1
|
Wegner GRM, Wegner BFM, Oliveira HG, Costa LA, Spagnol LW, Spagnol VW, Carlotto JRM, Neto EP. Comparison of total intravenous anesthesia and inhalational anesthesia in patients undergoing liver surgery: a systematic review and meta-analysis. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2025; 75:844604. [PMID: 40023497 PMCID: PMC11960546 DOI: 10.1016/j.bjane.2025.844604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The impact of choosing between inhalational anesthetics and propofol for maintenance anesthesia in liver transplantation or liver resections remains uncertain. METHODS A systematic search was conducted on PubMed, Scopus, Embase, Web of Science, and the Cochrane Library on September 5, 2023, adhering to the Cochrane Handbook and PRISMA guidelines. RESULTS Fifteen randomized controlled trials and five observational studies, comprising 1,602 patients, were included. The statistical analysis was categorized into three groups: liver transplantation (four studies), living donor hepatectomy (four studies), and liver mass hepatectomy (twelve studies). The liver mass hepatectomy group was further subdivided based on the performance of the Pringle maneuver and the use of pharmacological preconditioning. Statistically significant results are described below. In liver transplant recipients, propofol anesthesia was associated with lower AST levels on the first postoperative day. Hepatic donors anesthetized with propofol had higher total infusion volumes and intraoperative urine output. Patients undergoing liver mass resection with the Pringle maneuver and propofol anesthesia had higher peak AST and ALT levels compared to those who received pharmacological preconditioning. Patients undergoing liver mass resection with the Pringle maneuver and propofol anesthesia had higher AST and ALT levels on both the first and third postoperative days, increased total infusion volumes, and shorter hospital stays, when compared to pharmacological conditioning. CONCLUSIONS Our findings do not offer sufficient evidence to inform clinical practice. The choice between propofol-based and inhalational anesthesia should be tailored to the individual patient's condition and the nature of the procedure being performed. REGISTRATION PROSPERO ID: CRD42023460715.
Collapse
Affiliation(s)
- Gustavo R M Wegner
- Universidade Federal da Fronteira Sul (UFFS), Faculdade de Medicina, Passo Fundo, RS, Brazil
| | - Bruno F M Wegner
- Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Medicina, Porto Alegre, RS, Brazil
| | - Henrik G Oliveira
- Universidade Federal da Fronteira Sul (UFFS), Faculdade de Medicina, Passo Fundo, RS, Brazil
| | - Luis A Costa
- Universidade Federal da Fronteira Sul (UFFS), Faculdade de Medicina, Passo Fundo, RS, Brazil
| | - Luigi W Spagnol
- Universidade Federal da Fronteira Sul (UFFS), Faculdade de Medicina, Passo Fundo, RS, Brazil
| | - Valentine W Spagnol
- Universidade Federal da Fronteira Sul (UFFS), Faculdade de Medicina, Passo Fundo, RS, Brazil.
| | - Jorge R M Carlotto
- Universidade Federal da Fronteira Sul, Hospital de Clínicas, Departamento de Cirurgia, Passo Fundo, RS, Brazil
| | - Eugénio Pagnussatt Neto
- Universidade Federal da Fronteira Sul (UFFS), Programa de Estágio Médico em Anestesiologia, Passo Fundo, RS, Brazil
| |
Collapse
|
2
|
Loubet F, Robert C, Leclaire C, Theillière C, Saint-Béat C, Lenga Ma Bonda W, Zhai R, Minet-Quinard R, Belville C, Blanchon L, Sapin V, Garnier M, Jabaudon M. Effects of sevoflurane on lung alveolar epithelial wound healing and survival in a sterile in vitro model of acute respiratory distress syndrome. Exp Cell Res 2024; 438:114030. [PMID: 38583855 DOI: 10.1016/j.yexcr.2024.114030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious lung condition that often leads to hospitalization in intensive care units and a high mortality rate. Sevoflurane is a volatile anesthetic with growing interest for sedation in ventilated patients with ARDS. It has been shown to have potential lung-protective effects, such as reduced inflammation and lung edema, or improved arterial oxygenation. In this study, we investigated the effects of sevoflurane on lung injury in cultured human carcinoma-derived lung alveolar epithelial (A549) cells. We found that sevoflurane was associated with improved wound healing after exposure to inflammatory cytokines, with preserved cell proliferation but no effect on cell migration properties. Sevoflurane exposure was also associated with enhanced cell viability and active autophagy in A549 cells exposed to cytokines. These findings suggest that sevoflurane may have beneficial effects on lung epithelial injury by promoting alveolar epithelial wound healing and by influencing the survival and proliferation of A549 epithelial cells in vitro. Further research is needed to confirm these findings and to investigate the key cellular mechanisms explaining sevoflurane's potential effects on lung epithelial injury.
Collapse
Affiliation(s)
- Florian Loubet
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Cédric Robert
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Charlotte Leclaire
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Camille Theillière
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Cécile Saint-Béat
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | | | - Ruoyang Zhai
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Régine Minet-Quinard
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Corinne Belville
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Loic Blanchon
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Vincent Sapin
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Marc Garnier
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Matthieu Jabaudon
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Dieu A, Benoit L, Dupont C, de Magnée C, Reding R, Pirotte T, Steyaert A. Sevoflurane preconditioning in living liver donation is associated with better initial graft function after pediatric transplantation: a retrospective study. Perioper Med (Lond) 2024; 13:11. [PMID: 38419073 PMCID: PMC10903053 DOI: 10.1186/s13741-024-00367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/18/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Initial allograft function determines the patient's immediate prognosis in pediatric liver transplantation. Ischemia-reperfusion injuries play a role in initial poor graft function (IPGF). In animal studies, preconditioning with inhaled anesthetic agents has demonstrated a protective effect on the liver. In humans, the few available studies are conflicting. This study assesses the association between the hypnotic agent used to maintain anesthesia during hepatectomy in living donors and the occurrence of IPGF after pediatric transplantation. METHODS We conducted a single-center retrospective analysis of children who received a living donor liver transplant (LDLT) between 2010 and 2019. We analyzed the incidence of EAD according to the hypnotic agent used to maintain general anesthesia during donor hepatectomy. RESULTS We included 183 pairs of patients (living donors-recipients). The anesthetics used in the donor were propofol (n = 85), sevoflurane (n = 69), or propofol with sevoflurane started 30 min before clamping (n = 29). Forty-two children (23%) developed IPGF. After multivariate logistic regression analysis, factors significantly associated with the occurrence of IPGF were the anesthesia maintenance agent used in the donor (p = 0.004), age of the donor (p = 0.03), duration of transplant surgery (p = 0.009), preoperative receiver neutrophil to lymphocyte ratio (p = 0.02), and albumin (p = 0.05). CONCLUSION Significantly fewer children who received a graft from a donor in whom only sevoflurane was used to maintain anesthesia developed IPGF. Although additional research is needed, this preconditioning strategy may provide an option to prevent IPGF after living liver donation.
Collapse
Affiliation(s)
- Audrey Dieu
- Department of Anesthesiology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Avenue Hippocrate 10, Brussels, 1200, Belgium.
| | - Loïc Benoit
- Department of Anesthesiology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Avenue Hippocrate 10, Brussels, 1200, Belgium
| | - Candice Dupont
- Department of Anesthesiology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Avenue Hippocrate 10, Brussels, 1200, Belgium
| | - Catherine de Magnée
- Department of General and Pediatric Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Raymond Reding
- Department of General and Pediatric Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Thierry Pirotte
- Department of Anesthesiology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Avenue Hippocrate 10, Brussels, 1200, Belgium
| | - Arnaud Steyaert
- Department of Anesthesiology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Avenue Hippocrate 10, Brussels, 1200, Belgium
| |
Collapse
|
4
|
Lisnyy II, Zakalska KA, Burlaka AA, Lysykh SA, Efimenko OV. PREVENTION OF PATHOLOGICAL EFFECT OF ISCHEMIA-REPERFUSION IN LIVER RESECTION BY SEVOFLURANE PRECONDITIONING. Exp Oncol 2023; 45:252-262. [PMID: 37824766 DOI: 10.15407/exp-oncology.2023.02.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The intermittent Pringle maneuver remains the major technique for controlling hemorrhage during liver surgery. Nevertheless, this procedure involves a risk of triggering a cascade of pathological changes resulting in the ischemia-reperfusion injury (I/R) effect. The pharmacological prevention of this I/R injury represents a promising approach. The aim of the study was to compare the effects of pharmacological preconditioning with sevoflurane and propofol-based intravenous anesthesia on the postoperative function of the liver as the primary end-point. MATERIALS AND METHODS A prospective cohort study includes the analysis of the data of 73 patients who underwent liver surgery. In the study group (n = 41), preconditioning with sevoflurane inhalation was provided 30 minutes prior to liver resection. In the control group (n = 32), sevoflurane preconditioning was not provided. The primary endpoints were blood lactate concentration shortly after the surgery and one day later; alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities on postoperative Days 1, 3, and 5 as markers of hepatocyte damage. RESULTS On postoperative Day 1, in patients of the study group, lactate decreased to preoperative levels, while in the control group, lactate content increased as compared to both preoperative levels and the levels immediately after liver resection. A significant difference in AST activity levels between the groups was registered on Day 5, although this difference was not clinically relevant. The decrease in the prothrombin index in the study group on Day 3 was superior to that in the control group. The multiple regression analysis demonstrated a moderate positive association between the number of resected liver segments and the markers of the functional state of the liver in the study group while in the control group, such association was not significant. CONCLUSION The protective effect of sevoflurane on the postoperative function of the liver is manifested by the lower level of blood lactate and the stable level of transaminase activity.
Collapse
Affiliation(s)
- I I Lisnyy
- National Cancer Institute, Kyiv, Ukraine
| | | | | | - S A Lysykh
- National Cancer Institute, Kyiv, Ukraine
| | | |
Collapse
|
5
|
Wu ZD, Feng Y, Ma ZX, Liu Z, Xiong HH, Zhou ZP, Ouyang LS, Xie FK, Tang YM. MicroRNAs: protective regulators for neuron growth and development. Neural Regen Res 2023; 18:734-745. [DOI: 10.4103/1673-5374.353481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Fu Z, Wu X, Zheng F, Zhang Y. Activation of the AMPK-ULK1 pathway mediated protective autophagy by sevoflurane anesthesia restrains LPS-induced acute lung injury (ALI). Int Immunopharmacol 2022; 108:108869. [DOI: 10.1016/j.intimp.2022.108869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022]
|
7
|
Liu L, Shang L, Jin D, Wu X, Long B. General anesthesia bullies the gut: a toxic relationship with dysbiosis and cognitive dysfunction. Psychopharmacology (Berl) 2022; 239:709-728. [PMID: 35187594 DOI: 10.1007/s00213-022-06096-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
Perioperative neurocognitive disorder (PND) is a common surgery outcome affecting up to a third of the elderly patients, and it is associated with high morbidity and increased risk for Alzheimer's disease development. PND is characterized by cognitive impairment that can manifest acutely in the form of postoperative delirium (POD) or after hospital discharge as postoperative cognitive dysfunction (POCD). Although POD and POCD are clinically distinct, their development seems to be mediated by a systemic inflammatory reaction triggered by surgical trauma that leads to dysfunction of the blood-brain barrier and facilitates the occurrence of neuroinflammation. Recent studies have suggested that the gut microbiota composition may play a pivotal role in the PND development by modulating the risk of neuroinflammation establishment. In fact, modulation of gut microbiome composition with pre- and probiotics seems to be effective for the prevention and treatment of PND in animals. Interestingly, general anesthetics seem to have major responsibility on the gut microbiota composition changes following surgery and, consequently, can be an important element in the process of PND initiation. This concept represents an important milestone for the understanding of PND pathogenesis and may unveil new opportunities for the development of preventive or mitigatory strategies against the development of these conditions. The aim of this review is to discuss how anesthetics used in general anesthesia can interact and alter the gut microbiome composition and contribute to PND development by favoring the emergence of neuroinflammation.
Collapse
Affiliation(s)
- Lidan Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Lihua Shang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Dongxue Jin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Bo Long
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
8
|
Rozier R, Paul R, Madji Hounoum B, Villa E, Mhaidly R, Chiche J, Verhoeyen E, Marchetti S, Vandenberghe A, Raucoules M, Carles M, Ricci JE. Pharmacological preconditioning protects from ischemia/reperfusion-induced apoptosis by modulating Bcl-xL expression through a ROS-dependent mechanism. FEBS J 2021; 288:3547-3569. [PMID: 33340237 DOI: 10.1111/febs.15675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a frequent perioperative threat, with numerous strategies developed to limit and/or prevent it. One interesting axis of research is the anesthetic preconditioning (APc) agent's hypothesis (such as sevoflurane, SEV). However, APc's mode of action is still poorly understood and volatile anesthetics used as preconditioning agents are often not well suited in clinical practice. Here, in vitro using H9C2 cells lines (in myeloblast state or differentiated toward cardiomyocytes) and in vivo in mice, we identified that SEV-induced APc is mediated by a mild induction of reactive oxygen species (ROS) that activates Akt and induces the expression of the anti-apoptotic protein B-cell lymphoma-extra large (Bcl-xL), therefore protecting cardiomyocytes from I/R-induced death. Furthermore, we extended these results to human cardiomyocytes (derived from induced pluripotent stem - IPS - cells). Importantly, we demonstrated that this protective signaling pathway induced by SEV could be stimulated using the antidiabetic agent metformin (MET), suggesting the preconditioning properties of MET. Altogether, our study identified a signaling pathway allowing APc of cardiac injuries as well as a rational for the use of MET as a pharmacological preconditioning agent to prevent I/R injuries.
Collapse
Affiliation(s)
- Romain Rozier
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rachel Paul
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Blandine Madji Hounoum
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Elodie Villa
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rana Mhaidly
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Johanna Chiche
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Els Verhoeyen
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Sandrine Marchetti
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Ashaina Vandenberghe
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Marc Raucoules
- Anesthésie Réanimation, Centre Hospitalier Universitaire, Nice, France
| | - Michel Carles
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France.,Anesthésie Réanimation, Centre Hospitalier Universitaire, Nice, France.,Réanimation, Faculté des Antilles, Centre Hospitalier Universitaire, Guadeloupe, France
| | - Jean-Ehrland Ricci
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
9
|
Hummitzsch L, Berndt R, Kott M, Rusch R, Faendrich F, Gruenewald M, Steinfath M, Albrecht M, Zitta K. Hypoxia directed migration of human naïve monocytes is associated with an attenuation of cytokine release: indications for a key role of CCL26. J Transl Med 2020; 18:404. [PMID: 33087148 PMCID: PMC7579884 DOI: 10.1186/s12967-020-02567-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Background Numerous tissue-derived factors have been postulated to be involved in tissue migration of circulating monocytes. The aim of this study was to evaluate whether a defined hypoxic gradient can induce directed migration of naïve human monocytes and to identify responsible autocrine/paracrine factors. Methods Monocytes were isolated from peripheral blood mononuclear cells, transferred into chemotaxis chambers and subjected to a defined oxygen gradient with or without the addition of CCL26. Cell migration was recorded and secretome analyses were performed. Results Cell migration recordings revealed directed migration of monocytes towards the source of hypoxia. Analysis of the monocyte secretome demonstrated a reduced secretion of 70% (19/27) of the analyzed cytokines under hypoxic conditions. The most down-regulated factors were CCL26 (− 99%), CCL1 (− 95%), CX3CL1 (− 95%), CCL17 (− 85%) and XCL1 (− 83%). Administration of recombinant CCL26 abolished the hypoxia-induced directed migration of human monocytes, while the addition of CCL26 under normoxic conditions resulted in a repulsion of monocytes from the source of CCL26. Conclusions Hypoxia induces directed migration of human monocytes in-vitro. Autocrine/paracrine released CCL26 is involved in the hypoxia-mediated monocyte migration and may represent a target molecule for the modulation of monocyte migration in-vivo.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, UKSH, Schwanenweg 21, 24105, Kiel, Germany
| | - Rouven Berndt
- Department of Cardiovascular Surgery, UKSH, Kiel, Germany
| | - Matthias Kott
- Department of Anesthesiology and Intensive Care Medicine, UKSH, Schwanenweg 21, 24105, Kiel, Germany
| | - Rene Rusch
- Department of Cardiovascular Surgery, UKSH, Kiel, Germany
| | - Fred Faendrich
- Clinic for Applied Cellular Medicine, UKSH, Kiel, Germany
| | - Matthias Gruenewald
- Department of Anesthesiology and Intensive Care Medicine, UKSH, Schwanenweg 21, 24105, Kiel, Germany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, UKSH, Schwanenweg 21, 24105, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, UKSH, Schwanenweg 21, 24105, Kiel, Germany.
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, UKSH, Schwanenweg 21, 24105, Kiel, Germany
| |
Collapse
|
10
|
Hummitzsch L, Albrecht M, Zitta K, Hess K, Parczany K, Rusch R, Cremer J, Steinfath M, Haneya A, Faendrich F, Berndt R. Human monocytes subjected to ischaemia/reperfusion inhibit angiogenesis and wound healing in vitro. Cell Prolif 2020; 53:e12753. [PMID: 31957193 PMCID: PMC7048205 DOI: 10.1111/cpr.12753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The sequence of initial tissue ischaemia and consecutive blood flow restoration leads to ischaemia/reperfusion (I/R) injury, which is typically characterized by a specific inflammatory response. Migrating monocytes seem to mediate the immune response in ischaemic tissues and influence detrimental as well as regenerative effects during I/R injury. MATERIALS AND METHODS To clarify the role of classical monocytes in I/R injury, isolated human monocytes were subjected to I/R in vitro (3 hours ischaemia followed by 24 hours of reperfusion). Cellular resilience, monocyte differentiation, cytokine secretion, as well as influence on endothelial tube formation, migration and cell recovery were investigated. RESULTS We show that I/R supported an enhanced resilience of monocytes and induced intracellular phosphorylation of the prosurvival molecules Erk1/2 and Akt. FACS analysis showed no major alteration in monocyte subtype differentiation and surface marker expression under I/R. Further, our experiments revealed that I/R changes the cytokine secretion pattern, release of angiogenesis associated proteins and MMP-9 activity in supernatants of monocytes exposed to I/R. Supernatants from monocytes subjected to I/R attenuated endothelial tube formation as indicator for angiogenesis as well as endothelial cell migration and recovery. CONCLUSION In summary, monocytes showed no significant change in cellular integrity and monocyte subtype after I/R. Functionally, monocytes might have a rather detrimental influence during the initial phase of I/R, suppressing endothelial cell migration and neoangiogenesis.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Katharina Hess
- Institute of NeuropathologyUniversity Hospital MuensterMuensterGermany
| | - Kerstin Parczany
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - René Rusch
- Department of Cardiovascular SurgeryUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Jochen Cremer
- Department of Cardiovascular SurgeryUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Assad Haneya
- Department of Cardiovascular SurgeryUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Fred Faendrich
- Department of Applied Cell TherapyUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Rouven Berndt
- Department of Cardiovascular SurgeryUniversity Hospital of Schleswig‐HolsteinKielGermany
| |
Collapse
|
11
|
Nguyen TM, Fleyfel M, Boleslawski E, M'Ba L, Geniez M, Ethgen S, Béhal H, Lebuffe G. Effect of pharmacological preconditioning with sevoflurane during hepatectomy with intermittent portal triad clamping. HPB (Oxford) 2019; 21:1194-1202. [PMID: 30773451 DOI: 10.1016/j.hpb.2019.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/30/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND During hepatectomy, intermittent portal triad clamping (IPC) reduces ischemia-reperfusion injuries. Pharmacological preconditioning with sevoflurane revealed similar properties. The aim of the study was to evaluate the combination of a sevoflurane preconditioning regimen with IPC on ischemia-reperfusion injuries. METHODS Three regimens of anesthesia were applied: group SEV with continuous application of sevoflurane, group PRO with continuous propofol infusion and group PC where continuous propofol was substituted by sevoflurane (adjusted to reach MAC∗1.5) for 15 min before IPC. Endpoints were the values of AST and ALT, factor V, prothrombin time, bilirubinemia over the 5-postoperative days (POD), morbidity and mortality at POD30 and POD90. RESULTS The ALT values at POD5 were lower in the PC group (n = 27) 74 (48 -98) IU/L compared to PRO (n = 26) and SEV (n = 67) respectively 110 (75 -152) and 100 (64 -168) IU/L (p = 0.038). The variation of factor V compared to preoperative values was less important in the PC and SEV groups respectively -14% and -16% vs -30% (PRO) (p = 0.047). CONCLUSION Our study suggests that sevoflurane attenuates ischemia-reperfusion injuries on liver function, compared to propofol, without benefit for a specific regimen of pharmacological preconditioning when IPC is applied.
Collapse
Affiliation(s)
| | - Maher Fleyfel
- Anesthésie-Réanimation, Hôpital Huriez CHRU Lille, France
| | - Emmanuel Boleslawski
- Service de Chirurgie Digestive et Transplantations, Hôpital Huriez CHRU Lille, France
| | - Léna M'Ba
- Service de Chirurgie Digestive et Transplantations, Hôpital Huriez CHRU Lille, France
| | - Marie Geniez
- Anesthésie-Réanimation, Hôpital Huriez CHRU Lille, France
| | - Sabine Ethgen
- Anesthésie-Réanimation, Hôpital Huriez CHRU Lille, France
| | - Hélène Béhal
- Santé publique: épidémiologie et qualité des soins, Unité de Biostatistiques, CHRU Lille, France
| | - Gilles Lebuffe
- Anesthésie-Réanimation, Hôpital Huriez CHRU Lille, France
| |
Collapse
|
12
|
Hummitzsch L, Zitta K, Rusch R, Cremer J, Steinfath M, Gross J, Fandrich F, Berndt R, Albrecht M. Characterization of the Angiogenic Potential of Human Regulatory Macrophages (Mreg) after Ischemia/Reperfusion Injury In Vitro. Stem Cells Int 2019; 2019:3725863. [PMID: 31341483 PMCID: PMC6614961 DOI: 10.1155/2019/3725863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemia/reperfusion- (I/R-) induced organ damage represents one of the main causes of death worldwide, and new strategies to reduce I/R injury are urgently needed. We have shown that programmable cells of monocytic origin (PCMO) respond to I/R with the release of angiogenic mediators and that transplantation of PCMO results in increased neovascularization. Human regulatory macrophages (Mreg), which are also of monocytic origin, have been successfully employed in clinical transplantation studies due to their immunomodulatory properties. Here, we investigated whether Mreg also possess angiogenic potential in vitro and could represent a treatment option for I/R-associated illnesses. Mreg were differentiated using peripheral blood monocytes from different donors (N = 14) by incubation with M-CSF and human AB serum and stimulation with INF-gamma. Mreg cultures were subjected to 3 h of hypoxia and 24 h of reoxygenation (resembling I/R) or the respective nonischemic control. Cellular resilience, expression of pluripotency markers, secretion of angiogenic proteins, and influence on endothelial tube formation as a surrogate marker for angiogenesis were investigated. Mreg showed resilience against I/R that did not lead to increased cell damage. Mreg express DHRS9 as well as IDO and display a moderate to low expression pattern of several pluripotency genes (e.g., NANOG, OCT-4, and SOX2). I/R resulted in an upregulation of IDO (p < 0.001) while C-MYC and KLF4 were downregulated (p < 0.001 and p < 0.05). Proteome profiling revealed the secretion of numerous angiogenic proteins by Mreg of which several were strongly upregulated by I/R (e.g., MIP-1alpha, 19.9-fold; GM-CSF, 19.2-fold; PTX3, 5.8-fold; IL-1β, 5.2-fold; and MCP-1, 4.7-fold). The angiogenic potential of supernatants from Mreg subjected to I/R remains inconclusive. While Mreg supernatants from 3 donors induced tube formation, 2 supernatants were not effective. We suggest that Mreg may prove beneficial as a cell therapy-based treatment option for I/R-associated illnesses. However, donor characteristics seem to crucially influence the effectiveness of Mreg treatment.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rene Rusch
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Jochen Cremer
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Justus Gross
- Clinic for Vascular Surgery, Bad Segeberg, Germany
| | - Fred Fandrich
- Department of Applied Cell Therapy, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rouven Berndt
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
13
|
Zhang Y, Shan Z, Zhao Y, Ai Y. Sevoflurane prevents miR-181a-induced cerebral ischemia/reperfusion injury. Chem Biol Interact 2019; 308:332-338. [PMID: 31170386 DOI: 10.1016/j.cbi.2019.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/19/2019] [Accepted: 06/03/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sevoflurane (sevo) has been reported to be an effective neuroprotective agent in cerebral ischemia/reperfusion injury (CIRI). However, the precise molecular mechanism underlying sevo preconditioning in CIRI remains largely unknown. METHODS A middle cerebral artery occlusion (MCAO) rat model and primary cortical neurons after oxygen-glucose deprivation and reoxygenation (OGDR) were used as the in vivo and in vitro models of CIRI. The expression profiles of miR-181a and X chromosome-linked inhibitor-of-apoptosis protein (XIAP) in the cerebral cortex of rats and in cortical neurons were examined by qRT-PCR and Western blot, respectively. The infarct volumes were measured by TTC staining and neurological deficits in rats was determined by Zea-Longa scoring criteria. The cell viability, lactate dehydrogenase (LDH) release and apoptotic rate were detected in cortical neurons by MTT assay, LDH analysis and flow cytometry. Western blot analysis was performed to assess the expression of apoptosis-related protein. Luciferase reporter assay was used to confirm the interaction between miR-181a and XIAP. RESULTS miR-181a was upregulated and XIAP was downregulated in rats after MCAO. Sevo preconditioning attenuated miR-181a expression and promoted XIAP level in a rat model of CIRI. Sevo preconditioning ameliorated anti-miR-181a-mediated protective effects on cerebral ischemia in rat model of CIRI, presented as the decrease of infarct volume, neurological deficit and apoptosis. Moreover, sevo pretreatment abated miR-181a-induced cellular injury in primary cortical neurons after OGD, embodied by the increase of cell viability, the reduction of LDH release and the decline of apoptosis. Furthermore, miR-181a suppressed XIAP expression by binding to its 3'UTR in cortical neurons, and sevo-mediated increase on XIAP expression was counteracted by miR-181 overexpression in OGDR-treated neurons. CONCLUSION Sevo preconditioning protected against CIRI in vitro and in vivo possibly by inhibiting miR-181a and facilitating XIAP.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhengzheng Shan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yanling Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yanqiu Ai
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
14
|
Xi JS, Wang YF, Long XX, Ma Y. Mangiferin Potentiates Neuroprotection by Isoflurane in Neonatal Hypoxic Brain Injury by Reducing Oxidative Stress and Activation of Phosphatidylinositol-3-Kinase/Akt/Mammalian Target of Rapamycin (PI3K/Akt/mTOR) Signaling. Med Sci Monit 2018; 24:7459-7468. [PMID: 30338764 PMCID: PMC6354638 DOI: 10.12659/msm.908142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Hypoxic-ischemic brain injury in the perinatal period is a main cause of perinatal mortality and neurologic complications in neonates and children. Recent studies have focused on the neuroprotective effect of anesthetic drugs. The volatile anesthetic isoflurane has been shown to exert neuroprotective effects in cerebral ischemia. Mangiferin is a natural polyphenol with various pharmacological properties, including antioxidant and ant-tumor effects. This study aimed to determine whether mangiferin potentiates the neuroprotective effects of isoflurane and also if mangiferin when administered alone exerts neuroprotective effects following hypoxic-ischemic brain injury. Material/Methods Sprague-Dawley rats were subjected to cerebral hypoxic ischemia on postnatal day 10 (P10). Mangiferin (50, 100, or 200 mg/kg b.w.) was intragastrically administered from P3 to P12 and 1 h prior to insult on the day of ischemic induction. At 3 h after hypoxia-ischemia (HI) insult, separate groups of rat pups were exposed to isoflurane (1.5%) for 6 h. Following 48 h of HI, the rats were sacrificed and brain tissues were used for analysis. Results Mangiferin treatment attenuated neuronal apoptosis and reduced cerebral infarct volume. The expression of cleaved caspase-3 and apoptotic cascade proteins were regulated. The levels of reactive oxygen species (ROS) and malondialdehyde were reduced by mangiferin and/or isoflurane exposure. The levels of antioxidant glutathione were considerably raised under HI injury, which was modulated by mangiferin and isoflurane exposure. The PI3K/Akt signaling pathway, which was downregulated following HI insult, was activated by mangiferin and/or isoflurane. Conclusions This study reveals the potent neuroprotective efficacy of mangiferin against HI-induced brain injury via effectively modulating apoptotic pathways, ROS levels, and PI3K/Akt cascades while potentiating protective effects of isoflurane.
Collapse
Affiliation(s)
- Jia-Shui Xi
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Yu-Fen Wang
- Department of Pediatrics, Shandong Provincial Third Hospital, Jinan, Shandong, China (mainland)
| | - Xin-Xin Long
- Department of Pediatrics, Shandong Provincial Third Hospital, Jinan, Shandong, China (mainland)
| | - Yan Ma
- Department of Pediatrics, Shandong Provincial Third Hospital, Jinan, Shandong, China (mainland)
| |
Collapse
|
15
|
Geiseler SJ, Morland C. The Janus Face of VEGF in Stroke. Int J Mol Sci 2018; 19:ijms19051362. [PMID: 29734653 PMCID: PMC5983623 DOI: 10.3390/ijms19051362] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022] Open
Abstract
The family of vascular endothelial growth factors (VEGFs) are known for their regulation of vascularization. In the brain, VEGFs are important regulators of angiogenesis, neuroprotection and neurogenesis. Dysregulation of VEGFs is involved in a large number of neurodegenerative diseases and acute neurological insults, including stroke. Stroke is the main cause of acquired disabilities, and normally results from an occlusion of a cerebral artery or a hemorrhage, both leading to focal ischemia. Neurons in the ischemic core rapidly undergo necrosis. Cells in the penumbra are exposed to ischemia, but may be rescued if adequate perfusion is restored in time. The neuroprotective and angiogenic effects of VEGFs would theoretically make VEGFs ideal candidates for drug therapy in stroke. However, contradictory to what one might expect, endogenously upregulated levels of VEGF as well as the administration of exogenous VEGF is detrimental in acute stroke. This is probably due to VEGF-mediated blood–brain-barrier breakdown and vascular leakage, leading to edema and increased intracranial pressure as well as neuroinflammation. The key to understanding this Janus face of VEGF function in stroke may lie in the timing; the harmful effect of VEGFs on vessel integrity is transient, as both VEGF preconditioning and increased VEGF after the acute phase has a neuroprotective effect. The present review discusses the multifaceted action of VEGFs in stroke prevention and therapy.
Collapse
Affiliation(s)
- Samuel J Geiseler
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0371 Oslo, Norway.
| | - Cecilie Morland
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0371 Oslo, Norway.
- Institute for Behavioral Sciences, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0166 Oslo, Norway.
| |
Collapse
|
16
|
Zitta K, Peeters-Scholte C, Sommer L, Gruenewald M, Hummitzsch L, Parczany K, Steinfath M, Albrecht M. 2-Iminobiotin Superimposed on Hypothermia Protects Human Neuronal Cells from Hypoxia-Induced Cell Damage: An in Vitro Study. Front Pharmacol 2018; 8:971. [PMID: 29358921 PMCID: PMC5768900 DOI: 10.3389/fphar.2017.00971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022] Open
Abstract
Perinatal asphyxia represents one of the major causes of neonatal morbidity and mortality. Hypothermia is currently the only established treatment for hypoxic-ischemic encephalopathy (HIE), but additional pharmacological strategies are being explored to further reduce the damage after perinatal asphyxia. The aim of this study was to evaluate whether 2-iminobiotin (2-IB) superimposed on hypothermia has the potential to attenuate hypoxia-induced injury of neuronal cells. In vitro hypoxia was induced for 7 h in neuronal IMR-32 cell cultures. Afterwards, all cultures were subjected to 25 h of hypothermia (33.5°C), and incubated with vehicle or 2-IB (10, 30, 50, 100, and 300 ng/ml). Cell morphology was evaluated by brightfield microscopy. Cell damage was analyzed by LDH assays. Production of reactive oxygen species (ROS) was measured using fluorometric assays. Western blotting for PARP, Caspase-3, and the phosphorylated forms of akt and erk1/2 was conducted. To evaluate early apoptotic events and signaling, cell protein was isolated 4 h post-hypoxia and human apoptosis proteome profiler arrays were performed. Twenty-five hour after the hypoxic insult, clear morphological signs of cell damage were visible and significant LDH release as well as ROS production were observed even under hypothermic conditions. Post-hypoxic application of 2-IB (10 and 30 ng/ml) reduced the hypoxia-induced LDH release but not ROS production. Phosphorylation of erk1/2 was significantly increased after hypoxia, while phosphorylation of akt, protein expression of Caspase-3 and cleavage of PARP were only slightly increased. Addition of 2-IB did not affect any of the investigated proteins. Apoptosis proteome profiler arrays performed with cellular protein obtained 4 h after hypoxia revealed that post-hypoxic application of 2-IB resulted in a ≥ 25% down regulation of 10/35 apoptosis-related proteins: Bad, Bax, Bcl-2, cleaved Caspase-3, TRAILR1, TRAILR2, PON2, p21, p27, and phospho Rad17. In summary, addition of 2-IB during hypothermia is able to attenuate hypoxia-induced neuronal cell damage in vitro. Combination treatment of hypothermia with 2-IB could be a promising strategy to reduce hypoxia-induced neuronal cell damage and should be considered in further animal and clinical studies.
Collapse
Affiliation(s)
- Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Lena Sommer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Gruenewald
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Kerstin Parczany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
17
|
Hummitzsch L, Zitta K, Berndt R, Kott M, Schildhauer C, Parczany K, Steinfath M, Albrecht M. Doxycycline protects human intestinal cells from hypoxia/reoxygenation injury: Implications from an in-vitro hypoxia model. Exp Cell Res 2017; 353:109-114. [PMID: 28300560 DOI: 10.1016/j.yexcr.2017.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/29/2022]
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a grave clinical emergency and associated with high morbidity and mortality rates. Based on the complex underlying mechanisms, a multimodal pharmacological approach seems necessary to prevent intestinal I/R injury. The antibiotic drug doxycycline, which exhibits a wide range of pleiotropic therapeutic properties, might be a promising candidate for also reducing I/R injury in the intestine. To investigate possible protective effects of doxycycline on intestinal I/R injury, human intestinal CaCo-2 cells were exposed to doxycycline at clinically relevant concentrations. In order to mimic I/R injury, CaCo-2 were thereafter subjected to hypoxia/reoxygenation by using our recently described two-enzyme in-vitro hypoxia model. Investigations of cell morphology, cell damage, apoptosis and hydrogen peroxide formation were performed 24h after the hypoxic insult. Hypoxia/reoxygenation injury resulted in morphological signs of cell damage, elevated LDH concentrations in the respective culture media (P<0.001) and increased protein expression of proapoptotic caspase-3 (P<0.05) in the intestinal cultures. These events were associated with increased levels hydrogen peroxide (P<0.001). Preincubation of CaCo-2 cells with different concentrations of doxycycline (5µM, 10µM, 50µM) reduced the hypoxia induced signs of cell damage and LDH release (P<0.001 for all concentrations). The reduction of cellular damage was associated with a reduced expression of caspase-3 (5µM, P<0.01; 10µM, P<0.01; 50µM, P<0.05), while hydrogen peroxide levels remained unchanged. In summary, doxycycline protects human intestinal cells from hypoxia/reoxygenation injury in-vitro. Further animal and clinical studies are required to prove the protective potential of doxycycline on intestinal I/R injury under in-vivo conditions.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Karina Zitta
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Rouven Berndt
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Matthias Kott
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Christin Schildhauer
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Kerstin Parczany
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Markus Steinfath
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Martin Albrecht
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany.
| |
Collapse
|
18
|
Zitta K, Peeters-Scholte C, Sommer L, Parczany K, Steinfath M, Albrecht M. Insights into the neuroprotective mechanisms of 2-iminobiotin employing an in-vitro model of hypoxic-ischemic cell injury. Eur J Pharmacol 2016; 792:63-69. [PMID: 27780726 DOI: 10.1016/j.ejphar.2016.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
Several animal models have been used to simulate cerebral hypoxia-ischemia and suggested neuroprotective effects of the biotin analogue 2-iminobiotin (2-IB). The aims of this study were to employ a human in-vitro hypoxia model to confirm protective effects of 2-IB on neuronal cells, determine the optimal neuroprotective concentrations of 2-IB and scrutinize underlying cellular effects of 2-IB. Neuronal IMR-32 cells were exposed to hypoxia employing an enzymatic hypoxia system and were thereafter incubated with various concentrations of 2-IB (10 to 300ng/ml). Cell damage, metabolic activity and generation of reactive oxygen species were quantified using colorimetric/fluorometric lactate dehydrogenase (LDH), tetrazolium-based (MTS) and reactive oxygen species assays. Proteome profiling arrays were performed to evaluate the regulation of cell stress protein expression by hypoxia and 2-IB. Seven hours of hypoxia led to morphological changes in IMR-32 cultures, increased neuronal cell damage (P<0.001), reduction of metabolic activity (P<0.01) and enhanced reactive oxygen species production (P<0.05). Post-hypoxic application of 2-IB (30ng/ml) attenuated hypoxia-induced LDH release (P<0.05) and increased metabolic activity of IMR-32 cells (P<0.05), while reactive oxygen species production was only by trend decreased. Array-based protein expression profiling revealed that 2-IB attenuated the expression of several hypoxia-induced cell stress-associated proteins by more than 25% (pp38α, HIF2α, ADAMTS1, pHSP27, PON2, PON3 and p27). Hypoxia-induced neuronal cell damage can be simulated using the described in-vitro model. 2-IB inhibits hypoxia-mediated neurotoxicity most efficiently at 30ng/ml and the underlying mechanisms involve a downregulation of stress-associated protein expression. Our results suggest 2-IB as a potential drug for the treatment of perinatal hypoxia-ischemia.
Collapse
Affiliation(s)
- Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Lena Sommer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Kerstin Parczany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
19
|
Iwasaki M, Edmondson M, Sakamoto A, Ma D. Anesthesia, surgical stress, and "long-term" outcomes. ACTA ACUST UNITED AC 2015; 53:99-104. [PMID: 26235899 DOI: 10.1016/j.aat.2015.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/29/2015] [Accepted: 07/03/2015] [Indexed: 12/17/2022]
Abstract
An increasing body of evidence shows that the choice of anesthetic can strongly influence more than simply the quality of anesthesia. Regional and general anesthesia have often been compared to ascertain whether one provides benefits through dampening the stress response or harms by accelerating cancer progression. Regional anesthesia offers considerable advantages, by suppressing cortisol and catecholamine levels and reducing muscle breakdown postoperatively. It also has less immunosuppressive effect and potentially reduces the proinflammatory cytokine response. As such, vital organ functions (e.g., brain and kidney) may be better preserved with regional anesthetics, however, further study is needed. Volatile general anesthetics appear to promote cancer malignancy in comparison to regional and intravenous general anesthetics, and reduce the body's ability to act against cancer cells by suppression of natural killer cell activity. There is not sufficient evidence to support an alteration of current clinical practice, however, further research into this area is warranted due to the potential implications elicited by current studies.
Collapse
Affiliation(s)
- Masae Iwasaki
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK; Department of Anaesthesiology, Nippon Medical School, Tokyo, Japan
| | - Matthew Edmondson
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | | | - Daqing Ma
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| |
Collapse
|
20
|
Do different anesthesia regimes affect hippocampal apoptosis and neurologic deficits in a rodent cardiac arrest model? BMC Anesthesiol 2015; 15:2. [PMID: 25972075 PMCID: PMC4429377 DOI: 10.1186/1471-2253-15-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/06/2015] [Indexed: 12/16/2022] Open
Abstract
Background Different anesthesia regimes are commonly used in experimental models of cardiac arrest, but the effects of various anesthetics on clinical outcome parameters are unknown. We conducted a study in which we subjected rats to cardiac arrest under medetomidine/ketamine or sevoflurane/fentanyl anesthesia. Methods Asystolic cardiac arrest for 8 minutes was induced in 73 rats with a mixture of potassium chloride and esmolol. Daily behavioral and neurological examination included the open field test (OFT), the tape removal test (TRT) and a neurodeficit score (NDS). Animals were randomized for sacrifice on day 2 or day 5 and brains were harvested for histology in the hippocampus cornus ammonis segment CA1. The inflammatory markers IL-6, TNF-α, MCP-1 and MIP-1α were assessed in cerebrospinal fluid (CSF). Proportions of survival were tested with the Fisher’s exact test, repeated measurements were assessed with the Friedman’s test; the baseline values were tested using Mann–Whitney U test and the difference of results of repeated measures were compared. Results In 31 animals that survived beyond 24 hours neither OFT, TRT nor NDS differed between the groups; histology was similar on day 2. On day 5, significantly more apoptosis in the CA1 segment of the hippocampus was found in the sevoflurane/fentanyl group. MCP-1 was higher on day 5 in the sevoflurane/fentanyl group (p = 0.04). All other cyto- and chemokines were below detection threshold. Conclusion In our cardiac arrest model neurological function was not influenced by different anesthetic regimes; in contrast, anesthesia with sevoflurane/fentanyl results in increased CSF inflammation and histologic damage at day 5 post cardiac arrest.
Collapse
|
21
|
Lavi S, Bainbridge D, D'Alfonso S, Diamantouros P, Syed J, Jablonsky G, Lavi R. Sevoflurane in acute myocardial infarction: a pilot randomized study. Am Heart J 2014; 168:776-83. [PMID: 25440807 DOI: 10.1016/j.ahj.2014.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Experimental evidence suggests that the inhalational anesthetic sevoflurane has a cardioprotective effect. Our objective was to determine if sedation with sevoflurane will reduce infarct size in patients with acute myocardial infarction (MI) who are treated with primary percutaneous coronary intervention (PCI). METHODS We randomized 50 patients presenting with a first acute ST-elevation MI treated by primary PCI within 6 hours from symptom onset to sedation with sevoflurane inhalation or standard sedation (control). Coronary flow at the end of PCI was assessed by corrected Thrombolysis In Myocardial Infarction frame count. Myocardial reperfusion was assessed by ST-segment resolution 60 minutes post-PCI. Infarct size was assessed by release of creatinine kinase (CK) and troponin T. RESULTS There was no difference in the primary end point: troponin T or CK release adjusted to the area at risk, between groups. However, among patients with anterior MI, there was a trend toward lower CK (P = .05) and nonsignificant decrease in troponin (P = .11) levels in the sevoflurane group. Corrected Thrombolysis In Myocardial Infarction frame count was 12.3 ± 1.5 in the sevoflurane group and 15.6 ± 9.1 in the control group (P = .16). There was more ST resolution in patients treated by sevoflurane 80.7% ± 25.8% versus 56.6% ± 35.7% (P = .01). Sevoflurane had no significant adverse effect during administration. CONCLUSIONS Sevoflurane administration during primary PCI did not reduce infarct size. There was a trend toward a reduction in infarct size among patients with anterior MI. Sevoflurane administration was associated with improvement in ST-segment resolution.
Collapse
|
22
|
Plasma kynurenic acid concentration in patients undergoing cardiac surgery: effect of anaesthesia. Arch Immunol Ther Exp (Warsz) 2014; 63:129-37. [PMID: 25205210 PMCID: PMC4359282 DOI: 10.1007/s00005-014-0312-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/20/2014] [Indexed: 11/13/2022]
Abstract
Increases in plasma kynurenic acid (KYNA) concentration relate to the severity of inflammation. The aim of this study was to analyse changes in plasma KYNA concentration and neutrophil/lymphocyte ratio (NLR) in cardiac surgery patients. Additionally, the effect of anaesthesia was analysed. Adult cardiac surgery patients under intravenous general anaesthesia were studied. Additionally, some patients received sevoflurane (SEV) prior to cardiopulmonary bypass. Plasma KYNA concentration and NLR were measured before anaesthesia, just after surgery and on postoperative days 1, 2 and 3. Patients were assigned to two groups: patients who did not receive SEV (NonSEV group) and patients who received SEV (SEV group). Forty-three patients were studied. Twenty-four of them received SEV. KYNA increased immediately after surgery and remained elevated through postoperative day 3 in the NonSEV group, whereas it was similar to the preoperative concentration in the SEV group. NLR increased immediately after surgery in both groups, and higher values were noted in the NonSEV group than in the SEV group at postoperative days 2 and 3. Plasma KYNA concentration correlated with NLR in the NonSEV group. Cardiac surgery caused an increase in NLR. Plasma KYNA increased in the NonSEV group and correlated with NLR. Administration of SEV inhibited the increase in KYNA, most likely due to its anti-inflammatory properties.
Collapse
|
23
|
Li B, Sun J, Lv G, Yu Y, Wang G, Xie K, Jiao Y, Yu Y. Sevoflurane postconditioning attenuates cerebral ischemia‐reperfusion injury via protein kinase B/nuclear factor‐erythroid 2‐related factor 2 pathway activation. Int J Dev Neurosci 2014; 38:79-86. [PMID: 25149226 DOI: 10.1016/j.ijdevneu.2014.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022] Open
Affiliation(s)
- Bo Li
- Department of AnesthesiologyThe Second Hospital of TianJin Medical UniversityTianjin300211PR China
| | - Jian Sun
- Department of AnesthesiologyThe Second Hospital of TianJin Medical UniversityTianjin300211PR China
| | - Guoyi Lv
- Department of AnesthesiologyThe Second Hospital of TianJin Medical UniversityTianjin300211PR China
| | - Yonghao Yu
- Department of AnesthesiologyGeneral Hospital of TianJin Medical UniversityTianjin300052PR China
| | - Guolin Wang
- Department of AnesthesiologyGeneral Hospital of TianJin Medical UniversityTianjin300052PR China
| | - Keliang Xie
- Department of AnesthesiologyGeneral Hospital of TianJin Medical UniversityTianjin300052PR China
| | - Yang Jiao
- Department of AnesthesiologyGeneral Hospital of TianJin Medical UniversityTianjin300052PR China
| | - Yang Yu
- Department of AnesthesiologyGeneral Hospital of TianJin Medical UniversityTianjin300052PR China
| |
Collapse
|
24
|
Shi H, Sun BL, Zhang J, Lu S, Zhang P, Wang H, Yu Q, Stetler RA, Vosler PS, Chen J, Gao Y. miR-15b suppression of Bcl-2 contributes to cerebral ischemic injury and is reversed by sevoflurane preconditioning. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:381-91. [PMID: 23469855 DOI: 10.2174/1871527311312030011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/04/2012] [Accepted: 11/16/2012] [Indexed: 12/20/2022]
Abstract
Ischemic neuroprotection afforded by sevoflurane preconditioning has been previously demonstrated, yet the underlying mechanism is poorly understood and likely affects a wide range of cellular activities. Several individual microRNAs have been implicated in both the pathogenesis of cerebral ischemia and cellular survival, and are capable of affecting a range of target mRNA. Conceivably, sevoflurane preconditioning may lead to alterations in ischemia-induced microRNA expression that may subsequently exert neuroprotective effects. We first examined the microRNA expression profile following transient cerebral ischemia in rats and the impact of sevoflurane preconditioning. Microarray analysis revealed that 3 microRNAs were up-regulated (>2.0 fold) and 9 were down-regulated (< 0.5 fold) following middle cerebral artery occlusion (MCAO) compared to sham controls. In particular, miR-15b was expressed at significantly high levels after MCAO. Preconditioning with sevoflurane significantly attenuated the upregulation of miR-15b at 72h after reperfusion. Bcl-2, an anti-apoptotic gene involved in the pathogenesis of cerebral ischemia, has been identified as a direct target of miR-15b. Consistent with the observed downregulation of miR-15b in sevoflurane-preconditioned brain, postischemic Bcl-2 expression was significantly increased by sevoflurane preconditioning. We identified the 3'-UTR of Bcl-2 as the target for miR-15b. Molecular inhibition of miR-15b was capable of mimicking the neuroprotective effect of sevoflurane preconditioning, suggesting that the suppression of miR-15b due to sevoflurane contributes to its ischemic neuroprotection. Thus, sevoflurane preconditioning may exert its anti-apoptotic effects by reducing the elevated expression of miR-15b following ischemic injury, allowing its target proteins, including Bcl-2, to be translated and expressed at the protein level.
Collapse
Affiliation(s)
- Hong Shi
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhao H, Iwasaki M, Yang J, Savage S, Ma D. Hypoxia-inducible factor-1: A possible link between inhalational anesthetics and tumor progression? ACTA ACUST UNITED AC 2014; 52:70-6. [DOI: 10.1016/j.aat.2014.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/07/2014] [Indexed: 01/10/2023]
|
26
|
Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, Cai M, Shi L, Dong H, Xiong L. Neuroprotective gases – Fantasy or reality for clinical use? Prog Neurobiol 2014; 115:210-45. [DOI: 10.1016/j.pneurobio.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/17/2022]
|
27
|
Khanna AK, Perez ER, Laudanski K, Moraska A, III KCC. Perioperative care and cancer recurrence: Is there a connection? World J Anesthesiol 2014; 3:31-45. [DOI: 10.5313/wja.v3.i1.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/13/2013] [Accepted: 02/18/2014] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second most common cause of death in the United States. Metastatic disease is a more important cause of cancer-related death relative to primary tumor progression. Surgical excision is the primary treatment for most malignant tumors. However, surgery itself can inhibit important host defenses and promote the development of metastases. An altered balance between the metastatic potential of the tumor and the anti-metastatic host defenses, including cell-mediated immunity and natural killer cell function, is a plausible mechanism of increased cancer metastasis. This article reviews the increasingly recognized concept of anesthetic technique along with perioperative factors and their potential to affect long-term outcome after cancer surgery. The potential effect of intravenous anesthetics, volatile agents, local anesthetic drugs, opiates, and non-steroidal anti-inflammatory drugs are reviewed along with recent literature and ongoing clinical trials in this area. Regional anesthesia is increasingly emerging as a safer option with less cancer recurrence potential as compared to general anesthesia. Blood transfusion, pain, stress, use of beta-blockers, and hypothermia are other potentially important perioperative factors to consider.
Collapse
|
28
|
Sun X, Fang B, Zhao X, Zhang G, Ma H. Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential. PLoS One 2014; 9:e90667. [PMID: 24599264 PMCID: PMC3944720 DOI: 10.1371/journal.pone.0090667] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 02/05/2014] [Indexed: 01/09/2023] Open
Abstract
Background Bone marrow mesenchymal stem cells (MSCs) have been found to produce beneficial effects on ischemia-reperfusion injury. However, most of the MSCs died when transplanted into the ischemic tissue, which severely limit their therapeutic potential. Methods Using an in vitro model of hypoxia and serum deprivation (H/SD), we investigated the hypothesis that sevoflurane preconditioning could protect MSCs against H/SD-induced apoptosis and improve their migration, proliferation, and therapeutic potential. The H/SD of MSCs and neuron-like PC12 cells were incubated in a serum-free medium and an oxygen concentration below 0.1% for 24 h. Sevoflurane preconditioning was performed through a 2-h incubation of MSCs in an airtight chamber filled with 2 vol% sevoflurane. Apoptosis of MSCs or neuron-like PC12 cells was assessed using Annexin V-FITC/propidium iodide (PI). Furthermore, the mitochondrial membrane potential was assessed using lipophilic cationic probe. The proliferation rate was evaluated through cell cycle analysis. Finally, HIF-1α, HIF-2α, VEGF and p-Akt/Akt levels were measured by western blot. Results Sevoflurane preconditioning minimized the MSCs apoptosis and loss of mitochondrial membrane potential. Furthermore, it increased the migration and expression of HIF-1α, HIF-2α, VEGF, and p-Akt/Akt, reduced by H/SD. In addition, neuron-like PC12 cells were more resistant to H/SD-induced apoptosis when they were co-cultured with sevoflurane preconditioning MSCs. Conclusion These findings suggest that sevoflurane preconditioning produces protective effects on survival and migration of MSCs against H/SD, as well as improving the therapeutic potential of MSCs. These beneficial effects might be mediated at least in part by upregulating HIF-1α, HIF-2α, VEGF, and p-Akt/Akt.
Collapse
Affiliation(s)
- Xuejun Sun
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Bo Fang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xi Zhao
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Guangwei Zhang
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
29
|
Hummitzsch L, Zitta K, Bein B, Steinfath M, Albrecht M. Culture media from hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury. Exp Cell Res 2014; 322:62-70. [PMID: 24394542 DOI: 10.1016/j.yexcr.2013.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/17/2013] [Accepted: 12/26/2013] [Indexed: 11/16/2022]
Abstract
Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (P<0.05) in CM. In CaCo-2 cultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (P<0.001) and elevated levels of hydrogen peroxide (P<0.01). Incubation of CaCo-2 cells with CM reduced the hypoxia-induced signs of cell damage and LDH release (P<0.01) and abrogated the hypoxia-induced increase of hydrogen peroxide. These events were associated with an enhanced phosphorylation status of the prosurvival kinase Erk1/2 (P<0.05) but not Akt and STAT-5. Taken together, CM of hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury. The established culture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Karina Zitta
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Berthold Bein
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Markus Steinfath
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Martin Albrecht
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany.
| |
Collapse
|
30
|
Huang Y, Zitta K, Bein B, Steinfath M, Albrecht M. An insert-based enzymatic cell culture system to rapidly and reversibly induce hypoxia: investigations of hypoxia-induced cell damage, protein expression and phosphorylation in neuronal IMR-32 cells. Dis Model Mech 2013; 6:1507-14. [PMID: 24046359 PMCID: PMC3820273 DOI: 10.1242/dmm.013078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ischemia-reperfusion injury and tissue hypoxia are of high clinical relevance because they are associated with various pathophysiological conditions such as myocardial infarction and stroke. Nevertheless, the underlying mechanisms causing cell damage are still not fully understood, which is at least partially due to the lack of cell culture systems for the induction of rapid and transient hypoxic conditions. The aim of the study was to establish a model that is suitable for the investigation of cellular and molecular effects associated with transient and long-term hypoxia and to gain insights into hypoxia-mediated mechanisms employing a neuronal culture system. A semipermeable membrane insert system in combination with the hypoxia-inducing enzymes glucose oxidase and catalase was employed to rapidly and reversibly generate hypoxic conditions in the culture medium. Hydrogen peroxide assays, glucose measurements and western blotting were performed to validate the system and to evaluate the effects of the generated hypoxia on neuronal IMR-32 cells. Using the insert-based two-enzyme model, hypoxic conditions were rapidly induced in the culture medium. Glucose concentrations gradually decreased, whereas levels of hydrogen peroxide were not altered. Moreover, a rapid and reversible (onoff) generation of hypoxia could be performed by the addition and subsequent removal of the enzyme-containing inserts. Employing neuronal IMR-32 cells, we showed that 3 hours of hypoxia led to morphological signs of cellular damage and significantly increased levels of lactate dehydrogenase (a biochemical marker of cell damage). Hypoxic conditions also increased the amounts of cellular procaspase-3 and catalase as well as phosphorylation of the pro-survival kinase Akt, but not Erk1/2 or STAT5. In summary, we present a novel framework for investigating hypoxia-mediated mechanisms at the cellular level. We claim that the model, the first of its kind, enables researchers to rapidly and reversibly induce hypoxic conditions in vitro without unwanted interference of the hypoxia-inducing agent on the cultured cells. The system could help to further unravel hypoxia-associated mechanisms that are clinically relevant in various tissues and organs.
Collapse
Affiliation(s)
- Ying Huang
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein Schwanenweg 21, 24105 Kiel, Germany
| | | | | | | | | |
Collapse
|
31
|
Rodríguez-González R, Baluja A, Veiras Del Río S, Rodríguez A, Rodríguez J, Taboada M, Brea D, Álvarez J. Effects of sevoflurane postconditioning on cell death, inflammation and TLR expression in human endothelial cells exposed to LPS. J Transl Med 2013; 11:87. [PMID: 23552565 PMCID: PMC3636049 DOI: 10.1186/1479-5876-11-87] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/13/2013] [Indexed: 01/16/2023] Open
Abstract
Background Sevoflurane is an anesthetic agent which also participates in protective mechanisms in sepsis, likely due to anti-inflammatory properties. A key tissue in sepsis is the endothelium, which expresses TLR2 and TLR4 receptors, known regulators of inflammatory mechanisms and potential therapeutic targets for this pathology. In this context, we explored the effect of sevoflurane postconditioning in an in vitro sepsis model. Methods Primary cultures of human umbilical vein endothelial cells were used for two different experiments. In the first set, cultures were placed in an airtight incubation chamber and exposed to different concentrations of sevoflurane (0,1,3 or 7% vol,) for 1 hour. In the second set, lipopolysaccharide from Escherichia coli 0111:B4 (1 μg/mL) was added to culture medium for 3 hours and cells were subsequently exposed to sevoflurane (0,1,3 or 7% vol,) for 1 hour as explained before. In both cases, cell viability was measured by MTT and Trypan blue assays, TLR2 and TLR4 expression were analyzed by flow cytometry, and TNFα and IL-6 levels were quantified in cell culture media by an immunoassay immediately after exposure, at 6 and 24 hours. Results Exposure to 3% sevoflurane decreased TLR2 at 24 hours and TLR4 at 6 and 24 hours (both p<0.05), whereas exposure to 7% decreased TLR4 expression at 6 hours (p<0.05). Both 3 and 7% sevoflurane decreased TNF-α and IL-6 levels at 24 hours (both p<0.05). In LPS-stimulated cultures, exposure to 3% sevoflurane was cytoprotective at 6 and 24 hours (p<0.05) compared with control, and decreased TLR2 and TLR4 expression at 24 hours (p<0.05); whereas 7% decreased TLR4 expression at 24 hours (p<0.05). Both 3% and 7% sevoflurane decreased TNF-α and IL-6 levels at 24 hours (both p<0.05). Conclusions Postconditioning with the halogenated anesthetic agent sevoflurane after LPS stimulation shows a cytoprotective effect in an in vitro model, decreasing cell death and reducing TLR2 and TLR4 expression as well as levels of the inflammatory mediators TNF-α and IL-6 in human endothelial cells.
Collapse
Affiliation(s)
- Raquel Rodríguez-González
- Critical Patient Translational Research Group, Department of Anesthesiology, Intensive Care and Pain Management, Hospital Clínico Universitario, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang J, Zheng H, Chen CL, Lu W, Zhang YQ. Sevoflurane at 1 MAC provides optimal myocardial protection during off-pump CABG. SCAND CARDIOVASC J 2013; 47:175-84. [DOI: 10.3109/14017431.2012.760749] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Zitta K, Bein B, Albrecht M. Re: "Gene expression analysis to identify molecular correlates of pre- and post-conditioning derived neuroprotection". Letter to the editor. J Mol Neurosci 2012; 50:248-9. [PMID: 23266914 DOI: 10.1007/s12031-012-9936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
|
34
|
Szijártó A, Czigány Z, Turóczi Z, Harsányi L. Remote ischemic perconditioning--a simple, low-risk method to decrease ischemic reperfusion injury: models, protocols and mechanistic background. A review. J Surg Res 2012; 178:797-806. [PMID: 22868050 DOI: 10.1016/j.jss.2012.06.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 06/18/2012] [Accepted: 06/26/2012] [Indexed: 12/18/2022]
Abstract
Interruption of blood flow can cause ischemic reperfusion injury, which sometimes has a fatal outcome. Recognition of the phenomenon known as reperfusion injury has led to initial interventional approaches to lessen the degree of damage. A number of efficient pharmacologic agents and surgical techniques (e.g., local ischemic preconditioning and postconditioning) are available. A novel, alternative approach to target organ protection is remote ischemic conditioning triggered by brief repetitive ischemia and reperfusion periods in distant organs. Among the different surgical techniques is so-called remote ischemic perconditioning, a method that applies short periods of ischemic reperfusion to a distant organ delivered during target organ ischemia. Although ischemic reperfusion injury is reduced by this technique, the explanation for this phenomenon is still unclear, and approximately only a dozen reports on the topic have appeared in the literature. In our study, therefore, we investigated the connective mechanisms, signal transduction, and effector mechanisms behind remote perconditioning, with a review on molecular background and favorable effects. In addition, we summarize the various treatment protocols and models to promote future experimental and clinical research.
Collapse
Affiliation(s)
- Attila Szijártó
- First Department of Surgery, Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|
35
|
Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration. Exp Cell Res 2012; 318:828-34. [DOI: 10.1016/j.yexcr.2012.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 02/06/2023]
|
36
|
Zitta K, Meybohm P, Bein B, Heinrich C, Renner J, Cremer J, Steinfath M, Scholz J, Albrecht M. Serum from patients undergoing remote ischemic preconditioning protects cultured human intestinal cells from hypoxia-induced damage: involvement of matrixmetalloproteinase-2 and -9. Mol Med 2012; 18:29-37. [PMID: 22009279 DOI: 10.2119/molmed.2011.00278] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/13/2011] [Indexed: 11/06/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) can be induced by transient occlusion of blood flow to a limb with a blood pressure cuff and exerts multiorgan protection from ischemia/reperfusion injury. Ischemia/reperfusion injury in the intestinal tract leads to intestinal barrier dysfunction and can result in multiple organ failure. Here we used an intestinal cell line (CaCo-2) to evaluate the effects of RIPC-conditioned patient sera on hypoxia-induced cell damage in vitro and to identify serum factors that mediate RIPC effects. Patient sera (n = 10) derived before RIPC (T0), directly after RIPC (T1) and 1 h after RIPC (T2) were added to the culture medium at the onset of hypoxia until 48 h after hypoxia. Reverse transcription-polymerase chain reaction, lactate dehydrogenase (LDH) assays, caspase-3/7 assays, silver staining, gelatin zymography and Western blotting were performed. Hypoxia led to morphological signs of cell damage and increased the release of LDH in cultures containing sera T0 (P < 0.01) and T1 (P < 0.05), but not sera T2, which reduced the hypoxia-mediated LDH release compared with sera T0 (P < 0.05). Gelatin zymography revealed a significant reduction of activities of the matrixmetalloproteinase (MMP)-2 and MMP-9 in the protective sera T2 compared with the nonprotective sera T0 (MMP-2: P < 0.01; MMP-9: P < 0.05). Addition of human recombinant MMP-2 and MMP-9 to MMP-deficient culture media increased the sensitivity of CaCo-2 cells to hypoxia-induced cell damage (P < 0.05), but did not result in a reduced phosphorylation of prosurvival kinases p42/44 and protein kinase B (Akt) or increased activity of caspase-3/7. Our results suggest MMP-2 and MMP-9 as currently unknown humoral factors that may be involved in RIPC-mediated cytoprotection in the intestine.
Collapse
Affiliation(s)
- Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Isoflurane preconditioning protects astrocytes from oxygen and glucose deprivation independent of innate cell sex. J Neurosurg Anesthesiol 2012; 23:335-40. [PMID: 21908987 DOI: 10.1097/ana.0b013e3182161816] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Isoflurane exposure can protect the mammalian brain from subsequent insults such as ischemic stroke. However, this protective preconditioning effect is sexually dimorphic, with isoflurane preconditioning decreasing male while exacerbating female brain damage in a mouse model of cerebral ischemia. Emerging evidence suggests that innate cell sex is an important factor in cell death, with brain cells having sex-specific sensitivities to different insults. We used an in vitro model of isoflurane preconditioning and ischemia to test the hypothesis that isoflurane preconditioning protects male astrocytes while having no effect or even a deleterious effect in female astrocytes after subsequent oxygen and glucose deprivation (OGD). METHODS Sex-segregated astrocyte cultures derived from postnatal day 0 to 1 mice were allowed to reach confluency before being exposed to either 0% (sham preconditioning) or 3% isoflurane preconditioning for 2 hours. Cultures were then returned to normal growth conditions for 22 hours before undergoing 10 hours of OGD. Twenty-four hours after OGD, cell viability was quantified using a lactate dehydrogenase assay. RESULTS Isoflurane preconditioning increased cell survival after OGD compared with sham preconditioning independent of innate cell sex. CONCLUSION More studies are needed to determine how cell type and cell sex may impact on anesthetic preconditioning and subsequent ischemic outcomes in the brain.
Collapse
|
38
|
The effect of sevoflurane postconditioning on cardioprotection against ischemia-reperfusion injury in rabbits. Mol Biol Rep 2012; 39:6049-57. [DOI: 10.1007/s11033-011-1419-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
|
39
|
Isoflurane Preconditioning Protects Astrocytes From Oxygen and Glucose Deprivation Independent of Innate Cell Sex. J Neurosurg Anesthesiol 2011. [DOI: 10.1097/ana.0b013e318227725f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Askoxylakis V, Millonig G, Wirkner U, Schwager C, Rana S, Altmann A, Haberkorn U, Debus J, Mueller S, Huber PE. Investigation of tumor hypoxia using a two-enzyme system for in vitro generation of oxygen deficiency. Radiat Oncol 2011; 6:35. [PMID: 21477371 PMCID: PMC3080288 DOI: 10.1186/1748-717x-6-35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/10/2011] [Indexed: 11/10/2022] Open
Abstract
Background Oxygen deficiency in tumor tissue is associated with a malign phenotype, characterized by high invasiveness, increased metastatic potential and poor prognosis. Hypoxia chambers are the established standard model for in vitro studies on tumor hypoxia. An enzymatic hypoxia system (GOX/CAT) based on the use of glucose oxidase (GOX) and catalase (CAT) that allows induction of stable hypoxia for in vitro approaches more rapidly and with less operating expense has been introduced recently. Aim of this work is to compare the enzymatic system with the established technique of hypoxia chamber in respect of gene expression, glucose metabolism and radioresistance, prior to its application for in vitro investigation of oxygen deficiency. Methods Human head and neck squamous cell carcinoma HNO97 cells were incubated under normoxic and hypoxic conditions using both hypoxia chamber and the enzymatic model. Gene expression was investigated using Agilent microarray chips and real time PCR analysis. 14C-fluoro-deoxy-glucose uptake experiments were performed in order to evaluate cellular metabolism. Cell proliferation after photon irradiation was investigated for evaluation of radioresistance under normoxia and hypoxia using both a hypoxia chamber and the enzymatic system. Results The microarray analysis revealed a similar trend in the expression of known HIF-1 target genes between the two hypoxia systems for HNO97 cells. Quantitative RT-PCR demonstrated different kinetic patterns in the expression of carbonic anhydrase IX and lysyl oxidase, which might be due to the faster induction of hypoxia by the enzymatic system. 14C-fluoro-deoxy-glucose uptake assays showed a higher glucose metabolism under hypoxic conditions, especially for the enzymatic system. Proliferation experiments after photon irradiation revealed increased survival rates for the enzymatic model compared to hypoxia chamber and normoxia, indicating enhanced resistance to irradiation. While the GOX/CAT system allows independent investigation of hypoxia and oxidative stress, care must be taken to prevent acidification during longer incubation. Conclusion The results of our study indicate that the enzymatic model can find application for in vitro investigation of tumor hypoxia, despite limitations that need to be considered in the experimental design.
Collapse
Affiliation(s)
- Vasileios Askoxylakis
- Department of Radiooncology and Radiation Therapy, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|