1
|
Thundiparambil Venu A, Vijayan J, Ammanamveetil MHA, Kottekkattu Padinchati K. An Insightful Overview of Microbial Biosurfactant: A Promising Next-Generation Biomolecule for Sustainable Future. J Basic Microbiol 2024; 64:e2300757. [PMID: 38934506 DOI: 10.1002/jobm.202300757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 06/28/2024]
Abstract
Microbial biosurfactant is an emerging vital biomolecule of the 21st century. They are amphiphilic compounds produced by microorganisms and possess unique properties to reduce surface tension activity. The use of microbial surfactants spans most of the industrial fields due to their biodegradability, less toxicity, being environmentally safe, and being synthesized from renewable sources. These would be highly efficient eco-friendly alternatives to petroleum-derived surfactants that would open up new approaches to research on the production of biosurfactants. In the upcoming era, biobased surfactants will become a dominating multifunctional compound in the world market. Research on biosurfactants ranges from the search for novel microorganisms that can produce new molecules, structural and physiochemical characterization of biosurfactants, and fermentation process for enhanced large-scale productivity and green applications. The main goal of this review is to provide an overview of the recent state of knowledge and trends about microbially derived surfactants, various aspects of biosurfactant production, definition, properties, characteristics, diverse advances, and applications. This would lead a long way in the production of biosurfactants as globally successful biomolecules of the current century.
Collapse
Affiliation(s)
- Athira Thundiparambil Venu
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Jasna Vijayan
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Mohamed Hatha Abdulla Ammanamveetil
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
- CUSAT-NCPOR Centre for Polar Science, Kochi, Kerala, India
| | - Krishnan Kottekkattu Padinchati
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, India
| |
Collapse
|
2
|
Hasan AMA, Kamal RS, Farag RK, Abdel-Raouf ME. Petroleum sludge formation and its treatment methodologies: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8369-8386. [PMID: 38172321 PMCID: PMC10824819 DOI: 10.1007/s11356-023-31674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Different petroleum operations produce huge amount of oil sludge annually. For instance, US EPA estimates the annual sludge production of each US refinery of 30,000 tons, while the average oily sludge produced from petrochemical industries in China is estimated about 3 million tons per year. In the last year, our center could recover about 30,206 barrels of raw oil from 32,786 barrels of tank bottom sludge (TBS) for different petroleum companies. This sludge causes huge economic losses besides its negative environmental impacts. The accumulation of sludge in the tanks results in reducing the tanks' capacity for storing liquid crude, accelerating the corrosion of the tanks, delay in the production schedule, and disturbing the whole production operation. There are diverse treatment methodologies such as solvent treatment, addition of certain chemicals, and centrifuging. Of course, the environmental regulations and the overall cost limitations are very important in deciding the preferred applicable method(s). Although several works handled the problem of sludge deposition and treatment from different aspects, we intend to introduce a different work. First, composition, formation, types, and properties of TBS were reviewed. Then, environmental and economic problems caused by TBS were revised. At last, different methodologies applied for treatment of oily TBS to recover oil and safe disposal of hazardous remains were investigated focusing on the most straightforward and environmentally friendly protocols. It is expected that this review attracts the experts in petroleum chemistry, and other relevant fields and provides a comprehensive understanding of current sludge control and treatment research.
Collapse
Affiliation(s)
- Abdulraheim M A Hasan
- Tanks Services Center (TSC), Egyptian Petroleum Research Institute (EPRI), 1 Ahmed Elzomor Street, Nasr City, Cairo, Egypt
| | - Rasha S Kamal
- Tanks Services Center (TSC), Egyptian Petroleum Research Institute (EPRI), 1 Ahmed Elzomor Street, Nasr City, Cairo, Egypt
| | - Reem K Farag
- Tanks Services Center (TSC), Egyptian Petroleum Research Institute (EPRI), 1 Ahmed Elzomor Street, Nasr City, Cairo, Egypt
| | - Manar E Abdel-Raouf
- Tanks Services Center (TSC), Egyptian Petroleum Research Institute (EPRI), 1 Ahmed Elzomor Street, Nasr City, Cairo, Egypt.
| |
Collapse
|
3
|
Trend in Research on Characterization, Environmental Impacts and Treatment of Oily Sludge: A Systematic Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227795. [PMID: 36431896 PMCID: PMC9695482 DOI: 10.3390/molecules27227795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Oily sludge is a hazardous material generated from the petroleum industry that has attracted increasing research interest. Although several review articles have dealt with specific subtopics focusing on the treatment of oily sludge based on selected references, no attempt has been made to demonstrate the research trend of oily sludge comprehensively and quantitatively. This study conducted a systematic review to analyze and evaluate all oily sludge-related journal articles retrieved from the Web of Science database. The results show that an increase in oily sludge-related research did not take place until recent years and the distribution of the researchers is geographically out of balance. Most oily sludge-related articles focused on treatment for harmfulness reduction or valorization with limited coverage of formation, characterization, and environmental impact assessment of oily sludge. Pyrolytic treatment has attracted increasing research attention in recent years. So far, the research findings have been largely based on laboratory-scale experiments with insufficient consideration of the cost-effectiveness of the proposed treatment methods. Although many methods have been proposed, few alone could satisfactorily achieve cost-effective treatment goals. To enable sustainable management of oily sludge on a global scale, efforts need to be made to fund more research projects, especially in the major oil-producing countries. Pilot-scale experiments using readily available and affordable materials should be encouraged for practical purposes. This will allow a sensible cost-benefit analysis of a proposed method/procedure for oily sludge treatment. To improve the treatment performance, combined methods are more desirable. To inform the smart selection of methods for the treatment of different oily sludge types, it is suggested to develop universally accepted evaluation systems for characterization and environmental risk of oily sludge.
Collapse
|
4
|
Tsai WT, Lin YQ, Tsai CH, Shen YH. Production of Mesoporous Magnetic Carbon Materials from Oily Sludge by Combining Thermal Activation and Post-Washing. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5794. [PMID: 36013931 PMCID: PMC9414482 DOI: 10.3390/ma15165794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
In this work, the oily sludge (OS) from a local waste oil recycling plant was reused as a precursor for producing porous magnetic carbon composites (CC) by pyrolysis, followed by carbon dioxide activation. Based on the thermogravimetric analysis (TGA) of the OS feedstock, the preparation experiments were performed at 800−900 °C. From the pore analysis of the CC products, it indicated an increasing trend, as the BET surface area greatly increased from about 1.0 to 44.30 m2/g. In addition, the enhancement effect on the pore properties can be consistently obtained from the acid-washed CC products because the existing and new pores were reformed due to the leaching-out of inorganic minerals. It showed an increase from 32.27 to 94.45 m2/g and 44.30 to 94.52 m2/g at 850 and 900 °C, respectively, showing their mesoporous features. These porous and iron-containing features were also observed by the scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). In addition, the adsorption removal of total organic carbon (TOC) in the raw wastewater, by the CC product, showed its high performance (>80%).
Collapse
Affiliation(s)
- Wen-Tien Tsai
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Yu-Quan Lin
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Chi-Hung Tsai
- Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Yun-Hwei Shen
- Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
5
|
Sonawane JM, Rai AK, Sharma M, Tripathi M, Prasad R. Microbial biofilms: Recent advances and progress in environmental bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153843. [PMID: 35176385 DOI: 10.1016/j.scitotenv.2022.153843] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/15/2022] [Accepted: 02/09/2022] [Indexed: 05/21/2023]
Abstract
Microbial biofilms are formed by adherence of the bacteria through their secreted polymer matrices. The major constituents of the polymer matrices are extracellular DNAs, proteins, polysaccharides. Biofilms have exhibited a promising role in the area of bioremediation. These activities can be further improved by tuning the parameters like quorum sensing, characteristics of the adhesion surface, and other environmental factors. Organic pollutants have created a global concern because of their long-term toxicity on human, marine, and animal life. These contaminants are not easily degradable and continue to prevail in the environment for an extended period. Biofilms are being used for the remediation of different pollutants, among which organic pollutants have been of significance. The bioremediation of organic contaminants using biofilms is an eco-friendly, cheap, and green process. However, the development of this technology demands knowledge on the mechanism of action of the microbes to form the biofilm, types of specific bacteria or fungi responsible for the degradation of a particular organic compound, and the mechanistic role of the biofilm in the degradation of the pollutants. This review puts forth a comprehensive summary of the role of microbial biofilms in the bioremediation of different environment-threatening organic pollutants.
Collapse
Affiliation(s)
- Jayesh M Sonawane
- Department of Chemistry, Alexandre-Vachon Pavilion, Laval University, Quebec G1V 0A6, Canada
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya, 793101, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari 845401, Bihar, India.
| |
Collapse
|
6
|
Abstract
Oil–water emulsions are widely generated in industries, which may facilitate some processes (e.g., transportation of heavy oil, storage of milk, synthesis of chemicals or materials, etc.) or lead to serious upgrading or environmental issues (e.g., pipeline plugging, corrosions to equipment, water pollution, soil pollution, etc.). Herein, the sources, classification, formation, stabilization, and separation of oil–water emulsions are systematically summarized. The roles of different interfacially active materials–especially the fine particles–in stabilizing the emulsions have been discussed. The advanced development of micro force measurement technologies for oil–water emulsion investigation has also been presented. To provide insights for future industrial application, the separation of oil–water emulsions by different methods are summarized, as well as the introduction of some industrial equipment and advanced combined processes. The gaps between some demulsification processes and industrial applications are also touched upon. Finally, the development perspectives of oil–water treatment technology are discussed for the purpose of achieving high-efficiency, energy-saving, and multi-functional treatment. We hope this review could bring forward the challenges and opportunities for future research in the fields of petroleum production, coal production, iron making, and environmental protection, etc.
Collapse
|
7
|
Liu L, Song Z, Yu C, Yu G, Ellam RM, Liu H, Singh BP, Wang H. Silicon Effects on Biomass Carbon and Phytolith-Occluded Carbon in Grasslands Under High-Salinity Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:657. [PMID: 32528507 PMCID: PMC7264264 DOI: 10.3389/fpls.2020.00657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/28/2020] [Indexed: 05/06/2023]
Abstract
Changes in climate and land use are causing grasslands to suffer increasingly from abiotic stresses, including soil salinization. Silicon (Si) amendment has been frequently proposed to improve plant resistance to multiple biotic and abiotic stresses and increase ecosystem productivity while controlling the biogeochemical carbon (C) cycle. However, the effects of Si on plant C distribution and accumulation in salt-suffering grasslands are still unclear. In this study, we investigated how salt ions affected major elemental composition in plants and whether Si enhanced biomass C accumulation in grassland species in situ. In samples from the margins of salt lakes, our results showed that the differing distance away from the shore resulted in distinctive phytocoenosis, including halophytes and moderately salt-tolerant grasses, which are closely related to changing soil properties. Different salinity (Na+/K+, ranging from 0.02 to 11.8) in plants caused negative effects on plant C content that decreased from 53.9 to 29.2% with the increase in salinity. Plant Si storage [0.02-2.29 g Si m-2 dry weight (dw)] and plant Si content (0.53 to 2.58%) were positively correlated with bioavailable Si in soils (ranging from 94.4 to 192 mg kg-1). Although C contents in plants and phytoliths were negatively correlated with plant Si content, biomass C accumulation (1.90-83.5 g C m-2 dw) increased due to the increase of Si storage in plants. Plant phytolith-occluded carbon (PhytOC) increased from 0.07 to 0.28‰ of dry mass with the increase of Si content in moderately salt-tolerant grasses. This study demonstrates the potential of Si in mediating plant salinity and C assimilation, providing a reference for potential manipulation of long-term C sequestration via PhytOC production and biomass C accumulation in Si-accumulator dominated grasslands.
Collapse
Affiliation(s)
- Linan Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Changxun Yu
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Guanghui Yu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Rob M. Ellam
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
- Scottish Universities Environmental Research Centre, East Kilbride, United Kingdom
| | - Hongyan Liu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Bhupinder Pal Singh
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
8
|
Qi L, Christopher GF. Role of Flagella, Type IV Pili, Biosurfactants, and Extracellular Polymeric Substance Polysaccharides on the Formation of Pellicles by Pseudomonas aeruginosa. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5294-5304. [PMID: 30883129 DOI: 10.1021/acs.langmuir.9b00271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microbial biofilms are viscoelastic materials formed by bacteria, which occur on solid surfaces, at liquid interfaces, or in free solution. Although solid surface biofilms have been widely studied, pellicles, biofilms at liquid interfaces, have had significantly less focus. In this work, interfacial shear rheology and scanning electron microscopy imaging are used to characterize how flagella, type IV pili, biosurfactants, and extracellular polymeric substance polysaccharides affect the formation of pellicles by Pseudomonas aeruginosa at an air/water interface. Pellicles still form with the loss of a single biological attachment mechanism, which is hypothesized to be due to surface tension-aided attachment. Changes in the surface structure of the pellicles are observed when changing both the function/structure of type IV pili, removing the flagella, or stopping the expression of biosurfactants. However, these changes do not appear to affect pellicle elasticity in a consistent way. Traits that affect adsorption and growth/spreading appear to affect pellicles in a manner consistent with literature results for solid surface biofilms; small differences are seen in attachment-related mechanisms, which may occur due to surface tension.
Collapse
Affiliation(s)
- Lingjuan Qi
- Department of Mechanical Engineering , Texas Tech University , Lubbock 79409 , United States
| | - Gordon F Christopher
- Department of Mechanical Engineering , Texas Tech University , Lubbock 79409 , United States
| |
Collapse
|
9
|
Esmaeilnejad-Ganji SM, Esmaeilnejad-Ganji SMR. Osteoarticular manifestations of human brucellosis: A review. World J Orthop 2019; 10:54-62. [PMID: 30788222 PMCID: PMC6379739 DOI: 10.5312/wjo.v10.i2.54] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Brucellosis is a common global zoonotic disease, which is responsible for a range of clinical manifestations. Fever, sweating and musculoskeletal pains are observed in most patients. The most frequent complication of brucellosis is osteoarticular involvement, with 10% to 85% of patients affected. The sacroiliac (up to 80%) and spinal joints (up to 54%) are the most common affected sites. Spondylitis and spondylodiscitis are the most frequent complications of brucellar spinal involvement. Peripheral arthritis, osteomyelitis, discitis, bursitis and tenosynovitis are other osteoarticular manifestations, but with a lower prevalence. Spinal brucellosis has two forms: focal and diffuse. Epidural abscess is a rare complication of spinal brucellosis but can lead to permanent neurological deficits or even death if not treated promptly. Spondylodiscitis is the most severe form of osteoarticular involvement by brucellosis, and can have single- or multi-focal involvement. Early and appropriate diagnosis and treatment of the disease is important in order to have a successful management of the patients with osteoarticular brucellosis. Brucellosis should be considered as a differential diagnosis for sciatic and back pain, especially in endemic regions. Patients with septic arthritis living in endemic areas also need to be evaluated in terms of brucellosis. Physical examination, laboratory tests and imaging techniques are needed to diagnose the disease. Radiography, computed tomography, magnetic resonance imaging (MRI) and bone scintigraphy are imaging techniques for the diagnosis of osteoarticular brucellosis. MRI is helpful to differentiate between pyogenic spondylitis and brucellar spondylitis. Drug medications (antibiotics) and surgery are the only two options for the treatment and cure of osteoarticular brucellosis.
Collapse
Affiliation(s)
- Seyed Mokhtar Esmaeilnejad-Ganji
- Clinical Research Development Center, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Orthopedics, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | | |
Collapse
|
10
|
The Role of Biosurfactants in the Continued Drive for Environmental Sustainability. SUSTAINABILITY 2018. [DOI: 10.3390/su10124817] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biosurfactants are microbial products that have been increasingly researched due to their many identified advantages, such as low toxicity and high activity at extreme temperatures, but more importantly, they are biodegradable and compatible with the environment. Biosurfactants are versatile products with vast applications in the clean-up of environmental pollutants through biodegradation and bioremediation. They also have applications in the food, pharmaceutical, and other industries. These advantages and wide range of applications have led to the continued interest in biosurfactants. In particular, there is a growing discussion around environmental sustainability and the important role that biosurfactants will increasingly play in the near future, for example, via the use of renewable by-products as substrates, waste reduction, and potential reuse of the treated waste. This has resulted in increased attention on these microbial products in industry. Research highlighting the potential of biosurfactants in environmental sustainability is required to drive efforts to make biosurfactants more viable for commercial and large-scale applications; making them available, cheaper and economically sustainable. The present review discusses the unique relationship between biosurfactants and environmental sustainability, especially the role that biosurfactants play in the clean-up of environmental pollutants and, therefore, increasing environmental protection.
Collapse
|
11
|
De Almeida DG, Soares Da Silva RDCF, Luna JM, Rufino RD, Santos VA, Banat IM, Sarubbo LA. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances. Front Microbiol 2016; 7:1718. [PMID: 27843439 PMCID: PMC5087163 DOI: 10.3389/fmicb.2016.01718] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/13/2016] [Indexed: 11/25/2022] Open
Abstract
The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.
Collapse
Affiliation(s)
- Darne G De Almeida
- Northeast Biotechnology Network (RENORBIO), Federal Rural University of PernambucoRecife, Brazil; Advanced Institute of Technology and InnovationRecife, Brazil
| | - Rita de Cássia F Soares Da Silva
- Northeast Biotechnology Network (RENORBIO), Federal Rural University of PernambucoRecife, Brazil; Advanced Institute of Technology and InnovationRecife, Brazil
| | - Juliana M Luna
- Advanced Institute of Technology and InnovationRecife, Brazil; Center of Sciences and Technology, Catholic University of Pernambuco (UNICAP)Recife, Brazil
| | - Raquel D Rufino
- Advanced Institute of Technology and InnovationRecife, Brazil; Center of Sciences and Technology, Catholic University of Pernambuco (UNICAP)Recife, Brazil
| | - Valdemir A Santos
- Advanced Institute of Technology and InnovationRecife, Brazil; Center of Sciences and Technology, Catholic University of Pernambuco (UNICAP)Recife, Brazil
| | - Ibrahim M Banat
- Advanced Institute of Technology and InnovationRecife, Brazil; Faculty of Life and Health Sciences, School of Biomedical Sciences, University of UlsterUlster, UK
| | - Leonie A Sarubbo
- Northeast Biotechnology Network (RENORBIO), Federal Rural University of PernambucoRecife, Brazil; Advanced Institute of Technology and InnovationRecife, Brazil; Center of Sciences and Technology, Catholic University of Pernambuco (UNICAP)Recife, Brazil
| |
Collapse
|
12
|
Zhang Z, Christopher G. Effect of Particulate Contaminants on the Development of Biofilms at Air/Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2724-30. [PMID: 26943272 DOI: 10.1021/acs.langmuir.6b00143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of biofilms at air/water or oil/water interfaces has important ramifications on several applications, but it has received less attention than biofilm formation on solid surfaces. A key difference between the growth of biofilms on solid surfaces versus liquid interfaces is the range of complicated boundary conditions the liquid interface can create that may affect bacteria, as they adsorb onto and grow on the interface. This situation is exacerbated by the existence of complex interfaces in which interfacially adsorbed components can even more greatly affect interfacial boundary conditions. In this work, we present evidence as to how particle-laden interfaces impact biofilm growth at an air/water interface. We find that particles can enhance the rate of growth and final strength of biofilms at liquid interfaces by providing sites of increased adhesive strength for bacteria. The increased adhesion stems from creating localized areas of hydrophobicity that protrude in the water phase and provide sites where bacteria preferentially adhere. This mechanism is found to be primarily controlled by particle composition, with particle size providing a secondary effect. This increased adhesion through interfacial conditions creates biofilms with properties similar to those observed when adhesion is increased through biological means. Because of the generally understood ubiquity of increased bacteria attachment to hydrophobic surfaces, this result has general applicability to pellicle formation for many pellicle-forming bacteria.
Collapse
Affiliation(s)
- Zhenhuan Zhang
- Department of Mechanical Engineering, Texas Tech University , Lubbock, Texas 79409-1035, United States
| | - Gordon Christopher
- Department of Mechanical Engineering, Texas Tech University , Lubbock, Texas 79409-1035, United States
| |
Collapse
|
13
|
Wei W, Wang T, Yi C, Liu J, Liu X. Self-assembled micelles based on branched poly(styrene-alt-maleic anhydride) as particulate emulsifiers. RSC Adv 2015. [DOI: 10.1039/c4ra12100g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The self-assembled micelles of branched poly(styrene-alt-maleic anhydride) (BPSMA) are prepared and exhibit much superior emulsifying performance over the corresponding linear copolymer micelles as particulate emulsifiers.
Collapse
Affiliation(s)
- Wei Wei
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Ting Wang
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Chenglin Yi
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Jingcheng Liu
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Xiaoya Liu
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| |
Collapse
|