Peer-review started: June 17, 2016
First decision: July 27, 2016
Revised: September 12, 2016
Accepted: October 17, 2016
Article in press: October 18, 2016
Published online: January 18, 2017
Processing time: 208 Days and 12.6 Hours
Osteochondral lesions of the talus (OLT) occur in up to 70% of acute ankle sprains and fractures. OLT have become increasingly recognized with the advancements in cartilage-sensitive diagnostic imaging modalities. Although OLT may be treated nonoperatively, a number of surgical techniques have been described for patients whom surgery is indicated. Traditionally, treatment of symptomatic OLT have included either reparative procedures, such as bone marrow stimulation (BMS), or replacement procedures, such as autologous osteochondral transplantation (AOT). Reparative procedures are generally indicated for OLT < 150 mm2 in area. Replacement strategies are used for large lesions or after failed primary repair procedures. Although short- and medium-term results have been reported, long-term studies on OLT treatment strategies are lacking. Biological augmentation including platelet-rich plasma and concentrated bone marrow aspirate is becoming increasingly popular for the treatment of OLT to enhance the biological environment during healing. In this review, we describe the most up-to-date clinical evidence of surgical outcomes, as well as both the mechanical and biological concerns associated with BMS and AOT. In addition, we will review the recent evidence for biological adjunct therapies that aim to improve outcomes and longevity of both BMS and AOT procedures.
Core tip: Osteochondral lesions of the talus are often missed after acute ankle sprains and fractures. Magnetic resonance imaging is most sensitive in diagnosing these injuries. Bone marrow stimulation (BMS) is effective for lesions < 150 mm2 in area, but replacement procedures such as autologous osteochondral transplantation or allografts may be required for larger lesions or if BMS fails. Long term studies should attempt to determine the most effective treatment strategy and the critical defect strategy beyond which BMS will not work.