1
|
Zheng J, Wang C, Zhou X, Tang Y, Tang L, Tan Y, Zhang J, Yu H, Zhang J, Liu D. Structural and functional connectivity coupling as an imaging marker for bone metastasis pain in lung cancer patients. Brain Res Bull 2025; 221:111210. [PMID: 39832755 DOI: 10.1016/j.brainresbull.2025.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Cancer pain is a common symptom in patients with malignant tumors and associated with poor prognosis and a high risk of death. Structural connectivity (SC) and functional connectivity (FC) couplings have not yet been explored in lung cancer patients with bone metastasis pain. METHODS In total, 51 patients with lung cancer without bone metastasis pain (BMP-), 52 patients with lung cancer with bone metastasis pain (BMP+), and 28 healthy controls (HC) were prospectively enrolled in our study. Firstly, SC-FC couplings were measured and analyzed at global, regional, and modular levels. Subsequently, individualized SC-FC coupling networks were constructed based on the Euclidean distance metric. In addition, the convolutional neural network (CNN) model was selected to analyze and classify three groups based on individualized networks. RESULTS The coupling analysis demonstrated that weaker SC-FC couplings related to lung cancer itself were present at various levels, including global, regional, inter-network, and intra-network couplings. Notably, hyper-couplings related to bone metastasis pain were present in several brain regions, mainly involving the default mode network, frontoparietal network, salience network, and limbic system. Significant positive correlations were observed between regional coupling in the right amygdala and the numeric rating scale scores in BMP+. Moreover, CNN model built on individualized networks exhibited relatively great classification performance. CONCLUSION Alterations in SC-FC coupling patterns may play a crucial role in the development and modulation of bone metastasis pain. Understanding these changes could provide valuable insights into the neural mechanisms underlying cancer pain.
Collapse
Affiliation(s)
- Jiahui Zheng
- Department of Radiology, Chongqing University Cancer Hospital, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, China
| | - Xiaoyu Zhou
- School of Medicine, Chongqing University, China
| | - Yu Tang
- Department of Radiology, Chongqing University Cancer Hospital, China
| | - Lin Tang
- Department of Radiology, Chongqing University Cancer Hospital, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, China
| | - Jing Zhang
- Department of Radiology, Chongqing University Cancer Hospital, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, China.
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, China.
| |
Collapse
|
2
|
Franzen V, Gruber NA, Klußmann S, Schoster A, May A. Effect of repetitive transcranial magnetic stimulation on trigeminal-mediated headshaking in 17 horses. J Vet Intern Med 2024; 38:2758-2765. [PMID: 39264234 PMCID: PMC11423477 DOI: 10.1111/jvim.17194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Trigeminal-mediated headshaking is a neuropathic facial pain condition in horses. No treatment has been entirely successful. Repetitive transcranial magnetic stimulation (rTMS) is used in human medicine as a treatment for various neuropathic pain conditions, and good results have been achieved in cases of trigeminal neuralgia. OBJECTIVES Apply rTMS to horses with trigeminal-mediated headshaking (TMHS) and to evaluate tolerability, application of the setting, and success rate. ANIMALS Seventeen horses with nonseasonal signs of TMHS. METHODS Other underlying causes of headshaking were ruled out. The rTMS was performed under standing sedation on 5 consecutive days applying 3 sets of 500 stimulations each, with a stimulation strength of 5 Hz. Horses were evaluated on Day 1 (t0) and Day 5 (t1) of the treatment and 2 (t2) and 4 weeks (t3) afterwards using a special scoring system. RESULTS The rTMS was well tolerated. Headshaking signs during exercise were decreased by 70% (Day 5; t1). Four weeks after rTMS, signs were still decreased (mean reduction of 50%) during exercise. Improvement of mean resting and exercise scores was significant (P < .05) and effect sizes between pretreatment and all time points after treatment (t1, t2, t3) were large (>±0.8). CONCLUSIONS AND CLINICAL IMPORTANCE Repetitive transcranial magnetic stimulation may be a promising treatment for neuropathic pain and headshaking in affected horses. Pain-free periods after treatment differ individually, and repeated treatment may be necessary. More studies should be performed to determine ideal settings for horses.
Collapse
Affiliation(s)
- Vanessa Franzen
- Equine HospitalLudwig Maximilians University MunichMunichGermany
| | | | - Sven Klußmann
- Equine HospitalLudwig Maximilians University MunichMunichGermany
| | | | - Anna May
- Equine HospitalLudwig Maximilians University MunichMunichGermany
| |
Collapse
|
3
|
Kataria M, Gupta N, Kumar A, Bhoriwal S, Singh A, Shekhar V, Bhatia R. Assessing the effectiveness of high frequency repetitive transcranial magnetic stimulation for post-mastectomy pain in breast cancer patients: A randomized controlled trial. Breast Cancer 2024; 31:841-850. [PMID: 38796817 DOI: 10.1007/s12282-024-01598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Post-mastectomy pain Syndrome (PMPS), characterized by chronic neuropathic pain stemming from intercostobrachial nerve lesions, presents a formidable clinical challenge. With the incidence of breast cancer surging, effective interventions for PMPS are urgently needed. To address this, we conducted this double-blind, placebo-controlled, randomized clinical trial to study the efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) therapy over the motor cortex on pain, quality of life and thermal sensitivity in PMPS patients. METHODS We delivered 15 rTMS sessions over three weeks in a cohort of 34 PMPS patients. These patients were allocated randomly to either rTMS therapy or sham therapy groups. Pain assessments, utilizing the Visual Analogue Scale (VAS) and Short Form McGill Pain Questionnaire (SF-MPQ), alongside quality-of-life evaluations through the Functional Assessment of Cancer Therapy-Breast (FACT-B), were recorded before and after the 15 sessions. Additionally, we assessed thermal sensitivity using Quantitative Sensory Testing (QST). RESULTS Our findings demonstrate the superior efficacy of rTMS therapy (over sham therapy) in reducing VAS and SF-MPQ scores (p < 0.0001), improving physical (p = 0.037), emotional (p = 0.033), and functional well-being (p = 0.020) components of quality of life, as quantified by FACT-B. Our investigation also unveiled marked enhancements in thermal sensitivity within the rTMS therapy group, with statistically significant improvements in cold detection threshold (p = 0.0001), warm detection threshold (p = 0.0033), cold pain threshold (p = 0.0078), and hot pain tolerance threshold (p = 0.0078). CONCLUSION The study underscores the profound positive impact of rTMS therapy on pain, quality of life, and thermal sensitivity in patients having PMPS, opening new avenues for pain management strategies.
Collapse
Affiliation(s)
- Monika Kataria
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Nishkarsh Gupta
- Department of Onco-Anesthesiology and Palliative Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Aasheesh Kumar
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Sandeep Bhoriwal
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Akanksha Singh
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Varun Shekhar
- Department of Onco-Anesthesiology and Palliative Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Renu Bhatia
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
4
|
González-Zamorano Y, José Sánchez-Cuesta F, Moreno-Verdú M, Arroyo-Ferrer A, Fernández-Carnero J, Chaudhuri KR, Fieldwalker A, Romero JP. TDCS for parkinson's disease disease-related pain: A randomized trial. Clin Neurophysiol 2024; 161:133-146. [PMID: 38479239 DOI: 10.1016/j.clinph.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE To evaluate the effects of transcranial direct current stimulation (tDCS) on Parkinson's disease (PD)-related pain. METHODS This triple-blind randomized controlled trial included twenty-two patients (age range 38-85, 10 male) with PD-related pain. Eleven subjects received ten sessions of 20 minutes tDCS over the primary motor cortex contralateral to pain at 2 mA intensity. Eleven subjects received sham stimulation. Outcome measures included changes in the Kinǵs Parkinsońs Pain Scale (KPPS), Brief Pain Inventory (BPI), widespread mechanical hyperalgesia (WMH), temporal summation of pain (TS), and conditioned pain modulation (CPM). RESULTS Significant differences were found in KPPS between groups favoring the active-tDCS group compared to the sham-tDCS group at 15-days follow-up (p = 0.014) but not at 2 days post-intervention (p = 0.059). The active-group showed significant improvements over the sham-group after 15 days (p = 0.017). Significant changes were found in CPM between groups in favor of active-tDCS group at 2 days post-intervention (p = 0.002) and at 15 days (p = 0.017). No meaningful differences were observed in BPI or TS. CONCLUSIONS tDCS of the primary motor cortex alleviates perceived PD-related pain, reduces pain sensitization, and enhances descending pain inhibition. SIGNIFICANCE This is the first study to test and demonstrate the use of tDCS for improving PD-related pain.
Collapse
Affiliation(s)
- Yeray González-Zamorano
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain; Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain; Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain; Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain.
| | - Francisco José Sánchez-Cuesta
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain.
| | - Marcos Moreno-Verdú
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain
| | - Aida Arroyo-Ferrer
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain.
| | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain; Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain.
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom.
| | - Anna Fieldwalker
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Juan Pablo Romero
- Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain; Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain; Brain Damage Unit, Beata María Ana Hospital, 28007 Madrid, Spain.
| |
Collapse
|
5
|
Lefaucheur JP. It is time to personalize rTMS targeting for the treatment of pain. Neurophysiol Clin 2024; 54:102950. [PMID: 38382139 DOI: 10.1016/j.neucli.2024.102950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Affiliation(s)
- Jean-Pascal Lefaucheur
- Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, AP-HP, Créteil, France; UR ENT (EA4391), Faculté de Santé, Université Paris Est Créteil, Créteil, France.
| |
Collapse
|
6
|
Yan Z, Cao W, Miao L, Li J, Wang H, Xu D, Yu H, Zhu Y. Repetitive transcranial magnetic stimulation for chemotherapy-induced peripheral neuropathy in multiple myeloma: A pilot study. SAGE Open Med 2023; 11:20503121231209088. [PMID: 37915844 PMCID: PMC10617261 DOI: 10.1177/20503121231209088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Objective Chemotherapy-induced peripheral neuropathy is one of the major toxicities in multiple myeloma patients, often resulting in dose reductions or treatment interruptions. Repetitive transcranial magnetic stimulation is a safe non-invasive neuromodulation therapy with potential benefits for chemotherapy-induced peripheral neuropathy. The objective of this study was to investigate the efficacy of repetitive transcranial magnetic stimulation treatment on chemotherapy-induced peripheral neuropathy in multiple myeloma patients. Materials and methods We screened 30 multiple myeloma patients with chemotherapy-induced peripheral neuropathy who underwent repetitive transcranial magnetic stimulation treatment in this study. Prior to and following repetitive transcranial magnetic stimulation treatment, patients were assessed with nerve conduction velocity, visual analog scale and the European Organization of Research and Treatment of Cancer Quality of Life Questionnaire-CIPN 20-item scale (EORTC QLQ-CIPN20). Categorical and continuous variables were analyzed using Fisher's exact test and Mann-Whitney U test respectively. A p-value < 0.05 (2-tailed) was considered statistically significant. Results Following repetitive transcranial magnetic stimulation treatment, 24/30 (80.0%) patients reported a reduction in chemotherapy-induced peripheral neuropathy symptoms. Meanwhile, all 15 patients with grade 2 chemotherapy-induced peripheral neuropathy experienced improvements about themselves, compared to 8/10 patient with grade 3 chemotherapy-induced peripheral neuropathy and 1/5 with grade 4 chemotherapy-induced peripheral neuropathy. Visual analog scale scores decreased after repetitive transcranial magnetic stimulation treatment (5.40 ± 1.94 vs 3.10 ± 1.60, p < 0.001). We also observed enhancements in both motor conduction velocity and sensory conduction velocity of patients in bilateral median nerves, posterior tibial nerves, common ulnar nerves and peroneal nerves following repetitive transcranial magnetic stimulation treatment. Analysis of the European Organization of Research and Treatment of Cancer Quality of Life Questionnaire-CIPN 20-item scale data (17.68 ± 8.14 vs 10.50 ± 9.55, p < 0.001) revealed significant reductions in scores. Patients with grade 2-3 (n = 25) exhibited a mean reduction of 8.89 ± 4.24 points, while those with grade 4 (n = 5) showed a difference value of 3.54 ± 3.45, p < 0.001. No adverse events were observed. Conclusion Our findings suggest that repetitive transcranial magnetic stimulation is a safe and effective therapeutic approach for ameliorating peripheral nerve injury and alleviating the chemotherapy-induced peripheral neuropathy symptoms in multiple myeloma patients. Early initiation of repetitive transcranial magnetic stimulation treatment may yield more favorable outcomes for these patients.
Collapse
Affiliation(s)
- Zhenzhuang Yan
- Department of Rehabilitation, The First People’s Hospital of Lianyungang, Jiangsu, China
- First Affiliated Hospital, Kangda College of Nanjing Medical University, Jiangsu, China
| | - Weiwei Cao
- Department of Rehabilitation, The First People’s Hospital of Lianyungang, Jiangsu, China
- First Affiliated Hospital, Kangda College of Nanjing Medical University, Jiangsu, China
| | - Lei Miao
- First Affiliated Hospital, Kangda College of Nanjing Medical University, Jiangsu, China
- Department of Hematology, The First People’s Hospital of Lianyungang, Jiangsu, China
| | - Juan Li
- First Affiliated Hospital, Kangda College of Nanjing Medical University, Jiangsu, China
- Department of Neurology, The First People’s Hospital of Lianyungang, Jiangsu, China
| | - Hui Wang
- First Affiliated Hospital, Kangda College of Nanjing Medical University, Jiangsu, China
- Department of Hematology, The First People’s Hospital of Lianyungang, Jiangsu, China
| | - Dandan Xu
- Department of Rehabilitation, The First People’s Hospital of Lianyungang, Jiangsu, China
- First Affiliated Hospital, Kangda College of Nanjing Medical University, Jiangsu, China
| | - Hainan Yu
- Family Planning Association of Lianyungang City, Jiangsu, China
| | - Yuanxin Zhu
- First Affiliated Hospital, Kangda College of Nanjing Medical University, Jiangsu, China
- Department of Hematology, The First People’s Hospital of Lianyungang, Jiangsu, China
| |
Collapse
|
7
|
Radiansyah RS, Hadi DW. Repetitive transcranial magnetic stimulation in central post-stroke pain: current status and future perspective. Korean J Pain 2023; 36:408-424. [PMID: 37752663 PMCID: PMC10551398 DOI: 10.3344/kjp.23220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Central post-stroke pain (CPSP) is an incapacitating disorder that impacts a substantial proportion of stroke survivors and can diminish their quality of life. Conventional therapies for CPSP, including tricyclic antidepressants, anticonvulsants, and opioids, are frequently ineffective, necessitating the investigation of alternative therapeutic strategies. Repetitive transcranial magnetic stimulation (rTMS) is now recognized as a promising noninvasive pain management method for CPSP. rTMS modulates neural activity through the administration of magnetic pulses to specific cortical regions. Trials analyzing the effects of rTMS on CPSP have generated various outcomes, but the evidence suggests possible analgesic benefits. In CPSP and other neuropathic pain conditions, high-frequency rTMS targeting the primary motor cortex (M1) with figure-eight coils has demonstrated significant pain alleviation. Due to its associaton with analgesic benefits, M1 is the most frequently targeted area. The duration and frequency of rTMS sessions, as well as the stimulation intensity, have been studied in an effort to optimize treatment outcomes. The short-term pain relief effects of rTMS have been observed, but the long-term effects (> 3 months) require further investigation. Aspects such as stimulation frequency, location, and treatment period can influence the efficacy of rTMS and ought to be considered while planning the procedure. Standardized guidelines for using rTMS in CPSP would optimize therapy protocols and improve patient outcomes. This review article provides an up-to-date overview of the incidence, clinical characteristics, outcome of rTMS in CPSP patients, and future perspective in the field.
Collapse
Affiliation(s)
- Riva Satya Radiansyah
- Faculty of Medicine and Health, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Deby Wahyuning Hadi
- Department of Neurology, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
8
|
Thakkar B, Peterson CL, Acevedo EO. Prolonged continuous theta burst stimulation increases motor corticospinal excitability and intracortical inhibition in patients with neuropathic pain: An exploratory, single-blinded, randomized controlled trial. Neurophysiol Clin 2023; 53:102894. [PMID: 37659135 PMCID: PMC10592401 DOI: 10.1016/j.neucli.2023.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 09/04/2023] Open
Abstract
OBJECTIVES A new paradigm for Transcranial Magnetic Stimulation (TMS), referred to as prolonged continuous theta burst stimulation (pcTBS), has recently received attention in the literature because of its advantages over high frequency repetitive TMS (HF-rTMS). Clinical advantages include less time per intervention session and the effects appear to be more robust and reproducible than HF-rTMS to modulate cortical excitability. HF-rTMS targeted at the primary motor cortex (M1) has demonstrated analgesic effects in patients with neuropathic pain but their mechanisms of action are unclear and pcTBS has been studied in healthy subjects only. This study examined the neural mechanisms that have been proposed to play a role in explaining the effects of pcTBS targeted at the M1 and DLPFC brain regions in neuropathic pain (NP) patients with Type 2 diabetes. METHODS Forty-two patients with painful diabetic neuropathy were randomized to receive a single session of pcTBS targeted at the left M1 or left DLPFC. pcTBS stimulation consisted of 1,200 pulses delivered in 1 min and 44 s with a 35-45 min gap between sham and active pcTBS stimulation. Both the activity of the descending pain system which was examined using conditioned pain modulation and the activity of the ascending pain system which was assessed using temporal summation of pain were recorded using a handheld pressure algometer by measuring pressure pain thresholds. The amplitude of the motor evoked potential (MEP) was used to measure motor corticospinal excitability and GABA activity was assessed using short (SICI) and long intracortical inhibition (LICI). All these measurements were performed at baseline and post-pcTBS stimulation. RESULTS Following a single session of pcTBS targeted at M1 and DLPFC, there was no change in BPI-DN scores and on the activity of the descending (measured using conditioned pain modulation) and ascending pain systems (measured using temporal summation of pain) compared to baseline but there was a significant improvement of >13% in perception of acute pain intensity, increased motor corticospinal excitability (measured using MEP amplitude) and intracortical inhibition (measured using SICI and LICI). CONCLUSION In patients with NP, a single session of pcTBS targeted at the M1 and DLPFC modulated the neurophysiological mechanisms related to motor corticospinal excitability and neurochemical mechanisms linked to GABA activity, but it did not modulate the activity of the ascending and descending endogenous modulatory systems. In addition, although BPI-DN scores did not change, there was a 13% improvement in self-reported perception of acute pain intensity.
Collapse
Affiliation(s)
- Bhushan Thakkar
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States.
| | - Carrie L Peterson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Edmund O Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
9
|
Li G, Jin B, Fan Z. Clinical application of transcranial magnetic stimulation for functional bowel disease. Front Med (Lausanne) 2023; 10:1213067. [PMID: 37396913 PMCID: PMC10311555 DOI: 10.3389/fmed.2023.1213067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Functional bowel disorder (FBD) is a common gastrointestinal disease syndrome characterized by dysmotility and secretion without known organic lesions. The pathogenesis of FBD is still unclear. In recent years, with the rise of neurogastroenterology, it has initially revealed its close relationship with the "brain-gut axis." Transcranial magnetic stimulation (TMS) is a technique for detecting and treating the nervous system, that is characterized by non-invasiveness and painlessness. TMS plays an important role in the diagnosis and treatment of diseases, and provides a new method for the treatment of FBD. In this paper, we summarized and analyzed the research progress of using TMS therapy applied to patients with irritable bowel syndrome and functional constipation by domestic and foreign scholars in recent years by means of literature search, and found that TMS therapy could improve the intestinal discomfort and accompanying mental symptoms in patients with FBD.
Collapse
Affiliation(s)
- Guangyao Li
- Department of General Surgery, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Binghui Jin
- Department of General Surgery, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Storari M, Zerman N, Salis B, Spinas E. Chronic Facial Pain in Fibromyalgia: May ElectroMagnetic Field Represent a Promising New Therapy? A Pilot Randomized-Controlled Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:391. [PMID: 36612711 PMCID: PMC9819752 DOI: 10.3390/ijerph20010391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Fibromyalgic Syndrome is an important public health burden and affects up to 5% of the world population. It requires a complex treatment plan, possibly including antidepressants, anticonvulsants and benzodiazepines, which may in turn affect the patients' quality of life: hence the need to find additional therapies. The current pilot randomized-controlled study analyzes the effect of electromagnetic field locally administered as add-on therapy in the treatment of cervico-facial pain in patients with fibromyalgic syndrome. 17 patients were selected and low-frequency electromagnetic field was applied via small patches worn in the neck area, between vertebrae C3-C4. Patients were divided into 2 groups, Treated, receiving the therapy, and Placebo, receiving an identical device which was not working,, with respectively 8 and 9 patients. The whole follow up period was 12 months and facial/cervical pain levels were rated using VAS scale. Significant differences were found between patients who received placebo and those treated. Treated patients showed statistically significant improvements in facial/cervical pain at each time-point, both with respect to the previous one and if compared to placebo. In conclusion, low frequency electromagnetic field emerged as beneficial in treating cervico-facial pain in patients with Fibromyalgic syndrome, with no side effects.
Collapse
Affiliation(s)
- Marco Storari
- Department of Surgical Science, College of Dentistry, University of Cagliari, 09124 Cagliari, Italy
| | - Nicoletta Zerman
- Department of Surgery, Dentistry, Pediatrics and Gynaecology, University of Verona, 37124 Verona, Italy
| | - Benedetta Salis
- Department of Surgical Science, College of Dentistry, University of Cagliari, 09124 Cagliari, Italy
| | - Enrico Spinas
- Department of Surgical Science, College of Dentistry, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
11
|
Moukhaiber N, Summers SJ, Opar D, Imam J, Thomson D, Chang WJ, Andary T, Cavaleri R. The effect of theta burst stimulation over the primary motor cortex on experimental hamstring pain: A randomised, controlled study. THE JOURNAL OF PAIN 2022; 24:593-604. [PMID: 36464137 DOI: 10.1016/j.jpain.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
Theta burst stimulation (TBS) over the primary motor cortex (M1) is an emerging technique that may have utility in the treatment of musculoskeletal pain. However, previous work exploring the analgesic effects of noninvasive brain stimulation has been limited largely to the arm or hand, despite 80% of acute musculoskeletal injuries occurring in the lower limb. This is a pertinent point, given the functional and neurophysiological differences between upper and lower limb musculature, as well as evidence suggesting that reorganization of corticomotor pathways is region-specific. This study investigated the effect of excitatory TBS on pain, function, and corticomotor organization during experimentally induced lower limb pain. Twenty-eight healthy participants attended 2 experimental sessions. On Day 0, participants completed 10 sets of 10 maximal eccentric contractions of the right hamstring muscles to induce delayed onset muscle soreness. Four consecutive blocks of either active or sham TBS were delivered on Day 2. Measures of mechanical sensitivity, pain (muscle soreness, pain intensity, pain area) function (single-leg hop distance, maximum voluntary isometric contraction, lower extremity functional scale), and corticomotor organization were recorded before and after TBS on Day 2. Pain and function were also assessed daily from Days 2 to 10. Active TBS reduced mechanical sensitivity compared to sham stimulation (P = .01). Corticomotor organization did not differ between groups, suggesting that improvements in mechanical sensitivity were not mediated by changes in M1. Subjective reports of pain intensity and function did not change following active TBS, contrasting previous reports in studies of the upper limb. PERSPECTIVE: M1 TBS reduces mechanical sensitivity associated with experimentally induced hamstring pain. Though further work is needed, these findings may hold important implications for those seeking to expedite recovery or reduce muscle sensitivity following hamstring injury.
Collapse
Affiliation(s)
- Nadia Moukhaiber
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia
| | - Simon J Summers
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia; Queensland University of Technology, School of Biomedical Sciences, Queensland, Australia
| | - David Opar
- Australian Catholic University, Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, School of Behavioural and Health Sciences, Victoria, Australia
| | - Jawwad Imam
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia
| | - Daniel Thomson
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia
| | - Wei-Ju Chang
- University of Newcastle, College of Health Medicine and Wellbeing, School of Health Sciences, New South Wales, Australia; Neuroscience Research Australia (NeuRA), Centre for Pain IMPACT, New South Wales, Australia
| | - Toni Andary
- South Western Sydney Local Health District, New South Wales, Australia
| | - Rocco Cavaleri
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia.
| |
Collapse
|
12
|
New updates on transcranial magnetic stimulation in chronic pain. Curr Opin Support Palliat Care 2022; 16:65-70. [DOI: 10.1097/spc.0000000000000591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Xiong HY, Zheng JJ, Wang XQ. Non-invasive Brain Stimulation for Chronic Pain: State of the Art and Future Directions. Front Mol Neurosci 2022; 15:888716. [PMID: 35694444 PMCID: PMC9179147 DOI: 10.3389/fnmol.2022.888716] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
As a technique that can guide brain plasticity, non-invasive brain stimulation (NIBS) has the potential to improve the treatment of chronic pain (CP) because it can interfere with ongoing brain neural activity to regulate specific neural networks related to pain management. Treatments of CP with various forms of NIBS, such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), using new parameters of stimulation have achieved encouraging results. Evidence of moderate quality indicates that high-frequency rTMS of the primary motor cortex has a clear effect on neuropathic pain (NP) and fibromyalgia. However, evidence on its effectiveness regarding pain relief in other CP conditions is conflicting. Concerning tDCS, evidence of low quality supports its benefit for CP treatment. However, evidence suggesting that it exerts a small treatment effect on NP and headaches is also conflicting. In this paper, we describe the underlying principles behind these commonly used stimulation techniques; and summarize the results of randomized controlled trials, systematic reviews, and meta-analyses. Future research should focus on a better evaluation of the short-term and long-term effectiveness of all NIBS techniques and whether they decrease healthcare use, as well as on the refinement of selection criteria.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | | | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
14
|
Shinu P, Morsy MA, Nair AB, Mouslem AKA, Venugopala KN, Goyal M, Bansal M, Jacob S, Deb PK. Novel Therapies for the Treatment of Neuropathic Pain: Potential and Pitfalls. J Clin Med 2022; 11:3002. [PMID: 35683390 PMCID: PMC9181614 DOI: 10.3390/jcm11113002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain affects more than one million people across the globe. The quality of life of people suffering from neuropathic pain has been considerably declining due to the unavailability of appropriate therapeutics. Currently, available treatment options can only treat patients symptomatically, but they are associated with severe adverse side effects and the development of tolerance over prolonged use. In the past decade, researchers were able to gain a better understanding of the mechanisms involved in neuropathic pain; thus, continuous efforts are evident, aiming to develop novel interventions with better efficacy instead of symptomatic treatment. The current review discusses the latest interventional strategies used in the treatment and management of neuropathic pain. This review also provides insights into the present scenario of pain research, particularly various interventional techniques such as spinal cord stimulation, steroid injection, neural blockade, transcranial/epidural stimulation, deep brain stimulation, percutaneous electrical nerve stimulation, neuroablative procedures, opto/chemogenetics, gene therapy, etc. In a nutshell, most of the above techniques are at preclinical stage and facing difficulty in translation to clinical studies due to the non-availability of appropriate methodologies. Therefore, continuing research on these interventional strategies may help in the development of promising novel therapies that can improve the quality of life of patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Abdulaziz K. Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Monika Bansal
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| |
Collapse
|
15
|
Yang QH, Zhang YH, Du SH, Wang YC, Fang Y, Wang XQ. Non-invasive Brain Stimulation for Central Neuropathic Pain. Front Mol Neurosci 2022; 15:879909. [PMID: 35663263 PMCID: PMC9162797 DOI: 10.3389/fnmol.2022.879909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The research and clinical application of the noninvasive brain stimulation (NIBS) technique in the treatment of neuropathic pain (NP) are increasing. In this review article, we outline the effectiveness and limitations of the NIBS approach in treating common central neuropathic pain (CNP). This article summarizes the research progress of NIBS in the treatment of different CNPs and describes the effects and mechanisms of these methods on different CNPs. Repetitive transcranial magnetic stimulation (rTMS) analgesic research has been relatively mature and applied to a variety of CNP treatments. But the optimal stimulation targets, stimulation intensity, and stimulation time of transcranial direct current stimulation (tDCS) for each type of CNP are still difficult to identify. The analgesic mechanism of rTMS is similar to that of tDCS, both of which change cortical excitability and synaptic plasticity, regulate the release of related neurotransmitters and affect the structural and functional connections of brain regions associated with pain processing and regulation. Some deficiencies are found in current NIBS relevant studies, such as small sample size, difficulty to avoid placebo effect, and insufficient research on analgesia mechanism. Future research should gradually carry out large-scale, multicenter studies to test the stability and reliability of the analgesic effects of NIBS.
Collapse
Affiliation(s)
- Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yong-Hui Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Chen Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu Fang
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
- *Correspondence: Yu Fang,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Xue-Qiang Wang,
| |
Collapse
|
16
|
Saleh C, Ilia TS, Jaszczuk P, Hund-Georgiadis M, Walter A. Is transcranial magnetic stimulation as treatment for neuropathic pain in patients with spinal cord injury efficient? A systematic review. Neurol Sci 2022; 43:3007-3018. [PMID: 35239053 DOI: 10.1007/s10072-022-05978-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/12/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Neuropathic pain is a clinically relevant complication in individuals with spinal cord injury (SCI). Pharmacological pain treatment is often insufficient and leads to undesirable side effects. Thus, alternative therapeutic approaches such as repetitive transcranial magnetic stimulation (rTMS) are of critical importance. We aimed to evaluate the effectiveness of rTMS in neuropathic pain secondary to SCI. METHODS We conducted a systematic review using the PubMed/MEDLINE, EMBASE, and PsycInfo (via OVID) database up April 2021. Only randomized controlled trials were included. Results regarding the pain intensity scores were pooled using a random-effects model. RESULTS The search identified a total of 203 potential articles. Of these, eight randomized controlled trials (RCTs) met the eligibility criteria for qualitative synthesis providing the total data of 141 patients. All studies applied high-frequency rTMS. In seven studies, rTMS was applied over the motor cortex, and in one study over the left dorsolateral prefrontal cortex. Five studies reported a significant improvement in baseline pain scores after treatment, and three studies found a significant difference between sham vs. non-sham stimulation at any time. Six RCTs were included in the quantitative synthesis and showed a significant overall reduction of pain intensity in the rTMS groups compared with the sham groups (mean difference - 0.81, 95%CI - 1.45 to - 0.17). CONCLUSIONS Our findings indicate that high-frequency rTMS of the primary motor cortex and left dorsolateral prefrontal cortex might be promising stimulation targets for neuropathic pain in SCI.
Collapse
Affiliation(s)
- Christian Saleh
- Clinic for Neurorehabilitation and Paraplegiology, REHAB Basel, Im Burgfelderhof 40, CH-4055, Basel, Switzerland
| | - Tatiani Soultana Ilia
- Clinic for Neurorehabilitation and Paraplegiology, REHAB Basel, Im Burgfelderhof 40, CH-4055, Basel, Switzerland
| | - Phillip Jaszczuk
- Clinic for Neurorehabilitation and Paraplegiology, REHAB Basel, Im Burgfelderhof 40, CH-4055, Basel, Switzerland
| | - Margret Hund-Georgiadis
- Clinic for Neurorehabilitation and Paraplegiology, REHAB Basel, Im Burgfelderhof 40, CH-4055, Basel, Switzerland
| | - Anna Walter
- Clinic for Neurorehabilitation and Paraplegiology, REHAB Basel, Im Burgfelderhof 40, CH-4055, Basel, Switzerland.
| |
Collapse
|
17
|
Kim H, Jung J, Park S, Joo Y, Lee S, Lee S. Effects of Repetitive Transcranial Magnetic Stimulation on the Primary Motor Cortex of Individuals with Fibromyalgia: A Systematic Review and Meta-Analysis. Brain Sci 2022; 12:570. [PMID: 35624957 PMCID: PMC9139594 DOI: 10.3390/brainsci12050570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of this study was to quantify the effect of repetitive transcranial magnetic stimulation (rTMS), which is recommended for the improvement of some pain-related symptoms and for antidepressant treatment, on the primary motor cortex (M1) in patients with fibromyalgia (FM). We searched for studies comparing rTMS and sham rTMS in the M1 of FM patients. Pain intensity, quality of life, health status, and depression were compared with or without rTMS for at least 10 sessions. We searched four databases. Quality assessment and quantitative analysis were performed using RevMan 5.4. After screening, five randomized controlled trials of 170 patients with FM were included in the analysis. As a result of the meta-analysis of rTMS on the M1 of individuals with FM, high-frequency rTMS resulted in a significant improvement on quality of life (MD = -2.50; 95% CI: -3.99 to -1.01) compared with sham rTMS. On the other hand, low-frequency rTMS resulted in a significant improvement on health status (MD = 15.02; 95% CI: 5.59 to 24.45). The application of rTMS to the M1 is proposed as an adjunctive measure in the treatment of individuals with FM. Because rTMS has various effects depending on each application site, it is necessary to classify sites or set frequencies as variables.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Department of Physical Therapy, Graduate School, Sahmyook University, 815, Hwarang-ro, Seoul 01795, Korea; (H.K.); (S.P.); (Y.J.); (S.L.)
| | - Jihye Jung
- Institute of SMART Rehabilitation, Sahmyook University, 815, Hwarang-ro, Seoul 01795, Korea;
| | - Sungeon Park
- Department of Physical Therapy, Graduate School, Sahmyook University, 815, Hwarang-ro, Seoul 01795, Korea; (H.K.); (S.P.); (Y.J.); (S.L.)
| | - Younglan Joo
- Department of Physical Therapy, Graduate School, Sahmyook University, 815, Hwarang-ro, Seoul 01795, Korea; (H.K.); (S.P.); (Y.J.); (S.L.)
| | - Sangbong Lee
- Department of Physical Therapy, Graduate School, Sahmyook University, 815, Hwarang-ro, Seoul 01795, Korea; (H.K.); (S.P.); (Y.J.); (S.L.)
| | - Seungwon Lee
- Department of Physical Therapy, Sahmyook University, 815, Hwarang-ro, Seoul 01795, Korea
| |
Collapse
|
18
|
Storari M, Zerman N, Spinas E. Local Administration of ElectroMagnetic Field as Add-On Therapy in the Treatment of Chronic Facial Pain: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4123. [PMID: 35409806 PMCID: PMC8998600 DOI: 10.3390/ijerph19074123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022]
Abstract
Fibromyalgic syndrome and orofacial neuropathic pain are major public health concerns affecting up to 5% and 10%, respectively, of the general population. They generally require medications such as antidepressants and anticonvulsants, which may additionally impact the quality of life with their side effects. Modern technologies and related applications have changed several fields of human life, even in medicine. In the current study, the local administration of electromagnetic fields as add-on therapy for the treatment of cervical and facial pain in patients with fibromyalgia or neuropathic pain has been evaluated. A total of 15 patients were recruited, and an electromagnetic field was delivered through a small patch applied between C3 and C4. Patients were followed for 12 months, and pain levels were rated via the VAS scale; ∆% was calculated through the analysis of median VAS scale values at each time point. Mild-to-moderate improvements were found, especially after six months. Patients with fibromyalgic syndrome showed better response rates than those with orofacial neuropathic pain. Joint stiffness, masticatory fatigue, and sleep disturbances were also reduced. In conclusion, the local application of electromagnetic field appeared effective in treating fibromyalgic and neuropathic pain in the head and neck district, with broader improvements and no side effects.
Collapse
Affiliation(s)
- Marco Storari
- Department of Surgical Science, College of Dentistry, University of Cagliari, 09124 Cagliari, Italy;
| | - Nicoletta Zerman
- Department of Surgery, Dentistry, Pediatrics and Gynaecology, University of Verona, 37124 Verona, Italy;
| | - Enrico Spinas
- Department of Surgical Science, College of Dentistry, University of Cagliari, 09124 Cagliari, Italy;
| |
Collapse
|
19
|
Ramos-Fresnedo A, Perez-Vega C, Domingo RA, Cheshire WP, Middlebrooks EH, Grewal SS. Motor Cortex Stimulation for Pain: A Narrative Review of Indications, Techniques, and Outcomes. Neuromodulation 2022; 25:211-221. [DOI: 10.1016/j.neurom.2021.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
|
20
|
Li X, Zhou W, Wang L, Ye Y, Li T. Transcranial Direct Current Stimulation Alleviates the Chronic Pain of Osteoarthritis by Modulating NMDA Receptors in Midbrain Periaqueductal Gray in Rats. J Pain Res 2022; 15:203-214. [PMID: 35115824 PMCID: PMC8801364 DOI: 10.2147/jpr.s333454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
Purpose Osteoarthritis (OA) is the most common cause to lead to chronic pain. Transcranial direct current stimulation (tDCS) has been widely used to treat nerve disorders and chronic pain. The benefits of tDCS for chronic pain are apparent, but its analgesic mechanism is still unclear. This study observed the analgesic effects of tDCS on OA-induced chronic pain and the changes of NMDA receptor levels in PAG after tDCS treatment in rats to explore the analgesic mechanism of tDCS. Methods After establishing chronic pain by injecting monosodium iodoacetate (MIA) into the rat ankle joint, the rats received tDCS for 14 consecutive days (20 min/day). Before tDCS treatment, Ifenprodil (the selective antagonist of NMDAR2B) was given to rats in different ways: intracerebroventricular (i.c.v.) injection or intraperitoneal (i.p.) injection. The Von Frey and hot plate tests were applied to assess the pain-related behaviors at different time points. The expression level of NMDAR2B was evaluated in midbrain periaqueductal gray (PAG) by Western blot. In addition, NMDAR2B and c-Fos were observed by the Immunohistochemistry staining after tDCS treatment. Results The mechanical allodynia and thermal hyperalgesia were produced after MIA injection. However, tDCS treatment reverted the mechanical allodynia and thermal hyperalgesia. Moreover, tDCS treatment significantly increased the expression of NMDAR2B and the proportion of positive stained cells of NMDAR2B. Besides that, the tDCS treatment also decreased the proportion of positive stained cells of c-Fos in PAG. However, these changes did not occur in the rats given the Ifenprodil (i.c.v.). Conclusion These results indicate that tDCS may increase the expression of NMDA receptors in PAG and strengthen the NMDA receptors-mediated antinociception to alleviate OA-induced chronic pain in rats.
Collapse
Affiliation(s)
- Xinhe Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Wenwen Zhou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Lin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Yinshuang Ye
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Tieshan Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
- Correspondence: Tieshan Li, Email
| |
Collapse
|
21
|
Zangrandi A, Allen Demers F, Schneider C. Complex Regional Pain Syndrome. A Comprehensive Review on Neuroplastic Changes Supporting the Use of Non-invasive Neurostimulation in Clinical Settings. FRONTIERS IN PAIN RESEARCH 2021; 2:732343. [PMID: 35295500 PMCID: PMC8915550 DOI: 10.3389/fpain.2021.732343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Complex regional pain syndrome (CRPS) is a rare debilitating disorder characterized by severe pain affecting one or more limbs. CRPS presents a complex multifactorial physiopathology. The peripheral and sensorimotor abnormalities reflect maladaptive changes of the central nervous system. These changes of volume, connectivity, activation, metabolism, etc., could be the keys to understand chronicization, refractoriness to conventional treatment, and developing more efficient treatments. Objective: This review discusses the use of non-pharmacological, non-invasive neurostimulation techniques in CRPS, with regard to the CRPS physiopathology, brain changes underlying chronicization, conventional approaches to treat CRPS, current evidence, and mechanisms of action of peripheral and brain stimulation. Conclusion: Future work is warranted to foster the evidence of the efficacy of non-invasive neurostimulation in CRPS. It seems that the approach has to be individualized owing to the integrity of the brain and corticospinal function. Non-invasive neurostimulation of the brain or of nerve/muscles/spinal roots, alone or in combination with conventional therapy, represents a fertile ground to develop more efficient approaches for pain management in CRPS.
Collapse
Affiliation(s)
- Andrea Zangrandi
- Noninvasive Neurostimulation Laboratory (NovaStim), Quebec City, QC, Canada
- Neuroscience Division of Centre de Recherche du CHU of Québec, Université Laval, Quebec City, QC, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Fannie Allen Demers
- Noninvasive Neurostimulation Laboratory (NovaStim), Quebec City, QC, Canada
- Neuroscience Division of Centre de Recherche du CHU of Québec, Université Laval, Quebec City, QC, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Cyril Schneider
- Noninvasive Neurostimulation Laboratory (NovaStim), Quebec City, QC, Canada
- Neuroscience Division of Centre de Recherche du CHU of Québec, Université Laval, Quebec City, QC, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Department Rehabilitation, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
22
|
Repetitive transcranial magnetic stimulation (rTMS) versus transcranial direct current stimulation (tDCS) in the management of patients with fibromyalgia: A randomized controlled trial. Neurophysiol Clin 2021; 51:339-347. [PMID: 33814258 DOI: 10.1016/j.neucli.2021.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES The aim of this study was to compare the effects of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) on pain and quality of life in patients with fibromyalgia. METHODS Thirty participants were randomized into two groups of 15 patients, to receive 3 sessions of either high-frequency (10 Hz) rTMS or 2 mA, 20 min anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex (DLPFC) over 1 week. Pain was assessed using a Visual Analog Scale (VAS) before treatment, immediately after treatment, 6 and 12 weeks later. Quality of life was evaluated using the Revised Fibromyalgia Impact Questionnaire (FIQR) and psychiatric symptoms were measured using the Depression Anxiety Stress Scale-21 Item (DASS-21) before treatment, and 6 and 12 weeks after treatment. RESULTS For the VAS there was a significant time-group interaction, showing that the behavior of two groups differed regarding changes of VAS in favor of the RTMS group (df = 1.73, F = 4.80, p = <0.016). Time-group interaction effect on DASS-21 and FIQR was not significant. 66.6% of patients in rTMS group and 26.6% of patients in tDCS group experienced at least a 30% reduction of VAS from baseline to last follow-up (p = 0.028). DISCUSSION With the methodology used in this study, both rTMS and tDCS were safe modalities and three sessions of rTMS over DLPFC had greater and longer lasting analgesic effects compared to tDCS in patients with FM. However, considering the limitations of this study, further studies are needed to explore the most effective modality.
Collapse
|
23
|
Xiao X, Ding M, Zhang YQ. Role of the Anterior Cingulate Cortex in Translational Pain Research. Neurosci Bull 2021; 37:405-422. [PMID: 33566301 PMCID: PMC7954910 DOI: 10.1007/s12264-020-00615-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
As the most common symptomatic reason to seek medical consultation, pain is a complex experience that has been classified into different categories and stages. In pain processing, noxious stimuli may activate the anterior cingulate cortex (ACC). But the function of ACC in the different pain conditions is not well discussed. In this review, we elaborate the commonalities and differences from accumulated evidence by a variety of pain assays for physiological pain and pathological pain including inflammatory pain, neuropathic pain, and cancer pain in the ACC, and discuss the cellular receptors and signaling molecules from animal studies. We further summarize the ACC as a new central neuromodulation target for invasive and non-invasive stimulation techniques in clinical pain management. The comprehensive understanding of pain processing in the ACC may lead to bridging the gap in translational research between basic and clinical studies and to develop new therapies.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Institute of Science and Technology for Brain-Inspired Intelligence, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai, 200433, China.
| | - Ming Ding
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Institute of Science and Technology for Brain-Inspired Intelligence, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai, 200433, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science; Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
A randomized controlled trial of 5 daily sessions and continuous trial of 4 weekly sessions of repetitive transcranial magnetic stimulation for neuropathic pain. Pain 2021; 161:351-360. [PMID: 31593002 PMCID: PMC6970577 DOI: 10.1097/j.pain.0000000000001712] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Supplemental Digital Content is Available in the Text. Five daily sessions of repetitive transcranial magnetic stimulation with stimulus conditions were ineffective in neuropathic pain relief. Long-term administration should be investigated for clinical use of repetitive transcranial magnetic stimulation in neuropathic pain. We conducted a multicenter, randomized, patient- and assessor-blinded, sham-controlled trial to investigate the efficacy of repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) in patients with neuropathic pain (NP). Patients were randomly assigned to receive 5 daily sessions of active or sham rTMS of M1 corresponding to the part of the body experiencing the worst pain (500 pulses per session at 5 Hz). Responders were invited to enroll in an open-label continuous trial involving 4 weekly sessions of active rTMS. The primary outcome was a mean decrease in a visual analogue scale of pain intensity (scaled 0-100 mm) measured daily during the daily sessions in an intention-to-treat population. Secondary outcomes were other pain scores, quality-of-life measures, and depression score. One hundred forty-four patients were assigned to the active or sham stimulation groups. The primary outcome, mean visual analogue scale decreases, was not significantly different (P = 0.58) between the active stimulation group (mean, 8.0) and the sham group (9.2) during the daily sessions. The secondary outcomes were not significantly different between 2 groups. The patients enrolled in the continuous weekly rTMS achieved more pain relief in the active stimulation group compared with the sham (P < 0.01). No serious adverse events were observed. Five daily sessions of rTMS with stimulus conditions used in this trial were ineffective in short-term pain relief in the whole study population with various NP. Long-term administration to the responders should be investigated for the clinical use of rTMS on NP in the future trials.
Collapse
|
25
|
New Approaches Based on Non-Invasive Brain Stimulation and Mental Representation Techniques Targeting Pain in Parkinson's Disease Patients: Two Study Protocols for Two Randomized Controlled Trials. Brain Sci 2021; 11:brainsci11010065. [PMID: 33561080 PMCID: PMC7825448 DOI: 10.3390/brainsci11010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/26/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022] Open
Abstract
Pain is an under-reported but prevalent symptom in Parkinson’s Disease (PD), impacting patients’ quality of life. Both pain and PD conditions cause cortical excitability reduction and non-invasive brain stimulation. Mental representation techniques are thought to be able to counteract it, also resulting effectively in chronic pain conditions. We aim to conduct two independent studies in order to evaluate the efficacy of transcranial direct current stimulation (tDCS) and mental representation protocol in the management of pain in PD patients during the ON state: (1) tDCS over the Primary Motor Cortex (M1); and (2) Action Observation (AO) and Motor Imagery (MI) training through a Brain-Computer Interface (BCI) using Virtual Reality (AO + MI-BCI). Both studies will include 32 subjects in a longitudinal prospective parallel randomized controlled trial design under different blinding conditions. The main outcomes will be score changes in King’s Parkinson’s Disease Pain Scale, Brief Pain Inventory, Temporal Summation, Conditioned Pain Modulation, and Pain Pressure Threshold. Assessment will be performed pre-intervention, post-intervention, and 15 days post-intervention, in both ON and OFF states.
Collapse
|
26
|
Gatzinsky K, Bergh C, Liljegren A, Silander H, Samuelsson J, Svanberg T, Samuelsson O. Repetitive transcranial magnetic stimulation of the primary motor cortex in management of chronic neuropathic pain: a systematic review. Scand J Pain 2020; 21:8-21. [PMID: 32892189 DOI: 10.1515/sjpain-2020-0054] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) with frequencies 5-20 Hz is an expanding non-invasive treatment for chronic neuropathic pain (NP). Outcome data, however, show considerable inhomogeneity with concern to the levels of effect due to the great diversity of treated conditions. The aim of this review was to survey the literature regarding the efficacy and safety of M1 rTMS, and the accuracy to predict a positive response to epidural motor cortex stimulation (MCS) which is supposed to give a more longstanding pain relief. METHODS A systematic literature search was conducted up to June 2019 in accordance with the PRISMA guidelines. We used the PICO Model to define two specific clinical questions: (1) Does rTMS of M1 relieve NP better than sham treatment? (2) Can the response to rTMS be used to predict the effect of epidural MCS? After article selection, data extraction, and study quality assessment, the certainty of evidence of treatment effect was defined using the GRADE system. RESULTS Data on 5-20 Hz (high-frequency) rTMS vs. sham was extracted from 24 blinded randomised controlled trials which were of varying quality, investigated highly heterogeneous pain conditions, and used excessively variable stimulation parameters. The difference in pain relief between active and sham stimulation was statistically significant in 9 of 11 studies using single-session rTMS, and in 9 of 13 studies using multiple sessions. Baseline data could be extracted from 6 single and 12 multiple session trials with a weighted mean pain reduction induced by active rTMS, compared to baseline, of -19% for single sessions, -32% for multiple sessions with follow-up <30 days, and -24% for multiple sessions with follow-up ≥30 days after the last stimulation session. For single sessions the weighted mean difference in pain reduction between active rTMS and sham was 15 percentage points, for multiple sessions the difference was 22 percentage points for follow-ups <30 days, and 15 percentage points for follow-ups ≥30 days. Four studies reported data that could be used to evaluate the accuracy of rTMS to predict response to MCS, showing a specificity of 60-100%, and a positive predictive value of 75-100%. No serious adverse events were reported. CONCLUSIONS rTMS targeting M1 can result in significant reduction of chronic NP which, however, is transient and shows a great heterogeneity between studies; very low certainty of evidence for single sessions and low for multiple sessions. Multiple sessions of rTMS can maintain a more longstanding effect. rTMS seems to be a fairly good predictor of a positive response to epidural MCS and may be used to select patients for implantation of permanent epidural electrodes. More studies are needed to manifest the use of rTMS for this purpose. Pain relief outcomes in a longer perspective, and outcome variables other than pain reduction need to be addressed more consistently in future studies to consolidate the applicability of rTMS in routine clinical practice.
Collapse
Affiliation(s)
- Kliment Gatzinsky
- Department of Neurosurgery, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | - Ann Liljegren
- HTA-centrum of Region Västra Götaland, Göteborg, Sweden
| | - Hans Silander
- Department of Neurosurgery, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Jennifer Samuelsson
- Department of Neurosurgery, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | |
Collapse
|
27
|
Zheng KY, Dai GY, Lan Y, Wang XQ. Trends of Repetitive Transcranial Magnetic Stimulation From 2009 to 2018: A Bibliometric Analysis. Front Neurosci 2020; 14:106. [PMID: 32174808 PMCID: PMC7057247 DOI: 10.3389/fnins.2020.00106] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) technology, which is amongst the most used non-invasive brain stimulation techniques currently available, has developed rapidly from 2009 to 2018. However, reports on the trends of rTMS using bibliometric analysis are rare. The goal of the present bibliometric analysis is to analyze and visualize the trends of rTMS, including general (publication patterns) and emerging trends (research frontiers), over the last 10 years by using the visual analytic tool CiteSpace V. Publications related to rTMS from 2009 to 2018 were retrieved from the Web of Science (WoS) database, including 2,986 peer-reviewed articles/reviews. Active authors, journals, institutions, and countries were identified by WoS and visualized by CiteSpace V, which could also detect burst changes to identify emerging trends. GraphPad Prism 8 was used to analyze the time trend of annual publication outputs. The USA ranked first in this field. Pascual-Leone A (author A), Fitzgerald PB (author B), George MS (author C), Lefaucheur JP (author D), and Fregni F (author E) made great contributions to this field of study. The most prolific institution to publish rTMS-related publications in the last decade was the University of Toronto. The journal Brain Stimulation published most papers. Lefaucheur et al.'s paper in 2014, and the keyword "sham controlled trial" showed the strongest citation bursts by the end of 2018, which indicates increased attention to the underlying work, thereby indicating the research frontiers. This study reveals the publication patterns and emerging trends of rTMS based on the records published from 2009 to 2018. The insights obtained have reference values for the future research and application of rTMS.
Collapse
Affiliation(s)
- Kang-Yong Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,The Fifth Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Guang-Yan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
28
|
Bismuth J, Vialatte F, Lefaucheur JP. Relieving peripheral neuropathic pain by increasing the power-ratio of low-β over high-β activities in the central cortical region with EEG-based neurofeedback: Study protocol for a controlled pilot trial (SMRPain study). Neurophysiol Clin 2020; 50:5-20. [DOI: 10.1016/j.neucli.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
|
29
|
Hamid P, Malik BH, Hussain ML. Noninvasive Transcranial Magnetic Stimulation (TMS) in Chronic Refractory Pain: A Systematic Review. Cureus 2019; 11:e6019. [PMID: 31824787 PMCID: PMC6886641 DOI: 10.7759/cureus.6019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/28/2019] [Indexed: 01/25/2023] Open
Abstract
Efficacy and tolerance of pharmacological medications in chronic pain are limited. Therefore, repetitive transcranial magnetic stimulation (rTMS) is regarded as a secure therapeutic option for pain relief, and it was proven to produce an analgesic effect. A wide variety of stimulation parameters can influence its long-lasting antalgic effect. Defining the best stimulation protocol can afford greater uniformity and consistency for considering rTMS as a promising effective tool. We aimed to systematically review and evaluate the current literature on transcranial magnetic stimulation for patients suffering from chronic pain, assess its efficacy, and estimate the best stimulation protocol. The Screened and tested electronic databases comprised PubMed, Ovid Medline, Cochrane database library, and Google scholar from the year 2000 till 2018. The keywords utilizing search terms "Transcranial magnetic stimulation", "chronic pain", "neuropathic pain" were used to study all possible randomized clinical trials about the impact of transcranial magnetic stimulation on long-lasting pain. All articles were judged for the possibility of prejudice using the Cochrane risk of bias tool for data extraction. Search engines produced seventy applicable results. Twelve randomized controlled clinical trials were included involving 350 patients with focal and generalized chronic pain. An existing proof showed a null response of low-frequency rTMS stimulation, rTMS delivered to the dorsolateral prefrontal cortex in chronic pain patients. However, a witnessed pain-killing response was documented when applying active high- frequency TMS on the motor cortex M1 area compared to sham. Pain relief was detected for a short time following the application of active high-frequency motor cortex stimulation in nine clinical trials, and the long-lasting analgesic effect was proved. No side effects were mentioned for the technique. Repetitive TMS can produce clinically meaningful relief from chronic pain, despite positive results, heterogeneity among all studies preclude firm conclusions regarding the optimal target stimulation site and parameters. Further studies are required to minimize bias, enhance performance, and define the best brain stimulation conditions and qualifications to maximize its potency.
Collapse
Affiliation(s)
- Pousette Hamid
- Researcher, California Institute of Behavioral Neuroscience and Psychology, Fairfield, USA
| | - Bilal Haider Malik
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | | |
Collapse
|
30
|
Lefaucheur JP, Nguyen JP. A practical algorithm for using rTMS to treat patients with chronic pain. Neurophysiol Clin 2019; 49:301-307. [PMID: 31375381 DOI: 10.1016/j.neucli.2019.07.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
High-frequency repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex has a good level of evidence of efficacy as a method for providing analgesic effects in patients with chronic pain. However, there is still no consensus regarding the parameters of stimulation to use and the detailed protocol to apply for therapeutic practice. In this article, we review the main technical points to address, and we propose a practical algorithm of how to use rTMS for chronic pain treatment in daily clinical practice.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- UPEC, EA4391, Clinical Neurophysiology Department, Henri-Mondor University Hospital, Faculty of Medicine, 94010 Créteil, France.
| | - Jean-Paul Nguyen
- Multidisciplinary Pain, Palliative and Supportive care Center, UIC 22/CAT2 and Laboratoire de Thérapeutique (EA3826), University Hospital, 44000 Nantes, France; Multidisciplinary Pain Center, groupe ELSAN, clinique Bretéché, 44000 Nantes, France
| |
Collapse
|
31
|
Repetitive transcranial magnetic stimulation of the primary motor cortex expedites recovery in the transition from acute to sustained experimental pain: a randomised, controlled study. Pain 2019; 160:2624-2633. [DOI: 10.1097/j.pain.0000000000001656] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Pei Q, Zhuo Z, Jing B, Meng Q, Ma X, Mo X, Liu H, Liang W, Ni J, Li H. The effects of repetitive transcranial magnetic stimulation on the whole-brain functional network of postherpetic neuralgia patients. Medicine (Baltimore) 2019; 98:e16105. [PMID: 31232955 PMCID: PMC6636965 DOI: 10.1097/md.0000000000016105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The effects of repetitive transcranial magnetic stimulation (rTMS), the clinical treatment for postherpetic neuralgia (PHN), on whole-brain functional network of PHN patients is not fully understood.To explore the effects of rTMS on the whole-brain functional network of PHN patients.10 PHN patients (male/female: 5/5 Age: 63-79 years old) who received rTMS treatment were recruited in this study. High-resolution T1-weighted and functional Magnetic Resonance Imaging (fMRI) were acquired before and after 10 consecutive rTMS sessions. The whole-brain functional connectivity networks were constructed by Pearson correlation. Global and node-level network parameters, which can reflect the topological organization of the brain network, were calculated to investigate the characteristics of whole-brain functional networks. Non-parametric paired signed rank tests were performed for the above network parameters with sex and age as covariates. P < .05 (with FDR correction for multi-comparison analysis) indicated a statistically significant difference. Correlation analysis was performed between the network parameters and clinical variables.The rTMS showed significant increase in characteristic path length and decrease of clustering coefficient, global, and local efficiency derived from the networks at some specific network sparsity, but it showed no significant difference for small-worldness. rTMS treatment showed significant differences in the brain regions related to sensory-motor, emotion, cognition, affection, and memory, as observed by changes in node degree, node betweenness, and node efficiency. Besides, node-level network parameters in some brain areas showed significant correlations with clinical variables including visual analog scales (VAS) and pain duration.rTMS has significant effects on the whole-brain functional network of PHN patients with a potential for suppression of sensory-motor function and improvement of emotion, cognition, affection, and memory functions.
Collapse
Affiliation(s)
- Qian Pei
- Beijing Jishuitan Hospital
- Department of Pain Management, Xuanwu Hospital Capital Medical University
| | - Zhizheng Zhuo
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Qianqian Meng
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Xiangyu Ma
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Xiao Mo
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Han Liu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | | | - Jiaxiang Ni
- Department of Pain Management, Xuanwu Hospital Capital Medical University
| | - Haiyun Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Fang X, Liu M, Lu C, Zhao Y, Liu X. Current status and potential application of navigated transcranial magnetic stimulation in neurosurgery: a literature review. Chin Neurosurg J 2019; 5:12. [PMID: 32922912 PMCID: PMC7398385 DOI: 10.1186/s41016-019-0159-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive neurophysiologic technique that can stimulate the human brain. Positioning of the coil was often performed based merely on external landmarks on the head, meaning that the anatomical target in the cortex remains inaccurate. Navigated transcranial magnetic stimulation (nTMS) combines a frameless stereotactic navigational system and TMS coil and can provide a highly accurate delivery of TMS pulses with the guidance of imaging. Therefore, many novel utilities for TMS could be explored due to the ability of precise localization. Many studies have been published, which indicate nTMS enables presurgical functional mapping. This review aimed to provide a comprehensive literature review on nTMS, especially the principles and clinical applications of nTMS. All articles in PubMed with keywords of "motor mapping," "presurgical mapping," "navigated transcranial magnetic stimulation," and "language mapping" published from 2000 to 2018 were included in the study. Frequently cited publications before 2000 were also included. The most valuable published original and review articles related to our objective were selected. Motor mapping of nTMS is validated to be a trustful tool to recognize functional areas belonging to both normal and lesioned primary motor cortex. It can offer reliable mapping of speech and motor regions at cortex prior to operation and has comparable accuracy as direct electrical cortical stimulation. nTMS is a powerful tool for mapping of motor and linguistic function prior to operation, has high application value in neurosurgery and the treatment of neurological and psychiatric diseases, and has gained increasing acceptance in neurosurgical centers across the world.
Collapse
Affiliation(s)
- Xiaojing Fang
- Department of Neurology, Peking University International Hospital, 1 Life Science St, Changping District, Beijing, 102206 China
| | - Meige Liu
- Department of Neurology, Peking University People's Hospital, Beijing, 100044 China
| | - Changyu Lu
- Department of Neurosurgery, Peking University International Hospital, Beijing, 102206 China
| | - Yuanli Zhao
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China.,Department of Neurosurgery, Peking University International Hospital, Beijing, 102206 China
| | - Xianzeng Liu
- Department of Neurology, Peking University International Hospital, 1 Life Science St, Changping District, Beijing, 102206 China
| |
Collapse
|
34
|
Gentile E, Ricci K, Delussi M, Brighina F, de Tommaso M. Motor Cortex Function in Fibromyalgia: A Study by Functional Near-Infrared Spectroscopy. PAIN RESEARCH AND TREATMENT 2019; 2019:2623161. [PMID: 30792923 PMCID: PMC6354141 DOI: 10.1155/2019/2623161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/31/2018] [Indexed: 02/07/2023]
Abstract
Previous studies indicated changes of motor cortex excitability in fibromyalgia (FM) patients and the positive results of transcranial stimulation techniques. The present study aimed to explore the metabolism of motor cortex in FM patients, in resting state and during slow and fast finger tapping, using functional Near-Infrared Spectroscopy (fNIRS), an optical method which detects in real time the metabolism changes in the cortical tissue. We studied 24 FM patients and 24 healthy subjects. We found a significant slowness of motor speed in FM patients compared to controls. During resting state and slow movement conditions, the metabolism of the motor areas was similar between groups. The oxyhemoglobin concentrations were significantly lower in patients than in control group during the fast movement task. This abnormality was independent from FM severity and duration. The activation of motor cortex areas is dysfunctional in FM patients, thus supporting the rationale for the therapeutic role of motor cortex modulation in this disabling disorder.
Collapse
Affiliation(s)
- Eleonora Gentile
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, Via Amendola 207 A, 70123 Bari, Italy
| | - Katia Ricci
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, Via Amendola 207 A, 70123 Bari, Italy
| | - Marianna Delussi
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, Via Amendola 207 A, 70123 Bari, Italy
| | - Filippo Brighina
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, Via del Vespro 143, 90127 Palermo, Italy
| | - Marina de Tommaso
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, Via Amendola 207 A, 70123 Bari, Italy
| |
Collapse
|
35
|
Du X, Xu W, Li X, Zhou D, Han C. Sleep Disorder in Drug Addiction: Treatment With Transcranial Magnetic Stimulation. Front Psychiatry 2019; 10:848. [PMID: 31798482 PMCID: PMC6878723 DOI: 10.3389/fpsyt.2019.00848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022] Open
Affiliation(s)
- Xiangju Du
- Psychiatry Department, Ningbo Kangning Hospital, Ningbo, China
| | - Weiqian Xu
- Center of Sleep Medicine, Taizhou 2nd People's Hospital, Taizhou, China
| | - Xingxing Li
- Psychiatry Department, Ningbo Kangning Hospital, Ningbo, China
| | - Dongsheng Zhou
- Psychiatry Department, Ningbo Kangning Hospital, Ningbo, China
| | - Cuilan Han
- Psychiatry Department, Ningbo Kangning Hospital, Ningbo, China
| |
Collapse
|
36
|
Jodoin M, Rouleau D, Larson-Dupuis C, Gosselin N, De Beaumont L. The clinical utility of repetitive transcranial magnetic stimulation in reducing the risks of transitioning from acute to chronic pain in traumatically injured patients. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:322-331. [PMID: 28694022 DOI: 10.1016/j.pnpbp.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Pain is a multifaceted condition and a major ongoing challenge for healthcare professionals having to treat patients in whom pain put them at risk of developing other conditions. Significant efforts have been invested in both clinical and research settings in an attempt to demystify the mechanisms at stake and develop optimal treatments as well as to reduce individual and societal costs. It is now universally accepted that neuroinflammation and central sensitization are two key underlying factors causing pain chronification as they result from maladaptive central nervous system plasticity. Recent research has shown that the mechanisms of action of repetitive transcranial magnetic stimulation (rTMS) make it a particularly promising avenue in treating various pain conditions. This review will first discuss the contribution of neuroinflammation and central sensitization in the transition from acute to chronic pain in traumatically injured patients. A detailed discussion on how rTMS may allow the restoration from maladaptive plasticity in addition to breaking down the chain of events leading to pain chronification will follow. Lastly, this review will provide a theoretical framework of what might constitute optimal rTMS modalities in dealing with pain symptoms in traumatically injured patients based on an integrated perspective of the physiopathological mechanisms underlying pain.
Collapse
Affiliation(s)
- Marianne Jodoin
- Montreal Sacred Heart Hospital Research Centre, Montreal, Quebec, Canada; Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Dominique Rouleau
- Montreal Sacred Heart Hospital Research Centre, Montreal, Quebec, Canada; Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Camille Larson-Dupuis
- Montreal Sacred Heart Hospital Research Centre, Montreal, Quebec, Canada; Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Nadia Gosselin
- Montreal Sacred Heart Hospital Research Centre, Montreal, Quebec, Canada; Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Montreal Sacred Heart Hospital Research Centre, Montreal, Quebec, Canada; Department of Surgery, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
37
|
Ayache SS, Chalah MA. The place of transcranial direct current stimulation in the management of multiple sclerosis-related symptoms. Neurodegener Dis Manag 2018; 8:411-422. [PMID: 30451080 DOI: 10.2217/nmt-2018-0028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, characterized by chronic inflammation, demyelination, synaptopathy and neurodegeneration. Patients may exhibit sensory, motor, cognitive, emotional and behavioral symptoms throughout their disease process. Nowadays, the challenge is to find optimal treatment for MS symptoms, especially that available pharmacological interventions are faced by modest therapeutic outcomes and numerous side effects. Thus, finding alternative strategies might be of help in this context. The aim of this report is to visit the effects of transcranial direct current stimulation - a noninvasive brain stimulation technique - in the context of MS symptoms, namely fatigue, cognitive deficits, psychiatric complaints, neuropathic pain and some sensorimotor manifestations.
Collapse
Affiliation(s)
- Samar S Ayache
- Service de Physiologie, Explorations Fonctionnelles, Hôpital Henri-Mondor, AP-HP, 94010 Créteil, France.,EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, 94010 Créteil, France.,Neurology Division, Lebanese American University Medical Center-Rizk Hospital (LAUMC-RH), Beirut, Lebanon
| | - Moussa A Chalah
- Service de Physiologie, Explorations Fonctionnelles, Hôpital Henri-Mondor, AP-HP, 94010 Créteil, France.,EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, 94010 Créteil, France
| |
Collapse
|
38
|
Lenoir C, Algoet M, Mouraux A. Deep continuous theta burst stimulation of the operculo-insular cortex selectively affects Aδ-fibre heat pain. J Physiol 2018; 596:4767-4787. [PMID: 30085357 PMCID: PMC6166055 DOI: 10.1113/jp276359] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Deep continuous theta burst stimulation (cTBS) of the right operculo-insular cortex delivered with a double cone coil selectively impairs the ability to perceive thermonociceptive input conveyed by Aδ-fibre thermonociceptors without concomitantly affecting the ability to perceive innocuous warm, cold or vibrotactile sensations. Unlike deep cTBS, superficial cTBS of the right operculum delivered with a figure-of-eight coil does not affect the ability to perceive thermonociceptive input conveyed by Aδ-fibre thermonociceptors. The effect of deep operculo-insular cTBS on the perception of Aδ-fibre input was present at both the contralateral and the ipsilateral hand. The magnitude of the increase in Aδ-heat detection threshold induced by the deep cTBS was significantly correlated with the intensity of the cTBS pulses. Deep cTBS delivered over the operculo-insular cortex is associated with a risk of transcranial magnetic stimulation-induced seizure. ABSTRACT Previous studies have suggested a pivotal role of the insular cortex in nociception and pain perception. Using a double-cone coil designed for deep transcranial magnetic stimulation, our objective was to assess (1) whether continuous theta burst stimulation (cTBS) of the operculo-insular cortex affects differentially the perception of different types of thermal and mechanical somatosensory inputs, (2) whether the induced after-effects are lateralized relative to the stimulated hemisphere, and (3) whether the after-effects are due to neuromodulation of the insula or neuromodulation of the more superficial opercular cortex. Seventeen participants took part in two experiments. In Experiment 1, thresholds and perceived intensity of Aδ- and C-fibre heat pain elicited by laser stimulation, non-painful cool sensations elicited by contact cold stimulation and mechanical vibrotactile sensations were assessed at the left hand before, immediately after and 20 min after deep cTBS delivered over the right operculo-insular cortex. In Experiment 2, Aδ-fibre heat pain and vibrotactile sensations elicited by stimulating the contralateral and ipsilateral hands were evaluated before and after deep cTBS or superficial cTBS delivered using a flat figure-of-eight coil. Only the threshold to detect Aδ-fibre heat pain was significantly increased 20 min after deep cTBS. This effect was present at both hands. No effect was observed after superficial cTBS. Neuromodulation of the operculo-insular cortex using deep cTBS induces a bilateral reduction of the ability to perceive Aδ-fibre heat pain, without concomitantly affecting the ability to perceive innocuous warm, cold or vibrotactile sensations.
Collapse
Affiliation(s)
- Cédric Lenoir
- Institute of Neuroscience (IONS) Université catholique de Louvain (UCL)BrusselsBelgium
| | - Maxime Algoet
- Institute of Neuroscience (IONS) Université catholique de Louvain (UCL)BrusselsBelgium
| | - André Mouraux
- Institute of Neuroscience (IONS) Université catholique de Louvain (UCL)BrusselsBelgium
| |
Collapse
|
39
|
Herrero Babiloni A, Guay S, Nixdorf DR, de Beaumont L, Lavigne G. Non-invasive brain stimulation in chronic orofacial pain: a systematic review. J Pain Res 2018; 11:1445-1457. [PMID: 30122975 PMCID: PMC6078189 DOI: 10.2147/jpr.s168705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are non-invasive brain stimulation techniques that are being explored as therapeutic alternatives for the management of various chronic pain conditions. Objective The primary objective of this systematic review is to assess the efficacy of TMS and tDCS in reducing clinical pain intensity in chronic orofacial pain (OFP) disorders. The secondary objectives are to describe adverse effects, duration of relief, and TMS/tDCS methodologies used in chronic OFP disorders. Methods A search was performed in MEDLINE, Embase, Web of Science, Scopus, and Google Scholar. Inclusion criteria were 1) population: adults diagnosed with chronic OFP including neuropathic and non-neuropathic disorders; 2) intervention: active TMS or tDCS stimulation regardless of the used protocol; 3) comparison: sham TMS or tDCS stimulation; and 4) outcome: primary outcome was patient reported pain intensity. Secondary outcomes were duration of pain relief, adverse effects, and methodological parameters. Risk of bias and quality of study reporting were also assessed. Results A total of 556 individual citations were identified by the search strategy, with 14 articles meeting selection criteria (TMS=11; tDCS=3). Data were obtained for a total of 228 patients. Included OFP disorders were trigeminal neuralgia, trigeminal neuropathy, burning mouth syndrome, atypical facial pain, and temporomandibular disorders. Significant pain reductions were obtained in both techniques. More number of sessions yielded to more durable effects. Overall, high risk of bias and poor study quality were found. Conclusion TMS and tDCS appear to be safe and promising alternatives to reduce pain intensity in different chronic OFP disorders. Additional research effort is needed to reduce bias, improve quality, and characterize optimal brain stimulation parameters to promote their efficacy.
Collapse
Affiliation(s)
- Alberto Herrero Babiloni
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l'Île-de-Montréal, Université De Montreal, Montreal, QC, Canada,
| | - Samuel Guay
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l'Île-de-Montréal, Université De Montreal, Montreal, QC, Canada,
| | - Donald R Nixdorf
- Division of TMD & Orofacial Pain, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.,Department of Neurology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Louis de Beaumont
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l'Île-de-Montréal, Université De Montreal, Montreal, QC, Canada,
| | - Gilles Lavigne
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l'Île-de-Montréal, Université De Montreal, Montreal, QC, Canada,
| |
Collapse
|
40
|
Galhardoni R, Ciampi de Andrade D, Puerta MYT, Brunoni AR, Varotto BLR, de Siqueira JTT, Teixeira MJ, Siqueira SRDT. Altered cortical excitability in persistent idiopathic facial pain. Cephalalgia 2018; 39:219-228. [DOI: 10.1177/0333102418780426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction Persistent idiopathic facial pain is a refractory and disabling condition of unknown mechanism and etiology. It has been suggested that persistent idiopathic facial pain patients have not only peripheral generators of pain, but also central nervous system changes that would contribute to the persistence of symptoms. We hypothesized that persistent idiopathic facial pain would have changes in brain cortical excitability as measured by transcranial magnetic stimulation compared to healthy controls. Methods Twenty-nine persistent idiopathic facial pain patients were compared to age- and sex-matched healthy controls and underwent cortical excitability measurements by transcranial magnetic stimulation applied to the cortical representation of the masseter muscle of both hemispheres. Single-pulse stimulation was used to measure the resting motor threshold and suprathreshold motor-evoked potentials. Paired-pulse stimulation was used to assess short intracortical inhibition and intracortical facilitation. Clinical pain and associated symptoms were assessed with validated tools. Results Spontaneous pain was found in 27 (93.1%) and provoked pain was found in two (6.9%) persistent idiopathic facial pain patients. The motor-evoked potentials at 120% and 140% were significantly lower for both hemispheres compared to controls. Persistent idiopathic facial pain patients had lower short-interval intracortical inhibition compared with controls. These changes were correlated with some aspects of quality of life, and higher mood symptoms. These neurophysiological alterations were not influenced by analgesic medication, as similar changes were observed in patients with or without central-acting drugs. Conclusions Persistent idiopathic facial pain is associated with changes in intracortical modulation involving GABAergic mechanisms, which may be related to certain aspects of the pathophysiology of this chronic pain condition. Trial registration: NTC01746355.
Collapse
Affiliation(s)
- Ricardo Galhardoni
- Pain Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
- School of Medicine, University of City of São Paulo (UNICID), São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- Pain Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
- Pain Center, Cancer Institute of State of São Paulo “Octavio Frias de Oliveira”, São Paulo, Brazil
| | - Mariana YT Puerta
- Pain Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Bruna LR Varotto
- Pain Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
- Dentistry Division of the Central Institute and Experimental Neurosurgery Division of the Psychiatric Institute, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo SP, Brazil
| | - José TT de Siqueira
- Pain Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
- Dentistry Division of the Central Institute and Experimental Neurosurgery Division of the Psychiatric Institute, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo SP, Brazil
| | - Manoel J Teixeira
- Pain Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
- Pain Center, Cancer Institute of State of São Paulo “Octavio Frias de Oliveira”, São Paulo, Brazil
- Neurosurgery Division, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Silvia RDT Siqueira
- Pain Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
- Dentistry Division of the Central Institute and Experimental Neurosurgery Division of the Psychiatric Institute, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo SP, Brazil
- Neurosurgery Division, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
- School of Arts, Science and Humanities, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Wen HZ, Gao SH, Zhao YD, He WJ, Tian XL, Ruan HZ. Parameter Optimization Analysis of Prolonged Analgesia Effect of tDCS on Neuropathic Pain Rats. Front Behav Neurosci 2017; 11:115. [PMID: 28659772 PMCID: PMC5468406 DOI: 10.3389/fnbeh.2017.00115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/26/2017] [Indexed: 01/27/2023] Open
Abstract
Background: Transcranial direct current stimulation (tDCS) is widely used to treat human nerve disorders and neuropathic pain by modulating the excitability of cortex. The effectiveness of tDCS is influenced by its stimulation parameters, but there have been no systematic studies to help guide the selection of different parameters. Objective: This study aims to assess the effects of tDCS of primary motor cortex (M1) on chronic neuropathic pain in rats and to test for the optimal parameter combinations for analgesia. Methods: Using the chronic neuropathic pain models of chronic constriction injury (CCI), we measured pain thresholds before and after anodal-tDCS (A-tDCS) using different parameter conditions, including stimulation intensity, stimulation time, intervention time and electrode located (ipsilateral or contralateral M1 of the ligated paw on male/female CCI models). Results: Following the application of A-tDCS over M1, we observed that the antinociceptive effects were depended on different parameters. First, we found that repetitive A-tDCS had a longer analgesic effect than single stimulus, and both ipsilateral-tDCS (ip-tDCS) and contralateral-tDCS (con-tDCS) produce a long-lasting analgesic effect on neuropathic pain. Second, the antinociceptive effects were intensity-dependent and time-dependent, high intensities worked better than low intensities and long stimulus durations worked better than short stimulus durations. Third, timing of the intervention after injury affected the stimulation outcome, early use of tDCS was an effective method to prevent the development of pain, and more frequent intervention induced more analgesia in CCI rats, finally, similar antinociceptive effects of con- and ip-tDCS were observed in both sexes of CCI rats. Conclusion: Optimized protocols of tDCS for treating antinociceptive effects were developed. These findings should be taken into consideration when using tDCS to produce analgesic effects in clinical applications.
Collapse
Affiliation(s)
- Hui-Zhong Wen
- Department of Neurobiology, College of Basic Medical Science, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Shi-Hao Gao
- Department of Neurobiology, College of Basic Medical Science, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Yan-Dong Zhao
- Department of Neurobiology, College of Basic Medical Science, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Wen-Juan He
- Department of Pathophysiology and High Altitudepathology, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
| | - Xue-Long Tian
- Bioengineering College, Chongqing UniversityChongqing, China
| | - Huai-Zhen Ruan
- Department of Neurobiology, College of Basic Medical Science, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| |
Collapse
|
42
|
Bi-phasic activation of the primary motor cortex by pain and its relation to pain-evoked potentials − an exploratory study. Behav Brain Res 2017; 328:209-217. [DOI: 10.1016/j.bbr.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 01/09/2023]
|
43
|
Yavari F, Nitsche MA, Ekhtiari H. Transcranial Electric Stimulation for Precision Medicine: A Spatiomechanistic Framework. Front Hum Neurosci 2017; 11:159. [PMID: 28450832 PMCID: PMC5390027 DOI: 10.3389/fnhum.2017.00159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
During recent years, non-invasive brain stimulation, including transcranial electrical stimulation (tES) in general, and transcranial direct current stimulation (tDCS) in particular, have created new hopes for treatment of neurological and psychiatric diseases. Despite promising primary results in some brain disorders, a more widespread application of tES is hindered by the unsolved question of determining optimum stimulation protocols to receive meaningful therapeutic effects. tES has a large parameter space including various montages and stimulation parameters. Moreover, inter- and intra-individual differences in responding to stimulation protocols have to be taken into account. These factors contribute to the complexity of selecting potentially effective protocols for each disorder, different clusters of each disorder, and even each single patient. Expanding knowledge in different dimensions of basic and clinical neuroscience could help researchers and clinicians to select potentially effective protocols based on tES modulatory mechanisms for future clinical studies. In this article, we propose a heuristic spatiomechanistic framework which contains nine levels to address tES effects on brain functions. Three levels refer to the spatial resolution (local, small-scale networks and large-scale networks) and three levels of tES modulatory effects based on its mechanisms of action (neurochemical, neuroelectrical and oscillatory modulations). At the group level, this framework could be helpful to enable an informed and systematic exploration of various possible protocols for targeting a brain disorder or its neuroscience-based clusters. Considering recent advances in exploration of neurodiversity at the individual level with different brain mapping technologies, the proposed framework might also be used in combination with personal data to design individualized protocols for tES in the context of precision medicine in the future.
Collapse
Affiliation(s)
- Fatemeh Yavari
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human FactorsDortmund, Germany
| | - Michael A. Nitsche
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human FactorsDortmund, Germany
- Department of Neurology, University Medical Hospital BergmannsheilBochum, Germany
| | - Hamed Ekhtiari
- Neurocognitive Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical SciencesTehran, Iran
- Translational Neuroscience Program, Institute for Cognitive Science Studies (ICSS)Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
44
|
Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 2016; 128:56-92. [PMID: 27866120 DOI: 10.1016/j.clinph.2016.10.087] [Citation(s) in RCA: 1144] [Impact Index Per Article: 127.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/19/2022]
Abstract
A group of European experts was commissioned by the European Chapter of the International Federation of Clinical Neurophysiology to gather knowledge about the state of the art of the therapeutic use of transcranial direct current stimulation (tDCS) from studies published up until September 2016, regarding pain, Parkinson's disease, other movement disorders, motor stroke, poststroke aphasia, multiple sclerosis, epilepsy, consciousness disorders, Alzheimer's disease, tinnitus, depression, schizophrenia, and craving/addiction. The evidence-based analysis included only studies based on repeated tDCS sessions with sham tDCS control procedure; 25 patients or more having received active treatment was required for Class I, while a lower number of 10-24 patients was accepted for Class II studies. Current evidence does not allow making any recommendation of Level A (definite efficacy) for any indication. Level B recommendation (probable efficacy) is proposed for: (i) anodal tDCS of the left primary motor cortex (M1) (with right orbitofrontal cathode) in fibromyalgia; (ii) anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) (with right orbitofrontal cathode) in major depressive episode without drug resistance; (iii) anodal tDCS of the right DLPFC (with left DLPFC cathode) in addiction/craving. Level C recommendation (possible efficacy) is proposed for anodal tDCS of the left M1 (or contralateral to pain side, with right orbitofrontal cathode) in chronic lower limb neuropathic pain secondary to spinal cord lesion. Conversely, Level B recommendation (probable inefficacy) is conferred on the absence of clinical effects of: (i) anodal tDCS of the left temporal cortex (with right orbitofrontal cathode) in tinnitus; (ii) anodal tDCS of the left DLPFC (with right orbitofrontal cathode) in drug-resistant major depressive episode. It remains to be clarified whether the probable or possible therapeutic effects of tDCS are clinically meaningful and how to optimally perform tDCS in a therapeutic setting. In addition, the easy management and low cost of tDCS devices allow at home use by the patient, but this might raise ethical and legal concerns with regard to potential misuse or overuse. We must be careful to avoid inappropriate applications of this technique by ensuring rigorous training of the professionals and education of the patients.
Collapse
|
45
|
Ziconotide intrathecal delivery as treatment for secondary therapeutic failure of motor cortex stimulation after 6 years. Neurochirurgie 2016; 62:284-288. [PMID: 27771111 DOI: 10.1016/j.neuchi.2016.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/21/2016] [Accepted: 06/12/2016] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Motor cortex stimulation is a well-known treatment modality for refractory neuropathic pain. Nevertheless, some cases of therapeutic failure have been described but alternative therapies for these cases are rarely reported. CASE REPORT The patient presented with neuropathic pain in his right arm due to a cervical syrinx which was surgically treated by a shunt in 2003 with no clinical improvement. As alternative therapy, after an evaluation by repetitive magnetic transcranial stimulation with significant benefit, motor cortex stimulation was successfully implanted in 2004. In 2010, a similar pain occurred in the same territory. Local mean pain visual analogical scale (VAS) increased to 82/100. A newer generation stimulation device was then implanted and, within a period of 8months, different stimulation parameter settings were tested, without any pain relief. An intrathecal drug delivery pump was then implanted in 2011, and the upper extremity catheter was located at the cervicothoracic junction. There was no postoperative complication. A bitherapy was initiated at a daily dosage of 0.2mg morphine and 1.3μg ziconotide, not modified since August 2013. At 43months follow-up, mean VAS was 21/100 with improvement of daily life and spare-time activities, anxiety and depression, quality of life (as measured by the SF-36 survey and EQ5D-3L questionnaire). DISCUSSION Refractory neuropathic pain treated by motor cortex stimulation may be considered in palliative situations, and secondary therapeutic failure offers only a few perspectives. Intrathecal ziconotide, indicated as a first-line drug in non-cancer pain, could be proposed in such cases. CONCLUSION Intrathecal drug delivery including ziconotide in refractory neuropathic pain represents a reasonable option with a good clinical tolerance.
Collapse
|
46
|
Cortical neurostimulation for neuropathic pain: state of the art and perspectives. Pain 2016; 157 Suppl 1:S81-S89. [PMID: 26785160 DOI: 10.1097/j.pain.0000000000000401] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The treatment of neuropathic pain by neuromodulation is an objective for more than 40 years in modern clinical practice. With respect to spinal cord and deep brain structures, the cerebral cortex is the most recently evaluated target of invasive neuromodulation therapy for pain. In the early 90s, the first successes of invasive epidural motor cortex stimulation (EMCS) were published. A few years later was developed repetitive transcranial magnetic stimulation (rTMS), a noninvasive stimulation technique. Then, electrical transcranial stimulation returned valid and is currently in full development, with transcranial direct current stimulation (tDCS). Regarding transcranial approaches, the main studied and validated target was still the motor cortex, but other cortical targets are under investigation. The mechanisms of action of these techniques share similarities, especially between EMCS and rTMS, but they also have differences that could justify specific indications and applications. It is therefore important to know the principles and to assess the merit of these techniques on the basis of a rigorous assessment of the results, to avoid fad. Various types of chronic neuropathic pain syndromes can be significantly relieved by EMCS or repeated daily sessions of high-frequency (5-20 Hz) rTMS or anodal tDCS over weeks, at least when pain is lateralized and stimulation is applied to the motor cortex contralateral to pain side. However, cortical stimulation therapy remains to be optimized, especially by improving EMCS electrode design, rTMS targeting, or tDCS montage, to reduce the rate of nonresponders, who do not experience clinically relevant effects of these techniques.
Collapse
|
47
|
Kumru H, Albu S, Vidal J, Tormos JM. Effectiveness of repetitive trancranial or peripheral magnetic stimulation in neuropathic pain. Disabil Rehabil 2016; 39:856-866. [PMID: 27494799 DOI: 10.3109/09638288.2016.1170213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Maladaptive plasticity in the sensorimotor system, following neurological lesions or diseases, plays a central role in the generation and maintenance of neuropathic pain. Repetitive magnetic stimulation of the central and peripheral nervous system has gained relevance as noninvasive approach for neuromodulation and pain relief. Systematic reviews that evaluate the effectiveness and specificity of different protocols of repetitive magnetic stimulation to control neuropathic pain in clinical populations have the potential to improve the therapeutic applicability of this technique. METHODS Studies whose primary goal was to evaluate the effectiveness of repetitive magnetic stimulation for the treatment of various types of neuropathic pain published in PubMed until August 2015 have been included in this systematic review. RESULTS A total of 39 articles fulfilling the inclusion criteria were analyzed of which 37 studies investigated pain modulation using repetitive magnetic stimulation over the motor or non-motor cortices and two studies evaluated pain modulation using repetitive peripheral magnetic stimulation protocols. CONCLUSIONS Repetitive transcranial magnetic stimulation of the primary motor cortex using high frequency stimulation protocols can effectively reduce neuropathic pain, particularly in individuals with pain related to non-cerebral lesions. The application of multiple sessions can lead to long-lasting pain modulation and cumulative effects. Implications for Rehabilitation Maladaptive plasticity plays a central role in sensitization of nociceptive pathways, generation and maintainance of neuropathic pain; Most neuropathic pain conditions are refractory to pharmacological therapies; Repetitive magnetic stimulation of the central and peripheral nervous system has gained relevance as noninvasive approach for neuromodulation and pain relief.
Collapse
Affiliation(s)
- Hatice Kumru
- a Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB , Badalona, Barcelona , Spain.,b Universidad Autonoma de Barcelona , Bellaterra, Cerdanyola del Vallès , Spain.,c Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol , Badalona, Barcelona , Spain
| | | | - Joan Vidal
- a Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB , Badalona, Barcelona , Spain.,b Universidad Autonoma de Barcelona , Bellaterra, Cerdanyola del Vallès , Spain.,c Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol , Badalona, Barcelona , Spain
| | - Josep Maria Tormos
- a Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB , Badalona, Barcelona , Spain.,b Universidad Autonoma de Barcelona , Bellaterra, Cerdanyola del Vallès , Spain.,c Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol , Badalona, Barcelona , Spain
| |
Collapse
|
48
|
Veronezi BP, Moffa AH, Carvalho AF, Galhardoni R, Simis M, Benseñor IM, Lotufo PA, Machado-Vieira R, Daskalakis ZJ, Brunoni AR. Evidence for increased motor cortical facilitation and decreased inhibition in atypical depression. Acta Psychiatr Scand 2016; 134:172-82. [PMID: 27028276 DOI: 10.1111/acps.12565] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Major depressive disorder (MDD) is a clinically heterogeneous condition. However, the role of cortical glutamate and gamma-aminobutyric acid (GABA) receptor-mediated activity, implicated in MDD pathophysiology, has not been explored in different MDD subtypes. Our aim was to assess the atypical and melancholic depression subtypes regarding potential differences in GABA and glutamate receptor-mediated activity through established transcranial magnetic stimulation (TMS) neurophysiological measures from the motor cortex. METHOD We evaluated 81 subjects free of antidepressant medication, including 21 healthy controls and 20 patients with atypical, 20 with melancholic, and 20 with undifferentiated MDD. Single and paired-pulse TMS paradigms were used to evaluate intracortical facilitation (ICF), cortical silent period (CSP), and short intracortical inhibition (SICI), which index glutamate, GABAB receptor-, and GABAA receptor-mediated activity respectively. RESULTS Patients with MDD demonstrated significantly decreased mean CSP values than healthy controls (Cohen's d = 0.22-0.3, P < 0.01 for all comparisons). Atypical depression presented a distinct cortical excitability pattern of decreased cortical inhibition and increased cortical facilitation, that is, an increased mean ICF and SICI ratios than other depression subtypes (d = 0.22-0.33, P < 0.01 for all comparisons). CONCLUSION Different MDD subtypes may demonstrate different neurophysiology in relation to GABAA and glutamatergic activity. TMS as an investigational tool might be useful to distinguish between different MDD subtypes.
Collapse
Affiliation(s)
- B P Veronezi
- Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of Sao Paulo, São Paulo, Brazil
| | - A H Moffa
- Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of Sao Paulo, São Paulo, Brazil
| | - A F Carvalho
- Department of Psychiatry and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceara, Brazil
| | - R Galhardoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.,School of Arts, Science and Humanities, University of São Paulo, São Paulo, Brazil.,Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil.,Medicine School of University City of São Paulo (UNICID), São Paulo, Brazil
| | - M Simis
- Institute of Physical Medicine and Rehabilitation, Clinics Hospital of the University of Sao Paulo Medical School, São Paulo, Brazil
| | - I M Benseñor
- Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of Sao Paulo, São Paulo, Brazil
| | - P A Lotufo
- Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of Sao Paulo, São Paulo, Brazil
| | - R Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health (NIH), Bethesda, MD, USA
| | - Z J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - A R Brunoni
- Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of Sao Paulo, São Paulo, Brazil.,Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Naro A, Milardi D, Russo M, Terranova C, Rizzo V, Cacciola A, Marino S, Calabro RS, Quartarone A. Non-invasive Brain Stimulation, a Tool to Revert Maladaptive Plasticity in Neuropathic Pain. Front Hum Neurosci 2016; 10:376. [PMID: 27512368 PMCID: PMC4961691 DOI: 10.3389/fnhum.2016.00376] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022] Open
Abstract
Neuromodulatory effects of non-invasive brain stimulation (NIBS) have been extensively studied in chronic pain. A hypothetic mechanism of action would be to prevent or revert the ongoing maladaptive plasticity within the pain matrix. In this review, the authors discuss the mechanisms underlying the development of maladaptive plasticity in patients with chronic pain and the putative mechanisms of NIBS in modulating synaptic plasticity in neuropathic pain conditions.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi "Bonino-Pulejo" Messina, Italy
| | - Demetrio Milardi
- IRCCS Centro Neurolesi "Bonino-Pulejo"Messina, Italy; Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy
| | | | - Carmen Terranova
- Department of Clinical and Experimental Medicine, University of Messina Messina, Italy
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina Messina, Italy
| | - Alberto Cacciola
- IRCCS Centro Neurolesi "Bonino-Pulejo"Messina, Italy; Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino-Pulejo" Messina, Italy
| | | | - Angelo Quartarone
- IRCCS Centro Neurolesi "Bonino-Pulejo"Messina, Italy; Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy
| |
Collapse
|
50
|
George E, Elman I, Becerra L, Berg S, Borsook D. Pain in an era of armed conflicts: Prevention and treatment for warfighters and civilian casualties. Prog Neurobiol 2016; 141:25-44. [PMID: 27084355 DOI: 10.1016/j.pneurobio.2016.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/23/2016] [Accepted: 04/08/2016] [Indexed: 12/13/2022]
Abstract
Chronic pain is a common squealae of military- and terror-related injuries. While its pathophysiology has not yet been fully elucidated, it may be potentially related to premorbid neuropsychobiological status, as well as to the type of injury and to the neural alterations that it may evoke. Accordingly, optimized approaches for wounded individuals should integrate primary, secondary and tertiary prevention in the form of thorough evaluation of risk factors along with specific interventions to contravene and mitigate the ensuing chronicity. Thus, Premorbid Events phase may encompass assessments of psychological and neurobiological vulnerability factors in conjunction with fostering preparedness and resilience in both military and civilian populations at risk. Injuries per se phase calls for immediate treatment of acute pain in the field by pharmacological agents that spare and even enhance coping and adaptive capabilities. The key objective of the Post Injury Events is to prevent and/or reverse maladaptive peripheral- and central neural system's processes that mediate transformation of acute to chronic pain and to incorporate timely interventions for concomitant mental health problems including post-traumatic stress disorder and addiction We suggest that the proposed continuum of care may avert more disability and suffering than the currently employed less integrated strategies. While the requirements of the armed forces present a pressing need for this integrated continuum and a framework in which it can be most readily implemented, this approach may be also instrumental for the care of civilian casualties.
Collapse
Affiliation(s)
- E George
- Center for Pain and the Brain, Harvard Medical School (HMS), United States; Department of Anesthesia, Critical Care and Pain Medicine, MGH, HMS, Boston, MA, United States; Commander, MC, USN (Ret), United States
| | - I Elman
- Center for Pain and the Brain, Harvard Medical School (HMS), United States; Department of Psychiatry, Boonshoft School of Medicine and Dayton VA Medical Center, United States; Veterans Administration Medical Center, Dayton, OH, United States
| | - L Becerra
- Center for Pain and the Brain, Harvard Medical School (HMS), United States; Department of Anesthesia, Critical Care and Pain Medicine, BCH, HMS, Boston, MA, United States; Departments of Psychiatry and Radiology, MGH, Boston, MA, United States
| | - Sheri Berg
- Center for Pain and the Brain, Harvard Medical School (HMS), United States; Department of Anesthesia, Critical Care and Pain Medicine, MGH, HMS, Boston, MA, United States
| | - D Borsook
- Center for Pain and the Brain, Harvard Medical School (HMS), United States; Department of Anesthesia, Critical Care and Pain Medicine, BCH, HMS, Boston, MA, United States; Departments of Psychiatry and Radiology, MGH, Boston, MA, United States.
| |
Collapse
|