1
|
Guo C, Ding T, Cheng Y, Zheng J, Fang X, Feng Z. The rational design, biofunctionalization and biological properties of orthopedic porous titanium implants: a review. Front Bioeng Biotechnol 2025; 13:1548675. [PMID: 40078794 PMCID: PMC11897010 DOI: 10.3389/fbioe.2025.1548675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Porous titanium implants are becoming an important tool in orthopedic clinical applications. This review provides a comprehensive survey of recent advances in porous titanium implants for orthopedic use. First, the review briefly describes the characteristics of bone and the design requirements of orthopedic implants. Subsequently, the pore size and structural design of porous titanium alloy materials are presented, then we introduce the application of porous titanium alloy implants in orthopedic clinical practice, including spine surgery, joint surgery, and the treatment of bone tumors. Following that, we describe the surface modifications applied to porous titanium implants to obtain better biological functions. Finally, we discuss incorporating environmental responsive mechanisms into porous titanium alloy materials to achieve additional functionalities.
Collapse
Affiliation(s)
- Chunliang Guo
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Ding
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Cheng
- Wuxi Xishan NJU Institute of Applied Biotechnology, Wuxi, Jiangsu, China
| | - Jianqing Zheng
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiule Fang
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyun Feng
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Escudero ML, García-Alonso MC, Chico B, Lozano RM, Sánchez-López L, Flores-Sáenz M, Cristóbal-Aguado S, Moreno-Gómez-Toledano R, Aguado-Henche S. Hematological Response to Particle Debris Generated During Wear-Corrosion Processes of CoCr Surfaces Modified with Graphene Oxide and Hyaluronic Acid for Joint Prostheses. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1815. [PMID: 39591056 PMCID: PMC11597578 DOI: 10.3390/nano14221815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
Various surface modifications to increase the lifespan of cobalt-chromium (CoCr) joint prostheses are being studied to reduce the wear rate in bone joint applications. One recently proposed modification involves depositing graphene oxide functionalized with hyaluronic acid (a compound present in joints) on CoCr surfaces, which can act as a solid lubricant. This paper analyzes the biological alterations caused by wear-corrosion phenomena that occur in joints, both from the perspective of the worn surface (in vitro model) and the particles generated during the wear processes (in vivo model). The analysis of the inflammatory response of macrophage was performed on CoCr surfaces modified with graphene oxide and functionalized with hyaluronic acid (CoCr-GO-HA), before and after wear-corrosion processes. The wear particles released during the wear-corrosion tests of the CoCr-GO-HA/CoCr ball pair immersed in 3 g/L hyaluronic acid were intra-articularly injected into the experimental animals. The hematological analysis in vivo was made considering a murine model of intra-articular injection into the left knee in male adult Wistar rats, at increasing concentrations of the collected wear particles dispersed in 0.9% NaCl. Non-significant differences in the inflammatory response to unworn CoCr-GO-HA surfaces and control (polystyrene) were obtained. The wear-corrosion of the CoCr-GO-HA disk increased the inflammatory response at both 72 and 96 h of material exposure compared to the unworn CoCr-GO-HA surfaces, although the differences were not statistically significant. The pro-inflammatory response of the macrophages was reduced on the worn surfaces of the CoCr modified and functionalized with graphene oxide (GO) and hyaluronic acid (HA), compared to the worn surfaces of the unmodified CoCr. The hematological analysis and tissue reactions after intra-articular injection did not reveal pathological damage, with average hematological values recorded, although slight reductions in creatinine and protein within non-pathological ranges were found. Some traces of biomaterial particles in the knee at the highest concentration of injected particles were only found but without inflammatory signs. The results show the potential benefits of using graphene in intra-articular prostheses, which could improve the quality of life for numerous patients.
Collapse
Affiliation(s)
- María L. Escudero
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Gregorio del Amo, 8, 28040 Madrid, Spain; (M.L.E.); (B.C.); (L.S.-L.)
| | - Maria C. García-Alonso
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Gregorio del Amo, 8, 28040 Madrid, Spain; (M.L.E.); (B.C.); (L.S.-L.)
| | - Belén Chico
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Gregorio del Amo, 8, 28040 Madrid, Spain; (M.L.E.); (B.C.); (L.S.-L.)
| | - Rosa M. Lozano
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), C/Ramiro de Maeztu, 28040 Madrid, Spain;
| | - Luna Sánchez-López
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Gregorio del Amo, 8, 28040 Madrid, Spain; (M.L.E.); (B.C.); (L.S.-L.)
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), C/Ramiro de Maeztu, 28040 Madrid, Spain;
- Program in Advanced Materials and Nanotechnology, Doctoral School, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Manuel Flores-Sáenz
- Program in Translational Medicine, Doctoral School, Universidad de Alcalá, 28801 Alcalá de Henares, Madrid, Spain;
- Universidad de Alcalá, Area of Human Anatomy and Embryology, Department of Surgery, Medical and Social Sciences, Campus Científico-Tecnológico, Crta. Madrid-Barcelona, Km. 33,600, 28805 Alcalá de Henares, Madrid, Spain;
| | - Soledad Cristóbal-Aguado
- Universidad de Alcalá, Department of Nursery, Campus Científico-Tecnológico, Crta. Madrid-Barcelona, Km. 33,600, 28805 Alcalá de Henares, Madrid, Spain;
- Principe de Asturias University Hospital (HUPA), Campus Científico-Tecnológico, Av. Principal de la Universidad, s/n, 28805 Alcalá de Henares, Madrid, Spain
| | - Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, Area of Human Anatomy and Embryology, Department of Surgery, Medical and Social Sciences, Campus Científico-Tecnológico, Crta. Madrid-Barcelona, Km. 33,600, 28805 Alcalá de Henares, Madrid, Spain;
| | - Soledad Aguado-Henche
- Universidad de Alcalá, Area of Human Anatomy and Embryology, Department of Surgery, Medical and Social Sciences, Campus Científico-Tecnológico, Crta. Madrid-Barcelona, Km. 33,600, 28805 Alcalá de Henares, Madrid, Spain;
| |
Collapse
|
3
|
Sellin ML, Hansmann D, Bader R, Jonitz-Heincke A. Influence of metallic particles and TNF on the transcriptional regulation of NLRP3 inflammasome-associated genes in human osteoblasts. Front Immunol 2024; 15:1397432. [PMID: 38751427 PMCID: PMC11094288 DOI: 10.3389/fimmu.2024.1397432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction The release of mature interleukin (IL-) 1β from osteoblasts in response to danger signals is tightly regulated by the nucleotide-binding oligomerization domain leucine-rich repeat and pyrin-containing protein 3 (NLRP3) inflammasome. These danger signals include wear products resulting from aseptic loosening of joint arthroplasty. However, inflammasome activation requires two different signals: a nuclear factor-kappa B (NF-κB)-activating priming signal and an actual inflammasome-activating signal. Since human osteoblasts react to wear particles via Toll-like receptors (TLR), particles may represent an inflammasome activator that can induce both signals. Methods Temporal gene expression profiles of TLRs and associated intracellular signaling pathways were determined to investigate the period when human osteoblasts take up metallic wear particles after initial contact and initiate a molecular response. For this purpose, human osteoblasts were treated with metallic particles derived from cobalt-chromium alloy (CoCr), lipopolysaccharides (LPS), and tumor necrosis factor-alpha (TNF) alone or in combination for incubation times ranging from one hour to three days. Shortly after adding the particles, their uptake was observed by the change in cell morphology and spectral data. Results Exposure of osteoblasts to particles alone increased NLRP3 inflammasome-associated genes. The response was not significantly enhanced when cells were treated with CoCr + LPS or CoCr + TNF, whereas inflammation markers were induced. Despite an increase in genes related to the NLRP3 inflammasome, the release of IL-1β was unaffected after contact with CoCr particles. Discussion Although CoCr particles affect the expression of NLRP3 inflammasome-associated genes, a single stimulus was not sufficient to prime and activate the inflammasome. TNF was able to prime the NLRP3 inflammasome of human osteoblasts.
Collapse
Affiliation(s)
- Marie-Luise Sellin
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | | | | | | |
Collapse
|
4
|
Brunken F, Senft T, Herbster M, Relja B, Bertrand J, Lohmann CH. CoNiCrMo Particles, but Not TiAlV Particles, Activate the NLRP3 Inflammasome in Periprosthetic Cells. Int J Mol Sci 2023; 24:ijms24065108. [PMID: 36982177 PMCID: PMC10048784 DOI: 10.3390/ijms24065108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Aseptic loosening is the main reason for arthroplasty failure. The wear particles generated at the tribological bearings are thought to induce an inflammatory tissue response, leading to bone loss and the subsequent loosening of the implant. Different wear particles have been shown to activate the inflammasome, thereby contributing to an inflammatory milieu in the direct vicinity of the implant. The aim of this study was to investigate whether the NLRP3 inflammasome is activated by different metal particles in vitro and in vivo. Three different cell lines representing periprosthetic cell subsets (MM6, MG63 and Jurkat) were incubated with different amounts of TiAlV or CoNiCrMo particles. The activation of the NLRP3 inflammasome was determined through the detection of the caspase 1 cleavage product p20 in a Western blot. The formation of the inflammasome was also investigated in vivo using immunohistological staining for ASC in primary synovial tissues as well as tissues containing TiAlV and CoCrMo particles and in vitro after the stimulation of the cells. The results show that the CoCrMo particles induced ASC more markedly, as a readout for inflammasome formation in vivo, compared to TiAlV particular wear. The CoNiCrMo particles also induced ASC-speck formation in all the tested cell lines, which was not induced by the TiAlV particles. The Western blot shows that NRLP3 inflammasome activation, measured through caspase 1 cleavage, was increased only by the CoNiCrMo particles in the MG63 cells. We conclude from our data that the activation of the inflammasome is mainly driven by CoNiCrMo particles and less by TiAlV particles, indicating that different inflammatory pathways are activated by the different alloys.
Collapse
Affiliation(s)
- Fenna Brunken
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Tristan Senft
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Maria Herbster
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Institute of Materials and Joining Technology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Borna Relja
- Department of Experimental Radiology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-67-15804
| | - Christoph H. Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| |
Collapse
|
5
|
Costa MD, Donner S, Bertrand J, Pop OL, Lohmann CH. Hypersensitivity and lymphocyte activation after total hip arthroplasty. ORTHOPADIE (HEIDELBERG, GERMANY) 2023; 52:214-221. [PMID: 36820851 DOI: 10.1007/s00132-023-04349-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/24/2023]
Abstract
In the last decades total hip arthroplasty (THA) has become a standard procedure with many benefits but also a few still unsolved complications, which can lead to surgical revision in 19-23% of cases. Thus, aseptic loosening and metal hypersensitivity remain challenges. The phenomenon of wear debris causes chronic inflammation, which produces osteolysis and aseptic loosening. Wear debris promotes osteoclast production and inhibits osteoblasts by secretion of pro-inflammatory cytokines. Micro-abrasions can be induced by abrasive, adhesive and fatigue wear and cause a liberation of metal ions, which lead to another immune response elicited mostly by macrophages. Another reaction in the neocapsule can be a type IV hypersensitivity reaction to various alloys, containing metals such as nickel, cobalt and chromium. Patch testing and the lymphocyte transformation test (LTT) are not the best diagnostic possibilities to exclude a postoperative hypersensitivity reaction, because of the different alignment of the epicutaneous cells compared to the periprosthetic deep tissue. This hypersensitivity reaction is mostly induced by cytokines, which are secreted by macrophages rather than lymphocytes. In cell cultures and in animal studies, multipotent mesenchymal stem cells (MSC) have been shown to play a role in improving initial implant integration, to limit periprosthetic osteolysis and also to reconstitute peri-implant bone stock during implant revision. Thus, MSC might be used in the future to prolong the durability of THA. A better understanding of the interactions between primary chronic inflammation, corrosion, osteolysis and hypersensitivity is mandatory to develop new therapeutic strategies, aiming at the reduction of the incidence of implant failures. In this article the underlying immunological mechanisms to aseptic loosening are presented.
Collapse
Affiliation(s)
- Maximilian D Costa
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Department of Morphological Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Stefanie Donner
- Centre for Musculoskeletal Surgery, Charité-University Medicine, Berlin, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Ovidiu-Laurean Pop
- Department of Morphological Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
6
|
Podzimek S, Himmlova L, Janatova T, Bjørklund G, Vrbova R, Janovska M, Peana M, Chasapis CT, Vinsu A, Prochazkova J, Duskova J. Metal hypersensitivity and pro-inflammatory cytokine production in patients with failed orthopedic implants: A case-control study. Clin Immunol 2022; 245:109152. [DOI: 10.1016/j.clim.2022.109152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022]
|
7
|
Effect of deep rolling on subsurface conditions of CoCr28Mo6 wrought alloy to improve the wear resistance of endoprostheses. J Mech Behav Biomed Mater 2021; 118:104398. [PMID: 33667927 DOI: 10.1016/j.jmbbm.2021.104398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022]
Abstract
Wear of orthopaedic endoprostheses is associated with adverse local and systemic reactions and can lead to early implant failure. Manufacturing determines the initial subsurface microstructure of an alloy that influences the implant's wear behaviour. Therefore, this study aims at generating enhanced wear resistances by a modification of the surface and subsurface microstructure of a CoCr28Mo6 wrought alloy by applying deep rolling. The state of the art was investigated by means of eleven retrieved CoCr28Mo6 hip implant components from different manufacturers with respect to their subsurface microstructure and micro hardness profiles. CoCr28Mo6 wrought alloy samples (DIN EN ISO 5832-12) were aged at 750 °C for 24 h and/or plastically deformed by deep rolling with varying axial forces (170 N, 230 N and 250 N). The samples were metallographically prepared and investigated using optical and scanning electron microscopy with EDS and EBSD, micro hardness testing, XRD and tribological testing. The retrieved implant components revealed that, independent of the manufacturer, neither the head nor the stem trunnion exhibited a defined subsurface condition. The dominant phase within the implants was face-centered cubic (fcc). Some implants exhibited single hexagonal close-packed (hcp) grains due to a stress-induced phase transformation. The initial CoCr28Mo6 wrought alloy had a fcc crystal structure. After isothermal aging, the matrix entirely transformed to a hcp structure. In the initial fcc-condition, deep rolling generated a plastically deformed surface layer within the first 100 μm and stress-induced phase transformation to hcp was observed. Micro hardness gradients were present in the subsurface of up to 600 μm depth and exhibited a maximum increase of 34% by deep rolling in comparison to the initial fcc-matrix. This trend was confirmed by a correlated increase in residual compressive stresses. In tribological tests under serum lubrication, the modified samples generated lower wear in comparison to the contemporarily used fcc-matrix samples. This study demonstrates that deep rolling is an effective processing to modify the subsurface of a biomedical CoCr28Mo6 wrought alloy in order to increase the wear resistance. The intentional transformation from the fcc to the hcp phase induced by deformation offers great potential for implant application.
Collapse
|
8
|
Laumonier T, Ruffieux E, Paccaud J, Kindler V, Hannouche D. In vitro evaluation of human myoblast function after exposure to cobalt and chromium ions. J Orthop Res 2020; 38:1398-1406. [PMID: 31883135 DOI: 10.1002/jor.24579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 12/23/2019] [Indexed: 02/04/2023]
Abstract
The replacement of a native hip joint by a metal-on-metal prosthesis may induce deleterious inflammatory side effects that are associated with the release of wear particles and metal ions. These events are referred to the adverse reaction to metal debris (ARMD) and the adverse local tissue reaction (ALTR). While wear particles seem involved in ARMD, the role of metal ions in ALTR and their impact on myoblasts, located in the prosthesis vicinity, has not been fully identified. To clarify this issue we investigated, using an in vitro culture system, the effect of cobalt and/or chromium ions (Co2+ and/or Cr3+ ) on human myoblast proliferation, cellular differentiation, and inflammatory marker expression. Freshly isolated human myoblasts were cultured in media supplemented with graded concentrations of Co2+ and/or Cr3+ . Co2+ induced a concentration-dependent decrease of both myoblast viability and myogenic differentiation while Cr3+ did not. Co2+ or Co2+ /Cr3+ also induced the upregulation of ICAM-1, whereas HLA-DR expression was unaffected. Moreover, allogenic monocytes induced the synergistic increase of Co2+ -induced ICAM-1 expression. We also found that Co2+ stabilized HIF-1α and increased TLR4, tumor necrosis factor-alpha (TNF-α), and interleukin 1β (IL-1β) expression in a dose and time-dependent manner in human myoblasts. This study showed that Co2+ , but not Cr3+ , was toxic toward myoblasts and induced, in the surviving cells, expression of inflammatory markers such as ICAM-1, TLR4, TNF-α, and IL-1β. This suggests that Co2+ , most efficiently in the presence of monocytes, may be a key inducer of ALTR, which may, if severe and long-lasting, eventually result in prosthesis loosening.
Collapse
Affiliation(s)
- Thomas Laumonier
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Etienne Ruffieux
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Joris Paccaud
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Vincent Kindler
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Didier Hannouche
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
9
|
Hobza M, Milde D, Slobodova Z, Gallo J. The number of lymphocytes increases in the periprosthetic tissues with increasing time of implant service in non-metal-on-metal total joint arthroplasties: A role of metallic byproducts? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 165:416-427. [PMID: 32435063 DOI: 10.5507/bp.2020.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/27/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The objective of the study was to determine the association between periprosthetic concentrations of selected metals and changes induced in periprosthetic tissues (PT). METHODS PT from 24 patients with metal-on-polyethylene or ceramic-on-polyethylene total joint replacements (TJRs) were examined. Samples underwent histological examination including quantification of cellular populations. Determination of metals was performed according to the published methodology. Results were processed using correlation analysis and Principal Component Analysis (PCA), respectively. RESULTS Growing concentration of metals in the PT was found as a function of length of exposure (LoE). Differences in Ti, Co, Cr and V concentrations (per α = 0.05) depended on the type of alloy the implants were made from. On the contrary, the implant composition did not reflect in the different numbers of immune cells per 1 high power field, not even in distribution of the membrane type according to the Krenn classification. PCA revealed several clusters in dependence on the LoE, type of the membrane and presence of immune cells. High representation of lymphocytes in the PT was typical for clusters with the longest LoE while a higher representation of neutrophils was typical for a shorter time to reoperation. CONCLUSIONS Correlation between the LoE and concentrations of metals in its surroundings was demonstrated. However, the tissue image analysis cannot differentiate finer, potentially metal-induced tissue changes. Importantly, the tissues become more similar with an increasing LoE. We draw a conclusion about predominantly non-specific stimulation of the PT jointly by metal and polyethylene particles in non-metal-on-metal TJRs.
Collapse
Affiliation(s)
- Martin Hobza
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Zuzana Slobodova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, Czech Republic
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic
| |
Collapse
|
10
|
Arnholt CM, White JB, Lowell JA, Perkins MR, Mihalko WM, Kurtz SM. Postmortem Retrieval Analysis of Metallosis and Periprosthetic Tissue Metal Concentrations in Total Knee Arthroplasty. J Arthroplasty 2020; 35:569-578. [PMID: 31699531 DOI: 10.1016/j.arth.2019.08.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/03/2019] [Accepted: 08/14/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The purpose of this study is to determine the preferred sampling location for tissue analysis in total knee arthroplasty (TKA) and to evaluate metal concentrations, inflammatory cytokines, component damage, and tissue metallosis. METHODS Twenty TKA systems were collected at necropsy along with tissue samples from 5 distinct locations. Inductively coupled plasma mass spectrometry (ICP-MS) analysis was performed to determine cobalt (Co), chromium (Cr), and titanium (Ti) concentrations. Synovial fluid cytokine analysis was preformed using a Magnetic Luminex Screening Assay. Femoral components were assesed for damage and tissues were visually scored for metallosis. RESULTS The median metal concentrations were 16 ppb for Co, 46 ppb for Cr, and 9.8 ppb for Ti. There was no association between the tissue collection site and the metal concentration for Co (P = .979), Cr (P = .712), or Ti (P = .854). Twelve of 20 of the necropsy-retrieved TKAs had metallosis, but there was no correlation between Co (P = .48), Cr (P = .89), or Ti (P = .60) concentration and metallosis. Increased Co was associated with decreased tumor necrosis factor alpha (ρ = -0.56, P = .01) and interleukin 1 beta (ρ = -0.48, P = .03). Increased Cr was associated with decreased tumor necrosis factor alpha (ρ= -0.47, P = .03), interleukin 6 (ρ= -0.43, P = .04), and macrophage inflammatory protein 3 alpha (ρ= -0.47, P = .03). CONCLUSION We observed elevated Co, Cr, and Ti concentrations in tissue from necropsy-retrieved TKA. Our findings did not support the hypothesis that tissue metal concentrations were associated with inflammatory cytokines. The results of this research will be useful for the design of future prospective studies.
Collapse
Affiliation(s)
- Christina M Arnholt
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | | | - Julie A Lowell
- University of Tennessee Health Science Center, Memphis, TN
| | | | - William M Mihalko
- University of Tennessee Health Science Center, Memphis, TN; Campbell Clinic Orthopaedics, Memphis, TN
| | - Steven M Kurtz
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA; Exponent Inc, Philadelphia, PA
| |
Collapse
|
11
|
Ort MJ, Geissler S, Rakow A, Schoon J. The Allergic Bone Marrow? The Immuno-Capacity of the Human Bone Marrow in Context of Metal-Associated Hypersensitivity Reactions. Front Immunol 2019; 10:2232. [PMID: 31620137 PMCID: PMC6759684 DOI: 10.3389/fimmu.2019.02232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Arthroplasty ranks among the greatest achievements of surgical medicine, with total hip replacement termed “the operation of the century.” Despite its wide success, arthroplasty bears risks, such as local reactions to implant derived wear and corrosion products. Prevalence of allergies across Western society increases and along the number of reported hypersensitivity reactions to orthopedic implant materials. In this context the main focus is on delayed hypersensitivity (DTH). This mechanism is mainly attributed to T cells and an overreaction of the adaptive immune system. Arthroplasty implant materials are in direct contact with bone marrow (BM), which is discussed as a secondary lymphoid organ. However, the mechanisms of sensitization toward implant wear remain elusive. Nickel and cobalt ions can form haptens with native peptides to activate immune cell receptors and are therefore common T helper allergens in cutaneous DTH. The rising prevalence of metal-related allergy in the general population and evidence for the immune-modulating function of BM allow for the assumption hypersensitivity reactions could occur in peri-implant BM. There is evidence that pro-inflammatory factors released during DTH reactions enhance osteoclast activity and inhibit osteoblast function, an imbalance characteristic for osteolysis. Even though some mechanisms are understood, hypersensitivity has remained a diagnosis of exclusion. This review aims to summarize current views on the pathomechanism of DTH in arthroplasty with emphasis on BM and discusses recent advances and future directions for basic research and clinical diagnostics.
Collapse
Affiliation(s)
- Melanie J Ort
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anastasia Rakow
- Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janosch Schoon
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
12
|
Christiansen RJ, Münch HJ, Bonefeld CM, Thyssen JP, Sloth JJ, Geisler C, Søballe K, Jellesen MS, Jakobsen SS. Cytokine Profile in Patients with Aseptic Loosening of Total Hip Replacements and Its Relation to Metal Release and Metal Allergy. J Clin Med 2019; 8:jcm8081259. [PMID: 31434199 PMCID: PMC6723430 DOI: 10.3390/jcm8081259] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Metal release from total hip replacements (THRs) is associated with aseptic loosening (AL). It has been proposed that the underlying immunological response is caused by a delayed type IV hypersensitivity-like reaction to metals, i.e., metal allergy. The purpose of this study was to investigate the immunological response in patients with AL in relation to metal release and the prevalence of metal allergy. THR patients undergoing revision surgery due to AL or mechanical implant failures were included in the study along with a control group consisting of primary THR patients. Comprehensive cytokine analyses were performed on serum and periimplant tissue samples along with metal analysis using inductive coupled plasma mass spectrometry (ICP-MS). Patient patch testing was done with a series of metals related to orthopedic implant. A distinct cytokine profile was found in the periimplant tissue of patients with AL. Significantly increased levels of the proinflammatory cytokines IL-1β, IL-2, IL-8, IFN-γ and TNF-α, but also the anti-inflammatory IL-10 were detected. A general increase of metal concentrations in the periimplant tissue was observed in both revision groups, while Cr was significantly increased in patient serum with AL. No difference in the prevalence of metal sensitivity was established by patch testing. Increased levels of IL-1β, IL-8, and TNF-α point to an innate immune response. However, the presence of IL-2 and IFN-γ indicates additional involvement of T cell-mediated response in patients with AL, although this could not be detected by patch testing.
Collapse
Affiliation(s)
- Rune J Christiansen
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Henrik J Münch
- Institute of Clinical Medicine-Orthopedic Surgery, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Charlotte M Bonefeld
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jacob P Thyssen
- Institute of Clinical Medicine, Copenhagen University, Gentofte Hospital, DK-2900 Hellerup, Denmark
| | - Jens J Sloth
- National Food Institute, Research Group on Nanobio Science, Technical University of Denmark, DK-2860 Søborg, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kjeld Søballe
- Institute of Clinical Medicine-Orthopedic Surgery, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Morten S Jellesen
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Stig S Jakobsen
- Institute of Clinical Medicine-Orthopedic Surgery, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
13
|
Crawford DA, Adams JB, Morris MJ, Berend KR, Lombardi AV. Revision of Failed Metal-on-Metal Total Hip Arthroplasty: Midterm Outcomes of 203 Consecutive Cases. J Arthroplasty 2019; 34:1755-1760. [PMID: 31053470 DOI: 10.1016/j.arth.2019.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Metal-on-metal (MoM) revisions have shown high rates of complications from aseptic loosening, deep infection, and dislocation. The purpose of this study is to report on outcomes and complications of a large consecutive series of patients who were revised for failed MoM total hip arthroplasty (THA). METHODS We evaluated 188 patients (203 hips) who underwent revisions of failed MoM THA. Mean age at the revision was 60 years old. Gender was female in 112 hips (55%) and male in 91 hips (45%). Mean interval to failure after primary THA was 4.9 years (range, 0-18 years). The acetabular component was revised in 183 cases (92%). Clinical outcomes assessed included pain score and Harris hip score. RESULTS Mean follow-up from revision was 4.2 years. Harris hip score improved from 53.6 pre-revision to 73.5 at most recent follow-up (P < .001). Pain level significantly improved from 17.2 pre-revision to 32.8 post-revision (P < .001). Reoperations occurred in 28 (14%) hips. Re-revision was required in 16 hips (7.9%). The most common reasons for re-revision were aseptic loosening (5), dislocation (3), infection (2), and iliopsoas tendonitis (2). Re-revision was significantly higher in cases of pseudotumor. There was no difference in survival with ultraporous cups. Three hips required re-revision to custom triflange components. All-cause survival was 90.5% at 4.2 years. Metal ion levels significantly declined after revision. CONCLUSION Revisions of failed MoM THA showed improvements in clinical outcomes, but present significant surgical challenges and complications especially in cases with soft tissue damage and pseudotumor.
Collapse
Affiliation(s)
| | | | - Michael J Morris
- Joint Implant Surgeons, Inc, New Albany, OH; Mount Carmel Health System, New Albany, OH
| | - Keith R Berend
- Joint Implant Surgeons, Inc, New Albany, OH; Mount Carmel Health System, New Albany, OH
| | - Adolph V Lombardi
- Joint Implant Surgeons, Inc, New Albany, OH; Mount Carmel Health System, New Albany, OH; Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
14
|
Liu S, Hall DJ, McCarthy SM, Jacobs JJ, Urban RM, Pourzal R. Fourier transform infrared spectroscopic imaging of wear and corrosion products within joint capsule tissue from total hip replacements patients. J Biomed Mater Res B Appl Biomater 2019; 108:513-526. [PMID: 31099981 DOI: 10.1002/jbm.b.34408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 03/04/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022]
Abstract
Implant debris generated by wear and corrosion is a prominent cause of joint replacement failure. This study utilized Fourier transform infrared spectroscopic imaging (FTIR-I) to gain a better understanding of the chemical structure of implant debris and its impact on the surrounding biological environment. Therefore, retrieved joint capsule tissue from five total hip replacement patients was analyzed. All five cases presented different implant designs and histopathological patterns. All tissue samples were formalin-fixed and paraffin-embedded. Unstained, 5 μm thick sections were prepared. The unstained sections were placed on BaF2 windows and deparaffinized with xylene prior to analysis. FTIR-I data were collected at a spectral resolution of 4 cm-1 using an Agilent Cary 670 spectrometer coupled with Cary 620 FTIR microscope. The results of study demonstrated that FTIR-I is a powerful tool that can be used complimentary to the existing histopathological evaluation of tissue. FTIR-I was able to distinguish areas with different cell types (macrophages, lymphocytes). Small, but distinct differences could be detected depending on the state of cells (viable, necrotic) and depending on what type of debris was present (polyethylene [PE], suture material, and metal oxides). Although, metal oxides were mainly below the measurable range of FTIR-I, the infrared spectra of tissues exhibited noticeable difference in their presence. Tens of micrometer sized polyethylene particles could be easily imaged, but also accumulations of submicron particles could be detected within macrophages. FTIR-I was also able to distinguish between PE debris, and other birefringent materials such as suture. Chromium-phosphate particles originating from corrosion processes within modular taper junctions of hip implants could be identified and easily distinguished from other phosphorous materials such as bone. In conclusion, this study successfully demonstrated that FTIR-I is a useful tool that can image and determine the biochemical information of retrieved tissue samples over tens of square millimeters in a completely label free, nondestructive, and objective manner. The resulting chemical images provide a deeper understanding of the chemical nature of implant debris and their impact on chemical changes of the tissue within which they are embedded.
Collapse
Affiliation(s)
- Songyun Liu
- Department of Bioengineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL 60607, USA.,Department of Orthopedic Surgery, Rush University Medical Center, 1611W Harrison Street, Suite 200, Chicago, IL 60612, USA
| | - Deborah J Hall
- Department of Orthopedic Surgery, Rush University Medical Center, 1611W Harrison Street, Suite 200, Chicago, IL 60612, USA
| | - Stephanie M McCarthy
- Department of Orthopedic Surgery, Rush University Medical Center, 1611W Harrison Street, Suite 200, Chicago, IL 60612, USA
| | - Joshua J Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, 1611W Harrison Street, Suite 200, Chicago, IL 60612, USA
| | - Robert M Urban
- Department of Orthopedic Surgery, Rush University Medical Center, 1611W Harrison Street, Suite 200, Chicago, IL 60612, USA
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, 1611W Harrison Street, Suite 200, Chicago, IL 60612, USA
| |
Collapse
|
15
|
Lehtovirta L, Reito A, Lainiala O, Parkkinen J, Hothi H, Henckel J, Hart A, Eskelinen A. Host-specific factors affect the pathogenesis of adverse reaction to metal debris. BMC Musculoskelet Disord 2019; 20:195. [PMID: 31054584 PMCID: PMC6499989 DOI: 10.1186/s12891-019-2578-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023] Open
Abstract
Background Adverse Reaction to Metal Debris (ARMD) is a major reason for revision surgeries in patients with metal-on-metal (MoM) hip replacements. Most failures are related to excessively wearing implant producing harmful metal debris (extrinsic factor). As ARMD may also occur in patients with low-wearing implants, it has been suggested that there are differences in host-specific intrinsic factors contributing to the development of ARMD. However, there are no studies that have directly assessed whether the development of ARMD is actually affected by these intrinsic factors. Methods We included all 29 patients (out of 33 patients) with sufficient data who had undergone bilateral revision of ASR MoM hips (58 hips) at our institution. Samples of the inflamed synovia and/or pseudotumour were obtained perioperatively and sent to histopathological analysis. Total wear volumes of the implants were assessed. Patients underwent MARS-MRI imaging of the hips preoperatively. Histological findings, imaging findings and total wear volumes between the hips of each patient were compared. Results The difference in wear volume between the hips was clinically and statistically significant (median difference 15.35 mm3, range 1 to 39 mm3, IQR 6 to 23 mm3) (p < 0.001). The median ratio of total wear volume between the hips was 2.0 (range 1.09 to 10.0, IQR 1.67 to 3.72). In majority of the histological features and in presence of pseudotumour, there were no differences between the left and right hip of each patient (p > 0.05 for all comparisons). These features included macrophage sheet thickness, perivascular lymphocyte cuff thickness, presence of plasma cells, presence of diffuse lymphocytic infiltration and presence of germinal centers. Conclusions Despite the significantly differing amounts of wear (extrinsic factor) seen between the sides, majority of the histological findings were similar in both hips and the presence of pseudotumour was symmetrical in most hips. As a direct consequence, it follows that there must be intrinsic factors which contribute to the symmetry of the findings, ie. the pathogenesis of ARMD, on individual level. This has been hypothesized in the literature but no studies have been conducted to confirm the hypothesis. Further, as the threshold of metal debris needed to develop ARMD appears to be largely variable based on the previous literature, it is likely that there are between-patient differences in these intrinsic factors, ie. the host response to metal debris is individual. Electronic supplementary material The online version of this article (10.1186/s12891-019-2578-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lari Lehtovirta
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland.,Coxa Hospital for Joint Replacement, Tampere, Finland
| | - Aleksi Reito
- Coxa Hospital for Joint Replacement, Tampere, Finland
| | - Olli Lainiala
- Coxa Hospital for Joint Replacement, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
16
|
Li J, Li Z, Tu J, Jin G, Li L, Wang K, Wang H. In vitro and in vivo investigations of a-C/a-C:Ti nanomultilayer coated Ti6Al4V alloy as artificial femoral head. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:816-826. [PMID: 30889756 DOI: 10.1016/j.msec.2019.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 01/15/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022]
Abstract
Hydrogen-free a-C/a-C:Ti nanomultilayer (a-C NM) films were deposited on medical Ti6Al4V by the magnetron sputtering technique under bias-graded voltage. Cell tests and implantations were performed for the a-C NM films coated Ti6Al4V with the uncoated Ti6Al4V as the control. The canine total hip arthroplasty (THA) surgeries were conducted for 12 dogs using the coated femoral heads, with the CoCr heads as the control. Results of cell tests showed that the coated Ti6Al4V had no cytotoxicity, and there was no statistical difference of the cell attachment rates between the coated and uncoated sample (P = 0.091). No significant difference of the tissue response around the coated and uncoated implants were observed after the intramuscular (P = 0.679) and intraosseous implantations (P = 0.122). After two years of successful canine THA, the polyethylene wear particles isolated from periprosthetic soft tissue showed similar sizes, shapes and counts in the two groups (all of the P values >0.05). The retrieved femoral heads showed slightly change of the surface roughness, but no statistical differences between groups (P = 0.696). However, the systemic metal ion analysis indicated that the content of Co and Cr ions released in the coated group (Co: 0.71 ± 0.06 μg/L, Cr: 0.52 ± 0.05 μg/L) were significant lower than that in the control (Co: 1.98 ± 0.16 μg/L, Cr: 1.17 ± 0.19 μg/L) (both P < 0.005). Histological analysis of the periprosthetic tissue in CoCr group showed a severer histiocyte response than that in the coated group (P = 0.029). The head-taper interfaces showed galvanic corrosion attack in the CoCr group, but not in the coated Ti6Al4V group. Therefore, the a-C NM films coated Ti6Al4V exhibited good biocompatibility as an implant material. Compared with the CoCr, the coated Ti6Al4V femoral head could provide comparable in vivo wear properties, release less harmful metal ions and reduce the inflammatory response in periprosthetic tissue, which may help to prolong the longevity of prostheses.
Collapse
Affiliation(s)
- Ji Li
- Department of Orthopedics, General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhongli Li
- Department of Orthopedics, General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Jiangping Tu
- State Key Laboratory of Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Gong Jin
- ZhongAoHuiCheng Technology Co., No. 20 Kechuang Road, Economic and Technological Development Zone, Beijing 100176, China
| | - Lingling Li
- State Key Laboratory of Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ketao Wang
- Department of Orthopedics, General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Haoran Wang
- Department of Orthopedics, General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
17
|
Chamaon K, Schönfeld P, Awiszus F, Bertrand J, Lohmann CH. Ionic cobalt but not metal particles induces ROS generation in immune cells in vitro. J Biomed Mater Res B Appl Biomater 2018; 107:1246-1253. [PMID: 30261124 DOI: 10.1002/jbm.b.34217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
Total joint replacement is one of the most successful procedures in orthopedic surgery today. However, metal implant materials undergo wear and corrosion processes. Generated particles and ions can cause a variety of cellular reactions. Cobalt-containing alloys are used frequently in implant materials. Some studies suggest that cobalt exhibits potential cytotoxic effects, for example, via generation of reactive oxygen species (ROS). To further elucidate the effects of cobalt on human cells, we determined cell viability and cytosolic and mitochondrial superoxide formation after incubation of either ions or particles with different cells. MM-6 and Jurkat cell lines were treated for 24, 48 and 72 h with either CoCrMo particles or cobalt ions (supplied as CoCl2 ). A total of 24 h exposure of both forms of cobalt did not induce cell death using terminal deoxynucleotidyl transferase (TUNEL) and trypan blue assay. Interestingly, the formation of superoxide (O2 .- ) is evoked mainly by ionic CoCl2 but not cobalt particles. Cobalt alloy particles are likely to even suppress O2 .- formation in mitochondria in both used cell lines. Furthermore, we did not observe any effect of cobalt particles on O2 .- formation in peripheral blood mononuclear cells (PBMCs) from healthy donors. We also found that the O2 - formation by CoCl2 within mitochondria is a generalized effect for all cell types used, while the formation of superoxide in cytosolic compartment is cell-type dependent. In summary, our data suggest that cobalt ions specifically induce the formation of O2 .- , whereas the cobalt particles were better tolerated. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1246-1253, 2019.
Collapse
Affiliation(s)
- Kathrin Chamaon
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Peter Schönfeld
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Friedemann Awiszus
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
18
|
Lionberger DR, Samorajski J, Wilson CD, Rivera A. What role does metal allergy sensitization play in total knee arthroplasty revision? J Exp Orthop 2018; 5:30. [PMID: 30109436 PMCID: PMC6091498 DOI: 10.1186/s40634-018-0146-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/26/2018] [Indexed: 02/08/2023] Open
Abstract
Background Clinicians are often faced with the decision whether to revise a painful total knee replacement in patients who have chronic vague pain with no apparent explanation. A sensitive metal testing assay called the lymphocyte stimulation test has been used to detect nickel sensitization in patients with orthopedic implants. We hypothesize that nickel sensitization plays a role in the pathology of failed joint arthroplasty in patients with unexplained dissatisfaction. Methods 32 patients with symptomatic total knee arthroplasty without obvious mechanical findings were tested prior to revision surgery. 19 nickel-sensitized and 13 non-sensitized patients were compared by cell counts of synovium surgical specimens for CD4+ and CD8+ cell lines. Patients were then revised with ceramic-coated implants. Secondary evaluation of functional outcomes, range of motion, and pain relief were assessed. Results Nickel-sensitive patients showed a statistical increase in CD4+ reactivity compared to CD8+ reactivity. The ratio of CD4+/CD8+ T lymphocytes was 1.28 in nickel-sensitive patients versus 0.76 in the control (p = 0.009). There was no difference in functional scores, clinical scores, or range of motion after revision. Conclusions This study provides objective data via histological analysis in support of a nickel allergic sensitization in failed arthroplasties where clinical and/or radiographic abnormalities may not be apparent. Biopsy for CD4+/CD8+ cell counts may provide further proof of the existence of nickel sensitization in lymphocyte stimulation test positive patients, and more importantly, may implore the surgeon to consider low nickel implant design in these patients.
Collapse
Affiliation(s)
- David R Lionberger
- Southwest Orthopedic Group LLC, 6560 Fannin Street, Suite 1016, Scurlock Tower, Houston, TX, 77030, USA.
| | - Justin Samorajski
- Texas A&M College of Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Charlie D Wilson
- Scott & White Memorial Hospital, 2401 S. 31st St, Temple, TX, 76508, USA
| | - Andreana Rivera
- Department of Pathology, Houston Methodist Hospital, 6565 Fannin Street, Suite M227, Houston, TX, 77030, USA
| |
Collapse
|
19
|
Bertrand J, Delfosse D, Mai V, Awiszus F, Harnisch K, Lohmann CH. Ceramic prosthesis surfaces induce an inflammatory cell response and fibrotic tissue changes. Bone Joint J 2018; 100-B:882-890. [DOI: 10.1302/0301-620x.100b7.bjj-2017-1590.r2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aims Early evidence has emerged suggesting that ceramic-on-ceramic articulations induce a different tissue reaction to ceramic-on-polyethylene and metal-on-metal bearings. Therefore, the aim of this study was to investigate the tissue reaction and cellular response to ceramic total hip arthroplasty (THA) materials in vitro, as well as the tissue reaction in capsular tissue after revision surgery of ceramic-on-ceramic THAs. Patients and Methods We investigated tissue collected at revision surgery from nine ceramic-on-ceramic articulations. we compared our findings with tissue obtained from five metal-on-metal THA revisions, four ceramic-on-polyethylene THAs, and four primary osteoarthritis synovial membranes. The latter were analyzed to assess the amount of tissue fibrosis that might have been present at the time of implantation to enable evaluation, in relation to implantation time, of any subsequent response in the tissues. Results There was a significant increase in tissue fibrosis with implantation time for all implant types tested. Interestingly, the tissue fibrosis in ceramic-on-ceramic THAs was significantly increased compared with metal-on-metal and ceramic-on-polyethylene. Additionally, we found ceramic wear particles in the periprosthetic tissue of ceramic implants. Fibroblasts responded with expression of cytokines when cultured on alumina-toughened zirconia (ATZ) and zirconia-toughened alumina (ZTA) ceramic surfaces. This response was more pronounced on ATZ ceramics compared with ZTA ceramics. The same inflammatory response was observed with peripheral blood mononuclear cells (PBMCs) cultured on ZTA and ATZ. Conclusion Our findings therefore, corroborate the previous findings that ceramic-on-ceramic periprosthetic revision tissue is fibrous and offer an explanation for this observation. We detected a long-term inflammatory response of PBMCs and an inflammatory response of fibroblasts to ATZ and ZTA ceramic. These findings partially explain the fibrotic tissue change in periprosthetic tissue of ceramic-on-ceramic bearings. Cite this article: Bone Joint J 2018;100-B:882–90.
Collapse
Affiliation(s)
- J. Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke
University, Magdeburg, Germany
| | | | - V. Mai
- Mathys AG Bettlach, Bettlach, Switzerland
| | - F. Awiszus
- Department of Orthopaedic Surgery, Otto-von-Guericke
University, Magdeburg, Germany
| | - K. Harnisch
- Institute for Materials and Joining Technology,
Otto-von-Guericke University, Magdeburg, Germany
| | - C. H. Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke
University, Magdeburg, Germany
| |
Collapse
|
20
|
Persson A, Eisler T, Bodén H, Krupic F, Sköldenberg O, Muren O. Revision for Symptomatic Pseudotumor After Primary Metal-on-Polyethylene Total Hip Arthroplasty with a Standard Femoral Stem. J Bone Joint Surg Am 2018; 100:942-949. [PMID: 29870445 DOI: 10.2106/jbjs.17.00616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Pseudotumor formation following total hip arthroplasty (THA) is a well-known complication mainly associated with metal-on-metal (MoM) bearings and taper corrosion on modular-neck femoral stems. The purpose of this study was to determine the prevalence of revision surgery for symptomatic pseudotumors in a large cohort of patients treated with primary THA with a standard stem and a non-MoM articulation. METHODS We included 2,102 patients treated with a total of 2,446 THAs from 1999 until May 2016 in a prospective, observational cohort study. All patients underwent THA with the same uncemented, non-modular-neck femoral stem and metal-on-polyethylene (MoP) (n = 2,409) or ceramic-on-polyethylene (n = 37) articulation. All patients were followed by means of a combination of surgical and medical chart review, follow-up visits, and the Swedish Hip Arthroplasty Register. Metal artifact reduction sequence magnetic resonance imaging (MARS MRI) was used for diagnosis of the pseudotumors, and serum metal ion levels and inflammatory marker levels were measured for all patients who underwent a revision due to pseudotumor. RESULTS The prevalence of revision for symptomatic pseudotumor formation was 0.5% (13 cases) at a mean follow-up time of 7 years. The incidence rate was 0.9 case per 1,000 person-years. All 13 revisions were done in patients with an MoP articulation. CONCLUSIONS This study demonstrated a 0.5% prevalence of revision due to symptomatic pseudotumor formation in a cohort of patients who underwent THA with a non-MoM construct. Surgeons should be aware that symptomatic pseudotumor formation requiring revision surgery is a tangible complication even after standard MoP THA. LEVEL OF EVIDENCE Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Anders Persson
- Department of Orthopaedics, Danderyd University Hospital, Karolinska Institute at Danderyd University Hospital, Stockholm, Sweden
| | - Thomas Eisler
- Department of Orthopaedics, Danderyd University Hospital, Karolinska Institute at Danderyd University Hospital, Stockholm, Sweden
| | - Henrik Bodén
- Department of Orthopaedics, Danderyd University Hospital, Karolinska Institute at Danderyd University Hospital, Stockholm, Sweden
| | - Ferid Krupic
- Department of Orthopaedics and Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olof Sköldenberg
- Department of Orthopaedics, Danderyd University Hospital, Karolinska Institute at Danderyd University Hospital, Stockholm, Sweden
| | - Olav Muren
- Department of Orthopaedics, Danderyd University Hospital, Karolinska Institute at Danderyd University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Lehtovirta L, Reito A, Parkkinen J, Peräniemi S, Vepsäläinen J, Eskelinen A. Association between periprosthetic tissue metal content, whole blood and synovial fluid metal ion levels and histopathological findings in patients with failed metal-on-metal hip replacement. PLoS One 2018; 13:e0197614. [PMID: 29768492 PMCID: PMC5955572 DOI: 10.1371/journal.pone.0197614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/04/2018] [Indexed: 02/08/2023] Open
Abstract
Adverse Reaction to Metal Debris (ARMD) is a major cause of implant failure leading to revision surgery in patients with metal-on-metal (MoM) hip arthroplasties. However, the pathogenesis and its association to implant wear are poorly understood and previous studies have yielded discrepant results. We sought to investigate the associations between histological findings, whole blood and synovial fluid metal ion concentrations and periprosthetic tissue metal concentrations in patients with MoM total hip replacements and hip resurfacings revised for ARMD. 107 hips in total were included in our study. Of these, 87 were total hip replacements and 20 were hip resurfacings, respectively. We found that whole blood, synovial fluid and periprosthetic tissue metal concentrations correlated poorly with histological findings. We suggest that the lack of a clear association between histological findings and wear measures in the present study as well as in previous studies is mostly influenced by variability in patient susceptibility. However, patients presenting with perivascular lymphocytic infiltration had lower chromium concentration in their periprosthetic tissues than patients with no perivascular lymphocytic infiltration. This may reflect the role of metal hypersensitivity in implant failure in these patients. Patients with total hip replacements evinced more necrosis and lymphocytic infiltration in their tissues than patients with hip resurfacings. This suggests that trunnion wear debris is more cytotoxic and/or immunogenic than bearing wear debris leading to higher failure rates seen in patients with total hip replacements.
Collapse
Affiliation(s)
- Lari Lehtovirta
- University of Tampere, Tampere, Finland
- Coxa Hospital for Joint Replacement, Tampere, Finland
- * E-mail:
| | - Aleksi Reito
- Coxa Hospital for Joint Replacement, Tampere, Finland
| | | | | | | | | |
Collapse
|
22
|
Kuba M, Gallo J, Pluháček T, Hobza M, Milde D. Content of distinct metals in periprosthetic tissues and pseudosynovial joint fluid in patients with total joint arthroplasty. J Biomed Mater Res B Appl Biomater 2018; 107:454-462. [PMID: 29663650 DOI: 10.1002/jbm.b.34137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/14/2018] [Accepted: 03/23/2018] [Indexed: 01/07/2023]
Abstract
This prospective study examined the content of metals released from total joint arthroplasty into joint fluid, whole blood and periprosthetic tissues. We determined the levels of Ti, V, Nb, Co, Cr, and Mo, using inductively coupled plasma mass spectrometry, in samples from patients who underwent reoperation of total hip or knee arthroplasty. All of the patients (n = 117) included in the study had either metal on polyethylene or ceramic on polyethylene-bearing pairs. First, our results conclusively showed that the majority of released metals were deposited in periprosthetic tissues. In this context, the bloodstream turned out to be an ineffective biomarker of the effects occurring in local tissues. Second, there was a clear time-dependent nature of metallic accumulation. Based on our extensive dataset, we found significantly elevated levels of the released metals in joint fluid and periprosthetic tissues originating from loosened implants compared to stable ones, as well as recognizable differences between the groups with stable implants and aseptic loosening. Finally, it was proved that the concentrations of metals decreased dependent on the distance of the tissue from the implant. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 454-462, 2019.
Collapse
Affiliation(s)
- Martin Kuba
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jiří Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacký University Olomouc, University Hospital Olomouc, Olomouc, Czech Republic
| | - Tomáš Pluháček
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Hobza
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacký University Olomouc, University Hospital Olomouc, Olomouc, Czech Republic
| | - David Milde
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
23
|
Busser B, Moncayo S, Trichard F, Bonneterre V, Pinel N, Pelascini F, Dugourd P, Coll JL, D'Incan M, Charles J, Motto-Ros V, Sancey L. Characterization of foreign materials in paraffin-embedded pathological specimens using in situ multi-elemental imaging with laser spectroscopy. Mod Pathol 2018; 31:378-384. [PMID: 29148536 DOI: 10.1038/modpathol.2017.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022]
Abstract
Pathologists typically encounter many disparate exogenous materials in clinical specimens during their routine histopathological examinations, especially within the skin, lymph nodes, and lungs. These foreign substances may be free extracellular deposits or induce several clinical abnormalities or histopathological patterns. However, pathologists almost never investigate or report the chemical nature of exogenous metals in clinical specimens due to a lack of convenient and available technologies. In this paper, a novel strategy based on laser-induced breakdown spectroscopy (LIBS) technology is evaluated for in situ multi-elemental tissue imaging. The improved procedures allow visualization of the presence of chemical elements contained within paraffin-embedded specimens of medical interest with elemental images that are stackable with conventional histology images. We selected relevant medical situations for which the associated pathology reports were limited to the presence of lymphohistiocytic and inflammatory cells containing granules (a granuloma and a pseudolymphoma) or to lymph nodes or skin tissues containing pigments or foreign substances. Exogenous elements such as aluminum, titanium, copper, and tungsten were identified and localized within the tissues. The all-optical LIBS elemental imaging instrument that we developed is fully compatible with conventional optical microscopy used for pathology analysis. When combined with routine histopathological analysis, LIBS is a versatile technology that might help pathologists establish or confirm diagnoses for a wide range of medical applications, particularly when the nature of external agents present in tissues needs to be investigated.
Collapse
Affiliation(s)
- Benoit Busser
- Institute for Advanced Biosciences, UGA/Inserm U 1209/CNRS UMR 5309 joint research center, Grenoble, France.,Grenoble Alpes University Hospital, Grenoble, France.,Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Samuel Moncayo
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Florian Trichard
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | | | - Nicole Pinel
- Grenoble Alpes University Hospital, Grenoble, France
| | | | - Philippe Dugourd
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, UGA/Inserm U 1209/CNRS UMR 5309 joint research center, Grenoble, France
| | - Michel D'Incan
- University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Julie Charles
- Institute for Advanced Biosciences, UGA/Inserm U 1209/CNRS UMR 5309 joint research center, Grenoble, France.,Grenoble Alpes University Hospital, Grenoble, France
| | - Vincent Motto-Ros
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Lucie Sancey
- Institute for Advanced Biosciences, UGA/Inserm U 1209/CNRS UMR 5309 joint research center, Grenoble, France
| |
Collapse
|
24
|
Kilb BKJ, Kurmis AP, Parry M, Sherwood K, Keown P, Masri BA, Duncan CP, Garbuz DS. Frank Stinchfield Award: Identification of the At-risk Genotype for Development of Pseudotumors Around Metal-on-metal THAs. Clin Orthop Relat Res 2018; 476. [PMID: 29529651 PMCID: PMC6259707 DOI: 10.1007/s11999.0000000000000028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Once touted as the future of hip arthroplasty, metal-on-metal (MoM) bearing surfaces have fallen sharply from favor with the emergence of a strong body of evidence demonstrating unacceptably high premature implant failure rates. The previously unpredictable development of adverse local tissue reactions (ALTRs) has been a substantive contributor to this. Although the underlying pathophysiology of these so-called "pseudotumors" is now well understood, the fundamental predisposing patient risk factors have remained elusive. QUESTIONS/PURPOSES The aim of this research, as a clinical-genotype correlation analysis, was to identify specific alleles (genes) associated with the development of ALTRs in patients with in situ MoM THAs. METHODS A case-control study of patients who received a large-head, primary MoM THA between 2005 and 2008 was performed with a minimum followup of 5 years. Twenty-six patients who had undergone revision of a primary MoM THA secondary to symptomatic ALTRs were recruited. The mean timeframe from primary MoM THA to symptomatic revision was 5.5 years (range, 1-10 years). Twenty-eight control subjects were randomly selected asymptomatic patients with no evidence of ALTRs on protocol-specific screening. Baseline demographics and high-resolution genotype (human leukocyte antigen [HLA] Class II) were collected for all patients. Cohorts were similar with respect to age at the time of primary MoM THA (mean, 54.8 versus 54.9 years, p = 0.95) and serum cobalt (mean, 5.5 versus 8.5 μg/L, p = 0.09) and chromium concentrations (mean, 2.9 versus 4.2 μg/L, p = 0.27). The association between genotype and revision surgery secondary to ALTRs was determined with gender as a covariate. RESULTS The prevalence of the risk genotype was 30% (16 of 54) among the entire cohort. Adjusting for sex, the odds of revision were 6.1 times greater among patients with the risk genotype present than among patients without (95% confidence interval [CI], 1.5-25.4; p = 0.01). Among females, the specificity of the risk genotype was 1.0 (95% CIexact, 0.5-1.0; pexact = 0.03), and for males, it was 0.8 (95% CIexact, 0.6-0.9; pexact < 0.01). CONCLUSIONS The findings of this study suggest that, among patients with a primary MoM THA, allelic variation within the HLA Class II loci may be a strong, independent risk factor associated with the need for subsequent revision surgery secondary to pseudotumor formation. CLINICAL RELEVANCE Given the hypothesis-generating nature of this novel undertaking, confirmatory prospective clinical studies are required to further elucidate this correlation and to explore the clinical utility of targeted genetic screening in this specific population. This research may, however, represent a key missing piece in the puzzle that is metal ion-induced pseudotumor formation.
Collapse
Affiliation(s)
- Brett K J Kilb
- B. K. J. Kilb, A. P. Kurmis, M. Parry, B. A. Masri, C. P. Duncan, D. S., Garbuz Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada K. Sherwood, P. Keown Department of Pathology (&) Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada P. Keown, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada A. P. Kurmis, Discipline of Medical Specialties, University of Adelaide, Adelaide, SA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Li J, Wang K, Li Z, Tu JP, Jin G, Su J, Zhai B. Mechanical tests, wear simulation and wear particle analysis of carbon-based nanomultilayer coatings on Ti6Al4V alloys as hip prostheses. RSC Adv 2018; 8:6849-6857. [PMID: 35540330 PMCID: PMC9078386 DOI: 10.1039/c7ra12080j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 11/21/2022] Open
Abstract
Carbon-based nanomultilayer coatings were deposited on medical-grade Ti6Al4V alloy using a magnetron sputtering technique under a graded bias voltage.
Collapse
Affiliation(s)
- Ji Li
- Department of Orthopedics
- General Hospital of PLA
- Beijing 100853
- China
| | - Ketao Wang
- Department of Orthopedics
- General Hospital of PLA
- Beijing 100853
- China
| | - Zhongli Li
- Department of Orthopedics
- General Hospital of PLA
- Beijing 100853
- China
| | - J. P. Tu
- State Key Laboratory of Materials and Department of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Gong Jin
- ZhongAoHuiCheng Technology Co
- Economic and Technological Development Zone
- Beijing 100176
- China
| | - Jian Su
- Beijing Institute of Medical Instruments
- Beijing 101111
- China
| | - Bao Zhai
- Beijing Institute of Medical Instruments
- Beijing 101111
- China
| |
Collapse
|
26
|
Steffen JE, Fassler EA, Reardon KJ, Egilman DS. Grave fraudulence in medical device research: a narrative review of the PIN seeding study for the Pinnacle hip system. Account Res 2017; 25:37-66. [DOI: 10.1080/08989621.2017.1405259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | - David S. Egilman
- Department of Family Medicine, Brown University, Attleboro, Massachusetts, USA
| |
Collapse
|
27
|
Lehtovirta L, Reito A, Parkkinen J, Hothi H, Henckel J, Hart A, Eskelinen A. Analysis of bearing wear, whole blood and synovial fluid metal ion concentrations and histopathological findings in patients with failed ASR hip resurfacings. BMC Musculoskelet Disord 2017; 18:523. [PMID: 29228956 PMCID: PMC5725985 DOI: 10.1186/s12891-017-1894-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/04/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Adverse Reaction to Metal Debris (ARMD) is still a major reason for revision surgeries in patients with metal-on-metal (MoM) hip replacements. ARMD consists of a wide range of alterations in periprosthetic tissues, most important of which are metallosis, inflammation, pseudotumors and necrosis. Studies investigating histopathological findings and their association to implant wear or indirect measures of wear have yielded inconsistent results. Therefore, we aimed to investigate bearing surface wear volume, whole blood and synovial fluid metal ion concentrations, histopathological findings in periprosthetic tissues and their associations. METHODS Seventy-eight patients with 85 hips revised for ARMD were included in the study. Prior to revision surgery, all patients had whole blood chromium and cobalt ion levels assessed. In revision surgery, a synovial fluid sample was taken and analyzed for chromium and cobalt. Periprosthetic tissue samples were taken and analyzed for histopathological findings. Explanted implants were analyzed for bearing wear volume of both acetabular cup and femoral head components. RESULTS Volumetric wear of the failed components was highly variable. The total wear volume of the head and cup had a strong correlation with whole blood chromium and cobalt ion concentrations (Cr: ρ = 0.80, p < 0.001 and Co: ρ = 0.84, p < 0.001) and a bit weaker correlation with fluid chromium and cobalt ion concentrations (Cr: ρ = 0.50, p < 0.01 and Co: ρ = 0.41, p = 0.027). Most tissues displayed only low-to-moderate amounts of macrophages and lymphocytes. Total wear volume correlated with macrophage sheet thickness (ρ = 0.25, p = 0.020) and necrosis (ρ = 0.35, p < 0.01). Whole blood chromium and cobalt ion concentrations had similar correlations. Lymphocyte cuff thickness did not correlate with either total wear volume or whole blood metal ion concentrations, but correlated with the grade of necrosis. CONCLUSIONS Bearing wear volume correlated with blood metal ion levels and the degree of necrosis and macrophage infiltration in periprosthetic tissues suggesting a dose-response relationship. Whole blood metal ion levels are a useful tool for clinician to estimate bearing wear and subsequent tissue response.
Collapse
Affiliation(s)
- Lari Lehtovirta
- Faculty of Medicine, University of Tampere, Tampere, Finland
- Coxa Hospital for Joint Replacement, Tampere, Finland
| | - Aleksi Reito
- Coxa Hospital for Joint Replacement, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
28
|
Vierra BM, Blumenthal SR, Amanatullah DF. Modularity in Total Hip Arthroplasty: Benefits, Risks, Mechanisms, Diagnosis, and Management. Orthopedics 2017; 40:355-366. [PMID: 28598491 DOI: 10.3928/01477447-20170606-01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 11/07/2016] [Indexed: 02/03/2023]
Abstract
Modular implants are currently widely used in total hip arthroplasty because they give surgeons versatility during the operation, allow for easier revision surgery, and can be adjusted to better fit the anatomy of the specific patient. However, modular implants, specifically those that have metal-on-metal junctions, are susceptible to crevice and fretting corrosion. This can ultimately cause implant failure, inflammation, and adverse local tissue reaction, among other possible side effects. Surgeons should be aware of the possibility of implant corrosion and should follow a set of recommended guidelines to systematically diagnose and treat patients with corroded implants. Ultimately, surgeons will continue to use modular implants because of their widespread benefits. However, more research is needed to determine how to minimize corrosion and the negative side effects that have been associated with modular junctions in total hip arthroplasty. [Orthopedics. 2017; 40(6):355-366.].
Collapse
|
29
|
Mid-term results of ReCap/Magnum/Taperloc metal-on-metal total hip arthroplasty with mean follow-up of 7.1 years. Hip Int 2017; 27:226-234. [PMID: 27911456 DOI: 10.5301/hipint.5000454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Despite enthusiasm for metal-on-metal bearings, disappointing short- to mid-term outcomes has all but halted the use of this bearing articulation. This review presents mid-term results for the ReCap Magnum total hip replacement. PATIENTS AND METHODS This prospective study evaluated 79 ReCap/Magnum/Taperloc total hip replacements with mean follow-up of 7.1 (range 3.7-9.2) years. 43 were female and 36 male. Metal ions were measured and radiographic measurement included a 'margin of safety' angle to quantify risk of edge loading. When a clinical suspicion of adverse reaction to metal debris was present, patients had metal artefact reduction sequence MRI. Harris Hip Score and Oxford Hip Score evaluated functional outcome and SF-12 and EQ-5L-5D assessed quality of life at final follow-up. RESULTS 7 hips were revised indicating 91.1% survivorship at 7.1 years. Postoperative Harris Hip Score and Oxford Hip Score significantly improved. Females and symptomatic patients predicted increased metal ions. Margin of safety correlated with postoperative Oxford Hip Score. Symptomatic hips and positive MRI showed reduced survivorship. CONCLUSIONS Compared to more traditional bearings like metal or ceramic on polyethylene the overall outcome of this ReCap/Magnum/Taperloc study cohort is modest. It is felt that further failures will occur in this group therefore cautious interpretation of the results is justified given the potential for reduced survival outcomes.
Collapse
|
30
|
Xia Z, Ricciardi BF, Liu Z, von Ruhland C, Ward M, Lord A, Hughes L, Goldring SR, Purdue E, Murray D, Perino G. Nano-analyses of wear particles from metal-on-metal and non-metal-on-metal dual modular neck hip arthroplasty. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1205-1217. [DOI: 10.1016/j.nano.2016.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/30/2016] [Accepted: 11/17/2016] [Indexed: 01/13/2023]
|
31
|
Lohmann CH, Hameister R, Singh G. Allergies in orthopaedic and trauma surgery. Orthop Traumatol Surg Res 2017; 103:S75-S81. [PMID: 28043850 DOI: 10.1016/j.otsr.2016.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/26/2016] [Accepted: 06/07/2016] [Indexed: 02/02/2023]
Abstract
Hypersensitivity reactions to implants in orthopaedic and trauma surgery are a rare but devastating complication. They are considered as a delayed-type of hypersensitivity reaction (type IV), characterized by an antigen activation of sensitized T-lymphocytes releasing various cytokines and may result in osteoclast activation and bone resorption. Potential haptens are originated from metal alloys or bone-cement. A meta-analysis has confirmed a higher probability of developing a metal hypersensitivity postoperatively and noted a greater risk of failed replacements compared to stable implants. Hypersensitivity to implants may present with a variety of symptoms such as pain, joint effusion, delayed wound/bone healing, persistent secretion, allergic dermatitis (localized or systemic), clicking noises, loss of joint function, instability and failure of the implant. Various diagnostic options have been offered, including patch testing, metal alloy patch testing, histology, lymphocyte transformation test (LTT), memory lymphocyte immunostimulation assay (MELISA), leukocyte migration inhibition test (LIF) and lymphocyte activation test (LAT). No significant differences between in vivo and in vitro methods have been found. Due to unconvincing evidence for screening methods, predictive tests are not recommended for routine performance. Infectious aetiology always needs to be excluded. As there is a lack of evidence on large-scale studies with regards to the optimal treatment option, management currently relies on individual case-by-case decisions. Several options for patients with (suspected) metal-related hypersensitivity exist and may include materials based on ceramic, titanium or oxinium or modified surfaces. Promising results have been reported, but long-term experience is lacking. More large-scaled studies are needed in this context. In patients with bone-cement hypersensitivity, the component suspected for hypersensitivity should be avoided. The development of (predictive) biomarkers is considered as a major contribution for the future.
Collapse
Affiliation(s)
- C H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, 44, Leipziger Strasse, 39120 Magdeburg, Germany.
| | - R Hameister
- Department of Orthopaedic Surgery, Otto-von-Guericke University, 44, Leipziger Strasse, 39120 Magdeburg, Germany; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4, Medical Drive, 117594, Singapore
| | - G Singh
- Division of Musculoskeletal Oncology, University Orthopaedics, Hand and Reconstructive Microsurgery Cluster, National University Health System, 1E, Kent Ridge Road, 119228, Singapore
| |
Collapse
|
32
|
Parsaei S, Keeney J, Marschall J. Infections of Prosthetic Joints and Related Problems. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Smith JT, Schneider AD, Katchko KM, Yun C, Hsu EL. Environmental Factors Impacting Bone-Relevant Chemokines. Front Endocrinol (Lausanne) 2017; 8:22. [PMID: 28261155 PMCID: PMC5306137 DOI: 10.3389/fendo.2017.00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/25/2017] [Indexed: 01/07/2023] Open
Abstract
Chemokines play an important role in normal bone physiology and the pathophysiology of many bone diseases. The recent increased focus on the individual roles of this class of proteins in the context of bone has shown that members of the two major chemokine subfamilies-CC and CXC-support or promote the formation of new bone and the remodeling of existing bone in response to a myriad of stimuli. These chemotactic molecules are crucial in orchestrating appropriate cellular homing, osteoblastogenesis, and osteoclastogenesis during normal bone repair. Bone healing is a complex cascade of carefully regulated processes, including inflammation, progenitor cell recruitment, differentiation, and remodeling. The extensive role of chemokines in these processes and the known links between environmental contaminants and chemokine expression/activity leaves ample opportunity for disruption of bone healing by environmental factors. However, despite increased clinical awareness, the potential impact of many of these environmental factors on bone-related chemokines is still ill defined. A great deal of focus has been placed on environmental exposure to various endocrine disruptors (bisphenol A, phthalate esters, etc.), volatile organic compounds, dioxins, and heavy metals, though mainly in other tissues. Awareness of the impact of other less well-studied bone toxicants, such as fluoride, mold and fungal toxins, asbestos, and chlorine, is also reviewed. In many cases, the literature on these toxins in osteogenic models is lacking. However, research focused on their effects in other tissues and cell lines provides clues for where future resources could be best utilized. This review aims to serve as a current and exhaustive resource detailing the known links between several classes of high-interest environmental pollutants and their interaction with the chemokines relevant to bone healing.
Collapse
Affiliation(s)
- Justin T. Smith
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Andrew D. Schneider
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Karina M. Katchko
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Chawon Yun
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
- *Correspondence: Erin L. Hsu,
| |
Collapse
|
34
|
Grammatopoulos G, Munemoto M, Pollalis A, Athanasou NA. Correlation of serum metal ion levels with pathological changes of ARMD in failed metal-on-metal-hip-resurfacing arthroplasties. Arch Orthop Trauma Surg 2017; 137:1129-1137. [PMID: 28660477 PMCID: PMC5511305 DOI: 10.1007/s00402-017-2723-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Metal-on-metal-hip-resurfacing arthroplasties (MoMHRAs) have been associated with an increased failure rates due to an adverse-response-to-metal-debris (ARMD) associated with a spectrum of pathological features. Serum levels of cobalt (Co) and chromium (Cr) are used to assess MoMHRAs, with regard to ARMD, but it is not certain whether ion levels correlate with pathological changes in periprosthetic tissues. METHODS Serum Co and Cr levels were correlated with histological findings in 38 revised MoMHRAs (29 pseudotumour cases and 9 non-pseudotumour cases revised for pain). The extent of necrosis and macrophage infiltrate as well as the aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) response was assessed semi-quantitatively; the prosthesis linear wear rate (PLWR) was also determined in ten cases. RESULTS Cr levels were elevated in 82% and Co levels elevated in 53% of cases; the PLWR correlated with Cr level (rho = 0.8, p = 0.006). Tissue necrosis and macrophage infiltration were noted in all, most of which also exhibited significant ALVAL. Although a discrete correlation was not seen between Co and/or Cr ion levels and the extent of necrosis, degree of macrophage infiltration, or ALVAL score, it was noted that cases with acceptable metal ions levels had high ALVAL score. CONCLUSION Histological features of both innate and adaptive immune response to metal wear are seen in periprosthetic tissues in cases with both elevated and non-elevated metal ion levels. MoMHRA failures with acceptable ion levels exhibited a pronounced ALVAL response. Although metal ion levels are elevated in most cases of MoMHRA failure due to ARMD, the finding of a normal metal ion level does not exclude this diagnosis.
Collapse
Affiliation(s)
- George Grammatopoulos
- Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford, OX3 7LD UK ,Nuffield Department Orthopaedics Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK
| | - Mitsuru Munemoto
- Nuffield Department Orthopaedics Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK ,Department of Orthopaedic Surgery, Nara Medical University, Kashihara-City, Nara 634-8522 Japan
| | | | - Nicholas A. Athanasou
- Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford, OX3 7LD UK ,Nuffield Department Orthopaedics Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK
| |
Collapse
|
35
|
Amanatullah DF, Sucher MG, Bonadurer GF, Pereira GC, Taunton MJ. Metal in Total Hip Arthroplasty: Wear Particles, Biology, and Diagnosis. Orthopedics 2016; 39:371-379. [PMID: 27459144 DOI: 10.3928/01477447-20160719-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 06/13/2016] [Indexed: 02/03/2023]
Abstract
Total hip arthroplasty (THA) has been performed for nearly 50 years. Between 2006 and 2012, more than 600,000 metal-on-metal THA procedures were performed in the United States. This article reviews the production of metal wear debris in a metal-on-metal articulation and the interaction of cobalt and chromium ions that ultimately led to a dramatic decline in the use of metal-on-metal THA articulations. Additionally, the article reviews mechanisms of metal wear, the biologic reaction to cobalt and chromium ions, the clinical presentation of failing metal-on-metal articulations, and current diagnostic strategies. Further, the article discusses the use of inflammatory markers, metal ion levels, radiographs, metal artifact reduction sequence magnetic resonance imaging, and ultrasound for failed metal-on-metal THA procedures. When adopting new technologies, orthopedic surgeons must weigh the potential increased benefits against the possibility of new mechanisms of failure. Metal-on-metal bearings are a prime example of the give and take between innovation and clinical results, especially in the setting of an already successful procedure such as THA. [Orthopedics. 2016; 39(6):371-379.].
Collapse
|
36
|
Rakow A, Schoon J, Dienelt A, John T, Textor M, Duda G, Perka C, Schulze F, Ode A. Influence of particulate and dissociated metal-on-metal hip endoprosthesis wear on mesenchymal stromal cells in vivo and in vitro. Biomaterials 2016; 98:31-40. [DOI: 10.1016/j.biomaterials.2016.04.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
|
37
|
Adverse Biological Effect of TiO₂ and Hydroxyapatite Nanoparticles Used in Bone Repair and Replacement. Int J Mol Sci 2016; 17:ijms17060798. [PMID: 27231896 PMCID: PMC4926332 DOI: 10.3390/ijms17060798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/06/2016] [Accepted: 05/19/2016] [Indexed: 12/18/2022] Open
Abstract
The adverse biological effect of nanoparticles is an unavoidable scientific problem because of their small size and high surface activity. In this review, we focus on nano-hydroxyapatite and TiO₂ nanoparticles (NPs) to clarify the potential systemic toxicological effect and cytotoxic response of wear nanoparticles because they are attractive materials for bone implants and are widely investigated to promote the repair and reconstruction of bone. The wear nanoparticles would be prone to binding with proteins to form protein-particle complexes, to interacting with visible components in the blood including erythrocytes, leukocytes, and platelets, and to being phagocytosed by macrophages or fibroblasts to deposit in the local tissue, leading to the formation of fibrous local pseudocapsules. These particles would also be translocated to and disseminated into the main organs such as the lung, liver and spleen via blood circulation. The inflammatory response, oxidative stress, and signaling pathway are elaborated to analyze the potential toxicological mechanism. Inhibition of the oxidative stress response and signaling transduction may be a new therapeutic strategy for wear debris-mediated osteolysis. Developing biomimetic materials with better biocompatibility is our goal for orthopedic implants.
Collapse
|
38
|
Abstract
Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles.Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure. Bone Joint Res 2016;5:162-168. DOI: 10.1302/2046-3758.55.BJR-2016-0086.
Collapse
Affiliation(s)
- N A Athanasou
- NDORMs, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE, UK
| |
Collapse
|
39
|
Renner L, Faschingbauer M, Schmidt-Braekling T, Boettner F. Cobalt serum levels differ in well functioning Birmingham resurfacing and Birmingham modular THA. Arch Orthop Trauma Surg 2016; 136:715-21. [PMID: 26983720 DOI: 10.1007/s00402-016-2439-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Metal-on-metal (MoM) bearings are known to release metal ions secondary to wear and corrosion. This may cause local reactions (adverse soft tissue reactions and osteolysis) and systemic effects. Little is known about the exact pattern and the differences between large head MoM total hip replacements (THA) and resurfacings (HR). QUESTIONS (1) Is there a difference in metal ion concentrations between HR and MoM-THR using the same bearing design (Birmingham Hip Resurfacing System, Smith & Nephew, Inc. Memphis, TN, USA)? (2) Are metal ion levels changing over time in MoM-THA or HR? (3) Do acetabular inclination angle and femoral component size influence cobalt and chromium levels? Is there a correlation between clinical outcome and metal ion levels? MATERIALS AND METHODS A retrospective analysis was conducted in 77 well functioning unilateral Birmingham HR and 42 well functioning unilateral modular Birmingham MoM-THA (Smith & Nephew, Inc. Memphis, TN, USA) operated on between 2007 and 2012. Blood samples were taken at a minimum of 13 months and subsequent during annual follow-ups. RESULTS (1) Cobalt levels were significantly higher in MoM-THA compared to HR (p < 0.001). There was no significant difference in chromium levels (p = 0.313). (2) Cobalt is increasing over time in MoM-THA (p = 0.030) whereas metal ions remain stable in HR. (3) Metal ion levels were not affected by acetabular inclination angle and femoral component size in MoM-THA. Chromium levels correlate with the femoral component size (r = -0.240; p = 0.037), the UCLA activity score (r = -0.344; p = 0.003) and the VAS (r = 0.263; p = 0.38) in HR. CONCLUSION Considering that HR and MoM-THA used the same MoM bearing design, increased cobalt levels may be related to trunnion wear or corrosion. Elevated cobalt levels should raise concern for corrosion related failure in MoM-THA.
Collapse
Affiliation(s)
- Lisa Renner
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
- Department of Orthopedic Surgery, Center for Musculoskeletal Surgery, Charite Universitaetsmedizin, Chariteplatz 1, 10117, Berlin, Germany
| | - Martin Faschingbauer
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
- Department of Orthopedics and Orthopedic Surgery, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Tom Schmidt-Braekling
- Department of Orthopedic Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Friedrich Boettner
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.
| |
Collapse
|
40
|
Davis DL, Morrison JJ. Hip Arthroplasty Pseudotumors: Pathogenesis, Imaging, and Clinical Decision Making. J Clin Imaging Sci 2016; 6:17. [PMID: 27195183 PMCID: PMC4863402 DOI: 10.4103/2156-7514.181493] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 04/14/2016] [Indexed: 12/13/2022] Open
Abstract
Pseudotumors are a complication of hip arthroplasty. The goal of this article is to review the clinical presentation, pathogenesis, histology, and the role of diagnostic imaging in clinical decision making for treatment, and surveillance of pseudotumors. We will discuss the multimodal imaging appearances, differential diagnosis, associated complications, treatment, and prognosis of pseudotumors, as an aid to the assessment of orthopedic prostheses at the hip.
Collapse
Affiliation(s)
- Derik L Davis
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James J Morrison
- Dotter Interventional Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
41
|
Anwander H, Cron GO, Rakhra K, Beaule PE. Perfusion MRI in hips with metal-on-metal and metal-on-polyethylene total hip arthroplasty: A pilot study. Bone Joint Res 2016; 5:73-9. [PMID: 26935768 PMCID: PMC4852810 DOI: 10.1302/2046-3758.53.2000572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objectives Hips with metal-on-metal total hip arthroplasty (MoM THA) have a high rate of adverse local tissue reactions (ALTR), often associated with hypersensitivity reactions. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measures tissue perfusion with the parameter Ktrans (volume transfer constant of contrast agent). Our purpose was 1) to evaluate the feasibility of DCE-MRI in patients with THA and 2) to compare DCE-MRI in patients with MoM bearings with metal-on-polyethylene (MoP) bearings, hypothesising that the perfusion index Ktrans in hips with MoM THA is higher than in hips with MoP THA. Methods In this pilot study, 16 patients with primary THA were recruited (eight MoM, eight MoP). DCE-MRI of the hip was performed at 1.5 Tesla (T). For each patient, Ktrans was computed voxel-by-voxel in all tissue lateral to the bladder. The mean Ktrans for all voxels was then calculated. These values were compared with respect to implant type and gender, and further correlated with clinical parameters. Results There was no significant difference between the two bearing types with both genders combined. However, dividing patients by THA bearing and gender, women with MoM bearings had the highest Ktrans values, exceeding those of women with MoP bearings (0.067 min−1versus 0.053 min−1; p-value < 0.05) and men with MoM bearings (0.067 min−1versus 0.034 min−1; p-value < 0.001). Considering only the men, patients with MoM bearings had lower Ktrans than those with MoP bearings (0.034 min−1versus 0.046 min−1; p < 0.05). Conclusion DCE-MRI is feasible to perform in tissues surrounding THA. Females with MoM THA show high Ktrans values in DCE-MRI, suggesting altered tissue perfusion kinematics which may reflect relatively greater inflammation. Cite this article: Dr P. E. Beaule. Perfusion MRI in hips with metal-on-metal and metal-on-polyethylene total hip arthroplasty: A pilot stud. Bone Joint Res 2016;5:73–79. DOI: 10.1302/2046-3758.53.2000572.
Collapse
Affiliation(s)
- H Anwander
- Universität für Orthopädische Chirurgie und Traumatologie, Freiburgstrasse 4, 3010 Bern, Switzerland
| | - G O Cron
- The Ottawa Hospital, University of Ottawa, 501 Smyth Road, Ottawa, ON, Canada
| | - K Rakhra
- The Ottawa Hospital, University of Ottawa, 501 Smyth Road, Ottawa, ON, Canada
| | - P E Beaule
- The Ottawa Hospital, University of Ottawa, 501 Smyth Road, Ottawa, ON, Canada
| |
Collapse
|
42
|
Reito A, Parkkinen J, Puolakka T, Pajamäki J, Eskelinen A. Diagnostic utility of joint fluid metal ion measurement for histopathological findings in metal-on-metal hip replacements. BMC Musculoskelet Disord 2015; 16:393. [PMID: 26693704 PMCID: PMC4687336 DOI: 10.1186/s12891-015-0851-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/06/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In vivo assessment of inflammatory responses in the synovia of patients with MoM hip replacements would be useful in the determination of the prognosis of the hip replacement. Aims of the study was to investigate the correlation between cobalt and chrome levels in joint fluid with histopathological findings and the predictive ability of metal ion levels for these findings. METHODS In 163 revision surgeries (141 ASR THAs and 22 ASR hip resurfacings) joint fluid chrome and cobalt levels were assessed and histological analysis of synovial tissues was performed. Histological analysis included assessment of histiocytes, particle load, surface necrosis, lymphocyte cuffs and ALVAL-score. RESULTS Surface necrosis correlated positively with cobalt levels both in both groups. Neither chrome nor cobalt level had even fair discriminative ability to predict the presence or severity of any histological finding in the THA group. In the hip resurfacing group, cobalt level had good discriminative ability to predict the presence of perivascular lymphocytes and ALVAL-score of ≥ 7 whereas chrome had good discriminative ability to predict surface necrosis, metal particle load and ALVAL-score of ≥ 7. CONCLUSIONS Measurement of metal ion levels following joint fluid aspirate offers no relevant information with regard to histopathological findings in patients with large-diameter MoM THAs. Limited information may be gained from assessment of joint fluid metal ion levels in patients with hip resurfacings, but disadvantages of an aspirate must be carefully reviewed.
Collapse
Affiliation(s)
- Aleksi Reito
- Coxa Hospital for Joint Replacement, Biokatu 6b, 33520, Tampere, Finland.
| | | | - Timo Puolakka
- Coxa Hospital for Joint Replacement, Biokatu 6b, 33520, Tampere, Finland.
| | - Jorma Pajamäki
- Coxa Hospital for Joint Replacement, Biokatu 6b, 33520, Tampere, Finland.
| | - Antti Eskelinen
- Coxa Hospital for Joint Replacement, Biokatu 6b, 33520, Tampere, Finland.
| |
Collapse
|
43
|
Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part I: Physicochemical properties in patient and simulator studies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1201-15. [DOI: 10.1016/j.nano.2014.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/19/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022]
|
44
|
Singh G, Nuechtern JV, Meyer H, Fiedler GM, Awiszus F, Junk-Jantsch S, Bruegel M, Pflueger G, Lohmann CH. Particle characterisation and cytokine expression in failed small-diameter metal-on-metal total hip arthroplasties. Bone Joint J 2015; 97-B:917-23. [DOI: 10.1302/0301-620x.97b7.35163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The peri-prosthetic tissue response to wear debris is complex and influenced by various factors including the size, area and number of particles. We hypothesised that the ‘biologically active area’ of all metal wear particles may predict the type of peri-prosthetic tissue response. Peri-prosthetic tissue was sampled from 21 patients undergoing revision of a small diameter metal-on-metal (MoM) total hip arthroplasty (THA) for aseptic loosening. An enzymatic protocol was used for tissue digestion and scanning electron microscope was used to characterise particles. Equivalent circle diameters and particle areas were calculated. Histomorphometric analyses were performed on all tissue specimens. Aspirates of synovial fluid were collected for analysis of the cytokine profile analysis, and compared with a control group of patients undergoing primary THA (n = 11) and revision of a failed ceramic-on-polyethylene arthroplasty (n = 6). The overall distribution of the size and area of the particles in both lymphocyte and non-lymphocyte-dominated responses were similar; however, the subgroup with lymphocyte-dominated peri-prosthetic tissue responses had a significantly larger total number of particles. 14 cytokines (interleukin (IL)-1ß, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, interferon (IFN)-γ, and IFN-gamma-inducible protein 10), chemokines (macrophage inflammatory protein (MIP)-1α and MIP-1ß), and growth factors (granulocyte macrophage colony stimulating factor (GM-CSF) and platelet derived growth factor) were detected at significantly higher levels in patients with metal wear debris compared with the control group. Significantly higher levels for IL-1ß, IL-5, IL-10 and GM-CSF were found in the subgroup of tissues from failed MoM THAs with a lymphocyte-dominated peri-prosthetic response compared with those without this response. These results suggest that the ‘biologically active area’ predicts the type of peri-prosthetic tissue response. The cytokines IL-1ß, IL-5, IL-10, and GM-CSF are associated with lymphocyte-dominated tissue responses from failed small-diameter MoM THA. Cite this article: Bone Joint J 2015;97-B:917–23.
Collapse
Affiliation(s)
- G. Singh
- National University Health System, 1E
Kent Ridge Road, 119228, Singapore
| | - J. V. Nuechtern
- University of Hamburg-Eppendorf, Martinistrasse
52, D-20246 Hamburg, Germany
| | - H. Meyer
- Otto-von-Guericke University, Leipziger
Strasse 44, D-39120 Magdeburg, Germany
| | - G. M. Fiedler
- Bern University Hospital, F603, CH-3010
Bern, Switzerland
| | - F. Awiszus
- Otto-von-Guericke University, Leipziger
Strasse 44, D-39120 Magdeburg, Germany
| | - S. Junk-Jantsch
- Evangelisches Krankenhaus, Hans-Sachs-Gasse
10-12, A-1180 Vienna, Austria
| | - M. Bruegel
- Ludwig-Maximilians-University, Marchioninistrasse
15, 81377 Munich, Germany
| | - G. Pflueger
- Evangelisches Krankenhaus, Hans-Sachs-Gasse
10-12, A-1180 Vienna, Austria
| | - C. H. Lohmann
- Otto-von-Guericke University, Leipziger
Strasse 44, D-39120 Magdeburg, Germany
| |
Collapse
|
45
|
Complications Related to Metal-on-Metal Articulation in Trapeziometacarpal Joint Total Joint Arthroplasty. J Funct Biomater 2015; 6:318-27. [PMID: 26020592 PMCID: PMC4493514 DOI: 10.3390/jfb6020318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/18/2015] [Indexed: 02/08/2023] Open
Abstract
Adverse reactions to metal-on-metal (MoM) prostheses are well known from total hip joint resurfacing arthroplasty with elevated serum chrome or cobalt, pain and pseudo tumor formation. It may, however, also be seen after total joint replacement of the trapeziometacarpal joint using MoM articulation, and we present two cases of failure of MoM prostheses due to elevated metal-serum levels in one case and pseudo tumor formation in another case. Furthermore, we suggest a diagnostic algorithm for joint pain after MoM trapeziometacarpal joint replacement based on published experiences from MoM hip prostheses and adverse reactions to metal.
Collapse
|
46
|
Patients with intolerance reactions to total knee replacement: combined assessment of allergy diagnostics, periprosthetic histology, and peri-implant cytokine expression pattern. BIOMED RESEARCH INTERNATIONAL 2015; 2015:910156. [PMID: 25866822 PMCID: PMC4383474 DOI: 10.1155/2015/910156] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/08/2014] [Indexed: 12/21/2022]
Abstract
We performed a combined approach to identify suspected allergy to knee arthroplasty (TKR): patch test (PT), lymphocyte transformation test (LTT), histopathology (overall grading; T- and B-lymphocytes, macrophages, and neutrophils), and semiquantitative Real-time-PCR-based periprosthetic inflammatory mediator analysis (IFNγ, TNFα, IL1-β, IL-2, IL-6, IL-8, IL-10, IL17, and TGFβ). We analyzed 25 TKR patients with yet unexplained complications like pain, effusion, and reduced range of motion. They consisted of 20 patients with proven metal sensitization (11 with PT reactions; 9 with only LTT reactivity). Control specimens were from 5 complicated TKR patients without metal sensitization, 12 OA patients before arthroplasty, and 8 PT patients without arthroplasty. Lymphocytic infiltrates were seen and fibrotic (Type IV membrane) tissue response was most frequent in the metal sensitive patients, for example, in 81% of the PT positive patients. The latter also had marked periprosthetic IFNγ expression. 8/9 patients with revision surgery using Ti-coated/oxinium based implants reported symptom relief. Our findings demonstrate that combining allergy diagnostics with histopathology and periprosthetic cytokine assessment could allow us to design better diagnostic strategies.
Collapse
|
47
|
Bitar D, Parvizi J. Biological response to prosthetic debris. World J Orthop 2015; 6:172-189. [PMID: 25793158 PMCID: PMC4363800 DOI: 10.5312/wjo.v6.i2.172] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/28/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Joint arthroplasty had revolutionized the outcome of orthopaedic surgery. Extensive and collaborative work of many innovator surgeons had led to the development of durable bearing surfaces, yet no single material is considered absolutely perfect. Generation of wear debris from any part of the prosthesis is unavoidable. Implant loosening secondary to osteolysis is the most common mode of failure of arthroplasty. Osteolysis is the resultant of complex contribution of the generated wear debris and the mechanical instability of the prosthetic components. Roughly speaking, all orthopedic biomaterials may induce a universal biologic host response to generated wear débris with little specific characteristics for each material; but some debris has been shown to be more cytotoxic than others. Prosthetic wear debris induces an extensive biological cascade of adverse cellular responses, where macrophages are the main cellular type involved in this hostile inflammatory process. Macrophages cause osteolysis indirectly by releasing numerous chemotactic inflammatory mediators, and directly by resorbing bone with their membrane microstructures. The bio-reactivity of wear particles depends on two major elements: particle characteristics (size, concentration and composition) and host characteristics. While any particle type may enhance hostile cellular reaction, cytological examination demonstrated that more than 70% of the debris burden is constituted of polyethylene particles. Comprehensive understanding of the intricate process of osteolysis is of utmost importance for future development of therapeutic modalities that may delay or prevent the disease progression.
Collapse
|
48
|
Madl AK, Kovochich M, Liong M, Finley BL, Paustenbach DJ, Oberdörster G. Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part II: Importance of physicochemical properties and dose in animal and in vitro studies as a basis for risk assessment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1285-98. [PMID: 25735266 DOI: 10.1016/j.nano.2015.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/03/2014] [Indexed: 12/28/2022]
Abstract
The objective of the Part II analysis was to evaluate animal and in vitro toxicology studies of CoCr particles with respect to their physicochemistry and dose relevance to metal-on-metal (MoM) implant patients as derived from Part I. In the various toxicology studies, physicochemical characteristics were infrequently considered and administered doses were orders of magnitude higher than what occurs in patients. Co was consistently shown to rapidly release from CoCr particles for distribution and elimination from the body. CoCr micron sized particles appear more biopersistent in vivo resulting in inflammatory responses that are not seen with similar mass concentrations of nanoparticles. We conclude, that in an attempt to obtain data for a complete risk assessment, future studies need to focus on physicochemical characteristics of nano and micron sized particles and on doses and dose metrics relevant to those generated in patients or in properly conducted hip simulator studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Günter Oberdörster
- University of Rochester, Department of Environmental Medicine, Rochester, NY, USA
| |
Collapse
|
49
|
Pyda M, Koczy B, Widuchowski W, Widuchowska M, Stołtny T, Mielnik M, Hermanson J. Hip resurfacing arthroplasty in treatment of avascular necrosis of the femoral head. Med Sci Monit 2015; 21:304-9. [PMID: 25618763 PMCID: PMC4315641 DOI: 10.12659/msm.891031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Hip resurfacing is a conservative type of total hip arthroplasty but its use is controversial, especially in patients with osteonecrosis. The aim of this study was analysis of the clinical and radiographic outcomes of hip resurfacing in patients with osteonecrosis. Material/Methods Between 2007 and 2008, 30 hip resurfacing arthroplasties were performed due to osteoarthritis secondary to avascular necrosis of femoral head staged as Ficat III and IV. Patients were qualified to resurfacing arthroplasty when the extent of avascular necrosis using Kerboul’s method was <200° and the angle between avascular necrosis and head-neck junction was >20°. All patients were evaluated clinically and radiologically before and 60 months after the operation. Results The mean Harris Hip Score (HHS) score increased from 47.8 to 94.25 (p<0.05). Physical activity level (University of California, Los Angeles activity score – UCLA activity score) improved from 3.7 to 7.55 (p<0.05). No implant migration was observed. Conclusions Management of osteonecrosis of the hip with resurfacing arthroplasty seems to be effective in strictly-selected patients.
Collapse
Affiliation(s)
- Michał Pyda
- Department of Trauma and Orthopaedics, District Trauma and Orthopaedic Hospital, Piekary Śląskie, Poland
| | - Bogdan Koczy
- Department of Trauma and Orthopaedics, District Trauma and Orthopaedic Hospital, Piekary Śląskie, Poland
| | - Wojciech Widuchowski
- Department of Trauma and Orthopaedics, District Trauma and Orthopaedic Hospital, Piekary Śląskie, Poland
| | - Małgorzata Widuchowska
- Department of Internal Medicine and Rheumatology, Medical University of Silesia, Katowice, Poland
| | - Tomasz Stołtny
- Department of Trauma and Orthopaedics, District Trauma and Orthopaedic Hospital, Piekary Śląskie, Poland
| | - Michał Mielnik
- Department of Trauma and Orthopaedics, District Trauma and Orthopaedic Hospital, Piekary Śląskie, Poland
| | - Jacek Hermanson
- Department of Trauma and Orthopaedics, District Trauma and Orthopaedic Hospital, Piekary Śląskie, Poland
| |
Collapse
|
50
|
How have new bearing surfaces altered the local biological reactions to byproducts of wear and modularity? Clin Orthop Relat Res 2014; 472:3687-98. [PMID: 25080263 PMCID: PMC4397755 DOI: 10.1007/s11999-014-3817-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The biologic reactions to byproducts of wear or corrosion can involve innate and adaptive processes and are dependent on many factors, including the composition, size, surface properties, shape, and concentration of debris. QUESTIONS/PURPOSES We used a systematic literature review to compare the reported patterns of inflammation in tissues around total hip implants with the goal of identifying whether there are unique or characteristic patterns associated with the newer bearing options or modular components. METHODS A search of the Ovid Medline database between 1996 and early December 2013 identified articles that compared the histology around six implant groups: (1) metal-on-metal; (2) ceramic-on-ceramic; (3) metal-on-crosslinked polyethylene; (4) metal-on-conventional polyethylene with or (5) without modularity; and (6) tissue obtained at primary arthroplasty. Our initial search yielded 865 citations. After excluding articles that lacked a quantitative or semiquantitative description of histologic findings in periprosthetic tissue, we reviewed 34 articles. RESULTS No pattern of inflammation is specific for any given bearing combination. Histologic features suggestive of an adaptive immune response appear to be more frequent and of greater magnitude in failed metal-on-metal implants, but tissues around many failed metal-on-metal implants show features of an "innate" foreign body reaction without lymphocytes. Occasional nonmetal-on-metal implants show features of an immune reaction, possibly associated with metal particles. Modular connections are one source of metal debris in nonmetal-on-metal implants. Features of an immune reaction appear rare in ceramic-on-ceramic implants that lack corrosion. Insufficient reports are available to characterize the biologic response to crosslinked polyethylene. CONCLUSIONS All total hip bearing combinations will wear in vivo, and modular interfaces are a likely source of metal that may be associated with a biological response regardless of the composition of the bearing surfaces. Surgeons must weigh the potential advantages of each articular combination and modular connection with the potential adverse tissue reactions in any given patient. Additional work is needed to clarify the implant and host-related factors associated with adverse tissue reactions and that seem to induce an immune reaction in some patients.
Collapse
|