1
|
Choi J, Son C. Changes in pressure of strap while walking in a robotic gait training system. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40040159 DOI: 10.1109/embc53108.2024.10782338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Exoskeletons have been developed and widely used for medical, industrial, military applications. Since the exoskeletons are designed to provide the users with torques needed for the specific applications, it is important for the torques generated by either the users or the exoskeletons to be transmitted without any loss for their effectiveness. It is typical for the users to be attached to the exoskeletons using straps. However, it is inevitable for the straps to be loosened during a gait cycle due to compliance inherited in the tissues of skin and materials used for the straps, deformation of the muscles when activated, and misalignment of the joints. In this research, the pressures of strap on the user in an exoskeleton robot as well as the relative acceleration between the user and exoskeleton were measured. Experimental results showed higher pressures during the stance phase and larger relative motions in the swing phase. Furthermore, the relative motions were similar to each other regardless of the pressure settings.
Collapse
|
2
|
Bessler-Etten J, Schaake L, Buurke JH, Prange-Lasonder GB. Investigating change of discomfort during repetitive force exertion though an exoskeleton cuff. APPLIED ERGONOMICS 2024; 115:104055. [PMID: 37984083 DOI: 10.1016/j.apergo.2023.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 11/22/2023]
Abstract
This article investigates discomfort development for forces exerted repetitively and for extended durations through a rigid cuff. Three force patterns, chosen to mimic exoskeleton use, were applied to the thigh of 15 healthy participants for 30 min. Changes in perceived comfort and skin effects were recorded. Discomfort was detected at normal forces ranging from 40 to >230 N. Repetitive force application triggered discomfort after a median of 4.1 min (normal force only) and 5.4 min (normal and shear force) respectively. Discomfort increased over time but the repetitive force applications did generally not result in pain and there were no significant differences between repetitive loading patterns. Exoskeleton design and use should be informed by comfort thresholds specific to prolonged repetitive loading. Large interindividual differences in perception of discomfort limit the possibilities for generally applicable comfort thresholds. Further research is needed to investigate how patient groups perceive such repetitive loading.
Collapse
Affiliation(s)
- Jule Bessler-Etten
- Roessingh Research and Development, Enschede, the Netherlands; Department of Biomedical Signals and Systems, University of Twente, Enschede, the Netherlands.
| | | | - Jaap H Buurke
- Roessingh Research and Development, Enschede, the Netherlands; Department of Biomedical Signals and Systems, University of Twente, Enschede, the Netherlands
| | - Gerdienke B Prange-Lasonder
- Roessingh Research and Development, Enschede, the Netherlands; Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| |
Collapse
|
3
|
Andrade RL, Figueiredo J, Fonseca P, Vilas-Boas JP, Silva MT, Santos CP. Human-Robot Joint Misalignment, Physical Interaction, and Gait Kinematic Assessment in Ankle-Foot Orthoses. SENSORS (BASEL, SWITZERLAND) 2023; 24:246. [PMID: 38203110 PMCID: PMC10781370 DOI: 10.3390/s24010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Lower limb exoskeletons and orthoses have been increasingly used to assist the user during gait rehabilitation through torque transmission and motor stability. However, the physical human-robot interface (HRi) has not been properly addressed. Current orthoses lead to spurious forces at the HRi that cause adverse effects and high abandonment rates. This study aims to assess and compare, in a holistic approach, human-robot joint misalignment and gait kinematics in three fixation designs of ankle-foot orthoses (AFOs). These are AFOs with a frontal shin guard (F-AFO), lateral shin guard (L-AFO), and the ankle modulus of the H2 exoskeleton (H2-AFO). An experimental protocol was implemented to assess misalignment, fixation displacement, pressure interactions, user-perceived comfort, and gait kinematics during walking with the three AFOs. The F-AFO showed reduced vertical misalignment (peak of 1.37 ± 0.90 cm, p-value < 0.05), interactions (median pressures of 0.39-3.12 kPa), and higher user-perceived comfort (p-value < 0.05) when compared to H2-AFO (peak misalignment of 2.95 ± 0.64 and pressures ranging from 3.19 to 19.78 kPa). F-AFO also improves the L-AFO in pressure (median pressures ranging from 8.64 to 10.83 kPa) and comfort (p-value < 0.05). All AFOs significantly modified hip joint angle regarding control gait (p-value < 0.01), while the H2-AFO also affected knee joint angle (p-value < 0.01) and gait spatiotemporal parameters (p-value < 0.05). Overall, findings indicate that an AFO with a frontal shin guard and a sports shoe is effective at reducing misalignment and pressure at the HRI, increasing comfort with slight changes in gait kinematics.
Collapse
Affiliation(s)
- Ricardo Luís Andrade
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
| | - Joana Figueiredo
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga/4800-058 Guimarães, Portugal
| | - Pedro Fonseca
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, 4200-450 Porto, Portugal; (P.F.); (J.P.V.-B.)
| | - João P. Vilas-Boas
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, 4200-450 Porto, Portugal; (P.F.); (J.P.V.-B.)
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Miguel T. Silva
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - Cristina P. Santos
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga/4800-058 Guimarães, Portugal
| |
Collapse
|
4
|
Lee S, In H. Evaluating the effectiveness of an active strap for wearable robot: A Mechanical and Physiological Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38083124 DOI: 10.1109/embc40787.2023.10340474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Straps are the most commonly used elements in the wearable robotic field, where it is employed as a physical human robot interface (pHRI) between the wearable robot and wearer's body. The main role of the strap is to transmit power from the robot to the wearer by pressing and attaching onto specific body parts to reduce the relative motion. To maximize the efficiency and performance using the appropriate function, a high stiffness and tension is required in the strap. However, the continuous force applied by the strap on the wearer's body is one of the main factors that reduces the wearing comfort of the wearable robot. In this paper, an active strap applied to a hip orthosis is proposed to restrict the hip joint angle. The active strap was periodically controlled using the hip joint angle of the orthosis and was only tightened when the hip joint angle reached the target hip joint angle. The experimental results were then used to evaluate the performance of the proposed strap from a mechanical and physiological point of view. The results suggest that active strap is capable of effectively performing the tasks of a hip orthosis during periodic movement, demonstrating its potential use in wearable robots. Furthermore, the physiological response observed at the contact area during periodic strap tension can relieve discomfort caused by prolonged tension, thus enhancing the comfort of the wearable robot.
Collapse
|
5
|
Dežman M, Massardi S, Pinto-Fernandez D, Grosu V, Rodriguez-Guerrero C, Babič J, Torricelli D. A mechatronic leg replica to benchmark human-exoskeleton physical interactions. BIOINSPIRATION & BIOMIMETICS 2023; 18. [PMID: 37068491 DOI: 10.1088/1748-3190/accda8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
Evaluating human-exoskeleton interaction typically requires experiments with human subjects, which raises safety issues and entails time-consuming testing procedures. This paper presents a mechatronic replica of a human leg, which was designed to quantify physical interaction dynamics between exoskeletons and human limbs without the need for human testing. In the first part of this work, we present the mechanical, electronic, sensory system and software solutions integrated in our leg replica prototype. In the second part, we used the leg replica to test its interaction with two types of commercially available wearable devices, i.e. an active full leg exoskeleton and a passive knee orthosis. We ran basic test examples to demonstrate the functioning and benchmarking potential of the leg replica to assess the effects of joint misalignments on force transmission. The integrated force sensors embedded in the leg replica detected higher interaction forces in the misaligned scenario in comparison to the aligned one, in both active and passive modalities. The small standard deviation of force measurements across cycles demonstrates the potential of the leg replica as a standard test method for reproducible studies of human-exoskeleton physical interaction.
Collapse
Affiliation(s)
- Miha Dežman
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Stefano Massardi
- Department of Industrial Mechanical Engineering (DIMI), University of Brescia (UNIBS), Brescia, Italy
- Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
| | - David Pinto-Fernandez
- Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
| | - Victor Grosu
- Department of Mechanical Engineering, Robotics & Multibody Mechanics Research Group (R&MM), and Flanders Make, Vrije Universiteit Brussel, Brussel, Belgium
- Research and Development Department, GROVIXON BV, Vilvoorde, Belgium
| | | | - Jan Babič
- Laboratory for Neuromechanics and Biorobotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Diego Torricelli
- Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
6
|
Siviy C, Baker LM, Quinlivan BT, Porciuncula F, Swaminathan K, Awad LN, Walsh CJ. Opportunities and challenges in the development of exoskeletons for locomotor assistance. Nat Biomed Eng 2023; 7:456-472. [PMID: 36550303 PMCID: PMC11536595 DOI: 10.1038/s41551-022-00984-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Exoskeletons can augment the performance of unimpaired users and restore movement in individuals with gait impairments. Knowledge of how users interact with wearable devices and of the physiology of locomotion have informed the design of rigid and soft exoskeletons that can specifically target a single joint or a single activity. In this Review, we highlight the main advances of the past two decades in exoskeleton technology and in the development of lower-extremity exoskeletons for locomotor assistance, discuss research needs for such wearable robots and the clinical requirements for exoskeleton-assisted gait rehabilitation, and outline the main clinical challenges and opportunities for exoskeleton technology.
Collapse
Affiliation(s)
- Christopher Siviy
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Lauren M Baker
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Brendan T Quinlivan
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Franchino Porciuncula
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Physical Therapy, College of Health and Rehabilitation Sciences: Sargent, Boston University, Boston, MA, USA
| | - Krithika Swaminathan
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Louis N Awad
- Department of Physical Therapy, College of Health and Rehabilitation Sciences: Sargent, Boston University, Boston, MA, USA
| | - Conor J Walsh
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
7
|
Nam Y, Yang S, Kim J, Koo B, Song S, Kim Y. Quantification of Comfort for the Development of Binding Parts in a Standing Rehabilitation Robot. SENSORS (BASEL, SWITZERLAND) 2023; 23:2206. [PMID: 36850804 PMCID: PMC9967481 DOI: 10.3390/s23042206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Human-machine interfaces (HMI) refer to the physical interaction between a user and rehabilitation robots. A persisting excessive load leads to soft tissue damage, such as pressure ulcers. Therefore, it is necessary to define a comfortable binding part for a rehabilitation robot with the subject in a standing posture. The purpose of this study was to quantify the comfort at the binding parts of the standing rehabilitation robot. In Experiment 1, cuff pressures of 10-40 kPa were applied to the thigh, shank, and knee of standing subjects, and the interface pressure and pain scale were obtained. In Experiment 2, cuff pressures of 10-20 kPa were applied to the thigh, and the tissue oxygen saturation and the skin temperature were measured. Questionnaire responses regarding comfort during compression were obtained from the subjects using the visual analog scale and the Likert scale. The greatest pain was perceived in the thigh. The musculoskeletal configuration affected the pressure distribution. The interface pressure distribution by the binding part showed higher pressure at the intermuscular septum. Tissue oxygen saturation (StO2) increased to 111.9 ± 6.7% when a cuff pressure of 10 kPa was applied and decreased to 92.2 ± 16.9% for a cuff pressure of 20 kPa. A skin temperature variation greater than 0.2 °C occurred in the compressed leg. These findings would help evaluate and improve the comfort of rehabilitation robots.
Collapse
Affiliation(s)
- Yejin Nam
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sumin Yang
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Jongman Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Bummo Koo
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sunghyuk Song
- Department of Robotics & Mechatronics, Korea Institute of Machinery & Materials, Daejeon 34103, Republic of Korea
| | - Youngho Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
8
|
Massardi S, Rodriguez-Cianca D, Pinto-Fernandez D, Moreno JC, Lancini M, Torricelli D. Characterization and Evaluation of Human-Exoskeleton Interaction Dynamics: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:3993. [PMID: 35684614 PMCID: PMC9183080 DOI: 10.3390/s22113993] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023]
Abstract
Exoskeletons and exosuits have witnessed unprecedented growth in recent years, especially in the medical and industrial sectors. In order to be successfully integrated into the current society, these devices must comply with several commercialization rules and safety standards. Due to their intrinsic coupling with human limbs, one of the main challenges is to test and prove the quality of physical interaction with humans. However, the study of physical human-exoskeleton interactions (pHEI) has been poorly addressed in the literature. Understanding and identifying the technological ways to assess pHEI is necessary for the future acceptance and large-scale use of these devices. The harmonization of these evaluation processes represents a key factor in building a still missing accepted framework to inform human-device contact safety. In this review, we identify, analyze, and discuss the metrics, testing procedures, and measurement devices used to assess pHEI in the last ten years. Furthermore, we discuss the role of pHEI in safety contact evaluation. We found a very heterogeneous panorama in terms of sensors and testing methods, which are still far from considering realistic conditions and use-cases. We identified the main gaps and drawbacks of current approaches, pointing towards a number of promising research directions. This review aspires to help the wearable robotics community find agreements on interaction quality and safety assessment testing procedures.
Collapse
Affiliation(s)
- Stefano Massardi
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), 28006 Madrid, Spain; (S.M.); (D.R.-C.); (D.P.-F.); (J.C.M.)
- Department of Mechanical and Industrial Engineering (DIMI), University of Brescia, 25100 Brescia, Italy
| | - David Rodriguez-Cianca
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), 28006 Madrid, Spain; (S.M.); (D.R.-C.); (D.P.-F.); (J.C.M.)
| | - David Pinto-Fernandez
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), 28006 Madrid, Spain; (S.M.); (D.R.-C.); (D.P.-F.); (J.C.M.)
- Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Juan C. Moreno
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), 28006 Madrid, Spain; (S.M.); (D.R.-C.); (D.P.-F.); (J.C.M.)
| | - Matteo Lancini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health (DSMC), University of Brescia, 25100 Brescia, Italy;
| | - Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), 28006 Madrid, Spain; (S.M.); (D.R.-C.); (D.P.-F.); (J.C.M.)
| |
Collapse
|
9
|
Linnenberg C, Weidner R. Industrial exoskeletons for overhead work: Circumferential pressures on the upper arm caused by the physical human-machine-interface. APPLIED ERGONOMICS 2022; 101:103706. [PMID: 35134687 DOI: 10.1016/j.apergo.2022.103706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the pressures occurring within the arm human-machine-interfaces (HMI) of four different exoskeletons that support static and dynamic work at or above head level, and the effects of the HMI on neurovascular supply of the upper extremity using an orthopedic provocation maneuver with raised arms with and without the exoskeletons. Decreased time in the provocation maneuver with exoskeletons indicated a negative effect of the HMIs on the vascular and neural supply of the arm. Average pressure in the static situation was 3.2 ± 0.7 kPa and 4.4 ± 0.4 kPa with regular peak values of 6.5 ± 0.5 kPa in the dynamic task. These pressures were significantly higher than the pressure values that guarantee adequate tissue oxygenation. It remains unknown whether the way exoskeletons apply pressure affects vascular and neural supply to the arms, or whether the regular unloading during dynamic activity has a neutralizing effect.
Collapse
Affiliation(s)
- Christine Linnenberg
- Institute for Mechatronics, University of Innsbruck, Technikerstraße 13, 6020, Innsbruck, Austria.
| | - Robert Weidner
- Institute for Mechatronics, University of Innsbruck, Technikerstraße 13, 6020, Innsbruck, Austria; Laboratory for Manufacturing Technology, Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg, Holstenhofweg 85, 22043, Hamburg, Germany.
| |
Collapse
|
10
|
Tiboni M, Borboni A, Vérité F, Bregoli C, Amici C. Sensors and Actuation Technologies in Exoskeletons: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:884. [PMID: 35161629 PMCID: PMC8839165 DOI: 10.3390/s22030884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
Abstract
Exoskeletons are robots that closely interact with humans and that are increasingly used for different purposes, such as rehabilitation, assistance in the activities of daily living (ADLs), performance augmentation or as haptic devices. In the last few decades, the research activity on these robots has grown exponentially, and sensors and actuation technologies are two fundamental research themes for their development. In this review, an in-depth study of the works related to exoskeletons and specifically to these two main aspects is carried out. A preliminary phase investigates the temporal distribution of scientific publications to capture the interest in studying and developing novel ideas, methods or solutions for exoskeleton design, actuation and sensors. The distribution of the works is also analyzed with respect to the device purpose, body part to which the device is dedicated, operation mode and design methods. Subsequently, actuation and sensing solutions for the exoskeletons described by the studies in literature are analyzed in detail, highlighting the main trends in their development and spread. The results are presented with a schematic approach, and cross analyses among taxonomies are also proposed to emphasize emerging peculiarities.
Collapse
Affiliation(s)
- Monica Tiboni
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy; (M.T.); (C.A.)
| | - Alberto Borboni
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy; (M.T.); (C.A.)
| | - Fabien Vérité
- Agathe Group INSERM U 1150, UMR 7222 CNRS, ISIR (Institute of Intelligent Systems and Robotics), Sorbonne Université, 75005 Paris, France;
| | - Chiara Bregoli
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), Via Previati 1/E, 23900 Lecco, Italy;
| | - Cinzia Amici
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy; (M.T.); (C.A.)
| |
Collapse
|
11
|
Mannella D, Bellusci M, Graziani F, Ferraresi C, Muscolo GG. Modelling, design and control of a new seat-cushion for pressure ulcers prevention. Proc Inst Mech Eng H 2022; 236:9544119211068908. [PMID: 35068250 DOI: 10.1177/09544119211068908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Pressure ulcers are a frequent complication in patients having limited activity and mobility (e.g., elderly people, spinal cord injury patients, people with disabilities, etc.). The aim of this work is the conceptual design, modelling and control of a new seat cushion for pressure ulcers prevention. The whole system (constituted by the seat cushion equipped with a real-time pressure mapping with closed-loop control) is designed to identify the critical points on the human skin, before pressure ulcers creation, and to be able to distribute the contact pressure between the human and cushion avoiding wound creation. The seat cushion is constituted by soft air-cells actuated by air flow. To define the shape and size of the soft air-cells, finite element simulations are carried out, analysing the internal volume reduction with external loads application to reproduce the variable stiffness. The data obtained by finite element analysis are used to simulate inflation and deflation of the soft bubble air-cells. Finally, the control systems of a single air-cell and of the whole cushion are designed and simulated. The novelty of our work consists in the conception of a seat cushion able to recognise higher and lower risk zones of pressure ulcer generation on the human skin and to provide compensation automatically. This work can therefore be considered in line with the sustainable development goals recently launched by the EU Commission.
Collapse
Affiliation(s)
- Daniele Mannella
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Piemonte, Italy
| | - Marco Bellusci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Piemonte, Italy
| | - Francesco Graziani
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Piemonte, Italy
| | - Carlo Ferraresi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Piemonte, Italy
| | | |
Collapse
|
12
|
Langlois K, Geeroms J, Van De Velde G, Rodriguez-Guerrero C, Verstraten T, Vanderborght B, Lefeber D. Improved Motion Classification With an Integrated Multimodal Exoskeleton Interface. Front Neurorobot 2021; 15:693110. [PMID: 34759807 PMCID: PMC8572867 DOI: 10.3389/fnbot.2021.693110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human motion intention detection is an essential part of the control of upper-body exoskeletons. While surface electromyography (sEMG)-based systems may be able to provide anticipatory control, they typically require exact placement of the electrodes on the muscle bodies which limits the practical use and donning of the technology. In this study, we propose a novel physical interface for exoskeletons with integrated sEMG- and pressure sensors. The sensors are 3D-printed with flexible, conductive materials and allow multi-modal information to be obtained during operation. A K-Nearest Neighbours classifier is implemented in an off-line manner to detect reaching movements and lifting tasks that represent daily activities of industrial workers. The performance of the classifier is validated through repeated experiments and compared to a unimodal EMG-based classifier. The results indicate that excellent prediction performance can be obtained, even with a minimal amount of sEMG electrodes and without specific placement of the electrode.
Collapse
Affiliation(s)
- Kevin Langlois
- Robotics & Multibody Mechanics Research Group, MECH Department, Vrije Universiteit Brussel, Brussel, Belgium.,IMEC, Leuven, Belgium
| | - Joost Geeroms
- Robotics & Multibody Mechanics Research Group, MECH Department, Vrije Universiteit Brussel, Brussel, Belgium.,Flanders Make, Lommel, Belgium
| | - Gabriel Van De Velde
- Robotics & Multibody Mechanics Research Group, MECH Department, Vrije Universiteit Brussel, Brussel, Belgium
| | - Carlos Rodriguez-Guerrero
- Robotics & Multibody Mechanics Research Group, MECH Department, Vrije Universiteit Brussel, Brussel, Belgium.,Flanders Make, Lommel, Belgium
| | - Tom Verstraten
- Robotics & Multibody Mechanics Research Group, MECH Department, Vrije Universiteit Brussel, Brussel, Belgium.,Flanders Make, Lommel, Belgium
| | - Bram Vanderborght
- Robotics & Multibody Mechanics Research Group, MECH Department, Vrije Universiteit Brussel, Brussel, Belgium.,IMEC, Leuven, Belgium
| | - Dirk Lefeber
- Robotics & Multibody Mechanics Research Group, MECH Department, Vrije Universiteit Brussel, Brussel, Belgium.,Flanders Make, Lommel, Belgium
| |
Collapse
|
13
|
Armitage L, Turner S, Sreenivasa M. Human-device interface pressure measurement in prosthetic, orthotic and exoskeleton applications: A systematic review. Med Eng Phys 2021; 97:56-69. [PMID: 34756339 DOI: 10.1016/j.medengphy.2021.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/16/2021] [Accepted: 09/20/2021] [Indexed: 02/02/2023]
Abstract
This study aimed to investigate normal and shear load sensor technology that has been characterised and used at the human-device interface in prosthetic, orthotic and exoskeleton applications. In addition to taking a cross-disciplinary view, this study expands on previous reviews by considering recently published papers, clinical translation of sensors, and development of the sensor technology itself. A search of MEDLINE, INSPEC, SCOPUS and Web of Science was performed up to 26 January 2021. A total of 33 studies were assessed for quality and their data extracted. The review found variable quality of published papers, with normal load being most commonly measured, and resistive sensor technology most commonly used. The translation to clinical environments was indicated in most studies, though the study population was not always made up of the target users. Studies could benefit from more direct comparison with clinically relevant load thresholds and by ensuring clinical testing is performed in the most realistic and representative way possible. Additionally, more focus on developing sensors that measure shear loads would enable further insights into conditions at the human-device interface. Finally, all researchers would benefit from better and more widespread anonymous data sharing practices to facilitate further experimentation.
Collapse
Affiliation(s)
- Lucy Armitage
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| | - Shruti Turner
- Sackler MSk Laboratory, Department of Surgery and Cancer, Sir Michael Uren Hub, Imperial College London, 86 Wood Ln, London W12 0BZ, United Kingdom.
| | - Manish Sreenivasa
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
14
|
Nik Ramli NN, Asokan A, Mayakrishnan D, Annamalai H. Exploring Stroke Rehabilitation in Malaysia: Are Robots Better than Humans for Stroke Recuperation? Malays J Med Sci 2021; 28:14-23. [PMID: 34512127 PMCID: PMC8407787 DOI: 10.21315/mjms2021.28.4.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
Ranked as the second leading cause of death and the primary factor to adult disability worldwide, stroke has become a global epidemic problem and burden. As a developing country, Malaysia still faces challenges in providing ideal rehabilitation services to individuals with physical disabilities including stroke survivors. Conventional post-stroke care is often delivered in a team-based approach and involves several disciplines, such as physical therapy, occupational therapy, speech and language therapy, depending on the nature and severity of the deficits. Robots are potential tools for stroke rehabilitation as they can enhance existing conventional therapy by delivering a precise and consistent therapy of highly repetitive movements. In addition, robot-assisted physiotherapy could facilitate the effectiveness of unsupervised rehabilitation and thus, may reduce the cost and duration of therapist-assisted rehabilitation. Research on robot-assisted physiotherapy for stroke in Malaysia is slowly coming into the limelight in the past two decades. This review explores the effectiveness of robot-assisted physiotherapy particularly in improving motor functions of stroke survivors in Malaysia.
Collapse
Affiliation(s)
- Nik Nasihah Nik Ramli
- International Medical School, Management & Science University, Shah Alam, Selangor, Malaysia
| | - Amhsavenii Asokan
- International Medical School, Management & Science University, Shah Alam, Selangor, Malaysia
| | - Daniel Mayakrishnan
- International Medical School, Management & Science University, Shah Alam, Selangor, Malaysia
| | - Hariharasudan Annamalai
- International Medical School, Management & Science University, Shah Alam, Selangor, Malaysia
| |
Collapse
|
15
|
Bessler J, Prange-Lasonder GB, Schaake L, Saenz JF, Bidard C, Fassi I, Valori M, Lassen AB, Buurke JH. Safety Assessment of Rehabilitation Robots: A Review Identifying Safety Skills and Current Knowledge Gaps. Front Robot AI 2021; 8:602878. [PMID: 33937345 PMCID: PMC8080797 DOI: 10.3389/frobt.2021.602878] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
The assessment of rehabilitation robot safety is a vital aspect of the development process, which is often experienced as difficult. There are gaps in best practices and knowledge to ensure safe usage of rehabilitation robots. Currently, safety is commonly assessed by monitoring adverse events occurrence. The aim of this article is to explore how safety of rehabilitation robots can be assessed early in the development phase, before they are used with patients. We are suggesting a uniform approach for safety validation of robots closely interacting with humans, based on safety skills and validation protocols. Safety skills are an abstract representation of the ability of a robot to reduce a specific risk or deal with a specific hazard. They can be implemented in various ways, depending on the application requirements, which enables the use of a single safety skill across a wide range of applications and domains. Safety validation protocols have been developed that correspond to these skills and consider domain-specific conditions. This gives robot users and developers concise testing procedures to prove the mechanical safety of their robotic system, even when the applications are in domains with a lack of standards and best practices such as the healthcare domain. Based on knowledge about adverse events occurring in rehabilitation robot use, we identified multi-directional excessive forces on the soft tissue level and musculoskeletal level as most relevant hazards for rehabilitation robots and related them to four safety skills, providing a concrete starting point for safety assessment of rehabilitation robots. We further identified a number of gaps which need to be addressed in the future to pave the way for more comprehensive guidelines for rehabilitation robot safety assessments. Predominantly, besides new developments of safety by design features, there is a strong need for reliable measurement methods as well as acceptable limit values for human-robot interaction forces both on skin and joint level.
Collapse
Affiliation(s)
- Jule Bessler
- Roessingh Research and Development, Enschede, Netherlands.,Department of Biomedical Signals and Systems, University of Twente, Enschede, Netherlands
| | - Gerdienke B Prange-Lasonder
- Roessingh Research and Development, Enschede, Netherlands.,Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | | | - José F Saenz
- Fraunhofer Institute for Factory Operation and Automation, Magdeburg, Germany
| | | | - Irene Fassi
- National Research Council of Italy, Milan, Italy
| | | | - Aske Bach Lassen
- Department of Robot Technology, Danish Technological Institute, Odense, Denmark
| | - Jaap H Buurke
- Roessingh Research and Development, Enschede, Netherlands.,Department of Biomedical Signals and Systems, University of Twente, Enschede, Netherlands
| |
Collapse
|
16
|
Integration of 3D Printed Flexible Pressure Sensors into Physical Interfaces for Wearable Robots. SENSORS 2021; 21:s21062157. [PMID: 33808626 PMCID: PMC8003387 DOI: 10.3390/s21062157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Sensing pressure at the physical interface between the robot and the human has important implications for wearable robots. On the one hand, monitoring pressure distribution can give valuable benefits on the aspects of comfortability and safety of such devices. Additionally, on the other hand, they can be used as a rich sensory input to high level interaction controllers. However, a problem is that the commercial availability of this technology is mostly limited to either low-cost solutions with poor performance or expensive options, limiting the possibilities for iterative designs. As an alternative, in this manuscript we present a three-dimensional (3D) printed flexible capacitive pressure sensor that allows seamless integration for wearable robotic applications. The sensors are manufactured using additive manufacturing techniques, which provides benefits in terms of versatility of design and implementation. In this study, a characterization of the 3D printed sensors in a test-bench is presented after which the sensors are integrated in an upper arm interface. A human-in-the-loop calibration of the sensors is then shown, allowing to estimate the external force and pressure distribution that is acting on the upper arm of seven human subjects while performing a dynamic task. The validation of the method is achieved by means of a collaborative robot for precise force interaction measurements. The results indicate that the proposed sensors are a potential solution for further implementation in human–robot interfaces.
Collapse
|
17
|
Ghonasgi K, Yousaf SN, Esmatloo P, Deshpande AD. A Modular Design for Distributed Measurement of Human-Robot Interaction Forces in Wearable Devices. SENSORS 2021; 21:s21041445. [PMID: 33669615 PMCID: PMC7922704 DOI: 10.3390/s21041445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 12/04/2022]
Abstract
Measurement of interaction forces distributed across the attachment interface in wearable devices is critical for understanding ergonomic physical human–robot interaction (pHRI). The main challenges in sensorization of pHRI interfaces are (i) capturing the fine nature of force transmission from compliant human tissue onto rigid surfaces in the wearable device and (ii) utilizing a low-cost and easily implementable design that can be adapted for a variety of human interfaces. This paper addresses both challenges and presents a modular sensing panel that uses force-sensing resistors (FSRs) combined with robust electrical and mechanical integration principles that result in a reliable solution for distributed load measurement. The design is demonstrated through an upper-arm cuff, which uses 24 sensing panels, in conjunction with the Harmony exoskeleton. Validation of the design with controlled loading of the sensorized cuff proves the viability of FSRs in an interface sensing solution. Preliminary experiments with a human subject highlight the value of distributed interface force measurement in recognizing the factors that influence ergonomic pHRI and elucidating their effects. The modular design and low cost of the sensing panel lend themselves to extension of this approach for studying ergonomics in a variety of wearable applications with the goal of achieving safe, comfortable, and effective human–robot interaction.
Collapse
|
18
|
Zhou X, Chen X. Design and Evaluation of Torque Compensation Controllers for a Lower Extremity Exoskeleton. J Biomech Eng 2021; 143:011007. [PMID: 32975567 DOI: 10.1115/1.4048572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 07/25/2024]
Abstract
In this article, we present an integrated human-in-the-loop simulation paradigm for the design and evaluation of a lower extremity exoskeleton that is elastically strapped onto human lower limbs. The exoskeleton has three rotational DOFs on each side and weighs 23 kg. Two torque compensation controllers of the exoskeleton are introduced, aiming to minimize interference and maximize assistance, respectively. Their effects on the wearer's biomechanical loadings are studied with a running motion and predicted ground reaction forces (GRFs). It is found that the added weight of the passive exoskeleton substantially increases the wearer's musculoskeletal loadings. The maximizing assistance controller reduces the knee joint torque by 31% when compared with the normal running (without exoskeleton) and by 50% when compared with the passive exoskeleton case. When compared with the normal running, this controller also reduces the hip flexion and extension torques by 31% and 38%, respectively. As a result, the peak activations of the biceps short head, gluteus maximus, and rectus femoris muscles are reduced by more than a half. Nonetheless, the axial knee joint reaction force increases for all exoskeleton cases due to the added weight and higher ground reaction forces. In summary, the results provide sound evidence of the efficacy of the proposed controllers on reducing the wearer's musculoskeletal loadings. And it is shown that the human-in-the-loop simulation paradigm presented here can be used for virtual design and evaluation of powered exoskeletons and pave the way for building optimized exoskeleton prototypes for experimental evaluation.
Collapse
Affiliation(s)
- Xianlian Zhou
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102
| | - Xinyu Chen
- Division of Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806
| |
Collapse
|
19
|
Bessler J, Prange-Lasonder GB, Schulte RV, Schaake L, Prinsen EC, Buurke JH. Occurrence and Type of Adverse Events During the Use of Stationary Gait Robots-A Systematic Literature Review. Front Robot AI 2020; 7:557606. [PMID: 33501319 PMCID: PMC7805916 DOI: 10.3389/frobt.2020.557606] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022] Open
Abstract
Robot-assisted gait training (RAGT) devices are used in rehabilitation to improve patients' walking function. While there are some reports on the adverse events (AEs) and associated risks in overground exoskeletons, the risks of stationary gait trainers cannot be accurately assessed. We therefore aimed to collect information on AEs occurring during the use of stationary gait robots and identify associated risks, as well as gaps and needs, for safe use of these devices. We searched both bibliographic and full-text literature databases for peer-reviewed articles describing the outcomes of stationary RAGT and specifically mentioning AEs. We then compiled information on the occurrence and types of AEs and on the quality of AE reporting. Based on this, we analyzed the risks of RAGT in stationary gait robots. We included 50 studies involving 985 subjects and found reports of AEs in 18 of those studies. Many of the AE reports were incomplete or did not include sufficient detail on different aspects, such as severity or patient characteristics, which hinders the precise counts of AE-related information. Over 169 device-related AEs experienced by between 79 and 124 patients were reported. Soft tissue-related AEs occurred most frequently and were mostly reported in end-effector-type devices. Musculoskeletal AEs had the second highest prevalence and occurred mainly in exoskeleton-type devices. We further identified physiological AEs including blood pressure changes that occurred in both exoskeleton-type and end-effector-type devices. Training in stationary gait robots can cause injuries or discomfort to the skin, underlying tissue, and musculoskeletal system, as well as unwanted blood pressure changes. The underlying risks for the most prevalent injury types include excessive pressure and shear at the interface between robot and human (cuffs/harness), as well as increased moments and forces applied to the musculoskeletal system likely caused by misalignments (between joint axes of robot and human). There is a need for more structured and complete recording and dissemination of AEs related to robotic gait training to increase knowledge on risks. With this information, appropriate mitigation strategies can and should be developed and implemented in RAGT devices to increase their safety.
Collapse
Affiliation(s)
- Jule Bessler
- Roessingh Research and Development, Enschede, Netherlands.,Department of Biomedical Signals and Systems, University of Twente, Enschede, Netherlands
| | - Gerdienke B Prange-Lasonder
- Roessingh Research and Development, Enschede, Netherlands.,Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Robert V Schulte
- Roessingh Research and Development, Enschede, Netherlands.,Department of Biomedical Signals and Systems, University of Twente, Enschede, Netherlands
| | | | - Erik C Prinsen
- Roessingh Research and Development, Enschede, Netherlands.,Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Jaap H Buurke
- Roessingh Research and Development, Enschede, Netherlands.,Department of Biomedical Signals and Systems, University of Twente, Enschede, Netherlands
| |
Collapse
|
20
|
Kermavnar T, O'Sullivan KJ, Casey V, de Eyto A, O'Sullivan LW. Circumferential tissue compression at the lower limb during walking, and its effect on discomfort, pain and tissue oxygenation: Application to soft exoskeleton design. APPLIED ERGONOMICS 2020; 86:103093. [PMID: 32342884 DOI: 10.1016/j.apergo.2020.103093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
Soft exoskeletons apply compressive forces at the limbs via connection cuffs to actuate movement or stabilise joints. To avoid excessive mechanical loading, the interface with the wearer's body needs to be carefully designed. The purpose of this study was to establish the magnitude of circumferential compression at the lower limb during walking that causes discomfort/pain. It was hypothesized that the thresholds differ from those during standing. A cohort of 21 healthy participants were tested using two sizes of pneumatic cuffs, inflated at the thigh and calf in a tonic or phasic manner. The results showed lower inflation pressures triggering discomfort/pain at the thigh, with tonic compression, and wider pneumatic cuffs. The thresholds were lower during walking than standing still. Deep tissue oxygenation increased during phasic compression and decreased during tonic compression. According to the findings, circumferential compression by soft exoskeletons is preferably applied at anatomical sites with smaller volumes of soft tissue, using narrow connection cuffs and inflation pressures below 14 kPa.
Collapse
Affiliation(s)
- Tjaša Kermavnar
- Design Factors, Health Research Institute & CONFIRM Smart Manufacturing Centre, School of Design, University of Limerick, Limerick, Ireland
| | - Kevin J O'Sullivan
- Design Factors, Health Research Institute & CONFIRM Smart Manufacturing Centre, School of Design, University of Limerick, Limerick, Ireland
| | - Vincent Casey
- Department of Physics, Faculty of Science & Engineering, University of Limerick, Limerick, Ireland
| | - Adam de Eyto
- Design Factors, Health Research Institute & CONFIRM Smart Manufacturing Centre, School of Design, University of Limerick, Limerick, Ireland
| | - Leonard W O'Sullivan
- Design Factors, Health Research Institute & CONFIRM Smart Manufacturing Centre, School of Design, University of Limerick, Limerick, Ireland.
| |
Collapse
|
21
|
Stirling L, Kelty-Stephen D, Fineman R, Jones MLH, Daniel Park BK, Reed MP, Parham J, Choi HJ. Static, Dynamic, and Cognitive Fit of Exosystems for the Human Operator. HUMAN FACTORS 2020; 62:424-440. [PMID: 32004106 DOI: 10.1177/0018720819896898] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To define static, dynamic, and cognitive fit and their interactions as they pertain to exosystems and to document open research needs in using these fit characteristics to inform exosystem design. BACKGROUND Initial exosystem sizing and fit evaluations are currently based on scalar anthropometric dimensions and subjective assessments. As fit depends on ongoing interactions related to task setting and user, attempts to tailor equipment have limitations when optimizing for this limited fit definition. METHOD A targeted literature review was conducted to inform a conceptual framework defining three characteristics of exosystem fit: static, dynamic, and cognitive. Details are provided on the importance of differentiating fit characteristics for developing exosystems. RESULTS Static fit considers alignment between human and equipment and requires understanding anthropometric characteristics of target users and geometric equipment features. Dynamic fit assesses how the human and equipment move and interact with each other, with a focus on the relative alignment between the two systems. Cognitive fit considers the stages of human-information processing, including somatosensation, executive function, and motor selection. Human cognitive capabilities should remain available to process task- and stimulus-related information in the presence of an exosystem. Dynamic and cognitive fit are operationalized in a task-specific manner, while static fit can be considered for predefined postures. CONCLUSION A deeper understanding of how an exosystem fits an individual is needed to ensure good human-system performance. Development of methods for evaluating different fit characteristics is necessary. APPLICATION Methods are presented to inform exosystem evaluation across physical and cognitive characteristics.
Collapse
Affiliation(s)
| | | | - Richard Fineman
- 2167 Harvard-MIT Health Science and Technology Program, Cambridge, MA, USA
| | - Monica L H Jones
- 1259 University of Michigan Transportation Research Institute, Ann Arbor, USA
| | | | - Matthew P Reed
- 1259 University of Michigan Transportation Research Institute, Ann Arbor, USA
| | - Joseph Parham
- 155353 U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | - Hyeg Joo Choi
- 155353 U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| |
Collapse
|
22
|
Kermavnar T, O'Sullivan KJ, de Eyto A, O'Sullivan LW. The effect of simulated circumferential soft exoskeleton compression at the knee on discomfort and pain. ERGONOMICS 2020; 63:618-628. [PMID: 32167025 DOI: 10.1080/00140139.2020.1743373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
There is a lack of data and guidance on soft exoskeleton pressure contact with the body. The purpose of this research was to study the relationship between circumferential loading at the knee and discomfort/pain, to inform the design of soft exoskeletons/exosuits. The development of discomfort and pain was studied during standing and walking with circumferential compression using a pneumatic cuff. Our results show higher tolerance for intermittent than continuous compression during standing. Discomfort was triggered at pressures ranging from 13.7 kPa (continuous compression) to 30.4 kPa (intermittent compression), and pain at 52.9 kPa (continuous compression) to 60.6 kPa (intermittent compression). During walking, cyclic compression caused an increase in discomfort with time. Higher cuff inflation pressures caused an earlier onset and higher end intensities of discomfort than lower pressures. Cyclic cuff inflation of 10 kPa and 20 kPa was reasonably well tolerated. Practitioner summary Soft exoskeleton compression of the knee was simulated during static and dynamic compression cycles. The results can be used to understand how users tolerate pressure at the knee, and also to understand the levels at which discomfort and pain are experienced. Abbreviations: BMI: body mass index; DDT: discomfort detection threshold; EndVAS: end of experiment rating on visual analog discomfort scale; PDT: pain detection threshold; SD: standard deviation; SE: standard error; TSP: temporal summation of pain; VAS: visual analogue scale.
Collapse
Affiliation(s)
| | | | - Adam de Eyto
- School of Design, University of Limerick, Limerick, Ireland
| | - Leonard W O'Sullivan
- School of Design, Health Research Institute and Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland
| |
Collapse
|
23
|
Kermavnar T, O'Sullivan KJ, de Eyto A, O'Sullivan LW. Discomfort/Pain and Tissue Oxygenation at the Lower Limb During Circumferential Compression: Application to Soft Exoskeleton Design. HUMAN FACTORS 2020; 62:475-488. [PMID: 31928412 DOI: 10.1177/0018720819892098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To establish the relationship between circumferential compression on the lower limb during simulated ramp and staircase profile loading, and the resultant relationship with discomfort/pain and tissue oxygenation. BACKGROUND Excessive mechanical loading by exoskeletons on the body can lead to pressure-related soft tissue injury. Potential tissue damage is associated with objective oxygen deprivation and accompanied by subjective perception of pain and discomfort. METHOD Three widths of pneumatic cuffs were inflated at the dominant thigh and calf of healthy participants using two inflation patterns (ramp and staircase), using a computer-controlled pneumatic rig. Participants rated discomfort on an electronic visual analog scale and deep tissue oxygenation was monitored using near infrared spectroscopy. RESULTS Circumferential compression with pneumatic cuffs triggered discomfort and pain at lower pressures at the thigh, with wider cuffs, and with a ramp inflation pattern. Staircase profile compression caused an increase in deep tissue oxygenation, whereas the ramp profile compression decreased it. CONCLUSION Discomfort and pain during circumferential compression at the lower limb is related to the width of pneumatic cuffs, the inflation pattern, and the volume of soft tissue at the assessment site. The occurrence of pain is also possibly related to the decrease in deep tissue oxygenation during compression. APPLICATION Our findings can be used to inform safe and comfortable design of soft exoskeletons to avoid discomfort and possible soft tissue injury.
Collapse
|
24
|
Wang Y, Qiu J, Cheng H, Zheng X. Analysis of Human-Exoskeleton System Interaction for Ergonomic Design. HUMAN FACTORS 2020:18720820913789. [PMID: 32207992 DOI: 10.1177/0018720820913789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Lower-limb exoskeleton systems are defined as gait training or walking-assisting devices for spinal cord injury or hemiplegic patients. Crutches, straps, and baffles are designed to protect subjects from falling. However, skin abrasions occur when the interaction forces are too large. In this study, the interaction forces between the human body and an exoskeleton system named the AIDER were measured to confirm whether the design was ergonomic. BACKGROUND The AIDER system is a wearable lower-limb exoskeleton. It secures a subject by binding on the waist, thighs, shanks, and feet. METHOD Eight healthy subjects participated in the study. The interaction forces of the waist strap, thigh baffles, shank baffles, and crutch handles were measured by pressure sensors. Ten repetitions were completed in this study. After one repetition, custom comfort questionnaires were completed by the subjects. RESULTS Although a few of the peak values of the maximum intensities of pressure between the hands and crutch handles reached the minimum value of the pain-pressure threshold (PPT), the average pressure intensities were much smaller than the PPT value. CONCLUSIONS The results indicated that the mechanical structure and control strategy of the AIDER must be improved to be more ergonomic in the future.
Collapse
Affiliation(s)
- Yilin Wang
- 272021 12599 University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Qiu
- 272021 12599 University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Cheng
- 272021 12599 University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaojuan Zheng
- 272021 12599 University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Bessler J, Schaake L, Kelder R, Buurke JH, Prange-Lasonder GB. Prototype Measuring Device for Assessing Interaction Forces between Human Limbs and Rehabilitation Robots - A Proof of Concept Study. IEEE Int Conf Rehabil Robot 2020; 2019:1109-1114. [PMID: 31374778 DOI: 10.1109/icorr.2019.8779536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rehabilitation robots can provide high intensity and dosage training or assist patients in activities of daily living and decrease physical strain on clinicians. However, the physical human robot interaction poses a major safety issue, as the close physical contact between user and robot can lead to injuries. Moreover, the magnitude of forces as well as best practices for measuring them, are widely unknown. Therefore, a measurement setup was developed to assess normal and tangential forces that occur in the contact area between an arm and a splint. Force sensitive resistors and a force / torque sensor were combined with two different splint shapes. Initial experiments indicated that the setup gives some insight into magnitudes and distribution of normal forces on the splint-forearm-interface. Experiment results show a dependency of force distributions on the splint shape and sensor locations. Based on these outcomes, we proposed an improved setup for subsequent investigations.
Collapse
|
26
|
A Novel Capacitance-Based In-Situ Pressure Sensor for Wearable Compression Garments. MICROMACHINES 2019; 10:mi10110743. [PMID: 31683626 PMCID: PMC6915609 DOI: 10.3390/mi10110743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 11/20/2022]
Abstract
This paper pertains to the development & evaluation of a dielectric electroactive polymer-based tactile pressure sensor and its circuitry. The evaluations conceived target the sensor’s use case as an in-situ measurement device assessing load conditions imposed by compression garments in either static form or dynamic pulsations. Several testing protocols are described to evaluate and characterize the sensor’s effectiveness for static and dynamic response such as repeatability, linearity, dynamic effectiveness, hysteresis effects of the sensor under static conditions, sensitivity to measurement surface curvature and temperature and humidity effects. Compared to pneumatic sensors in similar physiological applications, this sensor presents several significant advantages including better spatial resolution, compact packaging, manufacturability for smaller footprints and overall simplicity for use in array configurations. The sampling rates and sensitivity are also less prone to variability compared to pneumatic pressure sensors. The presented sensor has a high sampling rate of 285 Hz that can further assist with the physiological applications targeted for improved cardiac performance. An average error of ± 5.0 mmHg with a frequency of 1–2 Hz over a range of 0 to 120 mmHg was achieved when tested cyclically.
Collapse
|
27
|
Li J, Zuo S, Xu C, Zhang L, Dong M, Tao C, Ji R. Influence of a Compatible Design on Physical Human-Robot Interaction Force: a Case Study of a Self-Adapting Lower-Limb Exoskeleton Mechanism. J INTELL ROBOT SYST 2019. [DOI: 10.1007/s10846-019-01063-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Gorgey AS. Robotic exoskeletons: The current pros and cons. World J Orthop 2018; 9:112-119. [PMID: 30254967 PMCID: PMC6153133 DOI: 10.5312/wjo.v9.i9.112] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
Robotic exoskeletons have emerged as rehabilitation tool that may ameliorate several of the existing health-related consequences after spinal cord injury (SCI). However, evidence to support its clinical application is still lacking considering their prohibitive cost. The current mini-review is written to highlight the main limitations and potential benefits of using exoskeletons in the rehabilitation of persons with SCI. We have recognized two main areas relevant to the design of exoskeletons and to their applications on major health consequences after SCI. The design prospective refers to safety concerns, fitting time and speed of exoskeletons. The health prospective refers to factors similar to body weight, physical activity, pressure injuries and bone health. Clinical trials are currently underway to address some of these limitations and to maximize the benefits in rehabilitation settings. Future directions highlight the need to use exoskeletons in conjunction with other existing and emerging technologies similar to functional electrical stimulation and brain-computer interface to address major limitations. Exoskeletons have the potential to revolutionize rehabilitation following SCI; however, it is still premature to make solid recommendations about their clinical use after SCI.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, VA 23249, United States
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA 23249, United States
| |
Collapse
|
29
|
Kermavnar T, Power V, de Eyto A, O'Sullivan L. Cuff Pressure Algometry in Patients with Chronic Pain as Guidance for Circumferential Tissue Compression for Wearable Soft Exoskeletons: A Systematic Review. Soft Robot 2018; 5:497-511. [PMID: 29957130 DOI: 10.1089/soro.2017.0088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this article, we report on a systematic review of the literature on pressure-pain thresholds induced and assessed by computerized cuff pressure algometry (CPA). The motivation for this review is to provide design guidance on pressure levels for wearable soft exoskeletons and similar wearable robotics devices. In our review, we focus on CPA studies of patients who are candidates for wearable soft exoskeletons, as pain-related physiological mechanisms reportedly differ significantly between healthy subjects and patients with chronic pain. The results indicate that circumferential limb compression in patients most likely becomes painful at ∼10-18 kPa and can become unbearable even below 25 kPa. The corresponding ranges for healthy control subjects are 20-42 kPa (painful limits) and 34-84 kPa (unbearable levels). In addition, the increase of pain with time tends to be significantly higher, and the adaptation to pain significantly lower, than in healthy subjects. The results of this review provide guidance to designers of wearable robotics for populations with chronic pain regarding rates and magnitudes of tissue compression that may be unacceptable to users.
Collapse
Affiliation(s)
- Tjaša Kermavnar
- School of Design and Health Research Institute, University of Limerick , Limerick, Ireland
| | - Valerie Power
- School of Design and Health Research Institute, University of Limerick , Limerick, Ireland
| | - Adam de Eyto
- School of Design and Health Research Institute, University of Limerick , Limerick, Ireland
| | - Leonard O'Sullivan
- School of Design and Health Research Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
30
|
Dong W, Wang Y, Zhou Y, Bai Y, Ju Z, Guo J, Gu G, Bai K, Ouyang G, Chen S, Zhang Q, Huang Y. Soft human–machine interfaces: design, sensing and stimulation. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS 2018. [DOI: 10.1007/s41315-018-0060-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Huysamen K, de Looze M, Bosch T, Ortiz J, Toxiri S, O'Sullivan LW. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. APPLIED ERGONOMICS 2018; 68:125-131. [PMID: 29409626 DOI: 10.1016/j.apergo.2017.11.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/10/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to evaluate the effect of an industrial exoskeleton on muscle activity, perceived musculoskeletal effort, measured and perceived contact pressure at the trunk, thighs and shoulders, and subjective usability for simple sagittal plane lifting and lowering conditions. Twelve male participants lifted and lowered a box of 7.5 kg and 15 kg, respectively, from mid-shin height to waist height, five times, both with and without the exoskeleton. The device significantly reduced muscle activity of the Erector Spinae (12%-15%) and Biceps Femoris (5%). Ratings of perceived musculoskeletal effort in the trunk region were significantly less with the device (9.5%-11.4%). The measured contact pressure was highest on the trunk (91.7 kPa-93.8 kPa) and least on shoulders (47.6 kPa-51.7 kPa), whereas pressure was perceived highest on the thighs (35-44% of Max LPP). Six of the users rated the device usability as acceptable. The exoskeleton reduced musculoskeletal loading on the lower back and assisted with hip extensor torque during lifting and lowering. Contact pressures fell below the Pain Pressure Threshold. Perceived pressure was not exceptionally high, but sufficiently high to cause discomfort if used for long durations.
Collapse
Affiliation(s)
- Kirsten Huysamen
- School of Design, Health Research Institute, University of Limerick, Limerick, Ireland
| | | | - Tim Bosch
- TNO, Schipholweg 77, 2316ZL Leiden, The Netherlands
| | - Jesus Ortiz
- Istituto Italiano di Tecnologia, Department of Advanced Robotics, Via Morego 30, 16163 Genova, Italy
| | - Stefano Toxiri
- Istituto Italiano di Tecnologia, Department of Advanced Robotics, Via Morego 30, 16163 Genova, Italy
| | - Leonard W O'Sullivan
- School of Design, Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
32
|
Kermavnar T, Power V, de Eyto A, O'Sullivan LW. Computerized Cuff Pressure Algometry as Guidance for Circumferential Tissue Compression for Wearable Soft Robotic Applications: A Systematic Review. Soft Robot 2017; 5:1-16. [PMID: 29412078 DOI: 10.1089/soro.2017.0046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this article, we review the literature on quantitative sensory testing of deep somatic pain by means of computerized cuff pressure algometry (CPA) in search of pressure-related safety guidelines for wearable soft exoskeleton and robotics design. Most pressure-related safety thresholds to date are based on interface pressures and skin perfusion, although clinical research suggests the deep somatic tissues to be the most sensitive to excessive loading. With CPA, pain is induced in deeper layers of soft tissue at the limbs. The results indicate that circumferential compression leads to discomfort at ∼16-34 kPa, becomes painful at ∼20-27 kPa, and can become unbearable even below 40 kPa.
Collapse
Affiliation(s)
- Tjaša Kermavnar
- School of Design and Health Research Institute, University of Limerick , Limerick, Ireland
| | - Valerie Power
- School of Design and Health Research Institute, University of Limerick , Limerick, Ireland
| | - Adam de Eyto
- School of Design and Health Research Institute, University of Limerick , Limerick, Ireland
| | - Leonard W O'Sullivan
- School of Design and Health Research Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
33
|
Bhatnagar T, Ben Mortensen W, Mattie J, Wolff J, Parker C, Borisoff J. A survey of stakeholder perspectives on a proposed combined exoskeleton-wheelchair technology. IEEE Int Conf Rehabil Robot 2017; 2017:1574-1579. [PMID: 28814044 DOI: 10.1109/icorr.2017.8009472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Exoskeleton technology has potential benefits for wheelchair users' health and mobility. However, there are practical barriers to their everyday use as a mobility device. In particular, challenges related to travelling longer distances and transitioning between using a wheelchair and exoskeleton walking may present significant deterrents to regular exoskeleton use. In an effort to remove these barriers, a combined exoskeleton-wheelchair concept ('COMBO') has been proposed, which aims to achieve the benefits of both these mobility technologies. Given the inherent importance of including user-stakeholder opinions when designing an assistive technology solution, a study was undertaken to explore the perspectives of wheelchair users and healthcare professionals on the proposed conceptual design of the COMBO. METHODS An online survey with quantitative and qualitative components was conducted with wheelchair users and healthcare professionals working directly with individuals with mobility impairments. Respondents rated whether they would use or recommend a COMBO for four potential reasons. Nine design features were rated and compared in terms of their importance. Content analysis was used to analyze data from an open-ended question regarding additional perceptions about using or recommending a COMBO. RESULTS A total of 481 survey responses were analyzed, 354 from wheelchair users and 127 from healthcare professionals. Potential health benefits was the most highly rated reason for potential use or recommendation of a COMBO. Of the 9 design features, 2 had a median rating of very important: inclusion of a fall-protection mechanism, and the ability for the operator to use their hands while standing. Qualitative findings indicated that health and physical benefits, use for daily life activities, and psychosocial benefits were important considerations in whether to use or recommend the COMBO. CONCLUSIONS This study captures the opinions and perspectives of two stakeholder groups for an exoskeleton-wheelchair hybrid device. It also emphasizes the importance of fall-protection, hand-use capabilities and enabling functional activities. Findings from this study can be utilized to provide insight for the refinement of the COMBO concept, as well as to guide more general mobility device research and development.
Collapse
|
34
|
Rathore A, Wilcox M, Ramirez DZM, Loureiro R, Carlson T. Quantifying the human-robot interaction forces between a lower limb exoskeleton and healthy users. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:586-589. [PMID: 28268398 DOI: 10.1109/embc.2016.7590770] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To counter the many disadvantages of prolonged wheelchair use, patients with spinal cord injuries (SCI) are beginning to turn towards robotic exoskeletons. However, we are currently unaware of the magnitude and distribution of forces acting between the user and the exoskeleton. This is a critical issue, as SCI patients have an increased susceptibility to skin lesions and pressure ulcer development. Therefore, we developed a real-time force measuring apparatus, which was placed at the physical human-robot interface (pHRI) of a lower limb robotic exoskeleton. Experiments captured the dynamics of these interaction forces whilst the participants performed a range of typical stepping actions. Our results indicate that peak forces occurred at the anterior aspect of both the left and right legs, areas that are particularly prone to pressure ulcer development. A significant difference was also found between the average force experienced at the anterior and posterior sensors of the right thigh during the swing phase for different movement primitives. These results call for the integration of instrumented straps as standard in lower limb exoskeletons. They also highlight the potential of such straps to be used as an alternative/complementary interface for the high-level control of lower limb exoskeletons in some patient groups.
Collapse
|
35
|
He Y, Eguren D, Luu TP, Contreras-Vidal JL. Risk management and regulations for lower limb medical exoskeletons: a review. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2017; 10:89-107. [PMID: 28533700 PMCID: PMC5431736 DOI: 10.2147/mder.s107134] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gait disability is a major health care problem worldwide. Powered exoskeletons have recently emerged as devices that can enable users with gait disabilities to ambulate in an upright posture, and potentially bring other clinical benefits. In 2014, the US Food and Drug Administration approved marketing of the ReWalk™ Personal Exoskeleton as a class II medical device with special controls. Since then, Indego™ and Ekso™ have also received regulatory approval. With similar trends worldwide, this industry is likely to grow rapidly. On the other hand, the regulatory science of powered exoskeletons is still developing. The type and extent of probable risks of these devices are yet to be understood, and industry standards are yet to be developed. To address this gap, Manufacturer and User Facility Device Experience, Clinicaltrials.gov, and PubMed databases were searched for reports of adverse events and inclusion and exclusion criteria involving the use of lower limb powered exoskeletons. Current inclusion and exclusion criteria, which can determine probable risks, were found to be diverse. Reported adverse events and identified risks of current devices are also wide-ranging. In light of these findings, current regulations, standards, and regulatory procedures for medical device applications in the USA, Europe, and Japan were also compared. There is a need to raise awareness of probable risks associated with the use of powered exoskeletons and to develop adequate countermeasures, standards, and regulations for these human-machine systems. With appropriate risk mitigation strategies, adequate standards, comprehensive reporting of adverse events, and regulatory oversight, powered exoskeletons may one day allow individuals with gait disabilities to safely and independently ambulate.
Collapse
Affiliation(s)
- Yongtian He
- Laboratory for Noninvasive, Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - David Eguren
- Laboratory for Noninvasive, Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Trieu Phat Luu
- Laboratory for Noninvasive, Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Jose L Contreras-Vidal
- Laboratory for Noninvasive, Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
36
|
Wilcox M, Rathore A, Morgado Ramirez DZ, Loureiro RCV, Carlson T. Muscular activity and physical interaction forces during lower limb exoskeleton use. Healthc Technol Lett 2016; 3:273-279. [PMID: 28008363 DOI: 10.1049/htl.2016.0063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/17/2016] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) typically manifests with a loss of sensorimotor control of the lower limbs. In order to overcome some of the disadvantages of chronic wheelchair use by such patients, robotic exoskeletons are an emerging technology that has the potential to transform the lives of patients. However, there are a number of points of contact between the robot and the user, which lead to interaction forces. In a recent study, the authors have shown that peak interaction forces are particularly prominent at the anterior aspect of the right leg. This study uses a similar experimental protocol with additional electromyography (EMG) analysis to examine whether such interaction forces are due to the muscular activity of the participant or the movement of the exoskeleton itself. Interestingly, the authors found that peak forces preceded peak EMG activity. This study did not find a significant correlation between EMG activity and force data, which would indicate that the interaction forces can largely be attributed to the movement of the exoskeleton itself. However, we also report significantly higher correlation coefficients in muscle/force pairs located at the anterior aspect of the right leg. In their previous research, the authors have shown peak interaction forces at the same locations, which suggests that muscular activity of the participant makes a more significant contribution to the interaction forces at these locations. The findings of this study are of significance for incomplete SCI patients, for whom EMG activity may provide an important input to an intuitive control schema.
Collapse
Affiliation(s)
- Matthew Wilcox
- Aspire Centre for Rehabilitation Engineering and Assistive Technology , University College London , Royal National Orthopaedic Hospital, Stanmore, HA7 4LP , UK
| | - Ashish Rathore
- Aspire Centre for Rehabilitation Engineering and Assistive Technology , University College London , Royal National Orthopaedic Hospital, Stanmore, HA7 4LP , UK
| | | | - Rui C V Loureiro
- Aspire Centre for Rehabilitation Engineering and Assistive Technology , University College London , Royal National Orthopaedic Hospital, Stanmore, HA7 4LP , UK
| | - Tom Carlson
- Aspire Centre for Rehabilitation Engineering and Assistive Technology , University College London , Royal National Orthopaedic Hospital, Stanmore, HA7 4LP , UK
| |
Collapse
|
37
|
|