BPG is committed to discovery and dissemination of knowledge
Systematic Reviews
Copyright ©The Author(s) 2026.
World J Orthop. Jan 18, 2026; 17(1): 114482
Published online Jan 18, 2026. doi: 10.5312/wjo.v17.i1.114482
Table 1 The general characteristics of the included studies
Ref.
Country
Study design
Follow-up (years)
Participations
AL (n)
AL rates, %
Age (years)
NOS
Davis et al[61], 2020 United KingdomCohort study≥ 7.529077012600.4373.177
Amstutz et al[49], 2015United StatesCase-control study8.581375271.9646.57
Benson et al[35], 2022 DenmarkCohort study4.4 (1.1-5.9)536054790.89NA7
Bordini et al[15], 2007 ItalyCohort study≥ 647501342.82NA6
Jud et al[42], 2024SwitzerlandCohort studyNA2459140.5663.8 ± 12.7 (18-92)7
Wagener et al[62], 2024 GermanyCohort study2-10255255NA737
Budin et al[34], 2024 United StatesCohort study2328117212.1969.1 ± 8.38
Magruder et al[32], 2024United StatesCohort study≤ 2110251601.45NA6
Aro et al[13], 2012FinlandCohort study239NANA61.5 (41-78)6
Electricwala et al[23], 2016United StatesCohort study8.7 ± 8.1257NANA67 ± 137
Münger et al[14], 2006 SwedenCase-control study5.3 ± 3.1505347251.4363 ± 9.58
Layson et al[29], 2024United StatesCohort study255601NA1.9168-727
Clauss et al[58], 2013 SwitzerlandCohort study≥ 16156139NANA7
Khatod et al[43], 2014United StatesCohort study2.2 (1.2-5.1)368346351.7265.5 ± 11.78
Stelmach et al[45], 2015 GermanyCohort studyNA465234NA52.80 ± 12.87
Wedemeyer et al[44], 2009 GermanyCohort study7.17-8.418787NA69.31 ± 10.277
Lee et al[56], 2024 ChinaCohort study≥ 1199540.261.9 ± 13.87
Lunn et al[33], 2005 IrelandCase-control study5.7 (2-11)217101NA67.6 ± 9.66
Halawi et al[26], 2016 United StatesCohort study7.6 ± 2.56426286.5746.9 ± 7.17
Boyer et al[19], 2019FranceCohort study5.530733NANANA6
Table 2 The statistics information of the included studies
Ref.
Statistics
Factors
Davis et al[61], 2020KM survival analysis and Cox regression analysesAge, sex, head composition, and stem fixation method
Amstutz et al[49], 2015 Multivariate analysis and Cox proportional hazard ratioAge, gender, BMI, abduction arc, UCLA activity score, center-edge angle, cup abduction, component size, and diagnosis
Benson et al[35], 2022KM survival analysis and Cox proportional hazards regression modelAge, sex, CCI, fixation type, duration and start of thromboprophylaxis, use of vitamin K antagonists, NOAC, aspirin, and platelet inhibitors
Bordini et al[15], 2007Multivariate survival analysis and Cox proportional -hazards modelAge, gender, diagnosis, Charnley score, right or left side, surgeon’s skill, and type of components
Jud et al[42], 2024Multivariate logistic regression analysisAge, non-steroidal antirheumatics, and nicotine
Wagener et al[62], 2024KM method and Cox proportional hazards modelAge, sex, BMI, ASA, diagnosis, comorbidities, surgerical approach, duration of surgery, hip type, Dorr type, revision time and type
Budin et al[34], 2024 Multivariable logistic regressionAge, sex, tobacco use, and LOS
Magruder et al[32], 2024Logistical regressionAge, sex, and CCI
Aro et al[13], 2012KM and logistic-regression modelAge, BMI, local BMD, T-score of the operated hip, and canal flare index
Electricwala et al[23], 2016 Bonferroni correction for multiple comparisonsBMI
Münger et al[14], 2006Multivariate conditional logistic regressionsAge, sex, indication for surgery, height, weight, BMI, and mobility level
Layson et al[29], 2024Multivariate logistic regressionsAge, sex, alcohol abuse, CCI, diabetes, obesity, CKD, history of cancer and tumors, CHF, CVD, RA, liver disease, and tobacco use
Clauss et al[58], 2013Multivariable Cox regression analysis with stepwise variable selectionAge, sex, primary diagnosis, type of implant, implant material, stem offset, stem size, type of cup, and head diameter
Khatod et al[43], 2014Multivariate Cox modelsAge, gender, race, BMI, diabetes, ASA, implants, techniques, surgeons, and hospital factors
Stelmach et al[45], 2015 Cox regression modelsAge, BMI, gender, BCL2-938 polymorphisms
Wedemeyer et al[44], 2009Cox regression modelsAge, gender, weight, height, BMI, BCL2-938C>A and CALCA-1786T>C polymorphisms, defects of acetabular and femoral
Lee et al[56], 2024 Multivariate logistic regression modelAge, stem type, sex, BMI, diagnosis, CCI, stem alignment, and canal fill ratio
Lunn et al[33], 2005 Logistic regression analysisAge, HFE gene mutations C282Y and H63D genotype
Halawi et al[26], 2016Multivariate logistic regressionAge, sex, BMI, CCI, diagnosis, approach, prior surgery, head size, articulation
Boyer et al[19], 2019 Cox multivariate regression modelBMI, gender, age, diabetes, weight, height
Table 3 Quality assessment of included cohort studies
Ref.Selection
Comparability
Outcome
Total
Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7
Item 8
Davis et al[61], 2020 1N/A10N/A1115
Benson et al[35], 2022 110111117
Bordini et al[15], 2007 10N/A111116
Jud et al[42], 20241111N/A1117
Wagener et al[62], 2024 1011N/A1116
Budin et al[34], 2024111111118
Magruder et al[32], 2024 1111N/A1117
Aro et al[13], 2012111111006
Electricwala et al[23], 2016 100111116
Layson et al[29], 202411N/A111117
Clauss et al[58], 2013 1111N/A1117
Khatod et al[43], 2014 111111118
Stelmach et al[45], 2015 1111N/A1117
Wedemeyer et al[44], 2009 1011N/A1116
Lee et al[56], 2024111111118
Halawi et al[26], 2016 1N/A0111116
Boyer et al[19], 2019111011117
Table 4 Quality assessment of included case-control studies
Ref.
Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7
Item 8
Item 9
Item 10
Item 11
Amstutz et al[49], 2015 YesNoNoYesUnclearYesNoYesUnclearUnclearYes
Münger et al[14], 2006YesYesYesYesUnclearYesNoYesUnclearYesYes
Lunn et al[33], 2005 YesYesNoYesUnclearYesUnclearYesUnclearYesYes
Table 5 Summary of meta-analysed factors for the aseptic loosening after primary total hip arthroplasty
Factors
Pooled OR
LL 95%CI
UL 95%CI
P value
I2
Effects model
Age0.9980.9111.0930.96486.033R
Gender (male)1.2321.0391.4600.01687.230R
BMI1.1161.0591.175< 0.00191.057R
CCI1.3781.1821.606< 0.00188.230R
Lifestyle2.1981.0484.6110.03799.140R
Diagnosis1.1621.0091.3380.03761.546R
Anatomy1.0820.8761.3360.46682.582R
Race0.4450.3020.655< 0.0010.000F
Genetype0.7230.6170.849< 0.0010.000F
Surgical skills1.0481.0211.075< 0.00112.78F
Prosthesis1.4971.2031.864< 0.00189.958R