Published online Mar 18, 2016. doi: 10.5312/wjo.v7.i3.149
Peer-review started: July 3, 2015
First decision: October 13, 2015
Revised: December 1, 2015
Accepted: December 29, 2015
Article in press: January 4, 2016
Published online: March 18, 2016
Processing time: 252 Days and 22 Hours
Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future.
Core tip: Herein we review the challenges in articular cartilage repair. Further we explain that induced pluripotent stem cells (iPSCs) represent an exciting theoretically limitless source of autologous cells for articular cartilage repair. We also discuss a novel systematic approach to optimally derive articular chondrocytes from iPSCs.