1
|
Swaidan NT, Soliman NH, Aboughalia AT, Darwish T, Almeshal RO, Al-Khulaifi AA, Taha RZ, Alanany R, Hussein AY, Salloum-Asfar S, Abdulla SA, Abdallah AM, Emara MM. CCN3, POSTN, and PTHLH as potential key regulators of genomic integrity and cellular survival in iPSCs. Front Mol Biosci 2024; 11:1342011. [PMID: 38375508 PMCID: PMC10875024 DOI: 10.3389/fmolb.2024.1342011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Reprogramming human somatic cells into a pluripotent state, achieved through the activation of well-defined transcriptional factors known as OSKM factors, offers significant potential for regenerative medicine. While OSKM factors are a robust reprogramming method, efficiency remains a challenge, with only a fraction of cells undergoing successful reprogramming. To address this, we explored genes related to genomic integrity and cellular survival, focusing on iPSCs (A53T-PD1) that displayed enhanced colony stability. Our investigation had revealed three candidate genes CCN3, POSTN, and PTHLH that exhibited differential expression levels and potential roles in iPSC stability. Subsequent analyses identified various protein interactions for these candidate genes. POSTN, significantly upregulated in A53T-PD1 iPSC line, showed interactions with extracellular matrix components and potential involvement in Wnt signaling. CCN3, also highly upregulated, demonstrated interactions with TP53, CDKN1A, and factors related to apoptosis and proliferation. PTHLH, while upregulated, exhibited interactions with CDK2 and genes involved in cell cycle regulation. RT-qPCR validation confirmed elevated CCN3 and PTHLH expression in A53T-PD1 iPSCs, aligning with RNA-seq findings. These genes' roles in preserving pluripotency and cellular stability require further exploration. In conclusion, we identified CCN3, POSTN, and PTHLH as potential contributors to genomic integrity and pluripotency maintenance in iPSCs. Their roles in DNA repair, apoptosis evasion, and signaling pathways could offer valuable insights for enhancing reprogramming efficiency and sustaining pluripotency. Further investigations are essential to unravel the mechanisms underlying their actions.
Collapse
Affiliation(s)
- Nuha T. Swaidan
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nada H. Soliman
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ahmed T. Aboughalia
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Toqa Darwish
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ruba O. Almeshal
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Azhar A. Al-Khulaifi
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Rowaida Z. Taha
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Rania Alanany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Abdallah M. Abdallah
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Lee EJ, Lee KJ, Jung S, Park KH, Park SI. Mobilization of monocytic myeloid-derived suppressor cells is regulated by PTH1R activation in bone marrow stromal cells. Bone Res 2023; 11:22. [PMID: 37085481 PMCID: PMC10121701 DOI: 10.1038/s41413-023-00255-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/23/2023] [Accepted: 03/01/2023] [Indexed: 04/23/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are bone marrow (BM)-derived immunosuppressive cells in the tumor microenvironment, but the mechanism of MDSC mobilization from the BM remains unclear. We investigated how BM stromal cell activation by PTH1R contributes to MDSC mobilization. PTH1R activation by parathyroid hormone (PTH) or PTH-related peptide (PTHrP), a tumor-derived counterpart, mobilized monocytic (M-) MDSCs from murine BM without increasing immunosuppressive activity. In vitro cell-binding assays demonstrated that α4β1 integrin and vascular cell adhesion molecule (VCAM)-1, expressed on M-MDSCs and osteoblasts, respectively, are key to M-MDSC binding to osteoblasts. Upon PTH1R activation, osteoblasts express VEGF-A and IL6, leading to Src family kinase phosphorylation in M-MDSCs. Src inhibitors suppressed PTHrP-induced MDSC mobilization, and Src activation in M-MDSCs upregulated two proteases, ADAM-17 and MMP7, leading to VCAM1 shedding and subsequent disruption of M-MDSC tethering to osteoblasts. Collectively, our data provide the molecular mechanism of M-MDSC mobilization in the bones of tumor hosts.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
- The BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Jin Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
- The BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seungpil Jung
- Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Kyong Hwa Park
- Division of Oncology and Hematology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea.
- The BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
- Vanderbilt Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
3
|
Li YY, Guo L, Li H, Lei WL, Fan LH, Ouyang YC, Hou Y, Wang ZB, Sun QY, Lu SS, Han Z. PTHrP promotes development of mouse preimplantation embryos through the AKT/cyclin D1 pathway and nuclear translocation of HDAC4. J Cell Physiol 2021; 236:7001-7013. [PMID: 33724469 DOI: 10.1002/jcp.30362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 11/09/2022]
Abstract
Parathyroid hormone-related protein (PTHrP), the main cause of humoral hypercalcemia in malignancies, promotes cell proliferation and delays terminal cell maturation during embryonic development. Our previous study reported that PTHrP plays important roles in blastocyst formation, pluripotency gene expression, and histone acetylation during mouse preimplantation embryonic development. In this study, we further investigated the mechanism of preimplantation embryonic development regulated by PTHrP. Our results showed that Pthrp depletion decreased both the developmental rate of embryos at the cleavage stage and the cell number of morula-stage embryos. Pthrp-depleted embryos had significantly decreased levels of cyclin D1, phospho (p)-AKT (Thr308) and E2F1. However, Pthrp depletion did not cause significant changes in CDK4, β-catenin or RUNX2 expression. In addition, our results indicated that Pthrp depletion promoted HDAC4 translocation from the cytoplasm to the nucleus in cleavage-stage embryos by stimulating the activity of protein phosphatase 2A (PP2A), which resulted in dephosphorylation of HDAC4. Taken together, these results suggest that PTHrP regulates cleavage division progression and blastocyst formation through the AKT/cyclin D1 pathway and that PTHrP modulates histone acetylation patterns through nuclear translocation of HDAC4 via PP2A-dependent HDAC4 dephosphorylation during preimplantation embryonic development in mice.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lei Guo
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hui Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Sheng-Sheng Lu
- Agri-animal Industrial Development Institute, Guangxi University, Nanning, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
4
|
Tang J, Yan D, Chen L, Shen Z, Wang B, Weng S, Wu Z, Xie Z, Fang K, Hong C, Xie J, Yang L, Shen L. Enhancement of local bone formation on titanium implants in osteoporotic rats by biomimetic multilayered structures containing parathyroid hormone (PTH)-related protein. ACTA ACUST UNITED AC 2020; 15:045011. [PMID: 32109901 DOI: 10.1088/1748-605x/ab7b3d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Osteoporosis is a severe health problem causing bone fragility and consequent fracture. Titanium (Ti) implants, used in patients with osteoporotic fractures, are prone to failure because of the decreased bone mass and strength. Therefore, it is of utmost importance to fabricate implants possessing osteogenic properties to improve implant osseointegration. To improve the long-term survival rate of Ti implants in osteoporotic patients, hyaluronic acid/ϵ-polylysine multilayers containing the parathyroid hormone (PTH)-related protein (PTHrP) were deposited on Ti implants by a layer-by-layer (LBL) electro assembly technique. The murine pre-osteoblast cell line MC3T3-E1, possessing a high potential of osteoblast differentiation, was used to evaluate the osteo-inductive effects of Ti-LBL-PTHrP in vitro. In addition, the performance of the Ti (Ti-LBL-PTHrP) implant was evaluated in vivo in a femoral intramedullary implantation in Sprague Dawley rats. The Ti-LBL-PTHrP implant regulated the release of the loaded PTHrP to increase bone formation in the early stage of implantation. The in vitro results revealed that cells on Ti-LBL-PTHrP did not show any evident proliferation, but a high level of alkaline phosphatase activity and osteoblast-related protein expression was found, compared to the uncoated Ti group (p < 0.05). In addition, in vivo micro-CT and histological analysis demonstrated that the Ti-LBL-PTHrP implants could significantly promote the formation and remodeling of new bone in osteoporotic rats at 14 d after implantation. Overall, this study established a profound and straightforward methodology for the manufacture of biofunctional Ti implants for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jiahao Tang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, Xueyuan West Road, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Yang M, Arai A, Udagawa N, Zhao L, Nishida D, Murakami K, Hiraga T, Takao-Kawabata R, Matsuo K, Komori T, Kobayashi Y, Takahashi N, Isogai Y, Ishizuya T, Yamaguchi A, Mizoguchi T. Parathyroid Hormone Shifts Cell Fate of a Leptin Receptor-Marked Stromal Population from Adipogenic to Osteoblastic Lineage. J Bone Miner Res 2019; 34:1952-1963. [PMID: 31173642 DOI: 10.1002/jbmr.3811] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022]
Abstract
Intermittent parathyroid hormone (iPTH) treatment induces bone anabolic effects that result in the recovery of osteoporotic bone loss. Human PTH is usually given to osteoporotic patients because it induces osteoblastogenesis. However, the mechanism by which PTH stimulates the expansion of stromal cell populations and their maturation toward the osteoblastic cell lineage has not be elucidated. Mouse genetic lineage tracing revealed that iPTH treatment induced osteoblastic differentiation of bone marrow (BM) mesenchymal stem and progenitor cells (MSPCs), which carried the leptin receptor (LepR)-Cre. Although these findings suggested that part of the PTH-induced bone anabolic action is exerted because of osteoblastic commitment of MSPCs, little is known about the in vivo mechanistic details of these processes. Here, we showed that LepR+ MSPCs differentiated into type I collagen (Col1)+ mature osteoblasts in response to iPTH treatment. Along with osteoblastogenesis, the number of Col1+ mature osteoblasts increased around the bone surface, although most of them were characterized as quiescent cells. However, the number of LepR-Cre-marked lineage cells in a proliferative state also increased in the vicinity of bone tissue after iPTH treatment. The expression levels of SP7/osterix (Osx) and Col1, which are markers for osteoblasts, were also increased in the LepR+ MSPCs population in response to iPTH treatment. In contrast, the expression levels of Cebpb, Pparg, and Zfp467, which are adipocyte markers, decreased in this population. Consistent with these results, iPTH treatment inhibited 5-fluorouracil- or ovariectomy (OVX)-induced LepR+ MSPC-derived adipogenesis in BM and increased LepR+ MSPC-derived osteoblasts, even under the adipocyte-induced conditions. Treatment of OVX rats with iPTH significantly affected the osteoporotic bone tissue and expansion of the BM adipose tissue. These results indicated that iPTH treatment induced transient proliferation of the LepR+ MSPCs and skewed their lineage differentiation from adipocytes toward osteoblasts, resulting in an expanded, quiescent, and mature osteoblast population. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mengyu Yang
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Atsushi Arai
- Department of Orthodontics, Matsumoto Dental University, Nagano, Japan
| | - Nobuyuki Udagawa
- Department of Oral Biochemistry, Matsumoto Dental University, Nagano, Japan
| | - Lijuan Zhao
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Daisuke Nishida
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Kohei Murakami
- Department of Oral Biochemistry, Matsumoto Dental University, Nagano, Japan
| | - Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Nagano, Japan
| | - Ryoko Takao-Kawabata
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Unit of Basic Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Yukihiro Isogai
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Toshinori Ishizuya
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Akira Yamaguchi
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Toshihide Mizoguchi
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
6
|
Ardura JA, Portal-Núñez S, Alonso V, Bravo B, Gortazar AR. Handling Parathormone Receptor Type 1 in Skeletal Diseases: Realities and Expectations of Abaloparatide. Trends Endocrinol Metab 2019; 30:756-766. [PMID: 31409530 DOI: 10.1016/j.tem.2019.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Abstract
Musculoskeletal disorders represent an elevated socioeconomic burden for developed aging societies. Osteoporosis (OP) has been treated with antiresorptive therapies or with teriparatide that was until recently the only anabolic therapy. However, approval of osteoporosis treatment in postmenopausal women with abaloparatide, which is an analog of parathyroid hormone-related peptide (PTHrP), has created a new alternative for OP management. The success of this new treatment is related to differential mechanisms of activation of PTH receptor type 1 (PTH1R) by abaloparatide and PTH. Here, we address the distinguishing mechanisms of PTH1R activation; the effects of PTH1R stimulation in osteoblast, osteocytes, and chondrocytes; the differences between PTH and abaloparatide actions on PTH1R; potential safety concerns; and future perspectives about abaloparatide use in other musculoskeletal disorders.
Collapse
Affiliation(s)
- Juan A Ardura
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain.
| | - Sergio Portal-Núñez
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain
| | - Verónica Alonso
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain
| | - Beatriz Bravo
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain
| | - Arancha R Gortazar
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain
| |
Collapse
|
7
|
Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front Physiol 2018; 9:1091. [PMID: 30174608 PMCID: PMC6108594 DOI: 10.3389/fphys.2018.01091] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother must adapt her body systems to support nutrient and oxygen supply for growth of the baby in utero and during the subsequent lactation. These include changes in the cardiovascular, pulmonary, immune and metabolic systems of the mother. Failure to appropriately adjust maternal physiology to the pregnant state may result in pregnancy complications, including gestational diabetes and abnormal birth weight, which can further lead to a range of medically significant complications for the mother and baby. The placenta, which forms the functional interface separating the maternal and fetal circulations, is important for mediating adaptations in maternal physiology. It secretes a plethora of hormones into the maternal circulation which modulate her physiology and transfers the oxygen and nutrients available to the fetus for growth. Among these placental hormones, the prolactin-growth hormone family, steroids and neuropeptides play critical roles in driving maternal physiological adaptations during pregnancy. This review examines the changes that occur in maternal physiology in response to pregnancy and the significance of placental hormone production in mediating such changes.
Collapse
Affiliation(s)
- Tina Napso
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Hannah E J Yong
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Lopez-Tello
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Midha S, Chawla S, Chakraborty J, Chameettachal S, Ghosh S. Differential Regulation of Hedgehog and Parathyroid Signaling in Mulberry and Nonmulberry Silk Fibroin Textile Braids. ACS Biomater Sci Eng 2018; 4:595-607. [DOI: 10.1021/acsbiomaterials.7b00874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Swati Midha
- Regenerative Engineering
Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi, India 110016
| | - Shikha Chawla
- Regenerative Engineering
Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi, India 110016
| | - Juhi Chakraborty
- Regenerative Engineering
Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi, India 110016
| | - Shibu Chameettachal
- Regenerative Engineering
Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi, India 110016
| | - Sourabh Ghosh
- Regenerative Engineering
Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi, India 110016
| |
Collapse
|
9
|
Mizuno M, Morinaga H, Mukai K, Kanayama K, Shibutani T. Parathyroid Hormone (1-34) Enhances Bone Regeneration in Rats with Cranial Bone Defects. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mao Mizuno
- Department of Periodontology, Division of Oral Infections and Health Science, Asahi University School of Dentistry
| | - Hirotugu Morinaga
- Department of Periodontology, Division of Oral Infections and Health Science, Asahi University School of Dentistry
| | - Keisuke Mukai
- Department of Periodontology, Division of Oral Infections and Health Science, Asahi University School of Dentistry
| | - Keiichi Kanayama
- Department of Periodontology, Division of Oral Infections and Health Science, Asahi University School of Dentistry
| | - Toshiaki Shibutani
- Department of Periodontology, Division of Oral Infections and Health Science, Asahi University School of Dentistry
| |
Collapse
|
10
|
Sinder BP, Zweifler L, Koh AJ, Michalski MN, Hofbauer LC, Aguirre JI, Roca H, McCauley LK. Bone Mass Is Compromised by the Chemotherapeutic Trabectedin in Association With Effects on Osteoblasts and Macrophage Efferocytosis. J Bone Miner Res 2017; 32:2116-2127. [PMID: 28600866 PMCID: PMC5640484 DOI: 10.1002/jbmr.3196] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 11/11/2022]
Abstract
Macrophages have established roles supporting bone formation. Despite their professional phagocytic nature, the role of macrophage phagocytosis in bone homeostasis is not well understood. Interestingly, apoptosis is a pivotal feature of cellular regulation and the primary fate of osteoblasts is apoptosis. Efferocytosis (phagocytosis of apoptotic cells) is a key physiologic process for the homeostasis of many tissues, and is associated with expression of osteoinductive factors. To test effects of macrophage depletion and compromised phagocytosis on bone, 16-week-old male C57BL/6J mice were treated with trabectedin-a chemotherapeutic with established anti-macrophage effects. Trabectedin treatment reduced F4/80+ and CD68+ macrophages in the bone marrow as assessed by flow cytometry, osteal macrophages near the bone surface, and macrophage viability in vitro. Trabectedin treatment significantly reduced marrow gene expression of key phagocytic factors (Mfge8, Mrc1), and macrophages from treated mice had a reduced ability to phagocytose apoptotic mimicry beads. Macrophages cultured in vitro and treated with trabectedin displayed reduced efferocytosis of apoptotic osteoblasts. Moreover, efferocytosis increased macrophage osteoinductive TGF-β production and this increase was inhibited by trabectedin. Long-term (6-week) treatment of 16-week-old C57BL/6J mice with trabectedin significantly reduced trabecular BV/TV and cortical BMD. Although trabectedin reduced osteoclast numbers in vitro, osteoclast surface in vivo was not altered. Trabectedin treatment reduced serum P1NP as well as MS/BS and BFR/BS, and inhibited mineralization and Runx2 gene expression of osteoblast cultures. Finally, intermittent PTH 1-34 (iPTH) treatment was administered in combination with trabectedin, and iPTH increased trabecular bone volume fraction (BV/TV) in trabectedin-treated mice. Collectively, the data support a model whereby trabectedin significantly reduces bone mass due to compromised macrophages and efferocytosis, but also due to direct effects on osteoblasts. This data has immediate clinical relevance in light of increasing use of trabectedin in oncology. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Benjamin P. Sinder
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Laura Zweifler
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Amy J. Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Megan N. Michalski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Lorenz C. Hofbauer
- Center for Healthy Aging, Technische Universität Dresden Technical University Medical Center, Dresden, Germany
| | - Jose Ignacio Aguirre
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, FL
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
- Department of Pathology, University of Michigan, Medical School, Ann Arbor, MI
| |
Collapse
|
11
|
Wen X, Li X, Tang Y, Tang J, Zhou S, Xie Y, Guo J, Yang J, Du X, Su N, Chen L. Chondrocyte FGFR3 Regulates Bone Mass by Inhibiting Osteogenesis. J Biol Chem 2016; 291:24912-24921. [PMID: 27729453 DOI: 10.1074/jbc.m116.730093] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/24/2016] [Indexed: 12/13/2022] Open
Abstract
Chondrogenesis can regulate bone formation. Fibroblast growth factor receptor 3, highly expressed in chondrocytes, is a negative regulator of bone growth. To investigate whether chondrocyte FGFR3 regulates osteogenesis, thereby contributing to postnatal bone formation and bone remodeling, mice with conditional knock-out of Fgfr3 in chondrocytes (mutant (MUT)) were generated. MUT mice displayed overgrowth of bone with lengthened growth plates. Bone mass of MUT mice was significantly increased at both 1 month and 4 months of age. Histological analysis showed that osteoblast number and bone formation were remarkably enhanced after deletion of Fgfr3 in chondrocytes. Chondrocyte-osteoblast co-culture assay further revealed that Fgfr3 deficiency in chondrocytes promoted differentiation and mineralization of osteoblasts by up-regulating the expressions of Ihh, Bmp2, Bmp4, Bmp7, Wnt4, and Tgf-β1, as well as down-regulating Nog expression. In addition, osteoclastogenesis was also impaired in MUT mice with decreased number of osteoclasts lining trabecular bone, which may be related to the reduced ratio of Rankl to Opg in Fgfr3-deficient chondrocytes. This study reveals that chondrocyte FGFR3 is involved in the regulation of bone formation and bone remodeling by a paracrine mechanism.
Collapse
Affiliation(s)
- Xuan Wen
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Xiaogang Li
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042.,the 305 Hospital of Chinese People's Liberation Army, Beijing 100017, and
| | - Yubin Tang
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042.,the Department of Emergency Treatment, Lanzhou General Hospital, Lanzhou Command, Chinese People's Liberation Army, Lanzhou 730050, China
| | - Junzhou Tang
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Siru Zhou
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Yangli Xie
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Jingyuan Guo
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Jing Yang
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Xiaolan Du
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Nan Su
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042,
| | - Lin Chen
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042,
| |
Collapse
|
12
|
Broome DT, Datta NS. Mitogen-activated protein kinase phosphatase-1: function and regulation in bone and related tissues. Connect Tissue Res 2016; 57:175-89. [PMID: 27031422 DOI: 10.3109/03008207.2015.1125480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this review, we have highlighted work that has clearly demonstrated that mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), a negative regulator of MAPKs, is an important signaling mediator in bone, muscle, and fat tissue homeostasis and differentiation. Further, we examined recent studies with particular focus on MKP-1 overexpression or deletion and its impact on tissues connected to bone. We also summarized regulation of MKP-1 by known skeletal regulators like parathyroid hormone (PTH)/PTH-related peptide (PTHrP) and bone morphogenic proteins. MKP-1's integration into the pathophysiological state of osteoporosis, osteoarthritis, rheumatoid arthritis, obesity, and muscular dystrophy are examined to emphasize possible involvement of MKP-1 both at the molecular level and in disease complications such as sarcopenia- or diabetes-related osteoporosis. We predict that understanding the mechanism of MKP-1-mediated signaling in bone-muscle-fat crosstalk will be a key in coordinating their activities and developing therapeutics to improve clinical outcomes for diseases associated with advanced age.
Collapse
Affiliation(s)
- David T Broome
- a Division of Endocrinology, Department of Internal Medicine , Wayne State University School of Medicine , Detroit , MI , USA
| | - Nabanita S Datta
- a Division of Endocrinology, Department of Internal Medicine , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
13
|
Chukkapalli S, Levi E, Rishi AK, Datta NS. PTHrP attenuates osteoblast cell death and apoptosis induced by a novel class of anti-cancer agents. Endocrine 2016; 51:534-44. [PMID: 26260694 DOI: 10.1007/s12020-015-0699-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/18/2015] [Indexed: 11/30/2022]
Abstract
The effectiveness of chemotherapeutic agents often limits their use due to their negative effects on normal cells. Apoptosis regulatory protein (CARP)-1 functional mimetics (CFMs) belong to a novel class of compounds that possess anti-cancer properties with potential utility in breast and other cancers. In this study, we investigated the growth inhibitory action of CFM-4 and -5 in bone-forming osteoblasts and role of a skeletal regulator, parathyroid hormone (PTH)-related peptide (PTHrP), which is frequently associated with oncologic pathologies. MC3T3E1-clone4 (MC-4) or primary osteoblasts were treated with CFMs. Western blots were performed to determine specific protein expressions. MTT, TUNEL assay, ethidium bromide/acridine orange staining, and ApoAlert caspase profiling were used to investigate cell viability and apoptosis of osteoblasts. Immunofluorescence staining was performed to observe intracellular localization of CARP-1. Our studies revealed that CFM-4 and -5 suppressed growths of mature differentiated, but not proliferating, MC-4 cells and PTHrP attenuated this effect. Mechanistically, induction of CARP-1 protein by CFM-4 and -5 was partially decreased by PTHrP. While CARP-1 increased by CFM-4 or -5 correlated with activated caspase-3, PTHrP remarkably blocked caspase-3 activation. PTHrP also influenced translocation of CFM-induced CARP-1 from the nucleus to the cytoplasm. Our data identify a new function of PTHrP in maintaining osteoblast homeostasis in chemotherapy and define a role of CARP-1 in this process. The crosstalk of PTHrP and CFM-4 and -5 signaling highlights the importance of CFMs as potential anti-cancer therapeutics in breast and other cancers which adversely affect bone.
Collapse
Affiliation(s)
- Sahiti Chukkapalli
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, 1107 Elliman Clinical Research Building, 421 East Canfield Avenue, Detroit, MI, 48201, USA
| | - Edi Levi
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- VA Medical Center, Detroit, MI, 48201, USA
| | - Arun K Rishi
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- VA Medical Center, Detroit, MI, 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Nabanita S Datta
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, 1107 Elliman Clinical Research Building, 421 East Canfield Avenue, Detroit, MI, 48201, USA.
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
14
|
Datta NS, Chukkapalli S, Vengalil N, Zhan E, Przyklenk K, Lasley R. Parathyroid hormone-related peptide protects cardiomyocytes from oxidative stress-induced cell death: First evidence of a novel endocrine-cardiovascular interaction. Biochem Biophys Res Commun 2015; 468:202-7. [PMID: 26518653 DOI: 10.1016/j.bbrc.2015.10.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/24/2015] [Indexed: 11/27/2022]
Abstract
Although there is a growing interest in the molecular cross-talk between the endocrine and cardiovascular systems, the cardiac effects of calcium-regulating hormones (i.e., parathyroid hormone-related peptide (PTHrP)) have not been explored. In this study, we examined the effect of PTHrP on the viability of isolated adult mouse cardiomyocytes subjected to oxidative stress. Myocytes from 19 to 22 week old male 129J/C57BL6 mice were exposed to oxidative insult in the form of H2O2 which led to more than 70% loss of cell viability. Herein we demonstrate, for the first time, that pretreatment with 100 nM PTHrP prior to 100 μM H2O2 incubation prevents H2O2 -induced cell death by more than 50%. Immunoblot analysis revealed H2O2 induction of MKP-1 protein expression while PTHrP decreased MKP-1 expression. Moreover, myocytes derived from MKP1 KO mice were resistant to oxidative injury. No added benefit of PTHrP treatment was noted in MKP-1 null cardiomyocytes. Using specific pharmacological inhibitors we demonstrated that P-p38, P-ERK and P-AKT mediated PTHrP's cardioprotective action. These data provide novel evidence that: i) down-regulation of MKP1 affords profound protection against oxidative stress; and ii) PTHrP is cardioprotective, possibly via down-regulation of MKP-1 and activation of MAPK and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Nabanita S Datta
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Sahiti Chukkapalli
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Nathan Vengalil
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Enbo Zhan
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Karin Przyklenk
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Robert Lasley
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
15
|
Katsumura S, Ezura Y, Izu Y, Shirakawa J, Miyawaki A, Harada K, Noda M. Beta Adrenergic Receptor Stimulation Suppresses Cell Migration in Association with Cell Cycle Transition in Osteoblasts-Live Imaging Analyses Based on FUCCI System. J Cell Physiol 2015; 231:496-504. [PMID: 26192605 DOI: 10.1002/jcp.25096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 01/11/2023]
Abstract
Osteoporosis affects over 20 million patients in the United States. Among those, disuse osteoporosis is serious as it is induced by bed-ridden conditions in patients suffering from aging-associated diseases including cardiovascular, neurological, and malignant neoplastic diseases. Although the phenomenon that loss of mechanical stress such as bed-ridden condition reduces bone mass is clear, molecular bases for the disuse osteoporosis are still incompletely understood. In disuse osteoporosis model, bone loss is interfered by inhibitors of sympathetic tone and adrenergic receptors that suppress bone formation. However, how beta adrenergic stimulation affects osteoblastic migration and associated proliferation is not known. Here we introduced a live imaging system, fluorescent ubiquitination-based cell cycle indicator (FUCCI), in osteoblast biology and examined isoproterenol regulation of cell cycle transition and cell migration in osteoblasts. Isoproterenol treatment suppresses the levels of first entry peak of quiescent osteoblastic cells into cell cycle phase by shifting from G1 /G0 to S/G2 /M and also suppresses the levels of second major peak population that enters into S/G2 /M. The isoproterenol regulation of osteoblastic cell cycle transition is associated with isoproterenol suppression on the velocity of migration. This isoproterenol regulation of migration velocity is cell cycle phase specific as it suppresses migration velocity of osteoblasts in G1 phase but not in G1 /S nor in G2 /M phase. Finally, these observations on isoproterenol regulation of osteoblastic migration and cell cycle transition are opposite to the PTH actions in osteoblasts. In summary, we discovered that sympathetic tone regulates osteoblastic migration in association with cell cycle transition by using FUCCI system.
Collapse
Affiliation(s)
- Sakie Katsumura
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jumpei Shirakawa
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Kiyoshi Harada
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
16
|
Martín MJ, Calvo N, de Boland AR, Gentili C. Molecular mechanisms associated with PTHrP-induced proliferation of colon cancer cells. J Cell Biochem 2015; 115:2133-45. [PMID: 25053227 DOI: 10.1002/jcb.24890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 07/18/2014] [Indexed: 12/13/2022]
Abstract
Parathyroid Hormone-related Protein (PTHrP) is normally produced in many tissues and is recognized for its endocrine, paracrine, autocrine and intracrine modes of action. PTHrP is also implicated in different types of cancer and its expression correlates with the severity of colon carcinoma. Using the human colon cell line Caco-2 we recently obtained evidence that PTHrP, through a paracrine pathway, exerts a protective effect under apoptotic conditions. However, if exogenous PTHrP is able or not to induce the proliferation of these intestinal tumor cells is not known. We found that PTHrP treatment increases the number of live Caco-2 cells. The hormone induces the phosphorylation and nuclear translocation of ERK 1/2, α p38 MAPK, and Akt, without affecting JNK phosphorylation. In addition, PTHrP-dependent ERK phosphorylation is reverted when PI3K activity was inhibited. Following MAPKs nuclear translocation, the transcription factors ATF-1 and CREB were activated in a biphasic manner. In addition PTHrP induces the translocation into the nucleus of β-catenin, protein that plays key role in maintaining the growth and proliferation of colorectal cancer, and increases the amount of both positive cell cycle regulators c-Myc and Cyclin D. Studies with ERK1/2, α p38 MAPK, and PI3K specific inhibitors showed that PTHrP regulates Caco-2 cell proliferation via these signaling pathways. In conclusion, the results obtained in this work expand our knowledge on the role of exogenous PTHrP in intestinal tumor cells and identify the signaling pathways that are involved in the mitogenic effect of the hormone on Caco-2 cells.
Collapse
Affiliation(s)
- María Julia Martín
- Departamento Biología Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
17
|
Wu Y, Xia L, Zhou Y, Xu Y, Jiang X. Icariin induces osteogenic differentiation of bone mesenchymal stem cells in a MAPK-dependent manner. Cell Prolif 2015; 48:375-84. [PMID: 25867119 DOI: 10.1111/cpr.12185] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 12/14/2014] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Icariin, a flavonoid isolated from Epimedium pubescens, has previously been identified to exert beneficial effects on preventing bone loss and promoting bone regeneration. However, molecular mechanisms for its anabolic action have, up to now, remained largely unknown. MATERIALS AND METHODS Effects of icariin on cell proliferation and osteogenic differentiation of rat bone mesenchymal stem cells (BMSCs) were systematically evaluated. To characterize underlying mechanisms, its effects on mitogen-activated protein kinase (MAPK) signalling pathways were determined. RESULTS Results showed that icariin might not have enhanced effects on cell proliferation. However, it seemed to significantly enhance osteogenic differentiation of BMSCs, demonstrated by increasing alkaline phosphatase (ALP) activity and gene expression of collagen type I (Col I), osteocalcin (OCN) and osteopotin (OPN). It was demonstrated that icariin rapidly phosphorylated extracellular signal-regulated kinase (ERK), p38 kinase and c-Jun N terminal kinase (JNK). Furthermore, icariin-stimulated osteogenic effects on BMSCs were dramatically attenuated by treatment with either specific ERK inhibitor of PD98059, p38 inhibitor of SB202190 or JNK inhibitor SP600125. CONCLUSIONS These results provide a potential mechanism of anabolic activity of icariin on BMSCs involving ERK, p38 and JNK MAPK pathways.
Collapse
Affiliation(s)
- Yuqiong Wu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Oral Bioengineering and Regenerative Medicine Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | | | | | | | | |
Collapse
|
18
|
Datta NS. Muscle-bone and fat-bone interactions in regulating bone mass: do PTH and PTHrP play any role? Endocrine 2014; 47:389-400. [PMID: 24802058 DOI: 10.1007/s12020-014-0273-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/10/2014] [Indexed: 02/07/2023]
Abstract
Metabolic bone disease occurs when there is a net loss in bone density. Osteoporosis, the most common metabolic bone disease, is a devastating problem and an increasingly major public health issue. A substantial body of evidence in the elderly population indicates that a relationship exists between the components of body weight and various measures of bone/mass, density, and function. Both muscle and fat contribute to the body's total weight and the intimate associations of muscle, fat, and bone are known. But the close functional interactions between muscle and bone or fat and bone are largely unidentified and have drawn much attention in recent years. Each of these tissues not only responds to afferent signals from traditional hormone systems and the central nervous systems but also secretes factors with important endocrine functions. Studies suggest that during growth, development, and aging, the relationship of muscle and fat with the skeleton possibly governs bone homeostasis and turnover. A better understanding of the endocrine function and the cellular and molecular mechanisms and pathways linking muscle or adipose tissues with bone anabolism and catabolism is a new avenue for novel pathways for anabolic drug discovery. These in turn will likely lead to more rational therapy toward increasingly prevalent disorders like osteoporosis. In this review, some of the recent works on the interaction of bone with muscle and fat are highlighted, and in so doing the role of parathyroid hormone (PTH), and PTH-related peptide (PTHrP) is surveyed.
Collapse
Affiliation(s)
- Nabanita S Datta
- Department Internal Medicine/Endocrinology, Cardiovascular Research Institute, Karmanos Cancer Institute, Wayne State University School of Medicine, 1107 Elliman Building, 421 East Canfield Avenue, Detroit, MI, 48201, USA,
| |
Collapse
|
19
|
Guimarães GN, Rodrigues TL, de Souza AP, Line SR, Marques MR. Parathyroid hormone (1-34) modulates odontoblast proliferation and apoptosis via PKA and PKC-dependent pathways. Calcif Tissue Int 2014; 95:275-81. [PMID: 25012507 DOI: 10.1007/s00223-014-9892-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/28/2014] [Indexed: 02/04/2023]
Abstract
Parathyroid hormone (PTH) plays a key role in the development and homeostasis of mineralized tissues such as bone and dentine. We have reported that PTH (1-34) administration can increase dentine formation in mice and that this hormone modulates in vitro mineralization of odontoblast-like cells. The purpose of the present study was to investigate whether PTH (1-34) participates in the proliferative and apoptotic signaling of odontoblast-like cells (MDPC23). MDPC23 cells were exposed to 50 ng/ml hPTH (1-34) or vehicle for 1 (P1), 24 (P24), or 48 (P48) hours, and the cell proliferation, apoptosis, and cell number were evaluated. To examine whether changes in the proliferative and apoptotic signaling in response to PTH involve protein kinases A (PKA) and/or C (PKC), MDPC23 cells were exposed to PTH with or without PKC or PKA signaling pathway inhibitors. Overall, the results showed that the PKA pathway acts in response to PTH exposure maintaining levels of cell proliferation, while the PKC pathway is mainly involved for longer exposure to PTH (24 or 48 h), leading to the reduction of cell proliferation and increase of apoptosis. The exposure to PTH reduced the cell number in relation to the control group in a time-dependent manner. In conclusion, PTH modulates odontoblast-like cell proliferative and apoptotic response in a time-dependent manner. Both PKC and PKA pathways participate in PTH-induced modulation in an antagonist mode.
Collapse
Affiliation(s)
- Gustavo Narvaes Guimarães
- Department of Morphology, Division of Histology and Embryology, Piracicaba Dental School, University of Campinas, Av. Limeira 901, Caixa Postal 052 CEP, Piracicaba, São Paulo, 13414-903, Brazil
| | | | | | | | | |
Collapse
|
20
|
Felthaus O, Gosau M, Klein S, Prantl L, Reichert TE, Schmalz G, Morsczeck C. Dexamethasone-related osteogenic differentiation of dental follicle cells depends on ZBTB16 but not Runx2. Cell Tissue Res 2014; 357:695-705. [PMID: 24816988 DOI: 10.1007/s00441-014-1891-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/08/2014] [Indexed: 01/23/2023]
Abstract
Dental follicle cells (DFCs) can be artificially differentiated into mineralizing cells. With a dexamethasone-based differentiation protocol, transcription factors ZBTB16 and NR4A3 are highly upregulated but Runx2 and other osteogenic marker genes are not. Previous studies have suggested the involvement of a Runx2-independent differentiation pathway. The objective of this study is to further elucidate this mechanism. Differentiation of DFCs was examined by alkaline phosphatase (ALP) staining and ALP activity measurement, by Alizarin Red S staining and by real-time reverse transcription plus the polymerase chain reaction. ZBTB16 was overexpressed by using a transient transfection method. Resulting genome-wide gene expression changes were assessed by microarray. ZBTB16 and Runx2 were inhibited by short interfering RNA transfection. Promoter binding of ZBTB16 was evaluated by chromatin immunoprecipitation. Downregulation of Runx2 had no effect on dexamethasone-induced differentiation but was effective on BMP2-induced differentiation. Downregulation of ZBTB16, however, impaired dexamethasone-induced differentiation. Genes that were upregulated by dexamethasone induction were also upregulated by ZBTB16 overexpression. Genes that were not upregulated during dexamethasone-induced differentiation were also not regulated by ZBTB16 overexpression. ZBTB16 bound directly to the promoter regions of osterix and NR4A3 but not that of Runx2. Overexpression of ZBTB16 led to changes in the gene expression profile, whereby upregulated genes were overrepresented in osteogenesis-associated biological processes. Our findings suggest that, in DFCs, a Runx2-independent differentiation mechanism exists that is regulated by ZBTB16.
Collapse
Affiliation(s)
- Oliver Felthaus
- Department of Cranio- and Maxillofacial Surgery, University Medical Center, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Chen M, Qiao H, Su Z, Li H, Ping Q, Zong L. Emerging therapeutic targets for osteoporosis treatment. Expert Opin Ther Targets 2014; 18:817-31. [PMID: 24766518 DOI: 10.1517/14728222.2014.912632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION To date, osteoporosis still remains a major public health burden especially for the aging populations. Over the last few decades treatments for osteoporosis have largely focused on anti-resorptive agents represented by bisphosphonates and estrogen therapy that dominated the market. Unsatisfactory efficacy, non-specificity and long-term safety of current therapies necessitate the need for new targets effectively preventing and treating of osteoporosis. AREAS COVERED This review expatiates on the mechanism of osteoporosis occurrence and bone remodeling cycle in detail. New targets of antiresorptive and anabolic agents based on the functions of osteoblasts and osteoclasts as well as associated signaling pathways are outlined. EXPERT OPINION Advanced understanding in the fields of bone remodeling, functions of osteoblasts, osteoclasts and osteocytes associated with osteoporosis occurrence offers the emerging bone-resorptive or bone-formative targets. Currently, molecules involving RANK-RANKL-OPG system and Wnt/β-catenin signaling pathway act as the most promising targets.
Collapse
Affiliation(s)
- Minglei Chen
- China Pharmaceutical University, Key Lab of State Natural Medicine, Department of Pharmaceutics , Nanjing 210009 , PR China +86 25 83271092; +86 25 83271317 ; +86 25 83271092; +86 25 83271317 ; ;
| | | | | | | | | | | |
Collapse
|
22
|
Guo B, Wang ST, Duan CC, Li DD, Tian XC, Wang QY, Yue ZP. Effects of PTHrP on chondrocytes of sika deer antler. Cell Tissue Res 2013; 354:451-60. [DOI: 10.1007/s00441-013-1670-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/23/2013] [Indexed: 12/27/2022]
|
23
|
Sharma S, Mahalingam CD, Das V, Jamal S, Levi E, Rishi AK, Datta NS. Cell cycle and apoptosis regulatory protein (CARP)-1 is expressed in osteoblasts and regulated by PTH. Biochem Biophys Res Commun 2013; 436:607-12. [PMID: 23764399 DOI: 10.1016/j.bbrc.2013.05.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30min to 5h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1 suggesting that PTH utilized an Extracellular Signal Regulated Kinase (ERK)-independent but p38 dependent pathway to regulate CARP-1 protein expression in osteoblasts. Immunofluorescence staining of differentiated osteoblasts further revealed nuclear to cytoplasmic translocation of CARP-1 protein following PTH treatment. Collectively, our studies identified CARP-1 for the first time in osteoblasts and suggest its potential role in PTH signaling and bone anabolic action.
Collapse
Affiliation(s)
- Sonali Sharma
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Mahalingam CD, Sampathi BR, Sharma S, Datta T, Das V, Abou-Samra AB, Datta NS. MKP1-dependent PTH modulation of bone matrix mineralization in female mice is osteoblast maturation stage specific and involves P-ERK and P-p38 MAPKs. J Endocrinol 2013; 216. [PMID: 23197743 PMCID: PMC3796767 DOI: 10.1530/joe-12-0372] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Limited information is available on the role of MAPK phosphatase 1 (MKP1) signaling in osteoblasts. We have recently reported distinct roles for MKP1 during osteoblast proliferation, differentiation, and skeletal responsiveness to parathyroid hormone (PTH). As MKP1 regulates the phosphorylation status of MAPKs, we investigated the involvement of P-ERK and P-p38 MAPKs in MKP1 knockout (KO) early and mature osteoblasts with respect to mineralization and PTH response. Calvarial osteoblasts from 9-14-week-old WT and MKP1 KO male and female mice were examined. Western blot analysis revealed downregulation and sustained expressions of P-ERK and P-p38 with PTH treatment in differentiated osteoblasts derived from KO males and females respectively. Exposure of early osteoblasts to p38 inhibitor, SB203580 (S), markedly inhibited mineralization in WT and KO osteoblasts from both genders as determined by von Kossa assay. In osteoblasts from males, ERK inhibitor U0126 (U), not p38 inhibitor (S), prevented the inhibitory effects of PTH on mineralization in early or mature osteoblasts. In osteoblasts from KO females, PTH sustained mineralization in early osteoblasts and decreased mineralization in mature cells. This effect of PTH was attenuated by S in early osteoblasts and by U in mature KO cells. Changes in matrix Gla protein expression with PTH in KO osteoblasts did not correlate with mineralization, indicative of MKP1-dependent additional mechanisms essential for PTH action on osteoblast mineralization. We conclude that PTH regulation of osteoblast mineralization in female mice is maturation stage specific and involves MKP1 modulation of P-ERK and P-p38 MAPKs.
Collapse
Affiliation(s)
- Chandrika D Mahalingam
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, 1107 Elliman Clinical Research Building, 421 East Canfield Avenue, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhang J, Zhang Q, Li S, Hou Y, Zhang H. The effects of Mn(2+) on the proliferation, osteogenic differentiation and adipogenic differentiation of primary mouse bone marrow stromal cells. Biol Trace Elem Res 2013; 151:415-23. [PMID: 23292301 DOI: 10.1007/s12011-012-9581-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
The effects of Mn(2+) on the proliferation, osteogenic and adipogenic differentiation of BMSCs were evaluated by employing MTT, ΔΨm, cell cycle, ALP activity, collagen production, ARS and oil red O stain assays. The results indicated that Mn(2+) decreased the viability at most concentrations for 24 h, but the viability was increased with prolonging incubation time. Mn(2+) at the concentrations of 1×10(-7) and 1×10(-6)mol/L decreased ΔΨm in the BMSCs for 48 h. Mn(2+) induced G2/M phase cell cycle arrest at tested concentrations. On day 7 and 10, the effect of Mn(2+) on the osteogenic differentiation depended on concentration, but it inhibited osteogenic differentiation at all tested concentrations for 14 d. The effect of Mn(2+) on the synthesis of collagen of BMSCs depended on concentration for 7 d, but Mn(2+) inhibited the synthesis of collagen at all tested concentrations for 10 d. On day 14, Mn(2+) inhibited the formation of mineralized matrix nodules of BMSCs at all tested concentrations, the inhibitory effect turned to be weaker with prolonging incubation time. Mn(2+) promoted the adipogenic differentiation of BMSCs at all tested concentrations for 10 d, but had no effect with prolonging incubation time. These findings suggested the effects of Mn(2+) on the proliferation, osteogenic differentiation and adipogenic differentiation of BMSCs are very complicated, concentration and incubation time are key factors for switching the biological effects of Mn(2+) from damage to protection.
Collapse
Affiliation(s)
- Jinchao Zhang
- College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China.
| | | | | | | | | |
Collapse
|
26
|
Su N, Chen M, Chen S, Li C, Xie Y, Zhu Y, Zhang Y, Zhao L, He Q, Du X, Chen D, Chen L. Overexpression of H1 calponin in osteoblast lineage cells leads to a decrease in bone mass by disrupting osteoblast function and promoting osteoclast formation. J Bone Miner Res 2013; 28:660-71. [PMID: 23044709 PMCID: PMC3716280 DOI: 10.1002/jbmr.1778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 08/24/2012] [Accepted: 09/07/2012] [Indexed: 02/03/2023]
Abstract
H1 calponin (CNN1) is known as a smooth muscle-specific, actin-binding protein which regulates smooth muscle contractive activity. Although previous studies have shown that CNN1 has effect on bone, the mechanism is not well defined. To investigate the role of CNN1 in maintaining bone homeostasis, we generated transgenic mice overexpressing Cnn1 under the control of the osteoblast-specific 3.6-kb Col1a1 promoter. Col1a1-Cnn1 transgenic mice showed delayed bone formation at embryonic stage and decreased bone mass at adult stage. Morphology analyses showed reduced trabecular number, thickness and defects in bone formation. The proliferation and migration of osteoblasts were decreased in Col1a1-Cnn1 mice due to alterations in cytoskeleton. The early osteoblast differentiation of Col1a1-Cnn1 mice was increased, but the late stage differentiation and mineralization of osteoblasts derived from Col1a1-Cnn1 mice were significantly decreased. In addition to impaired bone formation, the decreased bone mass was also associated with enhanced osteoclastogenesis. Tartrate-resistant acid phosphatase (TRAP) staining revealed increased osteoclast numbers in tibias of 2-month-old Col1a1-Cnn1 mice, and increased numbers of osteoclasts co-cultured with Col1a1-Cnn1 osteoblasts. The ratio of RANKL to OPG was significantly increased in Col1a1-Cnn1 osteoblasts. These findings reveal a novel function of CNN1 in maintaining bone homeostasis by coupling bone formation to bone resorption.
Collapse
Affiliation(s)
- Nan Su
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Maomao Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Siyu Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Can Li
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying Zhu
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yaozong Zhang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ling Zhao
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qifen He
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaolan Du
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
27
|
Soki FN, Park SI, McCauley LK. The multifaceted actions of PTHrP in skeletal metastasis. Future Oncol 2013; 8:803-17. [PMID: 22830401 DOI: 10.2217/fon.12.76] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PTHrP, identified during the elucidation of mediators of malignancy-induced hypercalcemia, plays numerous roles in normal physiology as well as pathological conditions. Recent data support direct functions of PTHrP in metastasis, particularly from tumors with strong bone tropism. Bone provides a unique metastatic environment because of mineralization and the diverse cell populations in the bone marrow. PTHrP is a key regulator of tumor-bone interactions and regulates cells in the bone microenvironment through proliferative and prosurvival activities that prime the 'seed' and the 'soil' of the metastatic lesion. This review highlights recent findings regarding the role of PTHrP in skeletal metastasis, including direct actions in tumor cells, as well as alterations in the bone microenvironment and future perspectives involving the potential roles of PTHrP in the premetastatic niche, and tumor dormancy.
Collapse
Affiliation(s)
- Fabiana N Soki
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, 1011 North University Avenue, Ann Arbor, MI, USA
| | | | | |
Collapse
|
28
|
Otto-Duessel M, He M, Adamson TW, Jones JO. Enhanced evaluation of selective androgen receptor modulators in vivo. Andrology 2012; 1:29-36. [PMID: 23258627 DOI: 10.1111/j.2047-2927.2012.00006.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 01/19/2023]
Abstract
Selective androgen receptor modulators (SARMs) are a class of drugs that control the activity of the androgen receptor (AR), which mediates the response to androgens, in a tissue-selective fashion. They are specifically designed to reduce the possible complications that result from the systemic inhibition or activation of AR in patients with diseases that involve androgen signalling. However, there are no ideal in vivo models for evaluating candidate SARMs. Therefore, we created a panel of androgen-responsive genes in clinically relevant AR expressing tissues including prostate, skin, bone, fat, muscle, brain and kidney. We used select genes from this panel to compare transcriptional changes in response to the full agonist dihydrotestosterone (DHT) and the SARM bolandiol at 16 h and 6 weeks. We identified several genes in each tissue whose expression at each of these time points correlates with the known tissue-specific effects of these compounds. For example, in the prostate we found four genes whose expression was much lower in animals treated with bolandiol compared with animals treated with DHT for 6 weeks, which correlated well with differences in prostate weight. We demonstrate that adding molecular measurements (androgen-regulated gene expression) to the traditional physiological measurements (tissue weights, etc.) makes the evaluation of potential SARMs more accurate, thorough and perhaps more rapid by allowing measurement of selectivity after only 16 h of drug treatment.
Collapse
Affiliation(s)
- M Otto-Duessel
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
29
|
Guo L, Qi ST, Miao DQ, Liang XW, Li H, Ou XH, Huang X, Yang CR, Ouyang YC, Hou Y, Sun QY, Han Z. The roles of parathyroid hormone-like hormone during mouse preimplantation embryonic development. PLoS One 2012; 7:e40528. [PMID: 22808183 PMCID: PMC3396650 DOI: 10.1371/journal.pone.0040528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 06/11/2012] [Indexed: 11/19/2022] Open
Abstract
Parathyroid hormone-like hormone (PTHLH) was first identified as a parathyroid hormone (PTH)-like factor responsible for humoral hypercalcemia in malignancies in the 1980s. Previous studies demonstrated that PTHLH is expressed in multiple tissues and is an important regulator of cellular and organ growth, development, migration, differentiation, and survival. However, there is a lack of data on the expression and function of PTHLH during preimplantation embryonic development. In this study, we investigated the expression characteristics and functions of PTHLH during mouse preimplantation embryonic development. The results show that Pthlh is expressed in mouse oocytes and preimplantation embryos at all developmental stages, with the highest expression at the MII stage of the oocytes and the lowest expression at the blastocyst stage of the preimplantation embryos. The siRNA-mediated depletion of Pthlh at the MII stage oocytes or the 1-cell stage embryos significantly decreased the blastocyst formation rate, while this effect could be corrected by culturing the Pthlh depleted embryos in the medium containing PTHLH protein. Moreover, expression of the pluripotency-related genes Nanog and Pou5f1 was significantly reduced in Pthlh-depleted embryos at the morula stage. Additionally, histone acetylation patterns were altered by Pthlh depletion. These results suggest that PTHLH plays important roles during mouse preimplantation embryonic development.
Collapse
Affiliation(s)
- Lei Guo
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-Tao Qi
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - De-Qiang Miao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xing-Wei Liang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Xiang-Hong Ou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Huang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Cai-Rong Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhiming Han
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
30
|
Datta NS, Samra TA, Abou-Samra AB. Parathyroid hormone induces bone formation in phosphorylation-deficient PTHR1 knockin mice. Am J Physiol Endocrinol Metab 2012; 302:E1183-8. [PMID: 22338074 PMCID: PMC3361988 DOI: 10.1152/ajpendo.00380.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Activation of G protein-coupled receptors by agonists leads to receptor phosphorylation, internalization of ligand receptor complexes, and desensitization of hormonal response. The role of parathyroid hormone (PTH) receptor 1, PTHR1, is well characterized and known to regulate cellular responsiveness in vitro. However, the role of PTHR1 phosphorylation in bone formation is yet to be investigated. We have previously demonstrated that impaired internalization and sustained cAMP stimulation of phosphorylation-deficient (PD) PTHR1 leads to exaggerated cAMP response to subcutaneous PTH infusion in a PD knockin mouse model. To understand the physiological role of receptor internalization on PTH bone anabolic action, we examined bone parameters of wild-type (WT) and PD knockin female and male mice following PTH treatment. We found a decrease in total and diaphyseal bone mineral density in female but not in male PD mice compared with WT controls at 3-6 mo of age. This effect was attenuated at older age groups. PTH administration displayed increased bone volume and trabecular thickness in the vertebrae and distal femora of both WT and PD animals. These results suggest that PTHR1 phosphorylation does not play a major role in the anabolic action of PTH.
Collapse
Affiliation(s)
- Nabanita S Datta
- Wayne State Univ. School of Medicine, Dept. Internal Medicine/Endocrinology, 1107 Elliman Bldg., 421 E. Canfield Ave., Detroit, MI 48201, USA.
| | | | | |
Collapse
|
31
|
Pramojanee SN, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Low-dose dental irradiation decreases oxidative stress in osteoblastic MC3T3-E1 cells without any changes in cell viability, cellular proliferation and cellular apoptosis. Arch Oral Biol 2012; 57:252-6. [DOI: 10.1016/j.archoralbio.2011.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/02/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
|
32
|
Tesser-Gamba F, Petrilli AS, de Seixas Alves MT, Filho RJG, Juliano Y, Toledo SRC. MAPK7 and MAP2K4 as prognostic markers in osteosarcoma. Hum Pathol 2011; 43:994-1002. [PMID: 22154052 DOI: 10.1016/j.humpath.2011.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/10/2011] [Accepted: 08/12/2011] [Indexed: 10/14/2022]
Abstract
Osteosarcoma is a class of cancer originating from the bone, affecting mainly children and young adults. Cytogenetic studies showed the presence of rearrangements and recurrent gains in specific chromosomal regions, indicating the possible involvement of genes located in these regions during the pathogenesis of osteosarcoma. These studies investigated expression of 10 genes located in the chromosomal region involved in abnormalities in osteosarcoma, 1p36, 17p, and chromosome 19. The purpose of this study was to investigate the expression profile of genes located in regions involved in chromosomal rearrangements in osteosarcoma. We used quantitative real-time polymerase chain reaction to investigate the expression of 10 genes located in 1p36.3 (MTHFR, ERRFI1, FGR, E2F2), 17p (MAPK7, MAP2K4), and chromosome 19 (BBC3, FOSB, JUND, and RRAS), in 70 samples taken from 30 patients (30 prechemotherapy, 30 postchemotherapy, and 10 metastases specimens) and 10 healthy bones as a control sample. The most interesting results showed a strong association between the expression levels of MAPK7 and MAP2K4 genes and clinical parameters of osteosarcoma. Overexpression of these genes was significantly associated to a poor response to treatment (P = .0001 and P = .0049, respectively), tumor progression, and worse overall survival (P = .0052 and P = .0085, respectively), suggesting that MAPK7 and MAP2K4 could play an important role in osteosarcoma tumorigenesis. Thus, these genes could be good markers in assessing response to treatment and development of osteosarcoma.
Collapse
Affiliation(s)
- Francine Tesser-Gamba
- Department of Pediatrics, Pediatric Oncology Institute (Grupo de Apoio ao Adolescente e à Criança com Câncer), Federal University of São Paulo, São Paulo, SP 04023-062, Brazil.
| | | | | | | | | | | |
Collapse
|
33
|
Mahalingam CD, Datta T, Patil RV, Kreider J, Bonfil RD, Kirkwood KL, Goldstein SA, Abou-Samra AB, Datta NS. Mitogen-activated protein kinase phosphatase 1 regulates bone mass, osteoblast gene expression, and responsiveness to parathyroid hormone. J Endocrinol 2011; 211:145-56. [PMID: 21852324 PMCID: PMC3783352 DOI: 10.1530/joe-11-0144] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone (PTH) signaling via PTH 1 receptor (PTH1R) involves mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase 1 (MKP1) dephosphorylates and inactivates MAPKs in osteoblasts, the bone-forming cells. We previously showed that PTH1R activation in differentiated osteoblasts upregulates MKP1 and downregulates pERK1/2-MAPK and cyclin D1. In this study, we evaluated the skeletal phenotype of Mkp1 knockout (KO) mice and the effects of PTH in vivo and in vitro. Microcomputed tomography analysis of proximal tibiae and distal femora from 12-week-old Mkp1 KO female mice revealed osteopenic phenotype with significant reduction (8-46%) in bone parameters compared with wild-type (WT) controls. Histomorphometric analysis showed decreased trabecular bone area in KO females. Levels of serum osteocalcin (OCN) were lower and serum tartrate-resistant acid phosphatase 5b (TRAP5b) was higher in KO animals. Treatment of neonatal mice with hPTH (1-34) for 3 weeks showed attenuated anabolic responses in the distal femora of KO mice compared with WT mice. Primary osteoblasts derived from KO mice displayed delayed differentiation determined by alkaline phosphatase activity, and reduced expressions of Ocn and Runx2 genes associated with osteoblast maturation and function. Cells from KO females exhibited attenuated PTH response in mineralized nodule formation in vitro. Remarkably, this observation was correlated with decreased PTH response of matrix Gla protein expression. Expressions of pERK1/2 and cyclin D1 were inhibited dramatically by PTH in differentiated osteoblasts from WT mice but much less in osteoblasts from Mkp1 KO mice. In conclusion, MKP1 is important for bone homeostasis, osteoblast differentiation and skeletal responsiveness to PTH.
Collapse
Affiliation(s)
- Chandrika D Mahalingam
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Conradie MM, Cato ACB, Ferris WF, de Wet H, Horsch K, Hough S. MKP-1 knockout does not prevent glucocorticoid-induced bone disease in mice. Calcif Tissue Int 2011; 89:221-7. [PMID: 21698455 DOI: 10.1007/s00223-011-9509-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/06/2011] [Indexed: 11/25/2022]
Abstract
Glucocorticoid-induced osteoporosis (GCOP) is predominantly caused by inhibition of bone formation, resulting from a decrease in osteoblast numbers. Employing mouse (MBA-15.4) and human (MG-63) osteoblast cell lines, we previously found that the glucocorticoid (GC) dexamethasone (Dex) inhibits cellular proliferation as well as activation of the MAPK/ERK signaling pathway, essential for mitogenesis in these cells, and that both these effects could be reversed by the protein tyrosine phosphatase (PTP) inhibitor vanadate. In a rat model of GCOP, the GC-induced changes in bone formation, mass, and strength could be prevented by vanadate cotreatment, suggesting that the GC effects on bone were mediated by one or more PTPs. Employing phosphatase inhibitors, qRT-PCR, Western blotting, and overexpression/knockdown experiments, we concluded that MKP-1 was upregulated by Dex, that this correlated with the dephosphorylation of ERK, and that it largely mediated the in vitro effects of GCs on bone. To confirm the pivotal role of MKP-1 in vivo, we investigated the effects of the GC methylprednisolone on the quantitative bone histology of wild-type (WT) and MKP-1 homozygous knockout (MKP-1(-/-)) mice. In WT mice, static bone histology revealed that GC administration for 28 days decreased osteoid surfaces, volumes, and osteoblast numbers. Dynamic histology, following time-spaced tetracycline labeling, confirmed a significant GC-induced reduction in osteoblast appositional rate and bone formation rate. However, identical results were obtained in MKP-1 knockout mice, suggesting that in these animals upregulation of MKP-1 by GCs cannot be regarded as the sole mediator of the GC effects on bone.
Collapse
Affiliation(s)
- Maria M Conradie
- Division of Endocrinology, Department of Medicine, Stellenbosch University, Tygerberg, Cape Town, South Africa.
| | | | | | | | | | | |
Collapse
|
35
|
Datta NS. Osteoporotic fracture and parathyroid hormone. World J Orthop 2011; 2:67-74. [PMID: 22474638 PMCID: PMC3302045 DOI: 10.5312/wjo.v2.i8.67] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/19/2011] [Accepted: 06/01/2011] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis and age-related bone loss is associated with changes in bone remodeling characterized by decreased bone formation relative to bone resorption, resulting in bone fragility and increased risk of fractures. Stimulating the function of bone-forming osteoblasts, is the preferred pharmacological intervention for osteoporosis. Recombinant parathyroid hormone (PTH), PTH(1-34), is an anabolic agent with proven benefits to bone strength and has been characterized as a potential therapy for skeletal repair. In spite of PTH's clinical use, safety is a major consideration for long-term treatment. Studies have demonstrated that intermittent PTH treatment enhances and accelerates the skeletal repair process via a number of mechanisms. Recent research into the molecular mechanism of PTH action on bone tissue has led to the development of PTH analogs to control osteoporotic fractures. This review summarizes a number of advances made in the field of PTH and bone fracture to combat these injuries in humans and in animal models. The ultimate goal of providing an alternative to PTH, currently the sole anabolic therapy in clinical use, to promote bone formation and improve bone strength in the aging population is yet to be achieved.
Collapse
|
36
|
Hsu YH, Chen WY, Chan CH, Wu CH, Sun ZJ, Chang MS. Anti-IL-20 monoclonal antibody inhibits the differentiation of osteoclasts and protects against osteoporotic bone loss. ACTA ACUST UNITED AC 2011; 208:1849-61. [PMID: 21844205 PMCID: PMC3171097 DOI: 10.1084/jem.20102234] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IL-20 promotes osteoclast differentiation by inducing RANK and RANKL expression in osteoclast precursors and osteoblasts, respectively. IL-20 is a proinflammatory cytokine of the IL-10 family that is involved in psoriasis, rheumatoid arthritis, atherosclerosis, and stroke. However, little is known about the role of IL-20 in bone destruction. We explored the function of IL-20 in osteoclastogenesis and the therapeutic potential of anti–IL-20 monoclonal antibody 7E for treating osteoporosis. Higher serum IL-20 levels were detected in patients with osteopenia and osteoporosis and in ovariectomized (OVX) mice. IL-20 mediates osteoclastogenesis by up-regulating the receptor activator of NF-κB (RANK) expression in osteoclast precursor cells and RANK ligand (RANKL) in osteoblasts. 7E treatment completely inhibited osteoclast differentiation induced by macrophage colony-stimulating factor (M-CSF) and RANKL in vitro and protected mice from OVX-induced bone loss in vivo. Furthermore, IL-20R1–deficient mice had significantly higher bone mineral density (BMD) than did wild-type controls. IL-20R1 deficiency also abolished IL-20–induced osteoclastogenesis and increased BMD in OVX mice. We have identified a pivotal role of IL-20 in osteoclast differentiation, and we conclude that anti–IL-20 monoclonal antibody is a potential therapeutic for protecting against osteoporotic bone loss.
Collapse
Affiliation(s)
- Yu-Hsiang Hsu
- Institute of Biopharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Datta NS, Samra TA, Mahalingam CD, Datta T, Abou-Samra AB. Role of PTH1R internalization in osteoblasts and bone mass using a phosphorylation-deficient knock-in mouse model. J Endocrinol 2010; 207:355-65. [PMID: 20929987 PMCID: PMC3771320 DOI: 10.1677/joe-10-0227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phosphorylation, internalization, and desensitization of G protein-coupled receptors, such as the parathyroid hormone (PTH) and PTH-related peptide (PTHrP) receptor (PTH1R), are well characterized and known to regulate the cellular responsiveness in vitro. However, the role of PTH1R receptor phosphorylation in bone formation and osteoblast functions has not yet been elucidated. In previous studies, we demonstrated impaired internalization and sustained cAMP stimulation of a phosphorylation-deficient (pd) PTH1R in vitro, and exaggerated cAMP and calcemic responses to s.c. PTH infusion in pdPTH1R knock-in mouse model. In this study, we examined the impact of impaired PTH1R phosphorylation on the skeletal phenotype of mice maintained on normal, low, and high calcium diets. The low calcium diet moderately reduced (P<0.05) bone volume and trabecular number, and increased trabecular spacing in both wild-type (WT) and pd mice. The effects, however, seem to be less pronounced in the female pd compared to WT mice. In primary calvarial osteoblasts isolated from 2-week-old pd or WT mice, PTH and PTHrP decreased phosphorylated extracellular signal-regulated kinases 1/2 (pERK1/2), a member of mitogen-activated protein kinase, and cyclin D1, a G₁/S phase cyclin, in vitro. In contrast to WT osteoblasts, down-regulation of cyclin D1 was sustained for longer periods of time in osteoblasts isolated from the pd mice. Our results suggest that adaptive responses of intracellular signaling pathways in the pd mice may be important for maintaining bone homeostasis.
Collapse
Affiliation(s)
- Nabanita S Datta
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, 1107 Elliman Building, 421 East Canfield Avenue, Detroit, Michigan 48201, USA.
| | | | | | | | | |
Collapse
|
38
|
Datta NS, Kolailat R, Fite A, Pettway G, Abou-Samra AB. Distinct roles for mitogen-activated protein kinase phosphatase-1 (MKP-1) and ERK-MAPK in PTH1R signaling during osteoblast proliferation and differentiation. Cell Signal 2010; 22:457-66. [PMID: 19892016 DOI: 10.1016/j.cellsig.2009.10.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 12/22/2022]
Abstract
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) activate one single receptor (PTH1R) which mediates catabolic and anabolic actions in the bone. Activation of PTH1R modulates multiple intracellular signaling responses. We previously reported that PTH and PTHrP down-regulate pERK1/2 and cyclin D1 in differentiated osteoblasts. In this study we investigate the role of MAPK phosphatase-1 (MKP-1) in PTHrP regulation of ERK1/2 activity in relation to osteoblast proliferation, differentiation and bone formation. Here we show that PTHrP increases MKP-1 expression in differentiated osteoblastic MC3T3-E1 cells, primary cultures of differentiated bone marrow stromal cells (BMSCs) and calvarial osteoblasts. PTHrP had no effect on MKP-1 expression in proliferating osteoblastic cells. Overexpression of MKP-1 in MC-4 cells inhibited osteoblastic cell proliferation. Cell extracts from differentiated MC-4 cells treated with PTHrP inactivate/dephosphorylate pERK1/2 in vitro; immunodepletion of MKP-1 blocked the ability of the extract to dephosphorylate pERK1/2; these data indicate that MKP-1 is involved in PTHrP-induced pERK1/2 dephosphorylation in the differentiated osteoblastic cells. PTHrP regulation of MKP-1 expression is partially dependent on PKA and PKC pathways. Treatment of nude mice, bearing ectopic ossicles, with intermittent PTH for 3weeks, up-regulated MKP-1 and osteocalcin, a bone formation marker, with an increase in bone formation. These data indicate that PTH and PTHrP increase MKP-1 expression in differentiated osteoblasts; and that MKP-1 induces growth arrest of osteoblasts, via inactivating pERK1/2 and down-regulating cyclin D1; and identify MKP-1 as a possible mediator of the anabolic actions of PTH1R in mature osteoblasts.
Collapse
Affiliation(s)
- Nabanita S Datta
- Wayne State University School of Medicine, Department Internal Medicine, Division Endocrinology, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
39
|
Lai LP, Mitchell J. Parathyroid hormone inhibits phosphorylation of mitogen-activated protein kinase (MAPK) ERK1/2 through inhibition of c-Raf and activation of MKP-1 in osteoblastic cells. Cell Biochem Funct 2009; 27:269-75. [PMID: 19384851 DOI: 10.1002/cbf.1568] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parathyroid hormone (PTH) regulation of mitogen-activated protein kinases (MAPK) ERK1/2 contributes to PTH regulation of osteoblast growth and apoptosis. We investigated the mechanisms by which PTH inhibits ERK1/2 activity in osteoblastic UMR 106-01 cells. Treatment with PTH significantly inhibited phosphorylated ERK1/2 between 5 and 60 min. Transient transfection of cells with a cDNA encoding MAPK phosphatase-1 (MKP-1) resulted in 30-40% inhibition of pERK1/2; however MKP-1 protein levels were only significantly stimulated by PTH after 30 mins, suggesting another mechanism for the early phase of pERK1/2 inhibition. The active upstream kinase c-Raf phosphorylation at serine 338 (ser(338)) was significantly inhibited by PTH treatment within 5 min and transfection of the cells with constitutively-active c-Raf blocked PTH inhibition of pERK1/2. Inhibition of pERK1/2 and phosphor-c-Raf were seen when cells were treated with PTH(1-34) or PTH(1-31) analogues that stimulate cAMP, but not with PTH(3-34), PTH(7-34) or PTH(18-48) that do not stimulate cAMP. Stimulation of the cells with forskolin or 8BrcAMP also inhibited pERK1/2 and c-Raf.p338. Our results suggest that rapid PTH inhibition of ERK1/2 activity is mediated by PKA dependent inhibition of c-Raf activity and that stimulation of MKP-1 may contribute to maintaining pERK1/2 inhibition over prolonged time.
Collapse
Affiliation(s)
- Lick Pui Lai
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Room 4342, Toronto, Ontario, Canada M5S 1A8, Canada
| | | |
Collapse
|
40
|
Abstract
The striking clinical benefit of PTH in osteoporosis began a new era of skeletal anabolic agents. Several studies have been performed, new studies are emerging out and yet controversies remain on PTH anabolic action in bone. This review focuses on the molecular aspects of PTH and PTHrP signaling in light of old players and recent advances in understanding the control of osteoblast proliferation, differentiation and function.
Collapse
Affiliation(s)
- Nabanita S Datta
- Division Endocrinology, Department Internal Medicine, Wayne State University School of Medicine, 421 East Canfield Avenue, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
41
|
Hastings RH, Montgrain PR, Quintana R, Rascon Y, Deftos LJ, Healy E. Cell cycle actions of parathyroid hormone-related protein in non-small cell lung carcinoma. Am J Physiol Lung Cell Mol Physiol 2009; 297:L578-85. [PMID: 19633068 DOI: 10.1152/ajplung.90560.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP), a paraneoplastic protein expressed by two-thirds of human non-small cell lung cancers, has been reported to slow progression of lung carcinomas in mouse models and to lengthen survival of patients with lung cancer. This study investigated the effects of ectopic expression of PTHrP on proliferation and cell cycle progression of two human lung adenocarcinoma cell lines that are normally PTHrP negative. Stable transfection with PTHrP decreased H1944 cell DNA synthesis, measured by thymidine incorporation, bromodeoxyuridine uptake, and MTT proliferation assay. A substantial fraction of PTHrP-positive cells was arrested in or slowly progressing through G1. Cyclin D2 and cyclin A2 protein levels were 60-70% lower in PTHrP-expressing cells compared with control cells (P < 0.05, N = 3 independent clones per group), while expression of p27(Kip1), a cyclin-dependent kinase inhibitor, was increased by 35 +/- 9% (mean +/- SE, P < 0.05) in the presence of PTHrP. Expression of other cyclins, including cyclins D1 and D3, and cyclin-dependent kinases was unaffected by PTHrP. PTHrP did not alter the phosphorylation state of Rb, but decreased cyclin-dependent kinase (CDK) 2-cyclin A2 complex formation. Ectopic expression of PTHrP stimulated ERK phosphorylation. In MV522 cells, PTHrP had similar effects on DNA synthesis, cyclin A2 expression, pRb levels, CDK2-cyclin A2 association, and ERK activation. In summary, PTHrP appears to slow progression of lung cancer cells into S phase, possibly by decreasing activation of CDK2. Slower cancer cell proliferation could contribute to slower tumor progression and increased survival of patients with PTHrP-positive lung cancer.
Collapse
Affiliation(s)
- Randolph H Hastings
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Corda D, Kudo T, Zizza P, Iurisci C, Kawai E, Kato N, Yanaka N, Mariggiò S. The developmentally regulated osteoblast phosphodiesterase GDE3 is glycerophosphoinositol-specific and modulates cell growth. J Biol Chem 2009; 284:24848-56. [PMID: 19596859 DOI: 10.1074/jbc.m109.035444] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycerophosphodiester phosphodiesterase enzyme family involved in the hydrolysis of glycerophosphodiesters has been characterized in bacteria and recently identified in mammals. Here, we have characterized the activity and function of GDE3, one of the seven mammalian enzymes. GDE3 is up-regulated during osteoblast differentiation and can affect cell morphology. We show that GDE3 is a glycerophosphoinositol (GroPIns) phosphodiesterase that hydrolyzes GroPIns, producing inositol 1-phosphate and glycerol, and thus suggesting specific roles for this enzyme in GroPIns metabolism. Substrate specificity analyses show that wild-type GDE3 selectively hydrolyzes GroPIns over glycerophosphocholine, glycerophosphoethanolamine, and glycerophosphoserine. A single point mutation in the catalytic domain of GDE3 (GDE3R231A) leads to loss of GroPIns enzymatic hydrolysis, identifying an arginine residue crucial for GDE3 activity. After heterologous GDE3 expression in HEK293T cells, phosphodiesterase activity is detected in the extracellular medium, with no effect on the intracellular GroPIns pool. Together with the millimolar concentrations of calcium required for GDE3 activity, this predicts an enzyme topology with an extracellular catalytic domain. Interestingly, GDE3 ectocellular activity is detected in a stable clone from a murine osteoblast cell line, further confirming the activity of GDE3 in a more physiological context. Finally, overexpression of wild-type GDE3 in osteoblasts promotes disassembly of actin stress fibers, decrease in growth rate, and increase in alkaline phosphatase activity and calcium content, indicating a role for GDE3 in induction of differentiation. Thus, we have identified the GDE3 substrate GroPIns as a candidate mediator for osteoblast proliferation, in line with the GroPIns activity observed previously in epithelial cells.
Collapse
Affiliation(s)
- Daniela Corda
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, 66030 Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sabbieti MG, Agas D, Xiao L, Marchetti L, Coffin JD, Doetschman T, Hurley MM. Endogenous FGF-2 is critically important in PTH anabolic effects on bone. J Cell Physiol 2009; 219:143-51. [PMID: 19107841 DOI: 10.1002/jcp.21661] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parathyroid hormone (PTH) increases fibroblast growth factor receptor-1 (FGFR1) and fibroblast growth factor-2 (FGF-2) expression in osteoblasts and the anabolic response to PTH is reduced in Fgf2-/- mice. This study examined whether candidate factors implicated in the anabolic response to PTH were modulated in Fgf2-/- osteoblasts. PTH increased Runx-2 protein expression in Fgf2+/+ but not Fgf2-/- osteoblasts. By immunocytochemistry, PTH treatment induced nuclear accumulation of Runx-2 only in Fgf2+/+ osteoblasts. PTH and FGF-2 regulate Runx-2 via activation of the cAMP response element binding proteins (CREBs). Western blot time course studies showed that PTH increased phospho-CREB within 15 min that was sustained for 24 h in Fgf2+/+ but had no effect in Fgf2-/- osteoblasts. Silencing of FGF-2 in Fgf2+/+ osteoblasts blocked the stimulatory effect of PTH on Runx-2 and CREBs phosphorylation. Studies of the effects of PTH on proteins involved in osteoblast precursor proliferation and apoptosis showed that PTH increased cyclinD1-cdk4/6 protein in Fgf2+/+ but not Fgf2-/- osteoblasts. Interestingly, PTH increased the cell cycle inhibitor p21/waf1 in Fgf2-/- osteoblasts. PTH increased Bcl-2/Bax protein ratio in Fgf2+/+ but not Fgf2-/- osteoblasts. In addition PTH increased cell viability in Fgf2+/+ but not Fgf2-/- osteoblasts. These data suggest that endogenous FGF-2 is important in PTH effects on osteoblast proliferation, differentiation, and apoptosis. Reduced expression of these factors may contribute to the reduced anabolic response to PTH in the Fgf2-/- mice. Our results strongly indicate that the anabolic PTH effect is dependent in part on FGF-2 expression.
Collapse
Affiliation(s)
- Maria Giovanna Sabbieti
- Department of Comparative Morphology and Biochemistry, University of Camerino, Camerino (MC), Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Berry JE, Pettway GJ, Cordell KG, Jin T, Datta NS, McCauley LK. JunB as a potential mediator of PTHrP actions: new gene targets Ephrin B1 and VCAM-1. Oral Dis 2008; 14:713-26. [PMID: 19193201 PMCID: PMC2637472 DOI: 10.1111/j.1601-0825.2008.01489.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) is an integral mediator of physiologic and pathologic processes and has demonstrated actions in the periodontium. PTHrP functions via AP-1, and specifically through JunB. This study identified JunB-dependent downstream mediators of PTHrP using OCCM cementoblastic transfectants with JunB over- or reduced expression. Over-expressing cells showed an increase in proliferation, while the opposite was seen in siRNA transfected cells. Microarray analysis of over-expressing cells revealed more than 1000 regulated genes. Three genes were investigated in more detail. The PTH/PTHrP receptor (PTHR1) and ephrin B1 (EfnB1) were down-regulated, and vascular cell adhesion molecule-1 (VCAM-1) was up-regulated with JunB over-expression. JunB siRNA transfectants had increased PTHR1, but reduced ephrin B1 and unaltered VCAM-1 in vitro. To validate these targets, parental OCCM cells and primary osteoblasts were treated with PTHrP, resulting in reduced PTHR1 and ephrin B1, and increased VCAM-1. Cell transfectants were implanted subcutaneously in vivo, and microarray analysis and RT-PCR performed. Over-expression of JunB down-regulated PTHR1 and ephrin B1, and increased VCAM-1. JunB siRNA transfectant implants had increased PTHR1 and ephrin B1, but no altered VCAM-1. These data highlight new gene targets for PTHrP and indicate JunB is a critical mediator of PTHrP actions.
Collapse
Affiliation(s)
- Janice E. Berry
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Ann Arbor, Michigan 48109
| | - Glenda J. Pettway
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Ann Arbor, Michigan 48109
- Department of Biomedical Engineering, College of Engineering, University of Michigan
| | - Kitrina G. Cordell
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Ann Arbor, Michigan 48109
- Department of Pathology, Medical School, University of Michigan
| | - Taocong Jin
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan
| | - Nabanita S. Datta
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Ann Arbor, Michigan 48109
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Ann Arbor, Michigan 48109
- Department of Pathology, Medical School, University of Michigan
| |
Collapse
|
45
|
Silvestris F, Cafforio P, De Matteo M, Calvani N, Frassanito MA, Dammacco F. Negative regulation of the osteoblast function in multiple myeloma through the repressor gene E4BP4 activated by malignant plasma cells. Clin Cancer Res 2008; 14:6081-91. [PMID: 18829486 DOI: 10.1158/1078-0432.ccr-08-0219] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE To explore the pathogenetic mechanisms that suppress the osteoblast function in multiple myeloma because osteogenesis results in defective new bone formation and repair. EXPERIMENTAL DESIGN Microarray gene analysis revealed the overexpression of E4BP4, a transcriptional repressor gene, in normal osteoblasts cocultured with myeloma cells that were releasing the parathyroid hormone-related protein (PTHrP). Thus, the effect of E4BP4 was assessed in PTHrP-stimulated osteoblasts by measuring the RNA levels of both Runx2 and Osterix as major osteoblast transcriptional activators. Because E4BP4 is a negative regulator of the cyclooxygenase-2 (COX-2) pathway that drives the expression of both Runx2 and Osterix, these factors were investigated after prostaglandin E(2) treatment to overcome the COX-2 defect as well as in E4BP4-silenced osteoblasts. Finally, E4BP4, PTHrP, Osterix, and osteocalcin levels were measured in vivo in patients with bone disease together with the E4BP4 protein in bone biopsies. RESULTS E4BP4 was specifically induced by PTHrP and inhibited both Runx2 and Osterix, whereas E4BP4-silenced osteoblasts expressed functional levels of both factors. The prostaglandin E(2) treatment of E4BP4-up-regulated osteoblasts promptly restored Runx2 and Osterix activities, suggesting that integrity of COX-2 pathway is essential for their transcription. Down-regulation of Osterix by E4BP4 was confirmed in vivo by its inverse levels in osteoblasts from myeloma patients with increased serum PTHrP, whose bone biopsies expressed the E4BP4 protein. CONCLUSIONS Our data support the role of E4BP4 as osteoblast transcriptional repressor in inhibiting both Runx2 and Osterix in myeloma bone disease and correlate its effect with the increased PTHrP activity.
Collapse
Affiliation(s)
- Franco Silvestris
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials 2008; 29:4091-9. [PMID: 18640716 DOI: 10.1016/j.biomaterials.2008.06.030] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 06/28/2008] [Indexed: 11/22/2022]
Abstract
The fibrotic response of the body to synthetic polymers limits their success in tissue engineering and other applications. Though porous polymers have demonstrated improved healing, difficulty in controlling their pore sizes and pore interconnections has clouded the understanding of this phenomenon. In this study, a novel method to fabricate natural polymer/calcium phosphate composite scaffolds with tightly controllable pore size, pore interconnection, and calcium phosphate deposition was developed. Microporous, nanofibrous fibrin scaffolds were fabricated using sphere-templating methods. Composite scaffolds were created by solution deposition of calcium phosphate on fibrin surfaces or by direct incorporation of nanocrystalline hydroxyapatite (nHA). The SEM results showed that fibrin scaffolds exhibited a highly porous and interconnected structure. Osteoblast-like cells, obtained from murine calvaria, attached, spread and showed a polygonal morphology on the surface of the biomaterial. Multiple cell layers and fibrillar matrix deposition were observed. Moreover, cells seeded on mineralized fibrin scaffolds exhibited significantly higher alkaline phosphatase activity as well as osteoblast marker gene expression compared to fibrin scaffolds and nHA incorporated fibrin scaffolds (0.25 and 0.5g). All types of scaffolds were degraded both in vitro and in vivo. Furthermore, these scaffolds promoted bone formation in a mouse calvarial defect model and the bone formation was enhanced by addition of rhBMP-2.
Collapse
|
47
|
Abstract
Continuous exposure to parathyroid hormone (PTH) is associated with catabolic effects, whereas intermittent exposure to low doses of PTH is associated with anabolic effects. By controlling osteoblast function, PTH increases bone formation on cancellous, endocortical, and periosteal bone surfaces. In general, PTH does not affect the replication of uncommitted osteoblast progenitors but suppresses proliferation of committed osteoprogenitors. Intermittent PTH promotes osteoblast differentiation, in part, by its ability to promote exit from the cell cycle, to activate Wnt signaling in osteoblasts, and to inhibit the Wnt antagonist sclerostin in osteocytes. Insulin-like growth factor-1 is also required for the actions of PTH to increase osteoblast numbers. Intermittent PTH prolongs osteoblast survival in rodents by mechanisms that involve activation and proteolytic degradation of Runx2. PTH's ability to orchestrate a dynamic range of signaling cascades that determine osteoblast fate may explain both its catabolic and beneficial actions on the skeleton.
Collapse
Affiliation(s)
- Stavroula Kousteni
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
48
|
Khosla S, Westendorf JJ, Oursler MJ. Building bone to reverse osteoporosis and repair fractures. J Clin Invest 2008; 118:421-8. [PMID: 18246192 DOI: 10.1172/jci33612] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An important, unfilled clinical need is the development of new approaches to improve fracture healing and to treat osteoporosis by increasing bone mass. Recombinant forms of bone morphogenetic protein 2 (BMP2) and BMP7 are FDA approved to promote spinal fusion and fracture healing, respectively, and the first FDA-approved anabolic drug for osteoporosis, parathyroid hormone, increases bone mass when administered intermittently but can only be given to patients in the US for two years. As we discuss here, the tremendous explosion over the last two decades in our fundamental understanding of the mechanisms of bone remodeling has led to the prospect of mechanism-based anabolic therapies for bone disorders.
Collapse
Affiliation(s)
- Sundeep Khosla
- Endocrine Research Unit, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
49
|
Regulating gene transcription in response to cyclic AMP elevation. Cell Signal 2007; 20:460-6. [PMID: 17993258 DOI: 10.1016/j.cellsig.2007.10.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 10/07/2007] [Indexed: 01/19/2023]
Abstract
Many of the effects of prototypical second messenger cyclic adenosine 3',5'-monophosphate (cAMP) on complex processes such as the regulation of fuel metabolism, spermatogenesis and steroidogenesis are mediated via changes in target gene transcription. A large body of research has defined members of the cAMP-response element binding (CREB) protein family as the principal mediators of positive changes in gene expression in response to cAMP following phosphorylation by cAMP-dependent protein kinase (PKA). However, persistent observations of cAMP-mediated induction of specific genes occurring via PKA-independent mechanisms have challenged the generality of the PKA-CREB pathway. In this review, we will discuss in detail both PKA-dependent and -independent mechanisms that have been proposed to explain how cAMP influences the activation status of multiple transcription factors, and how these influence critical biological processes whose defective regulation may lead to disease.
Collapse
|
50
|
Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ. Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 2007; 212:207-14. [PMID: 17301958 PMCID: PMC2929812 DOI: 10.1002/jcp.21021] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mechanical loads are required for optimal bone mass. One mechanism whereby mechanical loads are transduced into localized cellular signals is strain-induced fluid flow through lacunae and canaliculi of bone. Gap junctions (GJs) between osteocytes and osteoblasts provides a mechanism whereby flow-induced signals are detected by osteocytes and transduced to osteoblasts. We have demonstrated the importance of GJ and gap junctional intercellular communication (GJIC) in intracellular calcium and prostaglandin E(2) (PGE(2)) increases in response to flow. Unapposed connexons, or hemichannels, are themselves functional and may constitute a novel mechanotransduction mechanism. Using MC3T3-E1 osteoblasts and MLO-Y4 osteocytes, we examined the time course and mechanism of hemichannel activation in response to fluid flow, the composition of the hemichannels, and the role of hemichannels in flow-induced ATP release. We demonstrate that fluid flow activates hemichannels in MLO-Y4, but not MC3T3-E1, through a mechanism involving protein kinase C, which induces ATP and PGE(2) release.
Collapse
Affiliation(s)
- Damian C. Genetos
- Department of Orthopaedic Surgery, University of California at Davis, Sacramento, CA, 95817
| | - Curtis J. Kephart
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, 17033
| | - Yue Zhang
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, 17033
| | - Clare E. Yellowley
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California at Davis, Davis, CA, 95616
| | - Henry J. Donahue
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, 17033
| |
Collapse
|