggests that HyNaCs are expressed in epitheliomuscular cells at the oral and the aboral side of the tentacle base and at the peduncle. Moreover, diminazene, an inhibitor of HyNaCs, delayed tentacle movement in live Hydra. Conclusions Our results show that Hydra has a large variety of peptide-gated ion channels that are activated by a restricted number of related neuropeptides. The existence and expression pattern of these channels, and behavioral effects induced by channel blockers, suggests that Hydra co-opted neuropeptides for fast neuromuscular transmission. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0084-2) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Su YS, Sun WH, Chen CC. Molecular mechanism of inflammatory pain. World J Anesthesiol 2014; 3:71-81. [DOI: 10.5313/wja.v3.i1.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/20/2013] [Accepted: 11/03/2013] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammatory pain resulting from arthritis, nerve injury and tumor growth is a serious public health issue. One of the major challenges in chronic inflammatory pain research is to develop new pharmacologic treatments with long-term efficacy and few side effects. The mediators released from inflamed sites induce complex changes in peripheral and central processing by directly acting on transducer receptors located on primary sensory neurons to transmit pain signals or indirectly modulating pain signals by activating receptors coupled with G-proteins and second messengers. High local proton concentration (acidosis) is thought to be a decisive factor in inflammatory pain and other mediators such as prostaglandin, bradykinin, and serotonin enhance proton-induced pain. Proton-sensing ion channels [transient receptor potential V1 (TRPV1) and the acid-sensing ion channel (ASIC) family] are major receptors for direct excitation of nociceptive sensory neurons in response to acidosis or inflammation. G-protein-coupled receptors activated by prostaglandin, bradykinin, serotonin, and proton modulate functions of TRPV1, ASICs or other ion channels, thus leading to inflammation- or acidosis-linked hyperalgesia. Although detailed mechanisms remain unsolved, clearly different types of pain or hyperalgesia could be due to complex interactions between a distinct subset of inflammatory mediator receptors expressed in a subset of nociceptors. This review describes new directions for the development of novel therapeutic treatments in pain.
Collapse
|
27
|
Boiko N, Kucher V, Wang B, Stockand JD. Restrictive expression of acid-sensing ion channel 5 (asic5) in unipolar brush cells of the vestibulocerebellum. PLoS One 2014; 9:e91326. [PMID: 24663811 PMCID: PMC3963869 DOI: 10.1371/journal.pone.0091326] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/07/2014] [Indexed: 12/23/2022] Open
Abstract
Acid-sensing ion channels (Asic) are ligand-gated ion channels in the Degenerin/Epithelial Na+ channel (Deg/ENaC) family. Asic proteins are richly expressed in mammalian neurons. Mammals express five Asic genes: Asic1-5. The gene product of Asic5 is an orphan member of the family about which little is known. To investigate Asic5 expression, we created an Asic5 reporter mouse. We find that Asic5 is chiefly expressed in the brain in the cerebellum, specifically in the ventral uvula and nodulus of the vestibulocerebellum. Here, Asic5 is restrictively expressed in a subset of interneurons in the granular layer. The locale, distinctive shape and immunohistochemical properties of these Asic5-expressing interneurons identify them as unipolar brush cells (UBC). Asic5 is richly expressed in a subset of UBCs that also express the metabotropic glutamate receptor 1α (mGluR1α) but not those that express calretinin. Results from single cell RT-PCR and electrophysiological examination of these cells are consistent with this identity. Such observations are consistent with Asic5 playing a key role in the physiology of UBCs and in the function of the vestibulocerebellum.
Collapse
Affiliation(s)
- Nina Boiko
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Volodymyr Kucher
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Bin Wang
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - James D. Stockand
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Wiemuth D, Assmann M, Gründer S. The bile acid-sensitive ion channel (BASIC), the ignored cousin of ASICs and ENaC. Channels (Austin) 2013; 8:29-34. [PMID: 24365967 DOI: 10.4161/chan.27493] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The DEG/ENaC gene family of ion channels is characterized by a high degree of structural similarity and an equally high degree of diversity concerning the physiological function. In humans and rodents, the DEG/ENaC family comprises 2 main subgroups: the subunits of the epithelial Na(+) channel (ENaC) and the subunits of the acid sensing ion channels (ASICs). The bile acid-sensitive channel (BASIC), previously known as BLINaC or INaC, represents a third subgroup within the DEG/ENaC family. Although BASIC was identified more than a decade ago, very little is known about its physiological function. Recent progress in the characterization of this neglected member of the DEG/ENaC family, which is summarized in this focused review, includes the discovery of surprising species differences, its pharmacological characterization, and the identification of bile acids as putative natural activators.
Collapse
Affiliation(s)
- Dominik Wiemuth
- Institute of Physiology; RWTH University Aachen; Aachen, Germany
| | - Marc Assmann
- Institute of Physiology; RWTH University Aachen; Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology; RWTH University Aachen; Aachen, Germany
| |
Collapse
|
29
|
Wiemuth D, Lefèvre CMT, Heidtmann H, Gründer S. Bile acids increase the activity of the epithelial Na+ channel. Pflugers Arch 2013; 466:1725-33. [PMID: 24292109 DOI: 10.1007/s00424-013-1403-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/29/2013] [Accepted: 11/07/2013] [Indexed: 01/08/2023]
Abstract
The epithelial Na(+) channel (ENaC) is a key regulator of Na(+) absorption in various epithelia including the distal nephron and the distal colon. ENaC is a constitutively active channel, but its activity is modulated by a number of mechanisms. These include proteolytic activation, ubiquitination and cell surface expression, phosphorylation, intracellular Na(+) concentration, and shear stress. ENaC is related to the bile acid-sensitive ion channel (BASIC), a channel that is expressed in the epithelial cells of bile ducts. BASIC is activated by millimolar concentrations of extracellular bile acids. Bile acids are synthesized by the liver and secreted into the duodenum to aid lipolysis. A large fraction of the secreted bile acids is absorbed by the ileum and recirculated into the liver, but a small fraction passes the colon and is excreted. Bile acids can influence the ion transport processes in the intestinal tract including the colon. In this study, we show that various bile acids present in rat bile potently and reversibly increase the activity of rat ENaC expressed in Xenopus oocytes, suggesting that bile acids are natural modulators of ENaC activity.
Collapse
Affiliation(s)
- Dominik Wiemuth
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany,
| | | | | | | |
Collapse
|
30
|
Pharmacological and electrophysiological characterization of the human bile acid-sensitive ion channel (hBASIC). Pflugers Arch 2013; 466:253-63. [PMID: 23842738 DOI: 10.1007/s00424-013-1310-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 01/23/2023]
Abstract
The human bile acid-sensitive ion channel (hBASIC) is a cation channel of the degenerin/epithelial Na(+) channel gene family that is expressed in the intestinal tract and can be activated by bile acids. Here, we show that in addition to its sensitivity for bile acids, hBASIC shares further key features with its rat ortholog: it is blocked by extracellular divalent cations, is inhibited by micromolar concentrations of the diarylamidine diminazene, and activated by millimolar concentrations of flufenamic acid. Furthermore, we demonstrate that two major bile acids present in human bile, chenodeoxycholic acid and deoxycholic acid, activate hBASIC in a synergistic manner. In addition, we determined the single-channel properties of hBASIC in outside-out patch clamp recordings, revealing a single-channel conductance of about 11 pS and a high Na(+) selectivity. Deoxycholic acid activates hBASIC in patch clamp recordings mainly by reducing the single-channel closed time. In summary, we provide a thorough functional characterization of hBASIC.
Collapse
|
31
|
Boiko N, Kucher V, Eaton BA, Stockand JD. Inhibition of neuronal degenerin/epithelial Na+ channels by the multiple sclerosis drug 4-aminopyridine. J Biol Chem 2013; 288:9418-27. [PMID: 23404498 DOI: 10.1074/jbc.m112.449413] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The voltage-gated K(+) (Kv) channel blocker 4-aminopyridine (4-AP) is used to target symptoms of the neuroinflammatory disease multiple sclerosis (MS). By blocking Kv channels, 4-AP facilitates action potential conduction and neurotransmitter release in presynaptic neurons, lessening the effects of demyelination. Because they conduct inward Na(+) and Ca(2+) currents that contribute to axonal degeneration in response to inflammatory conditions, acid-sensing ion channels (ASICs) contribute to the pathology of MS. Consequently, ASICs are emerging as disease-modifying targets in MS. Surprisingly, as first demonstrated here, 4-AP inhibits neuronal degenerin/epithelial Na(+) (Deg/ENaC) channels, including ASIC and BLINaC. This effect is specific for 4-AP compared with its heterocyclic base, pyridine, and the related derivative, 4-methylpyridine; and akin to the actions of 4-AP on the structurally unrelated Kv channels, dose- and voltage-dependent. 4-AP has differential actions on distinct ASICs, strongly inhibiting ASIC1a channels expressed in central neurons but being without effect on ASIC3, which is enriched in peripheral sensory neurons. The voltage dependence of the 4-AP block and the single binding site for this inhibitor are consistent with 4-AP binding in the pore of Deg/ENaC channels as it does Kv channels, suggesting a similar mechanism of inhibition in these two classes of channels. These findings argue that effects on both Kv and Deg/ENaC channels should be considered when evaluating the actions of 4-AP. Importantly, the current results are consistent with 4-AP influencing the symptoms of MS as well as the course of the disease because of inhibitory actions on Kv and ASIC channels, respectively.
Collapse
Affiliation(s)
- Nina Boiko
- Department of Physiology, University of Texas Health Sciences Center, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
32
|
Guinamard R, Simard C, Del Negro C. Flufenamic acid as an ion channel modulator. Pharmacol Ther 2013; 138:272-84. [PMID: 23356979 DOI: 10.1016/j.pharmthera.2013.01.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/26/2012] [Indexed: 12/29/2022]
Abstract
Flufenamic acid has been known since the 1960s to have anti-inflammatory properties attributable to the reduction of prostaglandin synthesis. Thirty years later, flufenamic acid appeared to be an ion channel modulator. Thus, while its use in medicine diminished, its use in ionic channel research expanded. Flufenamic acid commonly not only affects non-selective cation channels and chloride channels, but also modulates potassium, calcium and sodium channels with effective concentrations ranging from 10(-6)M in TRPM4 channel inhibition to 10(-3)M in two-pore outwardly rectifying potassium channel activation. Because flufenamic acid effects develop and reverse rapidly, it is a convenient and widely used tool. However, given the broad spectrum of its targets, experimental results have to be interpreted cautiously. Here we provide an overview of ion channels targeted by flufenamic acid to aid in interpreting its effects at the molecular, cellular, and system levels. If it is used with good practices, flufenamic acid remains a useful tool for ion channel research. Understanding the targets of FFA may help reevaluate its physiological impacts and revive interest in its therapeutic potential.
Collapse
|
33
|
Dürrnagel S, Falkenburger BH, Gründer S. High Ca(2+) permeability of a peptide-gated DEG/ENaC from Hydra. ACTA ACUST UNITED AC 2013; 140:391-402. [PMID: 23008433 PMCID: PMC3457691 DOI: 10.1085/jgp.201210798] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Degenerin/epithelial Na+ channels (DEG/ENaCs) are Na+ channels that are blocked by the diuretic amiloride. In general, they are impermeable for Ca2+ or have a very low permeability for Ca2+. We describe here, however, that a DEG/ENaC from the cnidarian Hydra magnipapillata, the Hydra Na+ channel (HyNaC), is highly permeable for Ca2+ (PCa/PNa = 3.8). HyNaC is directly gated by Hydra neuropeptides, and in Xenopus laevis oocytes expressing HyNaCs, RFamides elicit currents with biphasic kinetics, with a fast transient component and a slower sustained component. Although it was previously reported that the sustained component is unselective for monovalent cations, the selectivity of the transient component had remained unknown. Here, we show that the transient current component arises from secondary activation of the Ca2+-activated Cl− channel (CaCC) of Xenopus oocytes. Inhibiting the activation of the CaCC leads to a simple on–off response of peptide-activated currents with no apparent desensitization. In addition, we identify a conserved ring of negative charges at the outer entrance of the HyNaC pore that is crucial for the high Ca2+ permeability, presumably by attracting divalent cations to the pore. At more positive membrane potentials, the binding of Ca2+ to the ring of negative charges increasingly blocks HyNaC currents. Thus, HyNaC is the first member of the DEG/ENaC gene family with a high Ca2+ permeability.
Collapse
Affiliation(s)
- Stefan Dürrnagel
- Department of Physiology, RWTH Aachen University, 52074 Aachen, Germany.
| | | | | |
Collapse
|
34
|
Wiemuth D, Sahin H, Lefèvre CMT, Wasmuth HE, Gründer S. Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid. Channels (Austin) 2012; 7:38-42. [PMID: 23064163 PMCID: PMC3589280 DOI: 10.4161/chan.22406] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC gene family of unknown function. Rat BASIC (rBASIC) is inactive at rest. We have recently shown that cholangiocytes, the epithelial cells lining the bile ducts, are the main site of BASIC expression in the liver and identified bile acids, in particular hyo- and chenodeoxycholic acid, as agonists of rBASIC. Moreover, it seems that extracellular divalent cations stabilize the resting state of rBASIC, because removal of extracellular divalent cations opens the channel. In this addendum, we demonstrate that removal of extracellular divalent cations potentiates the activation of rBASIC by bile acids, suggesting an allosteric mechanism. Furthermore, we show that rBASIC is strongly activated by the anticholestatic bile acid ursodeoxycholic acid (UDCA), suggesting that BASIC might mediate part of the therapeutic effects of UDCA.
Collapse
Affiliation(s)
- Dominik Wiemuth
- Department of Physiology, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | |
Collapse
|